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We consider implicit integration methods for the solution of stiff initial value problems for 
second-order differential equations of the special form y" = f(y). In implicit methods, we 
are faced with the problem of solving systems of implicit relations. This paper focuses on the 
construction and analysis of iterative solution methods which are effective in cases where the 
Jacobian of the right-hand side of the differential equation can be split into a sum of matrices 
with a simple structure. These iterative methods consist of the modified Newton method and 
an iterative linear solver to deal with the linear Newton systems. The linear solver is based 
on the approximate factorization of the system matrix associated with the linear Newton 
systems. A number of convergence results are derived for the linear solver in the case where 
the Jacobian matrix can be split into commuting matrices. Such problems often arise in 
the spatial discretization of time-dependent partial differential equations. Furthermore, the 
stability matrix and the order of accuracy of the integration process are derived in the case 
of a finite number of iterations. 

Keywords: second-order partial differential equations, splitting methods, approximate fac­
torization 

1. Introduction 

We consider initial value problems (IVPs) for systems of second-order ordinary 
differential equations (ODEs) of the special form 

d~;t) =f(y(t)), y,f E IRd. (1.1) 

We shall assume that the IVP for equation ( 1.1) is stiff In analogy with the definition of 
stiff IVPs for first-order ODEs (see, e.g., (6, p. 2]), we shall call IVPs for equation (1.1) 
stiff if "explicit integration methods do not work". In order to make this more precise, 
we should indicate when explicit methods do not work. The success of explicit methods 
largely depends on the stepsize h used and the spectral radius p of the Jacobian matrix 
Of I oy of the right-hand side function. In fact, due to their relatively small stability 
region, explicit methods can only work if the stepsize is such that in the neighbourhood 
of the exact solution the values of h2 p(of / dy) are sufficiently small. This leads us to the 
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following more quantitative definition of stiffness. Let h be such that the exact solution 
of (1.1) can be represented with sufficient accuracy on the discrete grid { tn = tn-1 +h }. 
Then ( 1.1) is called stiff if in the neighbourhood of the exact solution h 2 p( of/ dy) » 1. 
As a consequence, applying explicit methods to stiff IVPs means that we need stepsizes 
that are determined by stability conditions rather than by accuracy considerations (we 
have a similar situation in the case of stiff first-order ODEs). Thus, if the IVP for (1.1) 
is stiff, then the method to be used should preferably be implicit. 

Stiff equations of the form (1.1) often arise if time-dependent partial differential 
equations (PDEs) are semidiscretized by the method of lines (examples will be given 
in section 2.1). Solving such equations by an implicit method implies that we are 
faced with the problem of solving systems of implicit relations. This paper focuses on 
the construction and analysis of iterative solution methods which are effective in cases 
where an approximation J to 8f / 8y can be split into a sum of a-matrices Ji such that 
the matrices Ji have an essentially simpler structure than the matrix J (in sections 2.1 
and 3.2, we will indicate what is meant by an "essentially simpler structure"). These 
iterative methods consist of the modified Newton method (the outer iteration), in which 
the linear Newton systems are solved by a second iteration process (the inner iteration) 
which is based on approximate factorization. The inner-outer iteration process is called 
approximate factorization iteration or briefly AF iteration. 

In [7] AF iteration was used for solving fully implicit discretizations of transport 
models and in [3] AF iteration was analyzed in the case of a large class of implicit inte­
gration methods for systems of first-order ODEs originating from the semidiscretization 
of PDEs. In the latter paper, general convergence and stability results are presented. 
These results can also be used for second-order ODE methods by writing (1.1) as a 
first-order system and by simply integrating this system by a first-order ODE solver 
(the black box approach). Unfortunately, in the usual case where the eigenvalues of 
8f / 8y are negative, the convergence and stability properties of the black box approach 
are quite poor, because the special structure of the first-order form of ( 1.1) is not ex­
ploited. To illustrate this, consider a Runge-Kutta (RK) method for first-order ODEs 
y' = g(y), let the Butcher matrix A of the RK method be a matrix with complex 
eigenvalues, and suppose that 8g/ 8y can be written as the sum of two commuting 
matrices K1 and K2. Then it can be shown that the approximate factorization iteration 
process cannot be unconditionally convergent if the eigenvalues of K 1 and K2 are 
purely imaginary (see [3]). Now we apply the same RK method to the first-order form 
of (1.1). Suppose that the Jacobian associated with the right-hand side of (1.1) can 
be split into two matrices 11 and 12 which share the same eigensystem with negative 
eigenvalues (for example, this happens if (1.1) originates from the spatial discretization 
of a two-dimensional wave equation, see section 2.1). Then, the matrices K 1 and K 2 

associated with the first-order form y' = g(y) of (1.1) commute and their eigenvalues 
are purely imaginary. Hence, as we mentioned above, the AF iteration process for 
solving the implicit RK relations will not be unconditionally convergent. However, 
exploiting the special structure of the first-order form y' = g(y) of ( 1.1 ), the implicit 
RK relations can be simplified (see section 2 for details) and applying AF iteration 
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to these simpli~ed relations, we obtain unconditional convergence provided that the 

eigenvalues .A(A) of the underlying Butcher matrix A satisfy larg(.A(A))I :::;; 7r / 4. Ex­
amples are the Butcher matrices of the third-order Radau IIA, the fourth-order Lobatto 
IIIA, and the fourth-order and sixth-order Gauss methods. Thus, although the solutions 
of the original and the simplified RK relations are identical, the convergence properties 
of AF iteration are quite different. 

The purpose of this paper is 

(i) to see to what extent the convergence and stability results valid for first-order 
ODE methods change in the second-order case (1.1), and 

(ii) to select from a wide class of second-order ODE methods suitable methods for 
solving stiff IVPs. 

The second-order ODE methods considered here belong to the class of so-called Gen­
eral Linear Methods (GLMs). For first-order ODEs, such methods have been intro­
duced by Butcher in 1966 (see [l, p. 335] for a detailed discussion). In section 2, 
we show that GLM methods can be defined in a similar way for second-order ODEs 
given by (1.1). The advantage of using the GLM format is that almost any IVP solver 
can be written as a GLM, so that the analysis developed in this paper applies to a 
wide variety of methods. Section 3 discusses the structure of the implicit relations 
arising in these GLMs and defines the outer-inner iteration process for the implicit 
stage values. In section 4, a number of convergence results are derived for the model 
situation where the matrices Ji share the same eigensystem and possess a negative 
eigenvalue spectrum. Finally, section 5 presents order of accuracy and stability results 
in the case of a finite number of inner and outer iterations. 

2. Preliminaries 

In this section, we present examples of stiff OD Es of the form ( 1.1) originating 
from time-dependent PDEs and examples of implicit second-order ODE methods using 

the GLM formularium. 

2.1. Examples of stiff second-order ODEs 

Our first example is the so-called equation of telegraphy (cf., e.g., [2, p. 15]) 

82u 2 l 2 ) - = c liµu + - k u + g(t, x 1, ... , x µ , at2 4 

a2 a2 
Iiµ := a 2 + ... + a 2 , 

x 1 Xµ 

0:::;; t ~ 1, 0:::;; Xi:::;; 1 (2.1) 

with initial conditions at t = 0 and boundary conditions along the spatial boundaries. 
Here, k is the friction constant, µ denotes the number of spatial dimensions, g is 
a given forcing function, and u = if; exp(kt/2), where if; denotes a distu~bance t~at 
is propagated with velocity c in the (x 1, ••• , xµ)-plane. For example, this equation 
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describes the displacement of a string or membrane, electro-magnetic waves, and long 
low water waves (shallow water waves). 

Replacing the spatial domain by a finite set of grid points and applying the method 
of lines yields a system of ODEs of the form 

d2y(t) ( k2 ) dt2 = c2 X1 + ... + Xµ + 4c2 y(t) + g(t), (2.2) 

where y approximates u at the grid points and g is a vector taking the inhomogeneous 
part of (2.1) and the boundary conditions into account. Let us consider the case of 
Dirichlet boundary conditions. Then, all rows of the matrix Xi represent discretizations 
of the differential operator a2 /ox;. If the method of lines is based on standarct, 
second-order, symmetric differences with spatial mesh Ax, then Xi can be characterized 
by the stencil (Ax)-2 [1, -2, 1]. Such matrices possess eigenvalues in the interval 
[-4(L'.lx)-2, -7r2], so that p(8f/dy) = O((L'.lx)-2). Hence, if the exact solution of the 
IVP for (2.1) is such that a discrete representation of this solution requires a space­
time grid in which the spatial mesh ~x is much smaller than the time steps h, then 
h2p(8f/dy) = O(h2(~x)-2) » 1, i.e., the IVP is stiff. For example, this happens 
if (2.1) models long shallow water waves (see, e.g., [11, p. 142]). Furthermore, the 
Jacobian of (2.2) is given by of I oy = c2(X1 + ... + Xµ) + (k/2)2 which can be split 
into a sum ofµ matrices Ji = c2Xi + µ- 1(k/2)2 I, where I denotes the identity matrix. 
These matrices Ji are all characterized by one-dimensional 3-point stencils, whereas 
8f / oy is characterized by a µ-dimensional (2µ + 1 )-point stencil. This feature can be 
exploited in the AF iteration process (see section 3.2). 

Our second example is the equation for the transverse motion of a bar or plate 
given by [12, p. 54] 

f:Pu - 2 2 
ot2 - -c (Aµ) 1l + g(t,x1, ... ,Xµ), 0 ~ t ~ 1, 0 ~ Xi ~ 1, (2.3) 

where Aµ is again the Laplacian as defined in (2.1 ), c some constant, and g the forcing 
function. Proceeding as described above, we obtain the ODE system 

d2y(t) 2 2 
dt2 = -c (X1 + · · · + Xµ) y(t) + g(t), (2.4) 

where the Xi are the same matrices as in (2.2). Here, p(8f/dy) = O((Ax)-4). Hence, 
if the exact solution of the IVP for (2.3) is such that its discrete representation requires 
a space-time grid in which the spatial mesh Ax is of about the same size as the time 
steps h, then h2p(8f/dy) = O(h2(Ax)-4 ) = O((Axr2). Evidently, this implies that 
the stiffness of the IVP increases as Ax decreases. In order to see the properties of 
the splitting of the Jacobian 8f/oy = -c2(X1 + · · · + Xµ)2, we first consider the 2-di-
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mensional case, where &f/oy = -c2(Xf + 2X1X2 + Xi). The stencils characterizing 
the matrices X 1, X2 and X1X2 have the generic form 

X1 = • • • • • 

• 

• 
• 

• • • 

Hence, the Jacobian 8f/8y is characterized by a 13-point stencil. Setting J1 = -c2 Xf, 
Ji = -c2 Xi and J3 = -2c2 X1X2, we see that the Jacobian can be split into less 
complicated matrices, viz. two 5-point stencils and one 9-point stencil. Similarly, in 
the 3-dimensional case the Jacobian is given by a 33-point stencil which can be split 
into three 5-point stencils and three 9-point stencils. Again, these features can be 
exploited when applying the AF iteration process (see section 3.2). 

2.2. General linear methods 

A direct extension of the GLMs of Butcher to equations of the second-order form 
(1.1) reads 

Un+! = (R 0 l)Un + h2(S 0 l)F(Un) + h2(T 0 l)F(Un+1), n = 1, 2,... . (2.5) 

Here R, S and T denote k x k matrices, I is the d x d identity matrix, h is the 
stepsize tn+I - tn, and 0 denotes the Kronecker product, i.e., if R = (rij), then 
R@ I denotes a block matrix with blocks rijl. In this paper, we assume that each 
of the k components Un+l,i of the kd-dimensional solution vector Un+l represents 
a numerical approximation either to the exact solution vector y(tn + aih) or to the 
exact derivative vector hy'(tn + aih). The vector a := (ai) is called the abscissa 
vector, the quantities Un+l the stage vectors and their components Un+I,i the stage 
values. The stage values approximating y(tn + aih) will be called solution values 
and those approximating hy'(tn + aih) derivative values. Furthermore, for any vector 
Un = (uni), F(Un) contains the right-hand side values (f(uni)). 

The GLM (2.5) is completely determined by the arrays {a, R, S, T}. Given the 
starting vector U 1, (2.5) defines a sequence of vectors U2, U3, U4, ... , from which 
approximations to the exact solution values can be obtained. 

It may happen that R and S have zero columns for the same column index j. In 
such cases, the jth component u 1,J of U1 is not needed to start the integration process. 
All stage values that we do need to start the method are called external stage values, 
otherwise they are called internal stage values (cf. Butcher [1, p. 367]). The distinction 
between internal and external stage values is needed in the stability analysis given in 
section 5. 

In this paper, we shall assume that one or more abscissae ai equal 1. If the corre­
sponding components Un+I,i of Un+l are external stage values, then these components 
will be called step point values (the points {to, t1, ... } are called step points). A stage 
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value Un+l,i which provides an approximation to the exact solution value YCin + aih) 

is said to be accurate of order p if for sufficiently smooth right-hand side functions f 

and for all points {tn + aih, n = 0, 1, ... }, we have that Un+ l,i = y(tn + aih) + O(hP). 
The maximal order of accuracy of the step point values is called the step point order. 

Of course, the second-order ODE (1.1) can also be solved by reducing the 
ODE (1.1) to first-order form and by application of a first-order ODE method. There 

are now two options: 

(i) the black box approach where the first-order ODE method is used as a black box 

method, or 

(ii) the indirect second-order ODE-method approach where the first-order ODE method 
is rewritten as a second-order ODE method by exploiting the special structure of 
the first-order ODE system. 

In the black box option, we have to rely on the properties of the first-order ODE 
method, including the properties of the iteration process implemented for solving the 
implicit relations. Since it is often more advantageous, with respect to numerical 
performance, to follow the indirect second-order ODE-method option, we explicitly 

derive the resulting second-order ODE method. Le!_ u~ "';'._rite (1.1) as y' = z, z1 = f(y) 

and let us apply a GLM defined by the arrays (a, R, S, T). It can be verified that the 

resulting method is equivalent with separately applying this GLM to y1 = z and to 
z' = f(y). Hence, let us associate with y and z the stage vectors Y and Z. Then, Y 
and Z satisfy 

Yn+l = (R 0 I)Yn + h(S 0 I)Zn + h(T 0 I)Zn+J, 

Zn+I = (R0 I)Zn + h(S 0 I)F(Yn) + h(T 0 I)F(Yn+1). 

By substitution of the second equation into the first and by defining the extended 
stage vector Un := (Y;, hZ;)\ we obtain a GLM for second-order ODEs (see also 
Hairer [5]) 

a= ( !) , R=(R. s+_rR.) 
0 R ' 

S= (f'} 0) s 0 ' 
(2.6) 

= (f! o) T T 0 . 

Note that in (2.6) only Yn+ t is implicitly defined and should be solved by some 
iteration process. Thus, this iteration process needs to be applied to only kd implicit 
relations. This is a direct consequence of the special structure of the first-order system. 
Ignoring this special structure, that is, applying the black box option (i)i would lead to 
iteration of 2kd implicit relations. Of course, if the iteration processes used in the two 
options both converge, then they converge to the same numerical solution. However, 
it will tum out that the iteration process in the indirect second-order ODE-method 
approach often converges where it does not converge in the black box approach. 
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Example 2.1. An example of a GLM of the fonn (2.6) with step point order p = 2 is 

the GLM: 

(0 0 0 0) 
T= ~ 0 4 0 0 

9 0 0 0 0 
0 6 0 0 

~2 ~) 
0 9 , 

-3 12 

8=0, 

(2.7) 

derived from the two-step backward differentiation method (BDM). Here, Un+ 1 ap­

proximates 

Example 2.2. Another indirect second-order ODE method, derived from the 2-stage 

Radau HA-based method for first-order ODEs, is defined by the Runge-Kutta-Nystrom 

(RKN) method: 

a=cn' I (° 3 I) 
R= 3 ~ 3 3 , 8=0, 

0 3 

T=~6 (1~ 
-2 

D 0 
27 9 

where 

Un+l ~ (y(tn + h/3)T, y(tn + h)T, hy' (tn + hl) T_ 

This method has step point order 3. 

(2.8) 

Example 2.3. A direct second-order ODE method is given by (cf. Sharp et al. [10]): 

(
17/14) 
23/60 

a= 1 , 

1 

(
0 0 1 17/14) 

R- O 0 1 23/60 
- 0 0 1 1 , 

0 0 0 1 

r - 234179 /352800 ( 

289/392 

T = -21/698 

0 
289/392 
185/349 
300/349 

0 0 0 0) 
0 0 , 

49/349 0 0 

8=0, 

(2.9) 
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where Un+! approximates 

( ( 17h)T ( 23h)T )T Y tn + 14 ,y tn + 60 ,y(tn + h)T,hy'(tn + hl 

This method has step point order 3. 

3. Approximate factorization iteration 

In order to define the approximate factorization iteration method, we first need 
to extract the implicit relations to be solved from the GLM (2.5). This will be the 
subject of section 3.1. In section 3.2, we will specify the iteration method by using 
the splitting mentioned in the introduction, and in section 3.3, the computational costs 
of the iteration method will be discussed. 

3.1. Structure of the implicit relations 

To see the structure of the implicit relations to be solved, it is convenient to 
partition the components Un+l,i of Un+! into 

(i) explicit stage values that can be explicitly evaluated by means of already computed 
stage values and right-hand side values, and 

(ii) implicit stage values which need the solution of a (usually nonlinear) system of 
equations. 

For instance, in (2.7), all stage values are explicit except for the second one, and 
in (2.8) and (2.9), only the first two stages are implicit and the other stages are 
explicit. 

In most methods available in the literature, the components of Un+! can be 
arranged in such a way that 

Un+!= (X~+ 1 ,Y~+ 1 ,Z~+ 1 )T, 
where Xn+ 1 and Zn+ 1 represent explicit stage values and Y n+ 1 the implicit stage 
values (see again (2.7), (2.8) and (2.9)). The corresponding partitioning of the matrix 
T takes the form 

(3.1) 

where Li and L2 are strictly lower triangular matrices and T21 , T31 , T32 and A are 
allowed to be full matrices with A nonsingular. From (3.1) it follows that the implicit 
stage values are defined by 

Rn(Y) := y - h2(A 0 J)F(Y) - v n' (3.2) 
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where V n can be expressed in terms of already computed quantities. The structure of 
the implicit relations defining the implicit stage values is mainly detennined by the 
matrix A. For the implicit GLMs defined by (2.6)-(2.8) and (2.9), the matrix A is 
respectively given by: 

A=T2, A=~, A=316(1~ 

- ( 289/392 0 ) 
A- -234179/352800 289/392 ' 

-2) 0 , 
(3.3) 

where we assumed that in (2.6) the matrix T is nonsingular. In the following, the 
number of implicit stages will be denoted by s. 

Before discussing the solution of the implicit relation (3.2), we remark that for 
stiff problems it is recommendable to impose a special structure on the matrices 8 
and T such that the evaluation of explicit right-hand side values can be avoided. This 
considerably improves the accuracy in actual implementations. To be more precise, 
let R, 8 and T be partitioned according to the partitioning 

and let 

R~(~} 

( T T T )T 
Un+l = Xn+l• Yn+l• Zn+l ' 

(0 812 0) 
8 = 0 822 0 ' 

0 832 0 
(3.4) 

where A is a nonsingular s x s matrix (note that the methods (2.7), (2.8) and (2.9) 
possess parameter matrices of this form). The GLM takes the form: 

Xn+l = (R1 ® J)Un + h2(S12 ® J)F(Y n), 

y n+ l = (R2 ® J)Un + h2(S22 ® J)F(Y n) + h2(A ® J)F(Y n+ 1), 

Zn+1 = (R3 ® J)Un + h2(S32 ® J)F(Yn) + h2(T32 ® J)F(Yn+1). 

Using a similar approach as used by Shampine [9] in the implementation of implicit 
RK methods (see also Hairer and Wanner [6, p. 129]), we express F(Yn+1) in tenns 
of Y n+ l, Un and F(Y n), i.e., 

h2F(Yn+1) = (A-1 ® I)Yn+l - (A-1R2 ® I)Vn - h2 (A- 1S22 ® I)F(Yn), (3.Sa) 

so that we can write the GLM in the equivalent form: 

Xn+l = (R1 ® J)Un + h2(S12 ® J)F(Y n), 

Yn+1 =(R2 ® l)Vn + h2(S22 ® J)F(Yn) + h2(A ® J)F(Yn+1), (3.Sb) 

Zn+I = ((R3 -T32A- 1 R1) ® I)Vn + h2((S32 -T32A- 1S22) ® I)F(Yn) 

+ (T32A- 1 ® I)Yn+l· 
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Since h2F(Y n) can be generated by applying (3.5a) for n = 1, 2, ... , n - 1, no explicit 
F evaluations are needed in (3.5) except for F(Y 1 ). We shall use the formulas (3.5b) 
in the stability analysis of the iterated GLM (see section 5.2). 

3.2. The iteration method 

Each step by the method (2.5) requires the solution of the system Rn(Y) = 0 
specified in (3.2). In order to solve this system, we consider the modified Newton 
iteration process: 

M := I-A©h2 J, j =I, 2, ... , m, (3.6a) 

where M represents an approximation to the Jacobian matrix of Rn (Y) and y(O) is 
provided by some predictor fonnula. If Rn(Y) is linear, as is the case in the examples 
of section 2.1, then only one Newton iteration is needed, so that the solution of (3.2) 
is obtained by solving the linear system M(Yn+I - y<0>) = -Rn(Y<0>). 

If the dimension d in the system (1.1) is large, then solving (3.6a) by direct 
methods is usually quite costly, both in computing time and in storage (see also sec­
tion 3.3). In order to reduce computational costs, one may resort to iterative linear 
solvers. These linear solvers may be considered as the inner iteration process and the 
Newton process (3.6a) as the outer iteration process. One class of iterative solvers 
are the iterative preconditioned conjugate gradient methods (see, e.g., [4]). In the case 
of ODEs originating from PDEs in two or three space dimensions, these methods are 
usually much cheaper than direct methods, but they are still quite storage consuming. 

It is the aim of this paper to design a storage economic, parallel iterative linear 
system solver that is much more efficient than the direct solution process. This solver 
is based on a splitting of the Jacobian of f into a sum of matrices Ji, so that the 
matrix M can be expressed as 

1 (j 

M =I - A© h2 J =;:I: (I- a A© h2 Ji), (3.6b) 
i=I 

and on the approximate factorization of the matrix M yielding the inner-outer iteration 
process 

I 
(3.7) 

TI:= II (I - B © h2 Ji), 
i=u 

where v = 1, 2, ... , r, j = 1, 2, ... , m, y0.0) = y0-l,rl, and where B is a suitably 
chosen matrix. Evidently, if the iterates y0.vl converge with v, then they can only 
converge to the solution of (3.6a) with y0l replaced by y0-l,r)_ We will refer to (3.7) 
as AF iteration. 
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Each inner iteration in (3.7) requires the solution of er linear systems with system 
matrix I - B ® h2 Ji of order sd. It is now clear what we meant by the preposition that 
the "partial" Jacobians Ji should have an "essentially simpler structure", viz. "solving 
the linear systems with system matrix I - B ® h2 Ji should be much more easy than 
solving the linear system in (3.6a)". For examples we refer to the spatially discretized 
PDEs discussed in section 2.1. It should be remarked that the idea of factorizing the 
system matrix of linear equations originating from multidimensional PDEs was already 
used in the famous ADI method of Peaceman and Rachford [8] in 1955. 

The inner iteration process in (3.7) is particularly attractive if parallel computer 
systems are available, because the CJ LU-decompositions of the system matrices I -
B ® h2 Ji can all be done concurrently. Moreover, if B is diagonal, then the factor 
matrices I - B ® h2 Ji of the system matrix IT are block-diagonal, which enables us 
to decouple each of the linear systems into s subsystems which can again be solved 
concurrently. If B is not diagonal, but similar to a diagonal matrix with real diagonal 
entries, then we can diagonalize the iteration method (3.7) by means of a Butcher 
transformation y0.v) = (Q ® J)Y(j,v), where Q is such that D := Q- 1 AQ is diagonal 
(see, e.g., [6, p. 128]). Thus, 

IT(Y(j,v) _ y(j.v-1)) =-(Q-1 ®f)M(Q ® f)Y(j,v-1) 

+ (Q-1 ®I)(MY(j-l,r)_Rn(Y0-1.r))), (3.7') 

I 

IT:= (Q-1 ®l)IT(Q ®I)= II (I- D ® h2 Ji)· 
i=u 

Evidently, the factor matrices I - D ® h2 Ji of the system matrix IT are again block­
diagonal, allowing the same amount of parallelism as in the case where B is diagonal. 

3.3. Computational costs 

In order to see the typical gains in performance when using AF iteration, we 
consider the case where the matrix A in (3.6a) is lower triangular and the matrix B 
in (3.7) is diagonal. 

Solving the linear Newton systems (3.6a) directly requires the LU-decomposition 
(LUD) of the s matrices Mj :=I - ajjh2 J (j = 1, ... , s) and ms forward/backward 
substitutions (FBSs) associated with the d x d matrix Mj. Furthermore, we should 
also add the costs for computing m right-hand side (RHS) terms Rn(y0-l)) in (3.6a), 
that is, msdq flops, where q is the averaged number of flops for one scalar RHS 
component. 

If we use a preconditioned conjugate gradient (CG) type linear solver, then the 
CG costs for solving the s linear subsystems are rmsO(d) flops, where the order 
constant is quite large because each iteration again requires the solution of a linear 
system due to the preconditioning. The RHS costs are again msdq flops. It is difficult 
to give an estimate for the number of inner iterations r. If no good initial iterate is 
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available, then r is at best O( ./d), which happens in the case of symmetric, positive 
definite systems using a good preconditioner (cf. [4]). However, within one integration 
step, the final iterate of each inner iteration is an excellent initial iterate for the next 
inner iteration. Hence, it seems fair to count rsO(d) flops for the CG costs instead of 
rmsO(d) flops. 

Using AF iteration (3.7) for solving the Newton systems requires the LUD of 
the sCT matrices Mij :=I- bjjh2Ji (i = 1, ... ,0'; j = l, ... ,s) and rmsa FBSs 
associated with Mij· The RHS costs in (3.7) are msdq + rmsd(l + ~(s + l)d) ~ 
msd(q + !r(s + l)d) flops if r > 1 and msdq flops if r = 1. 

Usually, the LUDs needed in the direct and AF iteration methods have to be 
computed only every few steps (if the problem is linear, then they have to be computed 
only once). 

Let us compare these costs in the case of a three-dimensional, semidiscrete wave 
equation (2.2). Then, a = 3 and d = N 3, where N is the number of grid points in each 
direction of the spatial domain. Since this problem is linear, the CG process requires 
only one outer iteration (m = 1) and the rate of convergence of the AF process only 
depends on rm (see remark 4.1), that is, we may set r = 1, which reduces the RHS 
costs considerably. Furthermore, the LUDs need to be computed only once. In the 
flop calculation, we use the fact that the LUD and the FBS of a matrix of order n 
with half band width b « n requires 2nb2 and 2nb flops, respectively (see, e.g., [ 4, 
p. 151]). 

The matrix J, and therefore the matrices Mj, are banded matrices of order N 3 

with half band width N 2, and the matrices Mij are essentially tridiagonal matrices of 
order N 3 . Ignoring the costs of computing the preconditioner in the CG method, the 
numbers of LUD, FBS, CG and RHS flops per step are given by the expressions listed 
in table 1 (since the numbers of outer iterations m may differ for the direct approach 
and the AF approach, we have denoted them m1 and m2, respectively). 

From this table it follows that for larger values of N the total number of flops 
required by the direct, the CG, and AF approach are 2shN7, sO(N912) and s(6h + 
6m2 + mzq)N3, respectively (the factor h reflects that the problem is linear, so that the 

Table l 
Number of flops required in problem (2.2) with 3 spatial dimensions. 

Method p LUD FBS CG RHS 

Direct approach 2shN7 2misN5 m1sN3q 
CG iteration sO(N9/ 2) sN3q 
AF iteration 6shN3 6mzsN3 mzsN3q 
Parallel direct 
approach p~2 2hN1 max { 1, p- 1 } 2m1sN5 m1sN3qp- 1 

Parallel CG 
iteration p~2 max {I, p- 1 }O(N912) sN3qp-1 
Parallel AF 
iteration p~2 2hN3 max{1, 3sp-1} 6m2sN3p- 1 m2sN3qp- 1 
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LUDs can be computed at the beginning of the integration process). In experiments 
with AF iteration applied to semidiscrete transport problems (as reported in [7]) it 
turned out that for r = 1 and s ~ 2 the implicit relations were solved with sufficient 
accuracy within 3 outer iterations. Since in the second-order ODE case AF iteration is 
expected to converge faster than in the first-order ODE case (see the discussion of the 
iteration error estimate ( 4.2) in the next section), we anticipate that m2 ~ 3. Hence, 
AF iteration is expected to require at most s(l8 + 6h + 3q)N3 flops, which is for large 
N considerably less than required by the direct method and the CG method. 

Next we consider the scope for parallelism of the two iteration processes on a 
p-processor system. In the direct approach, all LU-decompositions and all components 
of Rn(y0-Il) can be computed in parallel. Hence, on a parallel computer system with 
p ~ s processors, the effective LUD costs are a factor s and the effective RHS costs a 
factor p lower (see table 1). In the CG approach, the RHSs and the subsystem iterates 
can evidently be computed in parallel, but introducing parallelism in the CG iteration 
itself still offers difficulties. The AF approach has more scope for parallelism. Firstly, 
all LUDs of the matrices Mij can be computed in parallel requiring 3s processors. 
Secondly, each of the systems with system matrix Mij consists of N 2 tridiagonal 
subsystems of order N which are all uncoupled. Hence, if p processors are available, 
then both the FBS and RHS costs can be reduced by a factor p. For example, for p = 3s 
and m2 = 3 the total number of flops becomes effectively at most (6 + 2h + q)N3• 

4. Convergence results 

Let us consider the behaviour of the iteration error E(j,v) := y0,v) - Y n+I · 

From (3.2) and (3.7) it follows that 

s0,v) = Zc(j,v-I) + h2TI- 1(A ® J)Gn(c0-I,rl), Z :=I - n- 1 M, 
(4.1) 

Gn(c) := F(Yn+I + c) - F(Yn+1) - (J@ J)c, 

where J is the same approximation to the Jacobian matrix as used in (3.6) and Z 
represents the inner amplification matrix. From the relation y0.0l = y(j-l,r) it follows 
that c(j,OJ = c(j-l,rl, so that after r inner iterations this recursion yields 

c(j,r) = zrc(j-l,r) + h2 (I - zr)M- 1(A 0J)Gn(cCj-l,rl). (4.2) 

Let Gn possess a Lipschitz constant Ln(h) in the neighbourhood of the origin (with 
respect to the norm II · I\) and let Ln(h) = O(hu), where u depends on the Jacobian 
update strategy. For example, if J is updated every few steps, then u = 1. It is easily 
verified that Z = (A - B) ® h2 J + O(h4), so that Z = 0(h8 ), where e = 2 if A f. B 
and e = 4 if A= B. Hence, it follows from (4.2) that 

(4.2') 

This estimate shows that we have at least fast convergence of the nonstiff components. 
For example, if u = 1, then in each outer iteration the iteration error is damped by a 
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factor O(h9r) + O(h3). Hence, choosing r = 4e-1, we may expect a convergence rate 
comparable with that of modified Newton. We remark that application of AF iteration 
to first-order ODE methods (see [3]) yields an inner amplification matrix Z satisfying 
Z = O(h912), so that we may expect faster convergence in the second-order ODE 
case. 

Remark 4.1. If the ODE is linear, then Gn vanishes, so that by means of ( 4.2) c(j,r) = 
zrc(j-l,r) = zrjc(O,r), and therefore, c(m,r) = zrmc(O,r)_ This shows that for linear 
problems, the rate of convergence of AF iteration only depends on zrm, that is, only 
on the product rm. This means that in linear problems we should set r = 1 by which 
the expensive matrix-vector multiplication in (3.7) is avoided (of course, the value of 
m is expected to be larger than in the direct approach). 

So far, all our considerations were independent of the splitting of the Jacobian J. 
However, in the remainder of this section, we will focus on the convergence in the 
case of model problems. 

4.1. The model problem 

The case where the "partial" Jacobians Ji all commute with each other, that is, 
they share the same eigensystem, will be referred to as the model problem. Such 
model situations occur if (1.1) originates from certain classes of second-order partial 
differential equations (see section 2.1). 

For briefness of notation, we introduce the following convention. Let E(h2 J1, 

... , h2 Ju) be a matrix depending on h2 J1, ... , h2 Ju. Then the s x s matrix obtained by 
replacing the matrices h2 Ji by the scalars Zi is denoted by E(z), where z = (z1, ... , zu ). 
Thus, with the matrices M defined in (3.6b), TI defined in (3.7), and Z defined in (4.2) 
we associate the matrices 

l 

Z(z) :=I - n-1(z)M(z), M(z) =I - (eTz)A, Il(z) = IT (I - ziB), (4.3) 
i=a 

where e is the a-dimensional vector with unit entries. Evidently, if we choose Zi := 
>..(Ji)h2, where >..(Ji) denotes an eigenvalue of k then in the case of the model 
problem defined above, the eigenvalues of the amplification matrix in ( 4.1) are given 
by those of the matrix Z(z). The region of convergence can then be defined by 
the region in the z-plane where Z(z) has its eigenvalues ((z) within the unit circle. 
Assuming that the eigenvalues of the "partial" Jacobians Ji are on the negative real 
axis (as is the case in many wave equation problems), we shall call the iteration 
method (3. 7) A(O)-convergent if the region of convergence contains the region { z: zi ~ 

0}. The eigenvalues ((z), will be called the amplification factors of the inner iteration 
method. 
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4.2. Matrices B = A with real eigenvalues 

We consider the convergence region of (3.7) in the case where B =A with .\(A) 
real (for example, as in the methods (2.7) and (2.9)). The amplification factors are 
given by 

(]" 

((z) := 1- 7r- 1(z)µ(z), µ(z) := 1 - .\(A)(eTz), 7r(Z) :=TI (1 - .\(A)zi), (4.4) 
i=l 

where .\(A) denotes an eigenvalue of A. Let .\(A) ?: 0. Then, it follows from ( 4.4) 
that A(O)-convergence is achieved if 27r(Z) - µ(z) > 0 for Zi ~ 0. Since we may write 

7r(z) = µ(z) + pz.\2(A) + p3.\3(A) + · · · + p(]".\(]"(A), 

where the coefficients Pi are non-negative whenever Zi ~ 0, we see that for .\(A) ?: 0 
and Zi ~ 0 

27r(z) - µ(z) = µ(z) + 2 (p2.\ 2(A) + p3.\ 3 (A) + · · · + p(]".\ (]"(A)) > 0. 

Theorem 4.1. If .\(A);;:: 0, then AF iteration {(3.7), B =A} is A(O)-convergent for 
all a. 

4.3. Matrices B = A with complex eigenvalues 

If B = A with A having complex eigenvalues, then the convergence analysis is 
more complicated. We separately discuss the cases of two and three splitting terms 
(a = 2 and a = 3). 

4.3 .1. Two splitting terms 
If a = 2, then the amplification factor can be factorized according to 

((z) = .\(A)z1 ( 1 - ,\(A)z1 )- 1 .\(A)z2 ( 1 - .\(A)z2r 1• (4.5) 

By requiring that the magnitude of both factors is less than 1, we see that for a = 2 
the region of convergence of the inner iteration method in (3.7) contains the domain 

IDJ := n { z: ZjRe(.\(A)) < ~· j = 1,2 }· 
..\(A) 

Theorem 4.2. If Re(.\(A))?: 0, then AF iteration {(3.7), B =A} is A(O)-convergent 
for a= 2. 

Thus, AF iteration applied to (2.7), (2.8) and (2.9) is A(O)-convergent. In the 
particular case of the indirect GLM (2.6), we immediately have by virtue of theorem 4.2 
the result: 
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Corollary 4.1. If the generating GLM (a, R, S, T) in the indirect GLM (2.6) satisfies 
larg(A(T))I ~ 7r/4, then AF iteration {(3.7), A= B = T 2} is A(O)-convergent for 
a=2. 

This corollary implies that for all indirect RKN methods generated by RK matri­
ces whose Butcher matrices A have their eigenvalues in the wedge larg(.A(A))I ~ 7'i /4 
AF iteration is A(O)-convergent. For example, this happens in the case of the third­
order Radau IIA, the fourth-order Lobatto IIIA and the fourth-order and sixth-order 
Gauss methods. 

Next, consider the case where A has eigenvalues with Re(>.(A)) < 0, so that 
A(O)-convergence is not possible. In fact, the region of convergence consists of two 
strips along the negative z1-axis and the negative z2-axis. The plot in figure 1 is 
typical for the form of the region of divergence in the third quadrant of the (z1, z2)­
plane obtained for methods with Re(.A(A)) < 0 (gray part indicates divergence). Note 
that the convergence region is symmetric with respect to the line z1 = z2. 

In a number of important applications, we do not need A(O)-convergence with 
respect to both z1 and z2. For example, in the 2-dimensional modeling of the water 
elevation in a river, we encounter a wave equation in which the resolution of the 
coordinate perpendicular to the river should be an order of magnitude smaller than 
the resolution of the coordinate along the river. Hence, the "stiffness" of the Newton 
systems (3.6a) comes from the direction perpendicular to the river, so that we need 
only unconditional convergence with respect to this direction. In such cases, a region 
of convergence as in figure 1 is quite sufficient. 

If we have stiffness with respect to both z1 and z2, then we should look at the 
disk, centered at the origin, which is contained in the region of convergence. From 
figure 1 it follows that the radius of this disk can be determined by setting z1 = z2 

on the boundary of the convergence region. Hence, the point zoe is on the boundary 

-20 

-190 -140 -120 -100 -eo -«I ~ -20 0 

Figure 1. Divergence region for AF iteration applied to the RKN method generated by fifth-order Radau 
IIA method (example 4.1) with A= B. 
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of this convergence disk if zo is a solution (nearest to the origin) of the equations 
i((zoe))I = 1 associated with those eigenvalues >..(A) of A that are in the negative 
halfplane. From (4.5) it follows that zo satisfies l.A(A)zo(l - .A(A)zo)- 11 = 1. This 
equation has just one solution given by [2Re(.A(A))]- 1, so that we may conclude that 
the convergence region of the inner iteration method in (3.7) contains the domain 

IOl = {z: Zf + zi < 2z6, zo := max ~A ' Z\ ~ 0, z2 ~ o}. (4.6) 
Re(A(A))<O 2Re( ( )) 

Suppose that the matrices J1 and J2 possess the spectral radius p(J1) and p(J2). Then 
the convergence condition becomes h4(p2(J1) + p2(J2)) < 2z6. Thus, we have the 
convergence result: 

Theorem 4.3. Let a = 2. If A has one or more eigenvalues in the negative halfplane, 
then a sufficient condition for convergence of AF iteration { (3.7), B = A} is given 
by 

1 
zo := Re(Tc%><o 2Re(>..(A)) · 

(4.7) 

Example 4.1. We illustrate this convergence result by means of the RKN method 
generated by the fifth-order Radau IIA method for first-order ODE methods. From 
(2.6) it follows that the RKN matrix A is the square of the Radau IIA matrix, so that 

88 - 7v'6 296 - 169v'6 -2+ 3y'6 2 

360 1800 225 

A= 296 + 169v'6 88 + 7v'6 -2- 3y'6 

1800 360 225 
16- v'6 16 + v'6 1 

-
36 36 9 

(°.022 -0.020 0.010) 
~ 0.177 0.038 -0.007 . (4.8) 

0.318 0.182 0.000 

Its eigenvalues are given by )..(A) ~ 0.0756 and .A(A) ~ -0.0078±0.0601 i. Applying 
theorem 4.3 results in the convergence condition h < 9.52[p2 (J1) + p2(J2)]- 114 . 

When A has one or more eigenvalues in the left halfplane, one may wonder 
whether the fixed point iteration (FP) process might be a better approach than the 
AF process. To answer this question, we should consider the FP error equation. By 
observing that using FP iteration for solving the Newton systems in (3.6a) yields an 
inner-outer iteration process of the form (3.7) with B = 0, i.e., TI = I, the inner 
amplification matrix Z reduces to 

Z = I - M = A ® h2 J. (4.9) 
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This relation shows that FP iteration converges if h < [p(J)p(A)]- 112 • A comparison 
with (4.7) yields: 

Theorem 4.4. Let CJ= 2. If A has one or more eigenvalues in the negative halfplane, 
then the interval of convergent stepsizes h of AF iteration { (3.7), B = A} is larger 
than that of FP iteration {(3.7), B = O} if 

p2(J1)+p2(Ji) 1 . ( p(A) )2 
---=----- < - mm 

p2(Ji + J2) 2 Re(.\(A))<O Re(,\(A)) 
(4.10) 

For example, if we use a splitting according to dimensions in the 2-dimensional 
wave equation, then p(J1) = p(Ji) = p(J1 + J2)/2, so that the left-hand side of (4.10) 
becomes 1/2. Hence, (4.10) is always satisfied. 

There are, of course, other aspects that should be taken into account. AF iteration 
needs LU decompositions and forward-backward substitutions. On the other hand, 
the amplification factor is much better for AF iteration. In order to appreciate the 
damping of the initial error y(O) - Y n+ 1 by the two iteration methods, we compare the 
amplification factor ( 4.5) with the amplification factor associated with ( 4.9). For the 
AF method, the largest amplification factors occur on the line z1 = z2 = z /2, so that 
along this line their magnitudes are respectively given by 

i>-CA)i2z2 
(AF = Re(Tc~fi<o 4 - 4Re(,\(A))z + i>-(A)l2z2' (FP = [p(A)z[' z := h2 ,\(J). 

An important aspect is that (AF increases only slightly beyond 1, so that using too large 
stepsizes never causes a violent divergence behaviour as would be the case when FP it­
eration is applied. In fact, (AF will never exceed the value (l-[Re(,\(A))l>-(A)l- 1 ]2)-1. 
For example, in the case of the fifth-order Radau !IA-based method ( 4.9), this maximal 
value is about 1.017. 

4.3.2. Three splitting terms 
For three splitting terms (CJ = 3) we can obtain a spectrum condition on A by 

using the following lemma (for a proof see [3]): 

Lemma 4.1. Let w := (w1,w2,w3) and define the functions p(w) := (1 - w1)(1 -
w2)(l - W3) and m(w) := 1 - e1 w, where Wj are complex variables. Then, in the 
region { w: 3n / 4 ::::; arg( Wj) ::::; 5n / 4}, the function 1 - p- 1 (w)m(w) assumes values 
within the unit circle. 

From (4.4) it follows that ((z) = 1 - p-1(-\(A)z)m(A(A)z). Applying lemma 4.1 
with Wj = >.(A)zj, we see that ((z) assumes values within the unit circle in the region 
{ z: 3n / 4 ::::; arg(,\(A)zj) ~ 511-J 4}. Thus, we have the result: 

Theorem 4.5. If A has eigenvalues ,\(A) with larg(,\(A))I ~ n /4, then AF iteration 
{ (3.7), B = A} is A(O)-convergent for a= 3. 
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... z3oo...10 

-10 

-12 

-14 

-18 

-11 

Figure 2. Convergence boundaries in the (z1, z2)-plane for AF iteration applied to the RKN method 
generated by third-order Radau IIA method (2.8) with B =A. 

Corollary 4.2. If the generating GLM (a, R, S, T) in the indirect GLM (2.6) satisfies 
!arg(A.(T))! :::;; 7r /8, then AF iteration { (3.7), A = B = T 2} is A(O)-convergent for 
a=3. 

Hence, AF iteration applied to (2.7) and (2.9) is also A(O)-convergent for a= 3. 
However, this is not the case for the RKN methods generated by the Radau IIA, 
Lobatto IIIA and Gauss methods, because they all have !arg(A.(A))i > 7r /8. 

If !arg(A.(A)) I > 7r / 4, then the convergence region is finite and the region of 
divergence is a sort of hyperboloid. In order to get some idea of the region of conver­
gence, we plotted in figure 2 for (2.8) the convergence boundaries in the (z1, z2)-plane 
for a few values of Z3. 

By virtue of the symmetry with respect to Zj, the convergence region contains 
the domain (cf. (4.7)) 

lIJl:= n{z: Zf+zi+z~<3zJ, Zj::;;;O, j=l,2,3}, 
>-(A) 

where zo is the negative root of smallest magnitude of the equation I 1 -
7r- 1(zoe)µ(zoe)! = 1, that is, of the equation 17r(zoe)!2 - !7r(zoe) - µ(zoe)! 2 = 0. 
Let us write A(A) = rexp(ia), and define q := lzorl. Then it can be shown that this 
equation yields the following relation between q and o:: 

[1+3q2 - 6q4] + 6q[l + 2q2] cos(o:) + 4q2[3 - 2q + 3q2 ] cos2(o:) = 0, 

q ~ 0, 0: ~ 7r/4. (4.11) 

This relation yields q = oo at a = 7r / 4, then rapidly decreases to ;::::::: 0. 85 at o: = 7r /2, 
and slowly decreases to q ;::::::: 0.33 at a = 7r. We have the following analogue of 
theorem 4.3: 
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Theorem 4.6. Let q = q(a) be defined by (4.11). Then, for CT = 3 a sufficient con­
dition for convergence of AF iteration { (3.7), B = A} is given by 

h < Zo ( 
3 2 ) 1/4 

p2(J1) + p2(J2) + p2(J3) ' 

4.4. Matrices B =f. A 

. q(arg(A)) 
zo := - ~~~ i>-(A)I . (4.12) 

In this section, we investigate whether the severe conditions on the spectrum of 
the matrix A to achieve A(O)-convergence derived in the preceding section 4.3 can be 
relaxed by choosing B =f. A. Some insight can be obtained by looking at the behaviour 
of the amplification matrix Z(z) at infinity. We respectively consider Z(z) in the cases 
where Zi --+ oo and Zj = 0 for j =f. i, and in the case where all components Zi tend to 
infinity. This yields, respectively, 

Z(z) ~I - B- 1 A+ z;1 B-1 (I - B-1 A), Z(z) ~I - 8B-a A, 

(-1r+1ceTz) 
8 := as Zi --+ oo, i = 1, ... , CT. 

(4.13) 

ZJ · · · ZO" 

Since Zi < 0 and 8 > 0 we easily derive from (4.13) the following result: 

Theorem 4.7. For CT ;;?: 2, the conditions j>.(J - B- 1 A)j ~ 1 and Re(>.(B-a A)) ;;?: 0 
are necessary for the A(O)-convergence of AF iteration. 

This theorem provides a guideline for choosing the matrix B. 

Example 4.2. Consider the method (2.8). The eigenvalues of the matrix A are given 
by >.(A)~ 0.0556 ± 0.1571 i, so that jarg(>.(A))j ~ 0.3971'. If we would have chosen 
B = A, then the first necessary A(O)-convergence condition of theorem 4. 7 is trivially 
satisfied. However, since jarg(.\(B-0" A))j = jarg(.\(A1-0"))I = (CT - l)larg(.\(A))I ~ 
0.39(a - l)?T, the second condition of this theorem is violated if 0.39(CT - l)?T > 71' /2, 
i.e., if a > 2.28. 

Now, let us choose B diagonal and such that I - B- 1 A has two zero eigenvalues, 
so that the first condition of theorem 3.6 is satisfied. This leads to 

B=/s(~ ~)· (4.14) 

A straightforward calculation reveals that 

B-a A= 180"-I ( 9 1~0" ~l) , >.(B-0" A)= 180"-l (1 ± Vl - 9l-a ), (4.15) 

so that the second condition of theorem 4.7 is also satisfied, irrespective of the value 
of CT. For a = 2 and a = 3, we checked the A(O)-convergence in the case where B is 
defined by ( 4.14) and verified that in both cases we have A(O)-convergence. 
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5. Fixed numbers of inner and outer iterations 

If the implicit relations (3.2) are iterated until convergence, then we may rely 
on the order of accuracy and the stability of the underlying GLM (2.5). However, 
in actual computation, it is often more efficient if we do not iterate the outer and 
inner iteration process until convergence. Consequently, the order of accuracy and the 
stability properties of the resulting integration scheme will not be identical to those of 
the underlying integration method. On the other hand, there is no need for convergence 
of the AF iteration process. 

5.1. Order of accuracy 

Let us consider the order of accuracy of the step values produced by the iterated 
method for fixed m and r (we recall that a step value is an external stage value 
corresponding to a step point tn+1). Let Un+I,i be a step value in the underlying 
method (2.5) and let u~Ci be the approximation after m outer and r inner iterations. 
If Un+l,i has local error of order p + 1, then 

(m,r) ( h) _ (m,r) ( ) 
Un+l,i - Y tn + - Un+l,i - Un+l,i + Un+l,i - Y tn+I 

_ (m,r) . + O(hp+I) 
- lln+l,i - Un+l,i • (5.1) 

where y(tn+i) denotes the locally exact solution. By observing that no iteration errors 
are introduced in the computation of the explicit stages, we can derive the order in h 
of u~~Ci - Un+l,i by using the iteration error estimate (4.21). Let the predictor for the 
implicit stage values have local error of order q + 1, i.e., c:<O.r) = O(hq+1). Then (5.1) 
and ( 4.2') yield 

llu~~~~i - y(tn + h)ll = hq+l (O(h8r) + O(hu+2)) m + O(hp+I). (5.2) 

This leads us to the following result: 

Theorem 5.1. Let the step point values of the underlying GLM be of order p, let 
the predictor formula have order q, let the function Gn defined in (4.1) possess a 
Lipschitz constant Ln(h) = O(hu), and let the inner amplification matrix Z defined 
in (4.1) satisfy Z = O(h6). Then the maximal order of accuracy is reached if m ~ 
(p- q)/ min{Or, u + 2}. 

Example 5.1. Let r = 1 (by which the RHS costs are more than proportionally min­
imized, see section 3.3), 0 = 2 (corresponding with AF iteration using B f= A), and 
u = 1 (Jacobian update every few steps). Then, the number of outer iterations should 
not be less than !(p - q). Thus, we need only one inner and one outer iteration if 
the order q of the predictor satisfies q ~ p - 2, that is, if p = 2 we may use the 
trivial zero-order predictor y<O.r) = Y n. and if p = 3 we may use a linear first-order 
extrapolation predictor. 
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5.2. Stability 

In order to see the effect of the number of iterations on the stability, we apply 
the integration process to the stability test equation y' = Jy. We shall confine our 
considerations to the case where S and T have the structure as specified in (3.4), so 
that the GLM can be written in the form (3.Sb). 

Since the test equation is linear, we may set Gn = 0 in (4.1). From (4.2) 
and (3.Sb) it follows that 

y<m.r) - y n+ I = zrm (Y(O,r) - y n+ I), 

y n+I = M- 1 ((R2 ® I)Un + (S22 ® h2 J)Y n). 

Let the predictor for the outer iteration process be given by y(O,r) = PUn. Then, 

y<m,rl = zrmpun +(I - zrm)M- 1((R2 ®!)Un+ (S22 ® h2J)Yn)· (5.3) 

By identifying Yn+l with y<m.r) it follows from (3.5b) that for the stability test equation 

Xn+t = (R1 ® I)Un + (S12 ® h2 J)Y n, 

Yn+1 = zrm PUn +(I - zrm)M- 1 [CR2 ® J)Un + (822 ® h2 J)Yn], 

Zn+I - (T32A- 1 ®I)Yn+I = ((R3 -T32A-1R2) ®I)Un 
(5.4) 

+ ((S32-T32A- 1S22) ®h2 J)Y11 • 

Thus, we obtain a relation of the type Un+! = LmrUn, where Lmr is a matrix defined 
by (5.4) and which depends on the matrices h2 k Its eigenvalues are given by the 
eigenvalues of the matrix Lmr(z), where Lmr(z) is defined in the same way as the 
matrices M(z), Il(z) and Z(z) in (4.3). Next we observe that due to possible internal 
stages, the matrix Lmr(z) may contain a number of zero columns. As a consequence, 
the corresponding components of Un+! do not play a role in the propagation of pertur­
bations Qirough the steps. Let all ith columns of Lmr(Z) with ·i E JI be a zero column, 
and let l:mr(z) denote the matrix obtained by removing all ith columns and ith rows 
from Lmr(Z) for i E JI. Then, we have stability if the stability matrix ~mr(Z) has its 
eigenvalues on Jhe unit disk. The region of stability is defined by the region in the 
z-plane where Lmr(Z) has its eigenvalues within the unit circle (cf. the definition of 
the region of convergence in section 3). Again assuming that the eigenvalues of the 
"partial" Jacobians Ji are on the nonpositive real axis, we shall call the integration 
method A(O)-stable if the region of stability contains the region { z: Zi :'( 0}. 

We illustrate the above procedure by deriving the stability matrix for iterated 
RKN methods with step point value Yn+l = CeI ® J)Yn+l and with only one explicit 
derivative stage value hy~+t• i.e., Un+!= (Y;+l' hy~\ 1 )T. Using the "last step value" 
predictor y<O.r) = PUn = (eeI ® J)Y n. we have 

R = ( ~1 ~) , S = 0, T = (: ~) , (5.5) 
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where c and d are s-dimensional vectors. Equations (5.4) take the fonn 

Y n+I = zrm (eeJ 0 I)Yn + (I - zrm) M- 1 ( (eeJ@ I)Yn + h(c 0 J)y',1 ), 

hy~+I - (dTA- 1 @I)Yn+l = ((-dTA- 1eeJ) ®I)Yn (5.41) 

+ h( (1 - dTA- 1c) 0 I)y~. 

Using Yn+I = (eI 0 J)Yn+I· we obtain 

Y n+I = ((I - zrm)M- 1 + zrm)(e ® J)yn + h(I - zrm)M- 1(c ® J)y~, 

Yn+I = (eJ 0 I)( (I - zrm)M- 1 + zrm)(e ® J)yn 

+ h(eJ ®I) (I - zrm)M- 1(c ® J)y~, 
(5.4") 

hy~+I - (dTA- 1 @I)Yn+I = -(dTA- 1e@I)Yn +h((l -dTA- 1c) ®I)y',1 . 

Elimination of Y n+ 1 leads to the 2 x 2 stability matrix 

~ (z) _ ( eI(Smr(z) + zmr(z))e eISmr(z)c ) 
r - dT A- 1 (Smr(Z) + zmr(z) - I)e 1 + dT A- 1(Smr(Z) - J)c ' <5·6) 

where Smr(Z) :=_(I - zmr(z))M- 1 (z). It is of ir:_terest to study the behaviour of the 

stability matrix Lmr(Z) at infinity. We consider Lmr(Z) in the cases where zi ----> oo 

and Zj = 0 for j i= i, and in the case where all components zi tend to infinity. From 

relations (4.13) and 

M -1( ) ~ -1A-1 z ~ zi , as Zi ----> oo, i = 1, ... , o-, 

M- 1(z) ~ c:A- 1, as t:, 8 ----> 0, 

where c: :.:;= -(eTz)- 1 and 8 is defined in (4.13), it follows that the two eigen­

values of Lmr(z) approach the values { eJ (I - B- 1 A)mr e, 1 - dT A- 1 c} and { 1 -

mr8(eIB-a Ae), 1 - dTA- 1c}, respectively. Sincell - dT A- 1cl ~ 1 is also needed 

for the A(O)-stability of the underlying RKN method, we have: 

Theorem 5.2. Let the underlying GLM (2.5) be an A(O)-stable RKN method defined 

by (5.5) and let the initial iterate for AF iteration be defined by yco,r) = (eeJ ® I)Yn. 

Then, after m outer and r inner iterations, the two conditions leICI - B- 1 Arrel ~ 1 

and eI B-a Ae ~ 0 are necessary for the A(O)-stability of the iterated RKN method. 

Example 5.2. In the case of the A(O)-stable, third-order Radau based RKN method 

(2.8), we find for B = A that ieI(J - B- 1 Arre\ = 0 for all mr, but already for 

a- = 2 we have eI B-a Ae = eI A l-u e = -14. Hence, according to theorem 5.2, we 

cannot have A(O)-stability. Figure 3 presents numerical plots for a few values of rnr. 

However, if we define B by ( 4.15), then the first condition is still satisfied because 

the spectral radius of I -B- 1 A vanishes and, hence, (I -B- 1 Arr vanishes for mr )! 2 

(s x s matrices M with only zero eigenvalues have the property that Mn = 0 for 
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-1or"'"'----------

-20 

-30 

Figure 3. Stability boundaries in the (z1, z2)-plane for AF iteration applied to the RKN method generated 
by third-order Radau IIA method (2.8) with B = A. 

n ~ s). Furthermore, it follows from (4.16) that e!B-IT Ae = 2a- 1, so that the second 
necessary A(O)-stability condition of theorem 5.2 is also satisfied. Numerical plots for 
CJ = 2 show A(O)-stability for all values of mr. 

6. Concluding remarks 

In this paper, we have analyzed an outer-inner iteration method based on modified 
Newton and approximate factorization for solving the implicit relations occurring in 
General Linear Methods (GLMs) for special second-order ODEs of the form (1.1). The 
implicit relations are characterized by a matrix A, the iteration method by a matrix B. 

Convergence conditions can be expressed in terms of spectral properties of the 
matrices A and B. Table 2 summarizes the main convergence results for second­
order equations as derived in the present paper and table 3 compares them with the 
A-convergence results for first-order equations derived in [3]. In these tables, AR3 

indic~tes the~Butcher matrix of the third-order Radau IIA method for first-order ODEs, 
and A and B refer to the matrices used in AF iteration for first-order ODEs. 

The stability conditions for the AF iterated methods depend on the product mr of 
the number of outer and inner iterations. Easy to check conditions that are necessary 
for A(O)-stability have been derived for a family of Runge-Kutta-Nystrom (RKN) 
methods. Tables 4 and 5 list the main results. 

Table 2 
Second-order ODEs. Cases of A(O)-convergence. 

(J B=A p(J- B- 1A) = 0 

2 Re(.A(A)) ~ 0 A= A~3 
3 larg(.A(A))I ~ rr/4 A= A~3 
~4 .A(A) ~ 0 
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Table 3 
First-order ODEs. Cases of A-convergence. 

B=A PU - .B- 1 A)= o 

2 A(A) ~ 0 

Table 4 
Second-order ODEs. Cases of A(O)-stability. 

(]' B=A p(l - B-1A) = 0 

2 A= A~3 , mr = oo 

Table 5 
First-order ODEs. Cases of A-stability. 

(]' PU - .B- 1.4) = o 

2 A= AR3, mr ~ 1 
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