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THE COLIN DE VERDIERE GRAPH PARAMETER 

H. VAN DER HOLST, L. LOV Asz, and A. SCHRIJVER 

In 1990, Y. Colin de Verdiere introduced a new graph parameter µ(G), 
based on spectral properties of matrices associated with G. He showed that 
µ( G) is monotone under taking minors and that planarity of G is characterized 
by the inequality µ(G) ::5 3. Recently Lovasz and Schrijver showed that linkless 
embeddability of G is characterized by the inequality µ(G) ::5 4. 

In this paper we give an overview of results on µ(G) and of techniques to 
handle it. 
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l. INTRODUCTION 

In 1990, Colin de Verdiere [7] (cf. [8]) introduced an interesting spectral 
parameter µ(G) for any undirected graph G. The parameter was motivated 
by the study of the maximum multiplicity of the second eigenvalue of certain 
Schrodinger operators. These operators are defined on Riemann surfaces. 
It turned out that in this study one can approximate the surface by a 
sufficiently densely embedded graph G, in such a way that the maximum 
multiplicity of the second eigenvalue of such operators is just the parameter 
µ( G), and thus can be described fully in terms of spectral properties of 
matrices related to the adjacency matrix of G. 

The interest in Colin de Verdiere's graph parameter can be explained 
not only by its background in differential geometry, but also by the fact 
that it has surprisingly nice graph-theoretic properties. Among others, it 
is minor-monotone, so that the Robertson-Seymour graph minor theory 
applies to it. Moreover, planarity of graphs can be characterized by this 
invariant: µ( G) :S 3 if and only if G is planar. More recently it was shown 
in [20] that p.( G) :::; 4 if and only if G is linklessly embeddable in JR3 . So 
using µ, topological properties of a graph G can be characterized by spectral 
properties of matrices associated with G. 

It turns out that graphs with large values ofµ are also quite interesting. 
For example, for a graph G on n nodes, having no "twin" nodes, and with 
p.( G) 2:: n - 4, the complement of G is planar; the converse of this assertion 
also holds under reasonably general conditions. This result is closely related 
to a famous construction of Koebe representing planar graphs by touching 
circles. 

In this paper, we give a survey of this new parameter. 
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1.1. Definition 

We consider undirected, loopless graphs G = (V, E) without multiple edges. 
We assuming (without loss of generality) that V = {1, ... ,n}. For any 
subset U of V, let GIU denote the subgraph of G induced by U, and G - U 
the subgraph of G obtained by deleting U (so G - U = Gl(V \ U)). N(U) 
is the set of nodes in V \ U adjacent to at least one node in U. 

Let JR(n) denote the linear space of real symmetric n x n matrices. 
This space has dimension (nil). We will use the inner product A · B = 
L:i,j Ai,jBi,j = Tr(AT B) in this space. 

The corank corank( M) of a matrix M is the dimension of its kernel 
(null space) ker(M). If S is a set of rows of M and Tisa set of columns of 
M, then MsxT is the submatrix induced by the rows in Sand the columns 
in T. If S = T then we write Ms for MsxS· Similarly, if :i: is a vector, then 
xs denotes the subvector of x induced by the indices in S. We denote the 
ith smallest eigenvalue of a symmetric matrix M by >..i(M). 

The Colin de Verdiere number µ( G) of the graph G is defined as the 
largest corank of any matrix M = (Mi,j) E JR(n) such that: 

1.1. 

(Ml) for all i, j with i =f. j: M;,j < 0 if i and j are adjacent, and Mi,j = 0 
if i and j are no11adjace11t; 

(M2) M has exactly one negative eigenvaJue, of multiplicity 1; 

(M3) there is 110 nonzero matrix X = (Xi,j) E JR(n) such that M X = 0 and 
such tlrn.t Xi,j = 0 whenever i = j or Mi,j i- 0. 

There is no condition on the diagonal entries Mi,i· 

Any symmetric matrix M with properties (Ml)-(M3) will be called a 
Colin de Verdiere matrix for the graph G. A Colin de Verdiere matrix M 
is opt·imal if corank(M) = µ(G). 

Note that for each graph G = (V, E), a Colin de Vercliere matrix exists. 
If G is connected, let A be the adjacency matrix of G. Then by the Perron­
Frobenius theorem, the largest eigenvalue of A has multiplicity 1, and hence 
for >.. between the two largest eigenvalues of A, the matrix M = >..I - A is 
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nonsingular (and hence satisfies (M3) in a trivial way) and has exactly 
one negative eigenvalue. If G is disconnected, we can choose >. for each 
component separately and obtain a nonsingular matrix with exactly one 
negative eigenvalue again. 

Let us comment on the conditions (Ml)-(M3), which may seem strange 
or ad hoe at the first sight. Condition (Ml) means that we are considering 
the adjacency matrix of G, with the edges weighted with arbitrary negative 
weights, and arbitrary real values inserted in the diagonal. The negativity 
of the weights is, of course, just a convention, which is a bit strange now 
but will turn out more convenient later on. 

In the case of connected graphs, (Ml) implies, by the Perron-Frobenius 
theorem, that the smallest eigenvalue of M has multiplicity 1. Since we do 
not make any assumption about the diagonal, we could consider any matrix 
M with property (Ml), and replace it by M - >.I, where >. is the second 
smallest eigenvector of M. So µ( G) could be defined as the maximum 
multiplicity of the second smallest eigenvalue ,\ of a matrix M satisfying 
(Ml) and (M3) (with M replaced by M - ,\Jin (M3)). In this sense, (M2) 
can be viewed as just a normalization. 

Condition (:rvI3) is called the Strong Arnold Property (or Strong Arnold 
Hypothesis). There are a number of equivalent formulations of (M3), ex­
pressing the fact that M is "generic" in a certain sense. We discuss this 
issue in Section 2.1. 

\Vhen arguing that there is a Colin de Verdiere matrix for every graph, 
we used the fact that any nonsingular matrix M trivially satisfies (M3). This 
remains true if the matrix M has corank 1. Indeed, a nonzero matrix X 
with MX = 0 would then have rank 1, but since X has O's in the diagonal, 
this is impossible. We will see that there are other cases when the Strong 
Arnold Property is automatically satisfied (cf. Section 5.1), while in other 
cases it will be a crucial assumption. 

1.2. Some examples 

It is ciear that µ(I( 1) = 0. We have µ( G) > O for every other graph. 
Indeed, one can put "generic" numbers in the diagonal of the negative of 
the adjacency matrix to make all the eigenvalues different; then we can 
subtract the second smallest eigenvalue from all diagonal entries to get one 
negative and one 0 eigenvalue. The Strong Arnold Property, as remarked 
at the end of the previous section, holds automatically. 
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Let G = Kn be a complete graph with n > 1 nodes. Then it is easy 
to guess the all-( -1) matrix -J for M. This trivially satisfies all three 
constraints, and has corank n - 1. One cannot beat this, since at least one 
eigenvalue must be negative by (M2). Thus 

µ(Kn) = n - 1. 

Next, let us consider the graph Kn consisting of n 2:: 2 independent 
nodes. All entries of a Colin de Verdiere matrix M except for the entries 
in the diagonal must be 0. By (M2), we must have exactly one negative 
entry in the diagonal. Trying to minimize the rank, we would like to put O's 
in the rest of the diagonal, getting corank n - l. But it is here where the 
Strong Arnold Property appears: we can put at most one 0 in the diagonal! 
In fact, assuming that Mu = M2,2 = 0, consider the matrix X with 

xi. = { i, if {i,j} = {1, 2}, 
,J 0, otherwise. 

Then X violates (M3). So we must put n - 2 positive numbers in the 
diagonal, and are left with a single 0. It is easy to check that this matrix 
will satisfy (M3), and hence 

µ(Kn)= 1. 

A similar appeal to the Strong Arnold Property allows us to show: 

1.2. The complete graph is the only graph G on n 2:: 3 nodes with µ( G) = 

n- l. 

(For n = 2, both K 2 and its complement have this property.) Indeed, 
the matrix M realizingµ has rank 1, and thus it is of the form M = -uuT 
for some vector u. If G is noncomplete, u must have a 0 coordinate, by 
(Ml). Say, '1.ln = 0, so that n is an isolated node in G. Since n 2:: 3, the 
matrix M has corank at least 2, and so it has a nonzero vector x in the null 
space with Xn = 0. Now the matrix X = xe'[; + enxT shows that M does not 
have the Strong Arnold Property (where en is the nth unit basis vector). 

As a third example, consider the path Pn on n 2:: 2 nodes. We may 
assume that these are labelled {l, 2, ... , n} in their order on the path. 
Consider any matrix M satisfying (Ml), and delete its first column and 
last row. The remaining matrix has negative numbers in the diagonal and 
O's above the diagonal, and hence it is nonsingular. Thus the corank of M 
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is at most l. We have seen that a corank of 1 can always be achieved. Thus 

µ(Pn) = l. 
Finally, let us consider a complete bipartite graph Kp,q, where we may 

assume that p :::; q and q 2: 2. In analogy with Kn, one can try to guess a 
matrix with properties (Ml) and (M2) with low rank. The natural guess is 

M = ( 0 T -J 
-]) 
0 ' 

where J is the p x q all-1 matrix. This clearly satisfies (Ml) and (M2) and 
has corank 2. But it turns out that this matrix violates (M3) unless p, q :::; 3. 
In fact, a matrix X as in (M3) has the form 

where Y is a p x p symmetric matrix with O's in its diagonal and Z is a 
q x q symmetric matrix with O's in its diagonal. The condition M X = 0 
says that Y and Z have 0 row-sums. Now if, say, Y ::/= 0, then it is easy to 
see that we must have p 2: 4. 

So far we have been able to establish that µ(Kp,q) 2: p + q - 2 if 
p, q :::; 3; and we know by the discussion above that equality holds here (if 
(p, q) ::/= (1, 1) ). But if, say, p 2: 4, then it is easy to construct a symmetric 
p x p matrix with 0 diagonal entries and 0 row sums. This shows that the 
above guess for the matrix M realizing µ(Kp,q) does not work. We will see 
in Section 2.3 that in this case µ will be smaller (equal to min {p, q} + 1, in 
fact). 

(There is a quite surprising fact here, which also underscores some of 
the difficulties associated with the study ofµ. The graph I\4 , 1 (say) has a 
node-transitive and edge-transitive automorphism group, and so one would 
expect that at least one optimizing matrix in the definition of 11 will have 
the same diagonal entries and the same nonzero off-diagonal entries. But 
this is not the case: it is easy to see that this would force ns to consider 
the matrix we discarded above. So the optimizing matrix must break the 
symmetry!) 

1.3. Overview 

An important property ofµ( G) proved by Colin de Vercliere [7] is that it is 
monotone under taking minors: 
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1.3. The graph parameterµ( G) is minor-monotone; t11at is, if H is a minor 
of G then µ(H) :'.S µ( G). 

(A minor of a graph arises by a series of deletions and contractions of 
edges and deletions of isolated nodes, suppressing any multiple edges and 
loops that may arise.) Proving 1.3 is surprisingly nontrivial, and the Strong 
Arnold Property plays a crucial role. 

The minor-monotonicity of /L( G) is especially interesting in the light of 
the Robertson-Seymour theory of graph minors [24], which has as principal 
result that if C is a collection of graphs so that no graph in C is a minor of 
another graph in C, then C is finite. This can be equivalently formulated 
as follows. For any graph property P closed under taking minors, call 
a graph G a forbidden minor for P if G does not have property 'P, but 
each proper minor of G does have property P. Note that a minor-closed 
property P is completely characterized by the collection of its forbidden 
minors. Now Robertson and Seymour's theorem states that each minor­
closecl graph property has only finitely many forbidden minors. 

We have seen that µ(Kn) = n - 1 for each n. Let 71(G) denote the 
Hadwiger number of G, i.e., the size of the largest clique minor of G. Then 
by 1.3 we have that 

µ(G) ?_ 71(G) - 1 

for all graphs G. Hence Hadwiger's conjecture would imply that x(G) < 
/L(G) + 1 (where x(G) denotes the chromatic number of G). This inequality 
was conjectured by Colin de Vercliere [7]. Since Hadwiger's conjecture holds 
for graphs not containing any K6-minor (Robertson, Seymour, and Thomas 
[26]), we know that x(G) ::; µ(G) + 1 holds if µ(G) :'.S 4. An even weaker 
conjecture would be that 1J( G) :'.S µ( G) + 1. Here {) is the gra.ph invariant 
intro cl need in [18] ( cf. also [10]). Since ·1? is defined in terms of vector 
labellings and positive semidefinite matrices, it is quite close in spirit to 
/L (cf. Sections 3.1, 3.2). 

The following results show that with the help of /t( G), topological 
properties of a graph can be characterized algebraically: 

1.4. 

(i) /J.( G) ::; 1 if and only if G is a disjoint union of paths. 

(ii) /L(G) :'.S 2 if and only if G is outerplanar. 

(iii) µ.(G) :'.S :3 if and only if G is planar. 

(iv) /L( G) ::; 4 if and only if G is linklessly embeddable. 
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Here (i), (ii), and (iii) are due to Colin de Verdiere [7]. In (iv), direction 
===? is due to Robertson, Seymour, and Thomas [25] (based on the hard 
theorem of [27] that the Petersen family (Figure 2 in Section 4.3) is the 
collection of forbidden minors for linkless embeddability), and direction 
~ to Lovasz and Schrijver [20]. In fact, in 1.4 each ===? follows from 
a forbidden minor characterization of the corresponding statement on the 
right hand side. It would be very interesting to find a direct proof of any of 
these implications. 

In Sections 4.1and4.2 we give proofs of (i), (ii), and (iii), and in Section 
4.3 we prove (iv), with the help of a certain Borsuk-type theorem on the 
existence of 'antipodal links'. 

The proof by Colin de Vercliere [7] of the planarity characterization 1.4 
(iii) uses a result of Cheng [5] on the maximum multiplicity of the second 
eigenvalue of Schrodinger operators defined on the sphere. A short direct 
proof was given by van der Holst [11], based on a lemma that has other 
applications and also has motivated other research (see Section 2.5). 

Kotlov, Lovasz, and Vempala [16] studied graphs for whichµ is close to 
the number of nodes n. They characterized graphs with µ( G) 2: n - 3. They 
also found that the value n - µ( G) is closely related to the outerplanarity 
and planarity of the complementary graph. In fact the following was proved. 

1.5. 

If G is a disjoint union of paths then µ( G) 2: n - 3; 

if G is outerplanar then µ( G) 2: n - 4; 

if G is planar then µ( G) 2: n - 5. 

Conversely, if G does not have 'twin nodes' (two - adjacent or nonad­
jacent - nodes u, v that have the same neighbors other than a, v), then: 

1.6. 

Ifµ( G) 2: n - 3 then G is outerplanar; 

ifµ( G) 2: n - 4 then G is plarnu. 

Note that there is a gap of 1 between the necessary and sufficient con­
ditions in terms of µ for, say, planarity. It turns out that in many cases, 
planarity of the complement implies the stronger" inequality JL( G) 2: n - 4. 
This is the case, for example, if G has a node-transitive automorphism 
group. Furthermore, at least among maximal planar graphs (triangulations 
of the sphere), one can characterize the exceptions in terms of small sepa­
rating cycles. Details of these results are presented in Chapter 5. 
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The key to these results are two representations of a graph G by vectors 
in a euclidean space, derived from a Colin de Verdiere matrix M. The two 
representations are in a sense dual to each other. It turns out that both 
representations have very nice geometric properties. One of these is closely 
related to the null space of M; the other, to the range. The latter is best 
formulated in terms of the complementary graph H = G. We consider 
vector representations (labellings) of the nodes of H such that adjacent 
nodes are labelled by vectors with inner product 1, nonadjacent nodes are 
labelled with vectors with inner product less than 1; we call these scalar 
prodnct labeli'ings (see Chapter :3). 

In dimension 3, scalar product labellings give a picture that is related 
to a classical construction going back to Koebe: 

1. 7. The Cage Theorem. Let H be a 3-connected planar graph. Then 
H can be represented as the skeleton of a 3-dimensional polytope, all wlwse 
edge toucl1 the unit sphere. 

A common generalization of scalar product and "cage" representations 
can be formulated, not so much for its own sake but, rather, to allow us to 
take the representation in the Cage Theorem and transform it continuously 
into a representation with the properties we need. 

The Cage Theorem is equivalent to a labelling of the nodes of the graph 
by touching circles. Scalar product labellings with vectors longer than 1 are 
equivalent to labellings by spheres so that adjacent nodes correspond to 
orthogonal spheres. One way to look at the method is that we consider 
labellings where adjacent nodes are labelled by spheres intersecting at a 
given angle. In dimension 2, such representations were studied by Andre'ev 
[1] and Thurston [31], generalizing Koebe's theorem. Sphere labellings give 
rise to a number of interesting geometric questions, which we do not survey 
in this paper, but refer to [16]. 

Finally, the definition ofµ in terms of vector representations leads to a 
reformulation of the Strong Arnold Property. It turns out that forµ~ n-4, 
this property is automatically fulfilled; the proof of this fact depends on an 
extension, due to Whiteley, of the classical theorem of Cauchy on the rigidity 
of 3-polytopes (see Section 5.1). 
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2. BASIC FACTS 

2.1. Transversality and the Strong Arnold Property 

Let M1, ... , Mk be smooth open manifolds embedded in Rd, and let x be a 
common point of them. We say that M1, ... , Mk intersect trans·versally at x 
if their normal spaces N1, ... , Nk at x are independent (meaning that no Ni 
shares a non-zero vector with the linear span of the others). In other words, 
no matter how we select a normal vector ni of Mi at :r for each 1 :::; i :::; k, 
these normal vectors are linearly independent. 

Transversal intersections are nice because near them the manifolds be­
have like affine subspaces. We will need the following simple geometric fact 
(a version of the Implicit Function Theorem), which we state without proof. 
A smooth family of manifolds M(t) in Rd is defined by a smooth function 
f: U x (-1,1) -t Rd, where U is an open set in Rt (t:::; d -1), and for 
each -1 < t < 1, the function f (., t) is a diffeomorphism between U and 
the manifold M ( t). 

Lemma 2.1. Let M1 (t), ... , Mk(t) be smooth families of manifolds in Rd 
and assume that M1 (0), ... , Mk(O) intersect transversally at x. Then there 
is a neighborlwod W ~ Rk of the origin such that for each c E W, the 
manifolds M1(c1), ... , Mk(Ek) intersect transversally at a point :r(.:) so that 
x(O) = x and x(c) depends continuously on c. 

The following corollary of this lemma will be sometimes easier to apply: 

Corollary 2.2. Assume that M1 , ... , Mk intersect transversally at x, and 
assume that they have a common tangent vector v at x with llvll = 1. Then 
for every c > 0 there exists a point x' -=/= x such that M1, ... , Mk intersect 
transversally at x', and 

II 11x ~ x'll (x - x') - vii <c. 
Now we come to the Strong Arnold Property. For a given matrix 

M E R(n), let RM be the set of all matrices A E R(n) with the same 
signature (i.e., the same number of positive, negative and 0 eigenvalues) as 
M. Let SM be the set of all matrices A E JR(n) such that Ai,j and Mi,j have 
the same sign (positive, negative or 0) for every i f. j. (We could consider, 
without changing this definition, symmetric matrices with the same rank as 
M, and with the same pattern of O's outside the diagonal as M.) Then M 
has the Strong Arnold Property (M3) if and only if 
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2.3. RM intersects SM at Jvl transversally. 

Indeed, it is well known that the tangent space of RM at M consists 
of matrices N E JR.(n) such that :rT N:r = 0 for each :r E ker(.M). This is 
the space of all matrices of the form W Jvf + .MWT, where Vi' is any n x n 
matrix. Thus the normal space of RM at Jvf is equal to the space generated 
by all matrices :r:r7' with x E ker( M). This space is equal to the space of all 
symmetric n x n matrices X satisfying M X = 0. Trivially, the normal space 
of SM at M consists of all matrices X = (Xi,j) E JR.(n) such that Xi,j = 0 
whenever i = j or Mi,j -:f. 0. Therefore, 2.3 is equivalent to (M3). 

2.2. Monotonicity and components 

We start with proving the very important fact thatµ( G) is minor-monotone 
(Colin de Verdiere [8]). The proof is surprisingly nontrivial! 

Theorem 2.4. IfH is a minor ofG, then µ(H)::; µ(G). 

Proof. Let M be a Colin de Vercliere matrix for the graph H; we construct a 
Colin de Verdiere matrix M' for the graph G with corank(M') ;:::: corank(M). 

It suffices to carry out this construction in three cases: when H arises 
from G by deleting an edge, by deleting an isolated node, or by contracting 
an edge. 

Suppose that H is obtained by deleting an edge e = mu. By (M3), 
the two smooth open manifolds RM and ·SM embedded in JR.(n) intersect 
tranversally. Let S( c) be the manifold obtained from S by repl1-tcing, in each 
matrix in S, the O's in positions (n,w) and (w,u) by -E. Then by Lemma 
2.1, for a sufficiently small positive E, S(c:) intersects RM transversally at 
some point M'. Now it is trivial that M' is a Colin de Vercliere matrix for 
G trivially. 

Next, assume that H arises by deleting an isolated node v. Let M' be 
then x n matrix arising from Jvl by adding O's, except in position (v,v), 
where M~,v = 1. Then trivially M' is a Colin de Verdiere matrix for G. 

Finally, suppose that H arises from G by contracting an edge e = v,w. 
It will be convenient to assume that the nodes of H are {2, ... , n }, where 
2 is the new node. Let P be the matrix obtained from M by adding a first 
row and column, consisting of O's except in position (1, 1) where P1,1 = 1. 
vVe may assume that 'l.l is adjacent in G to nodes 3, ... , r, and that v is 
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not adjacent to these nodes (we may delete the edges between v and these 
nodes). 

Now consider symmetric n x n matrices A with the following properties: 

(a) Ai,j = 0 for all i,j > 1, i :j:. j, ij ~ E(H), and also Ai,j = 0 for j = 2 
and j > r; 

(b) rank(A) = rank(P); 

(c) the rank of the submatrix formed by the first two columns and rows 
3, ... , r is 1. 

Each of these constraints defines a smooth manifold in ~( n l , and each 
of these manifolds contains P. We claim that they intersect transversally 
at P. To this end, let us work out their normal spaces ~t P. 

The normal space at P of the manifold Ma of all matrices satisfying 
(a) is, trivially, the linear space of matrices X such that Xi,j = 0 for ij E H 
and for i = 1 and j E {l, 3, 4, ... , r }, or vice versa. In other words, these 
matrices have the shape 

0 X2 0 . . . Q Xr+l · . · Xn 

X2 

0 

X= 0 
X' 

where X' is as in condition (M3) for H. 

The normal space at P of the manifold Mb of all matrices satisfying 
(b) consists of all matrices Y such that PY = 0. These matrices have the 
shape 

y = (~ i,) 
where Y' is a symmetric (n - 1) x (n -1) matrix such that JvIY' = 0. 

Finally, we show that the normal space at P of the manifold Mc of all 
matrices satisfying (c) consists of all symmetric matrices Z with Zi,j = 0 
unless i = 1 and 3 ~ j ~ r, or vice versa; and, in addition, we have 
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Thus Z has the shape 

0 Q Z3 z.,. 0 0 
0 

Z= 

0 0 

0 

Indeed, let £ denote the set of matrices in ffi.(n) that are 0 outside the 
rectangles 1 :::; i :::; 2, 3 :::; j :S r and 3 :::; i S r, 1 S j :::; 2. Then Mc 
is invariant under translation by any matrix orthogonal to £, and hence 
Z must be in £. Let K denote the projection of R(n) onto the submatrix 
formed by rows 1, 2 and columns 3, ... , r. For every matrix B E R2x(r- 2 ) 

with rank 1, the matrix 

B 1 = (;T ~) 
is in Mc, and hence ]( Z is orthogonal at K P to the manifold of all 2 x ( r - 2) 
matrices of rank one. It is easy to see that the tangent space at P of this 
manifold consists of all 2 x (r - 2) matrices whose first row is parallel to the 
second row of J( P. This easily implies the description above. 

Now assume that nonzero matrices X, Y and Z of the above form are 
linearly dependent. Since the nonzeros in Z are zeros in X and Y, the 
coefficient of Z must be 0. But then we can assume that X' = Y', which 
implies that X 1 has the pattern of O's as in (M3) for the graph H, and so 
we have X' = 0. Therefore Y' = 0, implying Y = 0, and so X = 0, which is 
a contradiction. This proves that Ma, Mb and Mc intersect transversally 
at P. 

Also note that the matrix 

T= 
M2,r 

0 

0 

M2,r 0 0 

0 

I 
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is orthogonal to every matrix of the form X, Y or Z, and hence it is a 

common tangent to each of the manifolds at P. Hence by Corollary 2.2, 

there is matrix P' in the intersection of the three manifolds such that the 

three manifolds intersect transversally at P' and P' - P is "almost parallel" 

to T. It follows that P{,j < 0 for 3 :S j :S r, and elsewhere P' has the same 

signs as P. Also, P' has the same signature as P; in particular, P' has 

exactly one negative eigenvalue and rank(P') = rank(P) = rank(M) + l. 
Now (c) implies that we can subtract an appropriate multiple of the 

first row of P' from the second to get O's in positions (2, 3), ... , (2, r). Doing 

the same with the first column, we get a matrix NI' E JR(n) that satisfies 

(Ml) for the graph G. By Sylvester's Inertia Theorem (cf. Section 5.5), M' 

also satisfies (M2) and has rank(M') = rank(M) + 1, i.e., corank(M') = 
corank(M). Finally, M' has the Strong Arnold Property, which follows 

easily from the fact that Ma, Mb and Mc intersect transversally at P'. • 

The previous theorem implies, via the Robertson-Seymour Graph Mi­

nor Theorem, that, for each t, the property µ( G) :S t can be characterized 

by a finite number of excluded minors. One of these is the graph I<t+ 2 , 

which, as we have seen, has µ(Kt+2) = t + 1. The fact that Kt+2 is minor­
minimal with respect to this property follows from 1.2. We will be able to 

give topological characterizations of the property /L( G) :S t for t :S 4, and 

thereby determine the complete list of excluded minors in these cases. 

Using the previous theorem, it will be easy to prove the following: 

Theorem 2.5. If G has at least one edge, then 

µ(G) = maxµ(K), 
J( 

where K extends over the components of G. 

(Note that the theorem fails if G has no edge, since we have seen that 
µ(K1) = 0 but µ(Kn)= 1 for n?:: 2.) 

Proof. By Theorem 2.4 we know that > holds. To see eqnality, let M 
be an optimal Colin de Vercliere matrix for G. Since G has at least one 

edge, we know that µ(G) > 0 (since µ(K2) = 1), and hence corn,nk(M) > 0. 

Then there is exactly one component J( of G with corank(M1,) > 0. For 

suppose that there are two such components, J( and L. Choose nonzero 

vectors x E ker(Mr<) and y E ker(Mi). Extend x and y by zeros on the 

positions not in J( and L, respectively. Then the matrix X := :cyT + y:rT 

is nonzero and symmetric, has zeros in positions corresponding to edges of 
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G and in the diagonal, and satisfies M X = 0. This contradicts the Strong 
Arnold Property. 

Let ]{ be the component with corank(l\h·) > 0. Then corank(2\!l) = 
corank(J\:JI\ ). Suppose now that l'vh: has no negative eigenvalue. Then 0 
is the smallest eigenvalue of !Vh-, and hence, by the connectivity of K and 
the Perron-Frobenius theorem, corank(MK) = 1. So µ( G) = 1. Let L be 
a component of G with at least one edge. Then µ(L) 2: 1, proving the 
assertion. 

So we can assume that MK has one negative eigenvalue. One easily 
shows that l\!h: has the Strong Arnold Property, implying µ.(G) = µ(K), 
thus proving the assertion again. • 

The following remark simplifies some arguments in the sequel. 

2.6. If G has at least two nodes, then we can replace condition (M2) by 
(M2'): l\!f has at most one negatilre eigenvalue. 

Indeed, suppose that the matrix M minimizing the rank, subject to 
(Ml), (M2') and (M3), has no negative eigenvalue, that is, is positive 
semidefinite. Then by the Perron-Frobenius Theorem, the submatrix corre­
sponding to any component has corank at most 1. By the same argument 
as in the proof of Theorem 2.5, at most one of these submatrices is singular. 
Thus M has corank at most 1. But we know that we can do at least this 
well under (M2) instead of (M2'). 

Next we prove: 

Theorem 2. 7. Let G = (V, E) be a graph and let v E V. Then 

µ(G) :::; 11(G - 11) + 1. 

If v is connected to all other nodes, and G - 11 is not K2 or empty, then 
equality holds. 

Proof. We may assume that v = n. To prove the first assertion, we can 
assume that G is connected. Let l'vl be an optimal Colin de Verdiere matrix 
for G. Let Jo.If' be obtained by deleting the last row and column of M. 
Clearly, corank(M') 2: corank(M) - l, since rank(M') :'.:::: rank(l\ll). So it 
suffices to show that J\,f' is a Colin de Verdiere matrix for G - u. As the 
theorem clearly holds if /t(G):::; 2, we may assume that µ,(G) 2: 3. 

Trivially, M' satisfies (Ml), and it has at most one negative eigenvalue 
by the theorem on interlacing eigenvalues. By remark, it suffices to show 
that it satisfies (M3). 
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As an intermediate step, we show that corank(M') S corank(M). If 
M' has a negative eigenvalue, this is immediate from eigenvalue interlacing. 
If M 1 is positive semidefinite, then by the Perron-Frobenius Theorem, the 
corank of the submatrix corresponding to each component of G - v is at 
most 1, and hence the corank of M' is the number of such submatrices that 
are singular. 

We claim that there are at most 3 such submatrices. Let K 1, ... , K4 

be four such components. For i = 1, ... , 4, let Xi be a nonzero vector with 
Mg,xi = 0. By the Perron-Frobenius theorem we know that we can assume 
Xi > 0 for each i. Extend Xi to a vector in llRv by adding components 0. 

Let z be a positive eigenvector of M belonging to the negative eigen­
value. By scaling the Xi we can assume that zT Xi = 1 for each i. Now 
define 

X := (x1 - x2)(x3 - X4)T + (x3 - x4)(x1 - x2f. 

Then (x1 - x2)T M(x1 - x2) = 0 and x1 - x2 is orthogonal to z, hence 
M(x1 - x2) = 0. Similarly M(x3 - x4) = 0, and thus M X = 0 This 
contradicts the fact that M satisfies (M3). 

Thus corank(M') S 3 s corank(M). In other words, rank(M1) ~ 
rank(M) - 1. This implies easily that the last row of M is a linear combi­
nation of the other rows and the vector e;;. 

To see that M' has the Strong Arnold Property (M3), let X 1 be an 
(n-1) x (n-1) matrix with O's in positions (i,j) where i = j or i and j are 
adjacent, and satisfying M 1 X' = 0. We must show that X' = 0. Let X be 
then x n matrix obtained from X' by appending O's. Then M X = O; this 
is straightforward except when multiplying by the first row of M, where we 
can use its representation as a linear combination of the other rows and e'!;. 
This proves the first assertion. 

Now we show that if v is connected to all other nodes, then µ( G) ~ 
µ(G - v) + 1 unless G is a path with 2 or 3 nodes. If G - v has no edge, 
then this is easily checked, so suppose that it does. Then by Theorem 2.5 
we may assume that G - v is connected and has at least 2 nodes. Let M' 
be an optimal Colin de Verdiere matrix for G - v. Let z be an eigenvector 
of M' belonging to the smallest eigenvalue >.1. We can assume that z < 0 
and that llzll = i. Let M be the matrix 

( M' z ) 
M := ZT >-11 . 

Since (x, o)T E ker(M) for each x E ker(M') and since (z, ->.i)T E ker(M), 
we know that corank(M) ~ corank(M') + l. By eigenvalue interlacing it 
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follows that M has exactly one negative eigenvalue. One easily checks that 
M has the Strong Arnold Property (M3). II 

We end this section with a lemma that gives very useful information 
about the components of an induced subgraph of G [13]. 

Lemma 2.8. Let G = (V, E) be a connected graph and let JVf be a Colin 
de Verdi ere matrix for G. Let S ~ V and let C 1, ... , Cm be the components 
of G - S. Then there are three alternatives: 

(i) there exists an i with .\1 (McJ < 0, and .\1 (McJ > 0 for all j =/=- i; 

(ii) ,\1(McJ 2: 0 for all i, corank(M) ::; !SI + 1, and there are at 
least corank(M) - !SI + 2 and at most three components Ci with 
.\1(McJ = O; 

(iii) .\1(McJ > 0 for all i. 

Proof. Let z be an eigenvector belonging to the smallest eigenvalue of 
NI, and, for i = 1, ... , rn, let Xi be an eigenvector belonging to the smallest 
eigenvalue of Mc;, extended by O's to obtain a vector in ~v. We can assume 
that z > 0, and :ri 2: 0 and zT Xi = 1 for i = 1, ... , rn. 

By the Interlacing Eigenvalues Theorem, at most one component has 
a negative eigenvalue. Assume that ,\1(Mc1 ) < 0. We claim that (i) 
holds. Otherwise, we have .\1(Mc2 ) ::; 0 (say). Let y := x1 - x2. Then 
zTy = zTx1 - zTx2 = 0 and yTMy = xf Mx1 +x1Mx2 < 0. But zTy = 0 
and yTMy < 0 imply that .\2(M) < 0, contradicting (Ml)-(M3). 

So we may assume that ,\1 (Mc;) 2: 0, that is, Mc; is positive semidefi­
nite for each i. Suppose that (iii) does not hold, say .\1 (Mc1 ) = 0. Let D be 
the vector space of all vectors y E ker(M) with Ys = 0 for all s E S. Then 

2.9. for each vector y E D and each component Ci of G - S, Ye; = 0, 
YC; > 0 oryei < O; if moreover ,\1(MeJ > 0 then Ye;= 0. 

Indeed, if y E D, then Mc;YCi = 0. Hence if Ye; =/=- 0, then (as Mei is 
positive semiclefinite) .\1(McJ = 0 and ye, is an eigenvector belonging to 
.\1(MeJ, and hence by the Perron-Frobenius theorem, YC; > 0 or Ye; < 0. 

Let rn' be the number of components Ci with .\1 (McJ = 0. By 2.9, 
dim(D) ::; rn' - 1 (since each nonzero y E D has both positive and negative 
components, as it is orthogonal to z). 

Since ,\1 (Me1 ) = 0, there exists a vector w > 0 such that Me1 w = 0. 
Let 

F := {xs Ix E ker(M)}. 
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Suppose that clim(F) = ISI. Let j be a node in S adjacent to C1. Then 
there is a vector y E ker(M) with Yi= -1 and Yi= 0 if i ES\ {j}. Let u 
be the jth column of M. Then My = 0 implies that 1ic1 = M c 1 YC1 . Since 
uc1 :'.S 0 and uc1 # 0, we have 0 > 1i~1 w = y~1 Mc1 w = 0, a contradiction. 

Hence dim(F) :'.S \SI - 1, and so 

(1) m' - 1 ;::: dim(D) = corank(M) - dim(F) ~ corank(M) - IS\+ 1. 

Hence there are at least corank(M) - IS! + 2 components Ci with 
,\1 (lVIcJ = 0. To see that there are at most three such compo11ents, assume 
that ,\1(McJ = 0 for i = 1, ... , 4. Define X := (x1 - :t2)(:r:3 - :r:4)T + 
(x3 - x4)(:r1 - :r2f. Then Xi,j # 0 implies ·i E C1 U C2 and j E C3 U C4 
or conversely. As M X = 0, this contradicts the Strong Arnold Property 
(M3). • 

2.3. Clique sums 

A graph G = (V, E) is a clique sum of graphs G1 = (Vi, E1) and G2 = 
(Vi,E2) if V =Vi U Vi and E = E1 U E2 and V1 n V2 is a clique both in 
G1 and in G2. Writing a graph as the clique sum of smaller graphs often 
provides a way to compute its parameters. For example, for the chromatic 
number x one has x(G) = max{x(Gi),x(G2)} if G is a clique sum of G1 
and G2. A similar relation holds for the size of the largest clique minor (the 
Hadwiger number) of a graph. 

We therefore are interested in studying the behaviour of ;.i( G) under 
clique sums. A critical example is the graph Ki+3 \ t:.. (the graph obtained 
from the complete graph I<t+3 by deleting the edges of a triangle). One has 
µ(I<t+3 \ 6:..) = t + 1 (since the star K 1,a = K 4 \ t:.. has µ.(Ku) = 2, and 
adding a new node adjacent to all existing nodes increases f.l by 1). 

However, Kt+3 \ 6:.. is a clique sum of Kt+l and Kw2 \ e (the graph 
obtained from Kt+2 by deleting an edge), with common clique of size t. 
Both Kt+ 1 and Kt+2 \ e have µ. = t. So, generally one does not have 
that, for fixed t, the property µ( G) ::S t is maintained under clique smns. 
Similarly, K 1+3 \ 21 is a clique sum of two copies of Kt+2 \ e, with common 
clique of size t + 1. 

These examples whereµ increases by taking a clique sum are in a sense 
the only cases: 
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Theorem 2.10. Let G = (V,E) be a clique sum of G1 = (V1,E1) and 
G2 = (V2,E2). let S :=Vi n Vi, and t := max{1t(G1),1L(G2)}. If µ(G) > t, 
then fl( G) = t + 1 and we can contract two or three components of G - S 
so that the contracted nodes together with S form a Kt+a \ .6.. 

Proof. We apply induction on [VI+ !SI. Let M be an optimal Colin de 
Verdiere matrix for G. We first show that :>- 1 (Mc) 2: 0 for each component 
C of G - S. Suppose :>-1 (Mc) < 0. Then by Lemma 2.8, :>- 1 (Mc') > 0 for 
each component. C' other than C. Let G' be the subgraph of G induced by 
CU S; so G' is a subgraph of G1 or G2. Let L be the union of the other 
components; so >-1 (!Vh) > 0. Write 

(
ldc 

M= U'J; 
0 

Let 

(
I O 

A:= ~ ~ 

Uc 
Ms 
ur 

L 

Then by Sylvester's Inertia Theorem, the matrix 

T T (
Mc 

AA1A = ~c 
Uc 

Ms - ULA1"£ 1U[ 
0 

0 ) 0 . 
Ah 

has the same signature as M; that is A.MAT has exactly one negative 
eigenvalue and has the same corank as lvl. As ML is positive definite, 
the matrix 

I (Mc Uc ) 
M := U'J; Ms - ULM£ 1U[ 

has exactly one negative eigenvalue and has the same corank as M. Since 
(ML);,j :S: 0 ifi f=. j, we know that (M£ 1)i,j 2: 0 for all i,j. Indeed, for 
any symmetric positive-definite matrix D, if each off-diagonal entry of D 
is nonpositive, then each entry of n- 1 is nonnegative. This can be seen 
directly, and also follows from the theory of 'M-matrices' (d. [17] Section 
15.2). Without loss of generality, each diagonal entry of D is at most 1. 
Let B := I - D. So B ;::: 0 and the largest eigenvalue of B is equal to 
1 - :>- 1(D) < 1. Hence n-1 =I+ B + B 2 +Ba+··· 2: O (cf. Theorem 2 in 
Section 15.2 of [17]). 

Hence (M,~)i,j :S: (Ms)i,j < 0 for all i,j E S with i f=. j. Thus !VJ' 
satisfies (Ml) and (M2) with respect to G'. 
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The matrix M' also has the Strong Arnold Property (M3). To see this, 
let X' be a symmetric matrix with M' X' = 0 and Xf ,j = 0 if i and j are 
adjacent or if i = j. As Sis a clique, we can write 

1 _ (Xc y) X - T . y 0 

(
X' Y Z) 

x := y; 0 0 . 

zT 0 0 

Then X is a symmetric matrix with Xi,j = 0 if i and j are adjacent or if 
i =j, and MX = 0. So X = 0 and hence X 1 = 0. 

It follows that µ( G') 2 corank(M') = corank(M) = tl( G) > t, a 
contradiction, since G' is a subgraph of G1 or G2. 

So we have that ,\1 (Mc) 2 0 for each component C of G - S. Suppose 
next that N ( C) f. S for some component C of G - S. 

Assume that C ~ VG1. Let H 1 be the graph induced by CUN( C) and 
let H2 be the graph induced by the union of all other components and S. 
So G is also a clique sum of H1 and H2, with common clique S' := N(C), 
and H2 is a clique sum of G1 - C and G2. 

If µ(G) = µ,(H2), then µ(H2) > t' := max{ µ(G1 - C), µ(G2) }. As 
[VH2[ +[SI < [VG!+ ISJ, by induction we know that µ(H2) = t' + 1, and 
thus µ(G) = tL(H2) = t' + 1 ::; t + l. Thus t' = t and p.(G) = t + 1. 
Moreover, either IS[ = t + 1 and H2 - S has two components C', C" 
with N(C') = N(C") and !N(C')I = t, or IS[ = t and H2 - S has three 
components C1 with N(C') = S, and the theorem follows. 

If µ(G) > µ(H2), then µ(G) > ( := max{ µ(H1), µ(H2) }. As [VG[+ 
[S1 [ < [VG[ +!SI, we know that µ(G) = e + 1, implying t' 2 t, and that 
either [S1 [ = t'+l or [S1! = t1• However, IS'! <!SI ::; t+l::; t' +1, so [S 1 I = t' 
and t' = t. Moreover, G - S' has three components C' with N(C') = S'. 
This implies that G - S has two components C' with N ( C') = S', and the 
theorem follows. 

So we may assume that N(C) = S for each component C. If [S[ > t, 
then Gi would contain a I<t+2 minor, contradicting the fact that µ(G1) :'.St. 
So !SI :S t. Since corank(M) > !SI, we have ,\1(Mc) = 0 for at least 
one component C of G - S. Hence, by (ii) of Lemma 2.8, G - S has 
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at least corank(M) - ISI + 2 = µ(G) - ISI + 2 ~ 3 components C with 
A1 (Mc) = 0, and by (iii) of Lemma 2.8, µ( G) - ISI + 2 ~ 3, that is 
t ~ ISI 2: µ(G) - 1 2: t. • 

As direct consequence we have: 

Corollary 2.11. Let G = (V, E) be a clique sum of G1 = (V1, E 1) and 
G2 = (V2,E2), and let S := V1 n V2. Then µ(G) = max{µ(G 1), µ(G 2)} 

unless µ(G1) = µ(G2) and !SI ~ µ(Gi). 

As an application of the tools developed in the previous sections, we 
determineµ for complete bipartite graphs Kp,q (p ~ q). We already know 
that µ(Kp,q) = p + q - 2 if 2 ~ q ~ 3. Now we prove: 

(2) (K ) _ { p, if q ~ 2, 
µ p,q - p + 1, if q 2: 3. 

The first line is just a reformulation of our findings in Section 1.2, and 
so is the second line in the case q = 3. Assume that q > 3. We have 
µ(Kp,q) ~ p + 1 by Theorem 2.11, since Kp,q is a subgraph of a clique sum 
of q copies of Kp+l· Since µ(K1,3) = 2, the equality holds for p = 1. 

Now it is easy to show that equality holds for p > 1 as well. Contracting 
any edge in Kp,q we get a graph that arises from Kp-l,q-1 by adding a new 
node connected to every old node. Hence by Theorem 2.7, we have 

µ(Kp,q) 2: µ(Kp-I,q-i) + 1 = p + 1. 

2.4. Subdivision and ..6. Y transformation 

In this section we show that (except for small values), Colin de Verdiere's 
parameter is invariant under two graph transformations crucially important 
in topological graph theory: subdivision and !:::.. Y transformation. 

In fact, subdivision is easily settled from our results in the previous 
sections. 

Theorem 2.12. Let G be a graph and let G' arise from G by subdividing 
an edge. Then 

(a) µ(G) ~ µ(G'); 

(b) Ifµ( G) 2: 3 then equality holds. 
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Proof. Since G is a minor of G', (a) is trivial by Theorem 2.4. Since G' is 
a subgraph of the clique sum of G and the triangle along an edge, equality 
holds if µ(G) > µ(K3) = 2 by Corollary 2.11. • 

It should be remarked that the condition f.L( G) 2': 3 for equality cannot 
be dropped. The graph K4 - e obtained by deleting an edge from I\.4 is the 
clique sum of two triangles, and hence by Corollary 2.11, f.L(I\4 - e) = 2. 
But subdividing the edge opposite to the deleted edge, we get K2,3 which, 
as we know, has f.t(K2,3) = 3. 

Bacher and Colin de Verdiere [2] proved that if p. is large enough, p(G) 
is invariant under the 6.. Y and Y 6.. operations. The Y 6..-operation works 
as follows: given a graph G, choose a node v of degree 3, make its three 
neighbors pairwise adjacent, and delete v and the three edges incident Yvith 
u. The 6.. Y-operation is the converse: given a graph G, select a triangle, 
add a new node, connect it to the nodes of the triangle, and delete the edges 
of the triangle. 

In fact, Corollary 2.11 implies: 

Theorem 2.13. Let G be a graph and let G' arise from G by applying a 
6.. Y transformation to a triangle in G. Then 

(a) /t(G):;; µ(G'); 

(b) ifµ( G) 2': 4 then equality holds. 

Proof. We start with (a). Let M be an optimal Colin de Vcrdiere matrix 
for G. Let 1, 2 and 3 be the nodes in the triangle to which we apply the 
6.. Y operation. Let 0 be the new node in G'. Write 

M= (~ 
where A has order 3 x 3. 

It is not difficult to see that there exists a positive vector b E ][{3 such 
that the matrix 

D :=A+ bbT 

is a diagonal matrix of order 3. Define the (n + 1) x (n + 1) matrix L by 

( 
1 0 0) 

L := -b I 0 , 
O O I 

where the 0 and I stand for null and identity matrices of appropriate sizes. 
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Define the (n + 1) x (n + 1) matrix M' by 

(3) ( 
1 -bT 0 ) 

M' := L ( l O ) LT = -b D BT 
O M 0 B C 

We claim that M' is a Colin de Verdiere matrix for G' and corank(M') = 
corank(M). Indeed, trivially by (3) (and Sylvester's Inertia Theorem), 
corank(AJ') = corank(J\.f), and lVf' has exactly one negative eigenvalue. 
Moreover, M' satisfies (Ml). So it suffices to show that M' has the Strong 
Arnold Property. Suppose to the contrary that there exists a nonzero 
symmetric ( n + 1) x ( n + 1) matrix X = (X.;,1) such that M' X = 0 and such 
that Xi,j = 0 if 'i = j or if i and j are adjacent in G'. We can write X as 

0 yT) 
y zT 

' z w 
where Y is a 3 x 3 matrix. So 

O = ( l O ) LT Y = ( B~ O M " y 
Cy 

-bTY 
AY + BTz 
BY+CZ 

Then Y = 0. Indeed, since bTY = 0, we have 

Similarly, Y2,:3 = -Yl,3 and Yi,2 = -Yl,3. Hence Y = 0. 

Let 
,,., ( o zT) 
,'\. .- Z vV . 

Then 

M X' = (BA. BT) ( 0 zr) = (BT z A.ZT + BTvv) = c z w c z Bzr +cw o, 

contradicting the fact that M has the Strong Arnold Property. This 
proves (a). 

As His a subgraph of a clique sum of G and K 4 along a triangle, (b) 
follows directly from Corollary 2 .11. • 



52 H. van der Holst, L. Lovasz, A. Sclirijver 

2.5. The null space of a Colin de Verdiere matrix 

In this section we study the null space of a Colin de Verdiere matrix The 
main result will be Theorem 2.16 due to van der Holst [11, 12] and its 
extensions, but some of the preliminary results leading up to it will also be 

useful. 

For any vector x, let supp(x) denote the support of x (i.e., the set 
{i\xi :::/= O}). Furthermore, we denote supp+(x) := {i[:r; > O} and 
supp-(x) := {i\:ri < O}. 

Let x be a vector in the null space of a Colin de Vercliere matrix M 
for G. We assume that the graph G is connected. Hence an eigenvector z 
belonging to the unique negative eigenvalue of M is (say) positive. Since 
xT z = 0, it follows that both supp+ (x) and supp- (x) are nonempty. 

Next, Mx = 0 implies: 

2.14. if a node v ~ supp(x) is adjacent to some node in supp+(x), then it 
is also adjacent to some node in supp-(x) (and conversely). 

Since we do not assume anything about the diagonal entries of Jvf, the 
same argument does not give any information about the neighbors of a 
node in supp(:r). However, the following lemma does give very important 
information. 

Lemma 2.15. Let G be a connected graph and let M be a Colin de Vercliere 
matrix for G. Let x E ker(M) and Jet J and I< be two components 
of G\supp+(x). Then there is a y E ker(M) with supp+(y) = J and 
supp-(y) = K, sucl1 that YJ and YK are scalar multiples of :J:J and XJ( 

respectively. 

Proof. Let L := supp-(x). Since Mj,k = 0 if j E J, k E K, we have: 

(4) 

Let z be an eigenvector of M with negative eigenvalue. By the Perron­
Frobenius theorem we may assume z > 0. Let 

(5) 
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Define y E !Rl.n by: Yi := Xi if i E .J, y,; := -AXi if i E J(, and Yi := 0 if 
i tf. JU K. By 5, zT y = ZJXJ - >.z'J;xI< = 0. Moreover, Mj,k = 0 if j E J 
and k E J( and hence 

yT My= yJMJxJ YJ + YkMI<xI< YI< 

= x}MJxJ XJ + >.2xf;;MI<xI< XJ< 

= -x}MJxLXL - A2XkMI<xLXL 

:S 0, 

(using ( 4)) 

since lvfJxL and A1KxL are nonpositive, and XJ > 0, XJ( > 0 and XL < 0. 

Now zT y = 0 and yT My::::; 0 imply that My= 0 (as Mis symmetric 
and has exactly one negative eigenvalue, with eigenvector ;:; ) . Therefore, 
y E ker(M). • 

We say that a vector x E ker(M) has minimal support if x is nonzero 
and for each nonzero vector y E ker(M) with supp(y) ~ supp(x) one has 
supp(y) = supp(:i::). Then Lemma 2.15 implies immediately the following 
theorem. 

Theorem 2.16. Let G be a connected graph and let M be a Colin de 
Verdiere matrix for G. Let x E ker(M) have minimal support. Then 
Glsupp+(x) and Glsupp-(x) are nonempty and connected. 

Unfortunately, the conclusion of Theorem 2.16 does not remain valid if 
the assumption that x has minimal support is dropped. For example, if our 
graph is K1,3 and we take the matrix 

M =(I ~ ~ ~) 
(which satisfies (Ml)-(M3) and achieves µ = 2), then the vector x = 
(0, 1, 1, -2) is in the null space but supp+(x) is disconnected. 

The Petersen graph P provides a more interesting example. We show 
that µ(P) = 5. It is easy to construct a matrix realizing this value: Let A 
be the adjacency matrix of the Petersen graph and let M = I - A. Clearly, 
M satisfies (Ml). The eigenvalues of Pare well known to be 3 (once), 1 (5 
times) and -2 ( 4 times). Hence M satisfies (M2), and has corank 5. We 
leave it to the reader to verify that it also has the Strong Arnold Property. 

It is easy to work out the null space of M. Let e and e' be two edges at 
distance 2, and define a vector qee' E !Rl.v to be 1 on the endnodes of e, -1 
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-I 

2 2 

Fig. 1. Two vectors in the null space of M for the Petersen graph 

on the endnodes of e', and 0 elsewhere (Figure l(a)). Then qee' E ker(M), 
and it is easy to see that ker(M) is generated by these vectors. 

Now if e, e' and e" are three edges that are mutually at distance 2, 
then qee' +qee" is a vector in ker(M) with supp-(q) having two components 
(Figure l(b) ). 

It is interesting to study linear subspaces with properties similar to 
those of the null space of a Colin de Verdiere matrix M. Given a graph G, 
what is the maximum dimension of a subspace L i;; JRl.v such that for every 
vector x E L with minimal support, the subgraph spanned by supp+(x) is 
nonempty and connected? 

We get a perhaps more interesting graph invariant if we consider the 
maximum dimension of a subspace Li;; JRl.v such that supp+(x) is noncmpty 
and connected for every nonzero vector in L. We denote this maximum 
dimension by .A( G). This invariant was introduced and studied by van der 
Holst, Laurent and Schrijver [13]. For the interesting properties of these 
and other related graph invariants, we refer to [13] and to the forthcoming 
survey by Schrijver [30]. 

A vector x in the null space of M (not with minimal support) that 
violates the conclusion of Theorem 2.16 must have rather spccia,l properties: 

Theorem 2.17. Let M be a Colin de Verdiere matrix for a. graph G. Let 
x E ker(M) be such that Glsupp+(x) is disconnected. Tl1Pn 

(i) there is 110 edge connecting supp+(x) and supp-(:c), 

(ii) Glsupp+(x) has exactly two components, 

(iii) Glsupp-(x) is connected, 
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(iv) lsupp(x)I + corank(M) ~ IV( G)I + 1, 

(v) N(K) = N(supp(x)) for each component I< of Glsupp(:r). 

Proof. Suppose there is an edge connecting component .J of Glsupp+ (x) 
and Glsupp-(:r). Let K be another component of Glsupp+(:r). By Lemma 
2.15, there exists a y E ker(M) such that supp+(y) =Kand supp-(y) = .J, 
and such that YJ and YK are scalar multiples of XJ and :rK respectively. By 
adding an appropriate multiple of y to x we obtain a vector z E ker(M) 
with supp-(z) = supp-(x) and supp+(z) = supp+(x) \ .J. Since there is no 
edge connecting J and supp+(x) \ .J, this contradicts 2.14, and proves (i). 

Let C1, ... 1 Cm be the components of Glsupp(x). Then Mc,xc; = 0 for 
each i = 1, ... , 'In. Since by (i) each C; is contained either in supp+(x) or in 
supp-(x), we know by the Perron-Frobenius theorem that >- 1 (J\!lc;) = 0 for 
i = 1, ... , m. Hence case (ii) of Lemma 2.8 applies, and we see that rn ~ 3, 
implying (ii) and (iii) above. Assertion (iv) also follows immediately from 
Lemma 2.8. 

Similarly to the first part of this proof one shows that, for each two com­
ponents .J,1( of Glsupp(:r), there is a vector y E ker(M) with supp+(y) = .J 
and supp-(y) = K. Hence 2.14 implies that N(.J) = N(K). • 

3. VECTOR LABELLINGS 

3.1. A semidefinite formulation 

We give a reformulation ofµ,( G) in terms of positive semiclefinite matrices. 

Theorem 3.1. For a graph G = (V, E) with at least one edge, the max­
imum conwk of any matrix A E m.(n) with properties (Al)-(A3) below is 
µ,(G) + 1: 

(Al) for all if j, Ai,j < 1 if ij EE, and Ai,j = 1 if ij ~ E; 

(A2) A is positive semidefi.nite; 

(A3) there is 110 nonzero matrix X = (X;,j) E m.(n) such that (A- .J)X = 0 

and X;,J = 0 whenever i = j or ij E E. 

This theorem is quite easy to prove if G is connected, and we give the 
proof below. The case of disconnected G is somewhat cumbersome, and we 

refer to [16] for details. 
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Proof. Assume that G is connected, and let M be an optimal Colin de 
Verdiere matrix for G. We may assume that the unique negative eigenvalue 
of M is -1. Denote the corresponding unit eigenvector of M by ?r; we may 
assume that ?r > 0. Consider the diagonal matrix II = diag( ?r1, ... , 71" n), 
where the 11"i are the components of the vector 1r. Next; let 

A:= rr 1 un-1 + J. 

We claim that A satisfies (Al)-(A3). (Al) is trivial, (A2) follows by stan­
dard linear algebra. It is also easy to see that corank(A) = 1 + corank(M). 
Also note that (?rt, ... , ?r~) is in the null space of A by construction. 

To show that A satisfies (A3), assume that X =I= 0 satisfies the conditions 
in (A3). Then the matrix X' = rr- 1 xrr-1 =I= 0 is symmetric, XI,j = O for 
ij EE or i = j, and 

MX' = (II(A- J)II)(Ir1 xrr- 1) = II(A - J)xrr- 1 = 0. 

This contradicts the Strong Arnold Property of M. 

Thus we have found a matrix A with properties (Al)-(A3) and corank 
µ,( G) + l. To show that no larger corank can be attained, let A be any matrix 
satisfying (Al)-(A3). Consider the matrix M = A - J. Then M satisfies 
(Ml) and (M3) trivially. Moreover, Sylvester's Inertia Theorem implies that 
M has at most one negative eigenvalue, and corank(M) 2 corank(A) - 1. 
By the remark 2.6, this implies that corank(M) :'.S µ,(G). • 

It follows from the construction that in the case of connected graphs, 
we could assume that there is a vector n > 0 in the null space of A, without 
changing this definition. Perhaps one could also assume that the vector 1 
is in the null space. 

We remark that condition 3.1 (A3) could be replaced by the formally 
incomparable condition: 

(A3') there is no nonzero matrix X = (Xi,j) E Jlt(n) such that AX= O and 
Xi,j = 0 whenever i = j or ij EE; 

and also by the following condition, formally weaker than both ( A3) and 
(A3'): 

(A3") there is no nonzero matrix X = (Xi,j) E Jlt(n) such that AX= JX = 
0 and Xi,j = 0 whenever i = j or ij EE. 

The fact that (A3") implies (A3') in the presence of (Al) is easy: if 
AX= 0, then in particular (AX)i,i = O; but 

(AX)i,i = L Ai,jXi,j = L Xi,j, 
j j 
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since Xi,j = 0 whenever Ai,j =f 1. Thus we get that Lj Xi,j = 0 for all j, 
i.e., J X = 0. But this contradicts (A3" ). 

The fact that (A3") implies (A3) in the presence of (Al) and (A2) (and 
assuming that corank(A) 2:: 2, which excludes only trivial cases), is harder. 
Again, we prove this for connected graphs G only; the general case can be 
found in [16]. 

So let A be a matrix satisfying 3.1 (Al)-(A2) and (A3"), with corank(A) 
2:: 2. Suppose that there is a matrix X violating 3.1 (A3). If X J = 0 then 
also AJ = 0 and this contradicts (A3" ). Suppose that X J =f O; then 
Xl =f 0, and hence we may assume that llXIll 2 = 1 T X21 = l. This implies 
that .J X 2 J = J. Since A is positive semidefinite, we can write A = U2 for 
some U E JR(n). Then we have 

(U - ux 21)r(u - ux 21) = u2 - u 2x 21 - 1x2u 2 +1x2u 2 x 21 
= A - AX2 J - J X 2 A + J X 2 AX2 J 

= A-JX2J-JX 2J + JX 2 JX 2 J 

=A-J. 

Thus A - J is positive semidefinite. But by the Perron-Frobenius 
Theorem, the least eigenvalue of A - J has multiplicity 1 (here is the 
point where one has to work more for disconnected graphs), and thus 
corank(A - J) ~ l. Since J is positive semidefinite, it follows that the 
corank of A is at most 1, a contradiction. 

We note that if G is Kn, n 2:: 3, then theorem 3.1 remains valid with 
(A3'), but not with (A3). 

3.2. Gram labellings 

Let G = (V, E) be a graph. Considerations in this section will be best 
applicable when µ is close to n. Graphs with such high values ofµ will be 
very dense, and so it will be convenient to formulate the results in terms of 
the complementary graph H = G = (V, F). 

Consider a matrix A satisfying conditions 3.1 (Al)-(A3). Then we can 
write it as a Gram matrix of vectors in dimension d =rank( A): Ai,j = u['uj, 
where 'lli E JRd; conversely, such a representation guarantees that A is 
positive semidefinite. In terms of the Ui, conditions 3.1 (Al) and (A3') 
can be rephrased as 
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3.2. 

(Ul) for all if= j, uf uj < 1 if ij EE, and uf uj = 1 if ij E F. 

(U2) there is i10 nonzero matrix X = (Xi,j) E Jffi.(n) such that Ej Xi,jUj = 0 
for all nodes i, and Xi,j = 0 whenever i = j or ij E E. 

Let v(H) be the smallest dimension d in which a vector labelling with 
these properties exists. We call a mapping i 1-t u.i with property (Ul) 
a scalar product labelling of the graph. A scalar product labelling with 
property (U2) is nondegenerate. 

By Theorem 3.1, we have 

Theorem 3.3. For every graph G different from K2, 

v(G)=n-µ(G)-l. 

We add that if G has no edges, then v(G) = v(Kn) = n - 2. An 
optimal scalar product labelling is to use 3 copies of e1 and the vectors 
e1 + e2, e1 + e3, ... , e1 + en-2· It is remarkable that, similarly to the best 
matrix M for µ(K4,4 ), this optimal labelling breaks the symmetry. 

As remarked after 3.1, in the case when G is connected we may assume 
that there is a positive vector rr > 0 in the null space of A. This implies 
that the origin is in the convex hull of the Ui. On the other hand, simple 
linear algebra shows that the origin cannot be contained in the convex hull 
of any scalar product labelling 'U·i if G is disconnected. 

Condition (U2) has a particularly transparent interpretation. Let ( Ui E 
Jffi.d I ·i E V) be a scalar product labelling of the graph H. This labeling can 
be described by a point x E Jffi.dn. Condition (Ul) then amounts to a number 
of quadratic equations ( ur Uz = 1 if kl is an edge) and inequalities ( ur Uz < 1 
if kl is a non-edge). Each such equation defines a surface Uk:,l· Now (U2) 
is equivalent to saying that the gradients of these surfaces at :1: are linearly 
independent; in other words, the surfaces intersect transversally at x. 

In the presence of (Ul), condition (U2) is equivalent to the following 
weaker property (this follows from the equivalence of (A3') and (A3")): 

(U2') There is no nonzero matrix X E ffi(n) such that Ej Xi,j = 0 and 
I:j Xi,j1lj = 0 for all nodes i, and Xi,j = 0 whenever 'i = j or ij E E. 

There is a third, closely related nondegeneracy condition that we shall 
need. A vector labelling ( Ui I i E V) of a graph H is c:alled stress-free, if it 
satisfies the following condition: 
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(U2") There is no nonzero matrix X E ffi.(n) such that Lj Xi,j(Uj -·ui) = 0 
for all nodes i, and X1,j = 0 whenever i = j or ij E E. 

A symmetric matrix X violating (U2") is called a stress. If we view 
the labels of the nodes as their position in d-space, and the edges between 
them as bars, and interpret Xi,j as the "stress" along the edge ij, then 
Xi,j( 1li - 1lj) is the force by which the bar ij acts on node i, and so the 
definition of a stress says that these forces leave every node in equilibrium. 

It is clear that (U2") implies (U2') and thus also (U2). In the converse 
direction we show the following. 

Lemma 3.4. In the presence of (Ul) and the additional 11ypothesis that 
lluill =/= 1 for a.11 i, conditions (U2) and (U2") a.re equivalent. 

Proof. Assume that a vector labelling satisfies (U2') but not (U2"). Then 
there exists a nonzero symmetric matrix X such that X;,j = 0 for i = j and 
for ij E E, and Lj Xi,j(1lj - u;) = 0 for every node i. Taking the inner 
product with ui and using (Ul), we get that 

Since the second factor is nonzero by the hypothesis, we get that. Lj X;,j = 0 
for all i. It follows that also Lj Xi,jUj = 0 for all i, and hence X violates 
(U2'). • 

Scalar product labellings link Colin de Verdiere's number with a con­
siderable amount of work done on various geometric representations of 
graphs, cf. [16]. 

Scalar product labellings also give a nice geometric picture, some of 
which we describe now. We discuss this for connected graphs G, and assume 
that G has no node of degree n - 1 (i.e., H has no isolated node). In this 
case, we know that we may assume that the origin is in the convex hull of 
the 1l; (for the general case we refer to [16]). 

Lemma 3.5. Let ( 1li E JRd I i E V) be a scalar product labelling of a graph 
H with different vectors, and assume that the origin is in the convex hull P 
of tbe Ui. Tben for each i E V, one of the following alternatives holds: 

(a) Ui is a vertex of P. 

(h) Ui is not a vertex of P, but a boundary point of P, and ll1Li II = l. The 
neighbors of i in Ha.re all the vertices of a face Qi of P, and Ui E Qi. 
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(c) 1.ii is not a vertex of P, but a boundaiy point of P, and lluill < l. The 
neighbors of i in H are the vertices of a face Qi of P, Ui rJ. Qi, but there 
is a face Fi of P containing iii and Qi. 

(d) Ui is an interior point of P, lluill < 1. Let u~ be the point where the 
semiline of Ui fotersects the surface of P, and let Pi be the smallest 
face of P containing u~. Then the neigbbors of Ui are the vertices of a 
simplicial face Qi of Pi (possibly Qi = Pi)-

Proof. For any vector Ui, consider the hyperplane Hi defined by uf x = 1. 
By (Ul), all neighbors of i in the graph H are on this hyperplane. 

If II Ui II > 1, then Hi separates Ui from all the other 'Uj, hence Ui is a 
vertex of P. Thus (a) holds. 

If lluill :S 1 then Hi supports P and so it defines a face Qi. The 
neighbors of i are precisely the Uj on this face. Thus every vertex of Qi 
is a neighbor of i. But every neighbor Uj of Ui must have i11lj II > 1 (since 
tlf Uj = 1, l!udl :::; 1 and Uj =I ui), so Uj is a vertex of P. Thus the neighbors 
of Ui are precisely the vertices of Qi. 

If lluill = 1 then trivially Qi contains Ui (ui could be a vertex of Qi or 
not). Thus (a) or (b) holds. 

If lluill < 1 then Qi does not contain Ui. Suppose that Ui is not a vertex, 
but a boundary point, and let Pi be the smallest face containing Ui· If Qi 
is contained in Pi we have (c), so suppose this is not the case. 

Let W = V(Qi) \ V(Pi), where V(Qi) the set of nodes k with Uk E Qi. 
If k E w) then we have ur Uj :S 1 for all vertices Uj of Pi, and uf Ui = 1 for 
the point Ui in the relative interior of Pi, so we must have ufn1 = 1 for all 
vertices of Pi. Thus all vertices of Pi are neighbors of k. 

We show that Fi = conv(Pi U Qi) is a face. Suppose not; then the 
affine hull of Pi U Qi intersects the convex hull of vertices not in Pi U Qi. 
This means that there are three collinear points u, v, w such that u is in the 
convex hull of U = V(P) \ (V(Pi) U V(Qi)), vis in the affine hull of V(Pi) 
and w is in the affine hull of of W. Hence it follows that 

Since wT Ui = 1 and lluill < 1, we also have 

WT W > 1. 

Consider the half space H = { x I wT x 2: 1}. Then w is an interior point of 
H, v is a boundary point, and u is either on the boundary or outside. 
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The point v is in the affine hull of the face Pi, and so it cannot be a 
convex combination of vertices not on this face. In particular, w cannot be 
in the convex hull of W, and 1l and v cannot coincide. Thus u is in fact 
outside the halfspace. Now every vertex uk E W has an inner product at 
most 1 with u, exactly 1 with v, and hence at least 1 with w. Thus W C H. 

Now w must lie on the line through two points x, y in the convex hull 
of W, where we may assume that x, y are contained in disjoint faces of 
conv(W). We may also assume that w, x and y are in this order on the line. 
W C H implies that yT w 2 1. Since x and y are in the convex hulls of 
disjoint sets of vertices, we also have yT x S 1 and thus yT y S 1, which is 
impossible since then yr Ui = 1, [[·ui[[ < 1 and [[y[[ S 1. This proves that (c) 
holds. 

Finally, if [[ui[[ < 1 and 1li is an interior point, then for any neighbor k 
of i, the point 1< defined in (cl) will have (uDT Uk > 1. This implies that Pi 
defined in (cl) must contain 1lk, else 'l< would be a convex combination of 
vertices 1lj with u] Uk s 1, which would imply that (1l~)T 7.lk S 1. Thus Qi is 
a face of Pi. We show that Qi is simpliciaL Suppose not; then we can write 
u~ as a convex combination of vertices of P so that at least one vertex k of 
Qi is not used: 

7.l~ = L CYj1lj' 

jEV(P) 

Then we have 

CYj 2 0, L CYj = 1, CYk = 0. 
j 

1 = u[ui < uiu~ = L CYj7.lI1lj S L Clj = 1, 
jEV(P)\{k} jEV(P) 

a contradiction. So in this case (cl) holds. • 

Corollary 3.6. Under t11e conditions of Lemma 3.5, the subgraph of H 
spanned by V (P) is a subgraph of the I-skeleton of P. 

Proof. We have to show that if ij E E(H) and both Ui and 7.Lj are vertices 
of P, then UiUj is an edge of P. Since uf Uj = 1, we may assume that 
[ui[ > 1. Then the hyperplane uf x = 1 separates u.; from all the other 
vertices of P, and has 7.lj on its boundary, whence UiUj is an edge of P. • 

We can make, for free, the assumption that the vectors Ui are "as generic 
as possible" in the following sense: if the equations 1Lf 7.lj = 1 ( ij E E(H)) 
do not determine the vector ui uniquely, then we replace Ui by another 



62 H. van der Holst, L. Lovasz, A. Schrijver 

solution very near to 11; so that this new u; does not lie in any affine 

subspace spanned by other Uj unless all solutions do. Call such a scalar 

product labelling generic. In particular, assume that ·u.i is an interior point 

of P. Then 11; is constrained to an affine space Ai defined by the equations 

u[:i: = 1 (k E N(i)). Genericity means then that a small neighborhood of 

Ui in A; is contained in conv(Pi U {O} ). But we also know that Q.; ~ P;. 

It is easy to see that the affine hull of Q; and Ai together span the whole 

space. Hence it follows that Pi is a facet. 

A similar argument shows that 11i cannot be a point on the surface with 

1111.; II < 1. Thus 

3. 7. For generic scalar product la.bellings, we can add in Lemma 3.5 that 

- in (b), Q; is a facet; 

- ( c) cannot occur; 

- in (cl), P; is a facet. 

Finally, we remark that if all the Ui are vertices of P, then it suffices to 

check condition (Ul) for edges of P only. More exactly, 

Lemma 3.8. Let P be a convex polytope in ~d. If uTv ::; 1 for any two 

vertices 1t and v forming an edge of P, then 7.LT v < 1 for every pair u, v of 

distinct vertices t11at do not form an edge. 

Proof. Let ·u and v be two vertices with maximum inner product; it suffices 

to show that they must form an edge. Suppose not; then there is a point 

w on the segment uv such that w is in the convex hull of some other 

vertices w1, ... , Wk. We may assume that !lull 2': llvll; then the halfplane 

{x I uT:r 2': uTv} contains both u and v, hence it contains w iu its interior, 

hence it contains at least one w; in its interior. But then v.Twi > v.rv, a 

contradiction. • 

3.3. Null space labellings 

Another way of stating some of the theorems above is the following. Let M 

be the Colin de Vercliere matrix of a graph G, and let :r1 , ... , :cd be a basis 

of the null space of M (d = µ(G)). Let X be a matrix with column vectors 

:r1, ... , xd, ancl let yf, ... , y'f: be the row vectors of X. Then i r--+ Yi is an 

embedding of the nodes of G in ~d. It is easy to see that, up to a linear 

transformation, this embedding does not depend on the choice of the basis 
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for the null space. We call ( y;) the null space labelling of G (associated with 
the Colin de Verdiere matrix 1'.1). Then 

3.9. The origin is in the interior of the convex hull of the y;. Aforeover, 
for eveq node i, the linear span of Yi intersects the relative interior of the 
convex hull of the neighbors of 'i. 

Theorem 2.16 says the following. 

3.10. For any hyperplane spanned by d- l linearly independent nodes, the 
s11bgniph spanned by nodes 011 one side of this hyperplane is connected. 

Moreover, Theorem 3.17 can be rephrased as follows: 

3.11. For any hyperplane H through the origin, the subgraph spanned by 
nodes on one side of this hyperplane is connected, except in the following 
situation: H contains a (d - 2)-dimensional subspace L such t11at the set 
of nodes on L separate the graph into exactly 3 components. Each of these 
components spans, together with L, a hyperplane that separates the other 
two components. 

This null space labelling may have some further interesting geometric 
properties. For example, assume that the graph G is maximal outerplanar, 
and that M has co rank 2 ( cf. Section 4). Is it true that the vectors 
(1/llv;ll)y;, with straight edges between them, provide an embedding in the 
plane with all nodes on the infinite face? 

The vector labelling formulation gives us very transparent interpre­
tations (and proofs) of results about the kernel of M. Let G be a con­
nected graph, and M, a Colin de Verdiere matrix for G. vVe may assume 
that the negative eigenvalue of lvf is -1, and let 7r be the positive unit 
eigenvector belonging to it. Let, as in the proof of 3.1, IT = diag(7r) and 
A. = rr- 1 .. Mrr- 1 + J, and let A be the Gram matrix of vectors n; E JP?.d, 

where d = rank(A). 

Now clearly x E ker(M) if and only if 7rT x = 0 and Ih E ker A. In 
terms of the vectors 1L.i, this means that the vector y = Ih: satisfies Li Yi = 0 
and Li YiU; = 0. In other words, 

3.12. :r E ker( M) if and only if IIx defi.nes an afii.ne dependence between 
the vectors ·ui. 

Next we show the geometric interpretation of the proof of Lemma 2.16 
and its extension in these terms. Let y be an affine dependence between the 
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u;. Let L be the subgraph of G spanned by supp+(y), and let L1, ... , Lr 

be the connected components of L. Similarly, let Lr+l1 ... , Lr+s be the 
connected components of the subgraph L' spanned by supp-(y). Consider 
the values II Yi II as weights associated with the points. Then the fact that y 
is an affine dependence implies that L and L' have the same weight and the 
same cent.er of gravity b. 

Let Ci be the center of gravity of Li- Obviously, cf Cj :S: 1 if 1 :S: i :::; 
r < j ::; r + s (since u[ Uj ::; 1 if i f. j), and hence (since b is the cent.er of 
gravity of Cr+ 1, ... , Cr+s with appropriate weights) c[ b :S: 1 for all i. But b 
is also the center of gravity of c1, ... , Cr, and cf Cj = 1 for 1 :S: i < j :::; r 
(since there are no edges between Li and Lj). Hence we must have cf Ci :::; 1 
for all i. 

Now assume that supp+(y) spans at least two components, i.e., r 2: 2. 
Then cf c2 = 1 implies that we must have c1 = c2 and llc1 II = 1. Thus it 
follows that c1 = c2 = · · · = Cr = b and b has unit length. Then it follows 
easily that also Cr+l = · · · = Cr+s = b. 

This implies that cf Cj = 1 also for 1 S i :S: r < j ::; r + s, and hence no 
edge connects Li to Lj. Thus 11, ... , Lr+s are the components of supp(y). 

The Strong Arnold Property can be used to show that r + s :S: 3 just 
like in the proof of Lemma 2.8. 

3.4. Cages, projective distance, and sphere labellings 

In the case v = 3, Corollary 3.6 gives a representation of the graph as a 
subgraph of the 1-skeleton of a convex polytope. This is similar to the 
representation in the Cage Theorem. Two nodes i and j in the scalar 
product labelling satisfy 

with equality if and only if ij is an edge of H. In the cage representation, 
two nodes i and j satisfy 

and again equality holds if and only if ij is an edge of H. This suggests 
that one could consider, more generally, a real parameter a, and labellings 
of the nodes of H by vectors Ui E ~d such that any two nodes satisfy 
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3.13. lluill > 1 and uf uj::; 1- ay'(J!uill 2 - l)(i!uj!l2 -1), with equality if 
and only if ij is an edge of H. 

(The condition ll'uill ~ 1 is clearly necessary for the definition to be mean­
ingful. Assuming strict inequality will be convenient later on.) 

In other words, we could introduce, for any two points u and v outside 
the unit sphere, a "distance" defined by 

l -uTv 

a(u, v) = )(!lull 2 - l)(llvll 2 -1)' 

and then try to represent the graph by points outside the unit sphere so 
that adjacent points realize the minimum "distance" between all pairs. 

While a( 1L, v) is not a proper distance function, it has nice properties. 
It is larger than 1 if and only if the line segment S connecting u and v 
intersects the unit sphere at two points. Let x and y be these two points, 
and let >. be the cross ratio ( u : v : x : y ). Then rather straightforward 
calculations show that 

In particular, it follows that a( u, v) is invariant under projective transforma­
tions preserving the unit sphere. The formula also shows that if we define an 
analogous notion of distance for points inside the sphere, we get a function 
that is closely related to the distance function of the Cayley-Klein model of 
the hyperbolic plane. 

The reason for introducing these generalized scalar product labellings is 
that we can prove results about v (or µ) by first constructing representations 
with another choice of the parameter a > 0 (which is sometimes easier), 
and then use these to obtain scalar product representations (which is the 
case a = 0). Three key properties of scalar product representations can 
be extended to these generalized scalar product representations without 
difficulty. We state these without proof. Let 0 ::; a ::; 1, and let ( Ui E JIRd Ii E 

V) be a labelling of a graph H with different vectors with property 3.13. 

Lemma 3.14. Let P be the convex hull of tlie Ui. Then every ui is a vertex 
of P and every edge of H is an edge of P. 

Lemma 3.15. Let P be a convex polytope in 1_d, and assume that all 
vertices of P are outside the unit sphere. If a( u, v) ::; a for any two vertices 
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u and v forming an edge, then a( u, v) < a for every pair u, v of vertices that 
do not form an edge. 

The third basic fact concerns the Strong Arnold Property. Let Xi E ~d 
('i E V) be unknown vectors, and consider the equations 

(ij E E(H)). 

These define surfaces in the nd-dimensional space, which intersect at the 
point :"C1 = 1L1, ••• ,Xn =Un· 

Lemma 3.16. The surfaces intersect tranversally at (1i1, ... , 'lln) if and 
only if the labelling is stress-free. 

We close this section with pointing out that vector labellings with 
property (Ul) are closely related to representations (labellings) of graphs 
by orthogonal spheres. The advantage of considering sphere labellings is 
that one can use methods from conformal geometry to study them. The 
disadvantage is that we do not get an exact reformulation of the definition. 

Consider a vector labelling of a graph G satisfying (Ul). Also assume 
that all vectors 'lli are longer than 1. Let sd-l be the unit sphere in ~d, and 
let Si be the sphere with cent.er Ui and radius Jllu·dl2 - 1. Then an easy 
computation gives that 

(Sl) each Si is orthogonal to the unit sphere 3d-l; 

(82) if ij E E then Si and Sj are orthogonal; if ij E E then Si and Sj 
intersect at an angle larger than 7r /2, or have disjoint interiors. 

Conversely, every assignment of spheres of the nodes with properties 
(SI) and (82) gives rise to a vector labelling with property (Ul) such that 
each vector has length larger than 1. 

We can allow vectors of length 1 and spheres degenerating to a single 
point. (We could even allow vectors shorter than 1 and "imaginary" spheres, 
but there would not be any real gain in this.) 

More generally, vector labellings satisfying 3.13 for some parameter 
0 ~ a ~ 1 would correspond to sphere labellings where adjacent nodes 
are labelled with spheres intersecting at a fixed angle. We do not go into 
the details here, but refer to [16]. 
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4. SMALL VALUES 

4.1. Paths and outerplanar graphs 

We now arrive at characterizing the graphs G satisfying Jl( G) ::; t, for 
t = 1, 2, 3 and 4, and the corresponding collections of forbidden minors. 
We already know that µ( G) = 0 if and only if G has at most one node. 
Next we show that 

Theorem 4.1. 11( G) ::; 1 if and only if G is a node-disjoint union of paths. 

Proof. Since µ(1(3) = 2 and JL(K1,3) = 2, the minor-monotonicity ofµ 
gives the 'only if' part. We already know that a path has µ = 1 and by 
Theorem 2.5, this is also true for a collection of paths. • 

Theorem 4.2. µ.( G) ::; 2 if ancl only if G is outerpla.nar. 

Proof. Since 11(1(4) = 3 and µ(I<2,3) = 3, the minor-monotonicity ofµ gives 
the 'only if' part (using the well known forbidden minor characterization of 
outerplanarity). 

To see the 'if' part, we may assume that G is maximally outerplanar. 
Then G is a clique sum of a triangle and a smaller outerplanar graph. By 
Theorem 2.10, it follows by induction that µ.(G) ::; 2. • 

4.2. Planar graphs 

Now we get to the main result of Colin de Verdiere [7]. The original proof of 
this theorem appeals to the theory of partial differential equations. While 
this connection is very interesting, it is also important to see that a purely 
combinatorial proof is possible. Such a proof was given by van der Holst 
[11], which we now reproduce. 

Theorem 4.3. µ( G) ::; 3 if ancl only if G is planar. 

Proof. Since /L(J\,5) = 4 and µ(I\0,3) = 4, the minor-monotonicity ofµ gives 
the 'only if' part (using Kuratowski's forbidden minor characterization of 
planarity). 

To see the 'if' part, let µ( G) > 3, and assume that G is planar. We 
may assume that G is maximally planar. Let M be a Colin de Verdiere 
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matrix for G. Let uvw be a face of G. Then there exists a nonzero vector 
x E ker(.JV!) with Xu =xv = xw = 0. We may assume that x has minimal 
support. By Theorem 2.16, Gjsupp+(x) and Gjsupp-(x) are nonempty and 
connected. 

As G is maximally planar, G is 3-connected. Hence there exist three 
node-disjoint paths Pi, P2, P3 from supp( x) to { u, v, w}. Let P{, P2, P3 
be the parts outside supp(x). Then the first nodes of the Pf belong to 
N(supp(x)), and hence to both N(supp+(x)) and N(supp-(x)). Contract­
ing each of supp+(x), supp-(:i:), P{, P2, P3 to single nodes, we obtain an 
embedded planar graph with uvw forming a face and u, v, and w having 
two common neighbors. This is impossible. • 

4.3. Linkless embeddable graphs 

The next question is to characterize the graphs G with µ( G) :::; 4. To this 
end, we need some definitions from topology and topological graph theory. 

Two disjoint Jordan curves A and B in 1.3 are linked, if there is no 
topological 2-sphere in 1.3 separating them (in the sense that one curve is 
in the interior of the sphere, while the other is in the exterior). The curves 
A and B have an odd linking number if there is an embedding of the 2-
disk with boundary A that has an odd number of transveral intersections 
with the image of B (and no other intersections). It is well known that this 
definition is symmetric in A and B. An odd linking number implies being 
linked (but not the other way around). 

An embedding of a graph G into 1.3 is called linkless if no two disjoint 
circuits in G are linked in 1.3 . A graph G is linklessly embeddable if it has 
a linkless embedding in 1.3 . 

There are a number of equivalent characterizations of linklessly embed­
dable graphs. Call an embedding of G fiat if for each circuit C in G there is 
a disk D (a 'panel') disjoint from (the embedding of) G and having bound­
ary equal to C. Clearly, each fiat embedding is linkless, but the reverse does 
not hold. (For instance, if G is just a circuit C, then any embedding of G 
is linkless, but only the unknotted embeddings are flat.) However, as was 
proved by Robertson, Seymour and Thomas [27] if G has a linkless embed­
ding, it also has a flat embedding. So the classes of linklessly embeddable 
graphs and of flatly embeddable graphs are the same. 
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We could also consider graphs that are embeddable in JR3 so that no 
two disjoint circuits have an odd linking number. Again, such a graph has 
a linkless embedding. 

These facts follow from the work of Robertson, Seymour, and Thomas 
[27], as a byproduct of a proof of a deep forbidden minor characterization 
of linklessly embeddable graphs. 

To understand this forbidden minor characterization, it is important to 
note that the class of linklessly embeddable graphs is closed under the Y .6.­
and .6. Y-operations. This implies that also the class of forbidden minors 
for linkless embeddability is closed under applying .6. Y and Y 6.. Since ](6 

is a minimal non-linklessly-embeddable graph, all graphs arising from ](6 

by any series of .6. Y- and Y .6.-operations are forbidden minors. The class 
of these graphs is called the Petersen family, because one of the members 
is the Petersen graph. The Petersen family consists of seven graphs (see 
Figure 2). 

Fig. 2. The Petersen family 

Now Robertson, Seymour, and Thomas [27] proved the following. 

4.4. The Petersen family is the collection of forbidden minors for linldess 
embeddability. 
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Since /L(K6) = 5, it follows from Theorem 2.13 that tL(G) = 5 for each 
graph G in the Petersen family. Thus it follows that if p( G) :::; 4 then 
G is linklessly embeddable. The reverse implication was conjectured by 
Robertson, Seymour, and Thomas [25] and proved in [20]: 

Theorem 4.5. p( G) ~ 4 if and only if G is linklessly ernbeclclable. 

The proof uses a topological theorem of independent interest, which we 
discuss next. 

4.3.1. A Borsuk theorem for antipodal links 

Let P be a convex polytope in ~d. We say that two faces F and F' are 
antipodal if they are contained in a pair of parallel supporting hyperplanes. 
So F and F' are antipodal if and only if F - F' is contained in a face of 
P-P. 

Call a continuous map c/; of a cell complex into ~m generic if the images 
of a k-face and an l-face intersect only if k + l ~ m, and for k + l = rn 
they have a finite number of intersection points, and at these points they 
intersect transversally. (In this section, faces are relatively open.) 

For any convex polytope P in ~d, let 8P denote its boundary. 

The following theorem extends a result of Bajm6czy and Barany [3]. 
(The difference is that their theorem concludes that c/;(F) n rj>(F') is non­
empty. Their proof uses Borsuk's theorem. We give an independent proof.) 

Theorem 4.6. Let P be a full-dimensional convex polytope in Rd and let 
c/; be a generic continuous map from 8P to ]Rd-I. Then there exists a pair 
of antipodal faces F and F' with dim(F) + dim(F') = cl - 1 such tlrn.t 
lc/J(F) n c/;(F')I is oclcl. 

Proof. We prove a more general fact. Call two faces parallel if their projec­
tive hulls have a nonempty intersection that is contained in the hyperplane 
at infinity. So faces F and F' are parallel if and only if their affine hulls are 
disjoint while F - F and F' - F' have a nonzero vector in common. (Note 
that two antipodal faces are parallel if dim(F) + dim(F') 2: d.) 

Now it suffices to show: 

4. 7. Let P be a convex polytope in Rd having no parallel faces and let c/; 
be a generic continuous map from BP to ~d-l. Then 

L l<P(F) n c/;(F')I 
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is odd, where the summation extends over all antipodal pairs { F, F'} of 
faces. 

(It would be enough to sum over all antipodal pairs (F, F') with clim(F) + 
dim(F') = d - 1, since the map is generic.) 

To see that it suffices to prove 4.7, it is enough to apply a random pro­
jective transformation close to the identity. To be more precise, assume that 
we have a polytope P that has parallel faces. For every pair ( E, E') of faces 
whose affine hulls intersect, choose a (finite) point p EE' in the intersection 
of the affine hulls. For every pair (E, E') of faces whose projective hulls in­
tersect, choose an infinite point qEE' in the intersection of their projective 
hulls. Let H be a finite hyperplane having all the points p E£1 on one side, 
and avoiding all the points q FF'. Apply a projective transformation that 
maps H onto the hyperplane at infinity, to get a new polytope P'. It is 
clear that P' has no parallel faces, and it is easy to argue that every pair 
of faces that are antipodal in P' correspond to antipodal faces in P. Hence 
4.7 implies the theorem. 

We now prove 4.7. Let P be a convex polytope in ~n having no parallel 
faces. For any two faces F, F', denote F :::; F' if F c;: F'. Then: 

4.8. 

(i) if A and B a.re antipodal faces, then A - B is a face of P - P, with 
clim(A - B) = dim(.4) + dim(B); 

(ii) if F is a face of P-P, then there exists a unique pair A, B of antipodal 
faces with A - B = F; 

(iii) for any two pairs A, B and A', B' of antipodal faces one l1as: A - B ::::; 
A' - B' if and only if A ::::; A' and B ::::; B'. 

This gives the following observation: 

4.9. For every pair of faces A and B with dim(A) + clim(B) = d - 2, the 
number of antipodal pairs {F, F'} of faces with A < F and B < F' and 
clim(F) + dim(F') = d - 1 is 0 or 2. 

To see 4.9, it is clear that if A and Bare not antipodal, then this number 
is 0. Suppose that they are antipodal. Then the number is 2, since by 4.8, 
it is equal to the number of facets of P - P incident with the 3-face A - B. 

To prove 4.7, we use a "deformation" argument. The statement is true 
for the following mapping <f>: pick a point q very near the center of gravity 
of some facet F (outside P), and project oP from q onto the hyperplane H 
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of F. Then the only nontrivial intersection is that the image of the (unique) 
vertex of P farthest from H is contained in F. 

Now we deform this map to <f>. We may assume that the images of two 
faces E and E' with dim(E) + dim(E') s; d - 3 never meet; but we have 
to watch when </>(A) passes through <f>(B), where A and B are faces with 
dim(A)+dim(B) = 3. But then l</>(F)n<f>(F')I changes exactly when A~ F 
and B ~ F'. By 4.9, this does not change the parity. This proves 4.7, and 
hence the theorem. • 

In what follows, we restrict our attention to dimension 5, which will 
be the case we need. For the general theorem in an arbitrary dimension, 
see [20]. 

For any polytope P, let (P)k denote its k-skeleton. 

Theorem 4.10. Let P be a convex polytope in JR5 and let 4> be an embed­
ding of (P)i into JR3 . Then there exists a pair of antipodal 2-faces F and 
F' of P such that 4>(8F) and <jJ(fJF') have an odd lfoking number. 

Proof. First we extend </> with a last coordinate equal to 0, to obtain an 
embedding 'If; of (P)i into JR4 . Next we extend 'lj; to a generic mapping oP-+ 
JR4 , in such a way that 1/J(x) has last coordinate positive if x E oP \ (P)i. 

By Theorem 4.6, P has two antipodal faces F and F' such that dim(F)+ 
dirn(F') = 4 and 11/J(F) n ?/;(F1)1 is odd. If dim(F) s; 1, then the last 
coordinate of each point in ?j;(F) is 0, while the last coordinate of each 
point in 'lj;(F') is positive (as dim(F') 2: 2). So dim(F) 2: 2 and similarly 
dim(F') 2: 2. Therefore, dim(F) = dim(F') = 2. 

Then the boundaries of F and F' are I-spheres 5 1 and 52 , mapped 
disjointly into JR3 , and the mappings extend to mappings of the 2-balls into 
the "upper" halfspace of JR4 , so that the images of the balls intersect at 
an odd number of points. But this implies that the images of the spheres 
are linked. In fact, if they were not linked, then there exists an extension 
of the map of oF to a continuous mapping 'ljJ' of F into JR4 such that the 
image of every point in the interior of F has last coordinate equal to 0, and 
1/J'(F) intersects 'l/;(&F') transversally in an even number of points. We can 
extend the map of &F' to a continuous mapping 't// of F' into JRl.4 such that 
the image of every point in the interior of F has a negative last coordinate 
0. Then we get two maps of the 2-sphere into JR4 with an odd number 
of transversal intersection points, which is impossible. This contradiction 
completes the proof. • 
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4.3.2. The proof of 4.5 

By the results of Robertson, Seymour, and Thomas [27], it suffices to show 
that if µ( G) 2: 5 then G is not flatly embeddable. 

We take a counterexample G with a minimum number of nodes. Then 
G is 4-connected. For suppose that G has a minimum-size node cut U with 
IUI :'.S 3. Consider any component K of G- U. Then the graph G' obtained 
from G - K by adding a clique on U is a linkless embeddable graph again, 
because, if IUI :'.S 2, G' is a minor of G, and if IUI = 3, G' can be obtained 
from a minor of G by a Y 6.-operation. As G' has fewer nodes than G, we 
have µ(G') ::::; 4. As this is true for each component K, G is a a subgraph 
of a clique sum of graphs G' with µ( G') :'.S 4, along cliques of size at most 
3, and hence by Theorem 2.10, µ(G) :'.S 4. 

Let M be a Colin de Verdiere matrix for G. Call two elements x and x' of 
ker(M) equivalentifsupp+(x) = supp+(x') and supp-(x) = supp-(x'). The 
equivalence classes decompose ker(M) into a centrally symmetric complex 
P of pointed polyhedral cones. Call a cone f of P broken if Glsupp+(x) is 
disconnected for any x E f. 

To study broken cones, we first observe: 

4.11. for eacl1 x E ker(M) with Glsupp+(x) disconnected, Glsupp(x) has 
exactly three components, say J\1 , K 2 , and K3, with 1,-1 U K2 = supp+(x) 
and K 3 = supp-(x), and with N(Ki) = V \ supp(x) for i = 1, 2, 3. 

This follows directly from Theorem 2.17, using the 4-connectivity of G 
and the fact that G has no K 4,4-minor (K4,4 is not linklessly embeddable, 
as it contains one of the graphs in the Petersen family). 

Now 4.11 gives: 

4.12. Every broken cone f is 2-dimensional. 

Indeed, choose x E f, and let K 1, K2, and K3 be as in 4.11. Consider 
any y E f. As supp(y) = supp(x) we have that MK;YK; = 0 for i = 1, 2, 3. 
As MI<;:Cg; = 0 and as XK, is fully positive or fully negative, we know by the 
Perron-Frobenius theorem that YI<; = AiXK; for some Ai > 0 (i = 1, 2, 3). 
Moreover, for the positive eigenvector z of M we have that zT y = zT x = 0. 
Conversely, any vector y E JRV with zT y = 0 and supp(y) = supp(x) and 
for which there exist >.. 1, >-2, ,\3 > 0 with YI<, = AiXK; for i = 1, 2, 3, belongs 
to f, since it belongs to ker(M). This follows from the fact that zT y = 0 
and yT My= 0. So f is 2-dimensional, proving 4.12. 
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Now choose a sufficiently dense set of vectors of unit length from every 
cone in P, in a centrally symmetric fashion, and let P be the convex hull 
of these vectors. Then P is a 5-dimensional centrally symmetric convex 
polyt.ope such that every face of P is contained in a cone of P. \'Ve choose 
the vectors densely enough such that every face of P contains at most one 
edge that is part of a 2-dimensional cone in P. We call an edge of P broken 
if it is contained in a broken cone in P. 

We define an embedding <P of the 1-skeleton (P)i of P in IR3 . We map 
each vertex :i; of P to a point ef>(x) near supp+(x), and we map any unbroken 
edge e = xy of P to a curve connecting <P(x) and ef>(y) near Glsupp+(z), 
where z E e. We do this in such a way that the mapping is one-to-one. 

Consider next a broken edge e of P. Choose x Ee, let K1, I<.2, and !{3 

be as in 4.11, and let T := N(supp(x)). 

4.13. Tllere is a curve C in IR3 \ G connecting K1 and f(2 sucll that there 
is no pair of disjoint linked circuits A in Gl(K1 U K2 U T) u C and B in 
G\(1\.3 U T). 

To see this, let H be the fi<'ttly embedded graph obtained from G by 
contracting I\; to one node v; (i = 1, 2, 3). It suffices to show that there 
is a curve C connecting v1 and ·u2 such that the graph H U C is linklessly 
embedded. (Indeed, having C with H U C linklessly embedded, we can 
clecontract each I\; slightly, and make C connecting two arbitrary points 
in ]{1 and K 2 . Consider a circuit A in Gl(J<1 U K2 U T) UC and a circuit 
Bin G\(K3 U T) disjoint from A. Contracting K1, K2, and I\.:3, we obtain 
disjoint cycles A' and B' in H U C. (A cycle is an edge-disjoint union of 
circuits.) As H U C is linklessly embedded, A' and B' are unlinked. Hence 
A and B are unlinked.) 

Now HIT is a Hamiltonian circuit on T, or part of it. Otherwise, HIT 
would contain, as a minor, a graph on four nodes that is either a J(l,3 or a 
triangle with an isolated node. In both cases, it implies that H has a minor 
in the Petersen family, which is not possible since His linklessly embedded. 

So H is isomorphic to the complete bipartite graph K 3 ,1r1, with some 
edges on T added forming part (or whole) of a Hamiltonian circuit on T. 
As H is flatly embedded, for each edge t1 i2 of HIT there is an open disk 
("panel") with boundary the triangle t1 t2V3, in such a way that the panels 
are pairwise disjoint (by Bohme's lemma [4] ( cf. [28, 27]). Since the union 
of Hl({v3} UT) with the panels is contractible, there is a curve C from v1 
to v2 not intersecting any panel. This curve has the required properties, 
showing 4.13. 
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We now define r/> on e close to a curve in GI (I< i U K 2) U C, again so 
that it is one-to-one. We do this for each broken edge e, after which the 
construction of r/> is finished. 

Then by Corollary 4.10, there are two antipodal 2-faces F and F' 
such that the images of their boundaries are linked. Since P is centrally 
symmetric, there is a facet D of P such that F ~ D and F' ~ -D. Let y be 
a vector in the interior of D. Then a F and a F' have image in SU pp+ (y) and 
supp-(y) respectively. If 8F and 8F' do not contain any broken edge, then 
it would follow that G has two disjoint linked circuits ~ a contradiction. 

So we can assume that BF contains a broken edge e. Then it is the 
only broken edge in BF, since by our construction, 8D contains at most 
one edge of P that is part of a 2-climensional cone f in P. So f is broken. 
Moreover, uF' does not contain any broken edge. For suppose that BF' 
contains broken edge e' of P. Then e' is part of a broken 2-dimensional 
cone f' in P, and hence J' = - f (since Dis incident with at most one edge 
that is part of a 2-dimensional cone of P). However, as f is broken, - f is 
not broken, since Glsupp-(:i:) is connected for any x E .f (by 4.11). 

Choose :r E .f, and consider the partition of V into ](1 , K2, I<3, and T 
as above, with supp+(:r:) = ](1 U K2 and supp-(x) = K3. Then I<1 U K2 ~ 
supp+(y) and 1\3 ~ supp-(y), and hence supp+(y) ~ K1 U K2 U T and 
supp-(y) ~ l\J U T. So the image of BF is close to Gl(K1 U I<2 U T) UC, 
where C is thP curve constructed for the broken edge e of P, and the image 
of BF' is close to Gl(K3 U T). This contradicts 4.13. • 

5. LARGE VALUES 

We finally study graphs whose Colin de Verdiere parameter is close to its 
maximum possible value n - 1 (where n is the number of nodes). It will 
be convenient to phrase our results in terms of the complementary graph 
H = G and the "complementary parameter" v(H) = n - µ(G) -1 (we may 
assume that that G =f- K2). We start with showing that we do not have to 
worry about the Strong Arnold Property. Note that v(H) is monotone with 
repect to edge-deletion, but not minor-monotone in general. 
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5.1. The Strong Arnold Property and rigidity 

In this section we show that for small dimensions, scalar product labellings 
can violate the Strong Arnold Property only in a trivial way. This fact plays 
an important role later on. 

Lemma 5.1. Every scalar product labelling with different vectors in Rd, 
d :S 3, of a graph is stress-free. 

We give the proof in the case when d = 3; the cases d = 1 and 2 are 
much easier. We use a result from the theory of rigidity of bar-and-joint 
structures. Recall the classical theorem of Cauchy: 

5.2. No nontriviaJ stress can act along the edges of a convex 3-dimensional 
polytope. 

We need a generalization of Cauchy's theorem, due to Whiteley [32]. Let 
P be a convex polyhedron in R3 , and let H be a (planar) graph embedded 
in the surface of P, with straight edges. A stress on H is called facial if 
there is a facet of P containing all edges with nonzero stress. 

5.3. Every stress on H is a sum of facial stresses. 

Now we can prove Lemma 5.1. 

Proof. Let (n.i Ii E V) be a scalar product labelling with different vectors 
in R3 , and suppose that (U2') is violated. Let X be a matrix violating (U2'): 

"'""""X- ·u· - 0 ~ t,J J - ' 
j 

I:xi,j = o 
j 

for all i, 

and Xi,j = 0 unless ij E F. Then X is a nontrivial stress on the edges of H. 
If i is a node whose neighbors are affi.nely independent, then trivially the 

edges of H incident with this node will have Xi,j = 0, and so we can delete 
this node and proceed by induction. Thus by Lemma 3.5, we can delete 
nodes i that have llui II < 1 and also all nodes i with llui II = 1 unless Qi has 
at least four vertices. Clearly ui E Qi in the latter case. Moreover, a given 
facet contains at most one such additional point. Thus the graph, together 
with the skeleton of P, satisfies the conditions of Whiteley's theorem. It 
follows that X is a sum of facial stresses. Let X' be one of the facial stresses 
occuring in this sum, supported by a facet Q. Clearly Q must be one of the 
Qi, and the graph in this facet is a wheel. It is easy to see that a wheel in 
the plane has only one stress up to scaling, and in this all the "spokes" have 
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the same sign. On the other hand, the other facial stresses do not involve 
the edges incident with Ui, and hence we must have Lj XLj = 0. This is a 
contradiction. • 

5.2. Graphs with µ ~ n - 3 

In this section we describe graphs µ ~ n - 3 or, equivalently, with v :::; 2. 
We know already that graphs with µ = n - 1 are exactly the cliques. 

For v > 0, we may assume without loss of generality that H does not 
have isolated nodes (which do not change v by Theorem 2.7. Using Lemma 
3.5 it is not difficult to derive the following results: 

Theorem 5.4. Graphs with v = 1 and without isolated nodes are exactly 
tlwse graphs with at most two components, each of which is either a star 
or a triangle. 

Fig. 3. A typical graph with v = 2 

One can also formulate this result as follows: v(H) S 1 if and only if 
H does not contain 3 disjoint edges or a 3-path. 
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Theorem 5.5. A graph H has v :S 2 if and only if it is a subgraph of a 
graph obtained from a k-gon P (k ;:::: 3) as follows. For each node i of P, 
create a set of new independent nodes and connect them to i. Replace each 
originaJ eclge of P with either 

(a) ar1 edge and a set of independent nodes connected to its endpoints; or 

(b) a pair of adjacent nodes connected to its endpoints; or 

(c) two triangles, connected to its one endpoint each. If k = 3 then at least 
two steps (b) or at least one step ( c) must be used; and if k = 4 then 
step (b) or ( c) must be used at least once (Figure 3). 

To obtain a scalar product labelling of the graph in Figure 3, one 
should label the fat nodes with vectors of length larger than 1, the small 
nonacljacent twin nodes with the same vector of length less than 1, and the 
small adjacent twin nodes with the same unit vector. 

Corollary 5.6. 

(a) If v(H) = 2 then His planar; 

(b) If in addition H has no twins then H is outerplanar. 

An alternative way of stating Theorem 5.5 is the following: v(H) ::; 2 if and 
only if H does not contain as a. subgraph the disjoint union of a cycle of 
length at least 5 and an edge, nor any of the otl1er four graphs in Figure 4. 

0 
Fig. 4. Minimal graphs with v = 3 
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5.3. Planar graphs and µ 2 n - 4 

In this section we discuss the connections between planar graphs and graphs 
with v = 3. Unlike for µ, the correspondence between these two properties 
is not exact, but we will see that they are quite close. 

First, consider a graph H with v(H) = 3. The next theorem and its 
corollary show that H must be planar, except possibly for repeated nodes. 

Theorem 5. 7. If H is a graph witlwut twin nodes and v(H) = 3, then H 
is planar. 

Proof. The theorem is easily derived from Lemma 3.5. The case when 
G = H is not connected is trivial by Lemma 2.5, so suppose that G is 
connected. Consider a scalar product labelling of H in ffi.3 so that 0 is in 
the convex hull P. We may also assume that the labelling is generic. The 
vectors 1L; will be all distinct, since H is twin-free. We claim that projecting 
the graph on the surface aP of P from the origin gives an embedding in aP. 
Supplement 3. 7 implies that no two nodes are projected on the same point 
and that no node is projected on an edge. If the images of two edges ik and 
jm of H cross, then we would have that an interior point v of the segment 
11.i1Lk is contained in the convex hull of {O,uj,'LLm}, or vice versa. Without 
loss of generality, we may assume that l!uk II > 1. But then u[ uk > 1, 
u[v::; 1, u[ui = 1, which is a contradiction. • 

Allowing twins in the graph would not lead to any essentially new case, 
but rather to a discussion of the multiplicities using the Strong Arnold 
Property. We state the result without proof. 

Theorem 5.8. If v(H) = 3, then H can be obtained from a planar graph by 
the following procedure: choose a set A of independent nodes of degrees two 
and three; replace each node in A of degree 3 by either several independent 
nodes, or by a pa.fr of adjacent nodes; replace each node in A of degree 2 by 
a triangle. 

Unfortunately, not all planar graphs have v = 3. For example, the 
complement P6 of a path on 6 nodes is planar, but has v(P6) = 6- µ(PG) -
1 = 4. We can add two edges to this graph, to get the octahedron, which is 
still planar and thus still a counterexample. 

The following condition gives an infinite family of planar graphs with 
v > 3. A cycle C in a graph H will be called strongly separating if H - V( C') 
has at least two components with more than one node, each being connected 
by edges to all nodes of C. 
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Lemma 5.9. A twin-free graph H with z;(H) = 3 contains 110 strongly 

separating 3- or 4-cycle. 

Proof. Suppose that C is a strongly separating 3- or 4-cycle in H. Consider 

a gpneric scalar product labelling (u; E JF.:3 Ii E V) of H. It follows easily 
that the nodes of C give verticPs of P. We know that the projection from the 

origin onto the surface oP of P defines an embedding of H. The image of C 
separates oP into two discs. The two non-singleton components of G- 1/ ( C) 

that are attached to all nodes of C must be mapped onto different discs . 

.tvloreowr, each of these components contains a pair of adjacent nodes, and 

one of these nodes is labeled by a vector longer than 1. Let u 1 and u2 

be two vectors longer than 1, assigned to nodes in different components of 

H - F(C). 

\Ve consider the case when C is a triangle vrv2v3; the other case can be 

handled in a similar, although more complicated, fashion. It is clear that 

the origin cannot belong to this triangle, since v?'v1 > 0 for all i and j. One 
of u 1 and u2 , say u.1, intersects the triangle at a point v. \Ve may assume 

that II u1 11 2 > l. Then v1 gives an inner product of 1 with every point on the 
line u2u3, and hence it gives an inner product at least 1 with every point of 

the triangle. In particular, 1 :S ufu < vl t11 a contradiction. • 

However, \YP can shmv for rather large classes of planar graphs tlrn.t they 

have u = 3. In fact, we believP that a complete characterization should lw 
possible, generalizing Theorem 5.16 below in an appropriate manner. First 
we give a few classes where z; ::::; 3 is relatively easy to prove. 

Define thP 1-s·ubdivision of a graph H as the graph H' obtained by 
subdividing each edge by one new node. 

Theorem 5.10. H is planar if and only if its 1-subclivision H' satisfies 
v(H') :::; 3. 

Proof. The "if' part is trivial by Theorem 5.7, since H1 has 110 twin nodes 

and since if H' is planar then so is H. To prove the "only if" part, we 

may assume that H is maximal planar. Consider the cage representation 

of H, and use the points where the edges of H touch the unit sphere to 

represent the nodes of V(H') \ V(H). It is clear that uTuJ = 1 for any edge 

ij E E(H'), and it is easy to see that ·u?'ui < 1 if i and j are nonadjacent 

nodes of H'. Thus (Ul) is satisfied. By Lemma 5.1, (U2) is also valid. • 

A variety of planar graphs with v = 3 can be obt~ined from the following 
assertion, trivially implied by Lemmas 3.8 and 5.1. 



The Colin de Vercliere Graph Parameter 81 

Theorem 5.11. Let P be a convex polytope in ffi.3 sucl1 that u.Tv :S 1 for 
every edge u u of P. Let H be Uie graph 011 V ( P) formed by those edges 
that give equality here. Then 1J(H) :S 3. 

Corollary 5.12. Let H be a 3-connected planar graph with an edge-tran­

sitive automorpl1ism group, different from I<4 and I<2,2,2. Then 1J(H) = 3. 

Proof. By a theorem of Mani [21], H can be represented as the skeleton of 
a co11vex polytope P in ffi.:~ so that the group of congruences preserving P 
acts edge-transitively. vVe can translate the origin to the cent.er of gravity 
of P, and scale so that uTv = 1 if uv is an edge. Then Theorem 5.11 implies 
the assertion. • 

Theorem 5.13. If His ;;111 outerpfanar graph, then v(H) :S 3. 

Proof. We may assume that His maximal outerplanar, i.e., a triangulation 
of a cycle. First, we show that H can be represented in the plane with 
property :3.13, for some ci > 1. '>/le use induction on the number of nodes. 

The construction is trivial if H is a triangle. Suppose that the graph 
obtained from H by deleting a node i of degree 1 is already represented. 
Let _j and k be the neighbors of i. We may assume that 11') and llk have the 
same length; this can be achieved by a projective transformation preserving 
the unit circle. But then moving a; along the bisector of the a11gle between 

llJ a11cl u1.ci a position with a(u;, ILj) = a will be found by continuity. l3y 

symmetry, this abo satisfies o(u;, uk) = a. It is easy to check that II Ui II > 1 
and the distances between ni and llm ( rn f. 'i, j, k) are larger than 1. 

Now we append a third coordinate Zi = Ja(llu;ll 2 -1) to each u;. An 
easy computation shows that we get a scalar product labelling. By Lemma 
5.1, this labelling is nonclegenerate, which proves the theorem. • 

The following two theorems can be proved by a similar construction; 

we omit details. 

Theorem 5.14. If His a planar graph, then u(H) :S 4. 

Theorem 5.15. Eveiy graph H lrns a subdivision H' with u(H') :S 4. 

Now we come to the main theorem in this section, giving a full descrip­

tion of v for maximal planar graphs. 

Theorem 5.16. If His a maximal planar graph, then 1J(H) :::; 3 if and only 
if H does not contain any strongly separating 3- or 4-cycle, and is different 

from the graphs in Figure 5. 
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Fig. 5. Exceptional maximal planar graphs with /l = n - 5. 

Proof. To check that the graphs in Figure 5 have v = 4, we can determine 
their complements, and see that they are disjoint paths (for the 6-node 
graphs) and outerplanar (for the seven-node graphs). Together with Lemma 
5.9, this implies the "only if" part. For the converse, we only sketch the 
proof; the details are lengthy. 

The idea is to start with a cage representation of H; in other words, 
a labelling in Jm.3 with property 3.13, with a = l. Consider the set S of 
all real numbers 0 :S a :S 1 for which H has a stress-free labelling with 
property 3.13. 

First we show that this set is open in [O, l]. In fact, let 0 < a :S 1, and 
assume that a E S. Then H has a labelling by vectors ?li E JR.3 satisfying 
3.13. By Lemma 3.14, His a subgraph of the I-skeleton of the convex hull of 
the ui, and thus by Cauchy's theorem, this labelling is stress-free. Hence by 
Lemma 3.16 the surfaces in IR3n corresponding to the equality constraints in 
3.13 intersect transversally at ( tq, ... , un). Now by Lemma 2.1, the surfaces 
intersect transversally at a "nearby" point for every parameter value a' 
sufficiently close to a, which means that a' E S. 

Thus it suffices to show that if S contains the interval (a, 1 J then it 
also contains a. The natural idea is to consider labellings ('ult) Ji E V), 
t = 1, 2, ... , satisfying 3.13 for a sequence of parameter values at > a, 
at _, a, take a convergent subsequence, and then take the limit. One 
problem is that some labels u~t) may tend to infinity, so a convergent 
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subsequence. For a > 0, it also causes a problem if some u~t) tends to 
a point on the unit sphere, since then the limit does not satisfy 3.13. 

The longest part of the proof is to show that if H has no strongly 
separating 3- or 4-cycles, and is different from the graphs in Figure 5, then 
such bad occurences can be corrected by applying appropriate unit-sphere­
preserving projective transformations. This needs a careful analysis of cases, 
and is omitted from this survey. For details, we refer to [16]. • 
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