A FREE BOUNDARY PROBLEM INVOLVING A CUSP Part II: LOCAL ANALYSIS

H.W. Alt ${ }^{1}$ and C.J. van Dumn ${ }^{2}$

(Communicated by Editors; Received February 5, 1997)

Abstract

We consider a stationary free boundary problem describing the stationary How of fresh and salt water in a porous medium. The salt water is supposed to be stagnant, while the fresh water on top of it is drawn into wells. In a previous work it has been shown, that for pumping rates $Q<Q_{c r}$ a solution with smooth interface exists. In this part we study the case $Q=Q_{c r}$ in two dimensions. We show that the interface has isolated singularities. At each singularity the free boundary develops a cusp or becomes vertical. By means of local analysis techniques we obtain the asymptotic behaviour of the free boundary at these singularities.

AMS Classification: 35 J 20, 35 R 35

1. Introduction

In [4] we formulated a free boundary problem which models the stationary flow of fresh and salt groundwater, say, in a reservoir. The fluids are assumed to be separated by an abrupt transition, the interface or free boundary, with salt water below fresh water. The saltwater is supposed to be stagnant, while the fresh water is drawn into wells which are present in the reservoir.

The variables involved in this problem are a reduced potential w and the location u of the interface. Further it contains a parameter $Q>0$ which is proportional to the pumping rates of the wells. We demonstrated in [4] that a maximal (or critical) value $Q_{c r}$ of Q exists such that for $Q<Q_{c r}$ the free boundary is smooth, i.e. it can be represented by an analytic function u. The proof of this result is based on the local reduction of the problem to the one - phase dam problem. For this it is crucial to have $w>0$ in an upper neighborhood
${ }^{1}$ Institut für Angewandte Mathematik der Universität Bonn, WegelerstraBe 6, D-53115 Bonn. Supported by SFB 256.
${ }^{2}$ Centrum voor Wiskunde en Informatica (CWI).
Kruislaan 413. NL - 1098SJ Amsterdam .
of the free boundary. For $Q=Q_{c r}$, without further investigation, the free boundary is described by a lower semi-continuous function \underline{u} and an upper semi-continuous function $\overline{\bar{u}}$, see Theorem 1.1 below. Further we proved that for $Q=Q_{c r}$ points in the closure of the free boundary exists for which the potential w has points of negativity in any neighborhood.
The aim of this paper is to make precise how the negativity of w leads to loss of smoothness of the free boundary. In particular we show that singularities in the form of cusps occur in the free boundary and we specify the local cusp behaviour of w and u. We prove our results for flow domains of dimension 2 .
First we introduce some notation. Let

$$
V=] a_{1}, a_{2}[\times] 0, H\left[, \quad-\infty<a_{1}<a_{1}<\infty\right.
$$

denote the two dimensional reservoir, where for points $x \in V$ we often write $x=(y, z)$ with $y \in] a_{1}, a_{2}$ [representing the horizontal coordinate and $\left.z \in\right] 0, H[$ the vertical coordinate. The N wells are located at the interior points

$$
W=\left\{x_{W(l)}: l=1, \ldots, N\right\}
$$

In order to compensate for the singularities of w at the wells, we introduced in [4] a truncated fundamental solution h. Along the vertical boundaries of the reservoir, w satisfies the Dirichlet conditions

$$
w\left(a_{1}, z\right)=w\left(a_{2}, z\right)=\left(z-u_{0}\right)_{+}
$$

where u_{0}, with $0<u_{0}<H$, is the salt water level outside V. At the top of the reservoir w satisfies the Neumann condition

$$
\frac{\partial w}{\partial \nu}=1
$$

In [4] we proved, in a more general ($N>2$ dimensional) context, the following global existence result at $Q=Q_{c r}$.

Theorem 1.1 There exist functions $\bar{u}, \overline{\bar{u}}:\left[a_{1}, a_{2}\right] \rightarrow\left[u_{0}, H\right]$, satisfying

$$
\begin{aligned}
& u_{0} \leq \bar{u} \leq \overline{\bar{u}} \text { in }\left[a_{1}, a_{2}\right] ; \\
& \bar{u} \text { l.s.c. }, \overline{\bar{u}} \text { u.s.c. in }\left[a_{1}, a_{2}\right] ; \\
& \bar{u}=\overline{\bar{u}} \text { a.e. in }\left[a_{1}, a_{2}\right],
\end{aligned}
$$

and there exists a pair (w, γ), with $w+h \in H^{1,2}(V)$ and $\gamma \in L^{\infty}(V)$ satisfying
(*)

$$
\int_{V} \nabla \zeta \cdot\left(\nabla w+\gamma e_{z}\right)=0
$$

for all $\zeta \in H^{1,2}(V)$ with $\operatorname{supp}(\zeta) \subset V \backslash W$, such that

$$
\begin{aligned}
& \gamma=\chi_{\{z<\bar{u}(y)\}} \text { in } V \\
& w=0 \text { in }\{z<\overline{\bar{u}}(y)\}, \\
& w<0 \text { in a neighbourhood of } W \\
& W \text { lies above } \operatorname{graph}(\overline{\bar{u}}) .
\end{aligned}
$$

From this it follows that

$$
\begin{aligned}
& \Delta w \geq 0 \text { in } V \backslash W \\
& \Delta w=0 \text { in }\{z>\overline{\bar{u}}(y)\} \backslash W
\end{aligned}
$$

Throughout this work we assume that the free boundary does not touch the top of the reservoir, i.e., $\overline{\bar{u}}<H$ on $\left[a_{1}, a_{2}\right]$. For a given configuration of wells, all withdrawing fluid from the reservoir, this assumption seems to be reasonable.
In Section 2 we first prove $\bar{u}=\overline{\bar{u}}$ in $\left[a_{1}, a_{2}\right]$ and we denote by $\operatorname{graph}(u)$,

$$
u:=\bar{u}=\overline{\bar{u}} \in C\left(\left[a_{1}, a_{2}\right]\right)
$$

the free boundary of the problem, i.e. w is harmonic above and zero below.
In the remaining sections we concentrate on the behaviour of w and u near singular free boundary points $\left(y^{*}, u\left(y^{*}\right)\right) \in \operatorname{int}(V)$ which satisfy Property 4.17 of [4]. This property says that there exists at least one sequence $\left(y_{n}, z_{n}\right) \rightarrow\left(y^{*}, u\left(y^{*}\right)\right)$ such that $w\left(y_{n}, z_{n}\right)<0$. This can also be characterized by $\left(y^{*}, u\left(y^{*}\right)\right) \in\{w<0\}$.
Using scaling arguments (blow up techniques) we first show in Section 3 that at a singular free boundary point (which we translate to the origin for convenience), the free boundary either forms a cusp $(k=1)$ or becomes vertical $(k=2)$, see [1, Figure2] or Figure 11 of this paper.

In Section 4 and 5 we prove in a number of steps, using blow up arguments, that the scaled function

$$
w_{r}(x):=w(r x) / r^{\beta}, \quad \gamma_{r}(x)=\gamma(r x)
$$

with

$$
\beta=\frac{k m}{2}
$$

converge for $r \rightarrow 0$ to

$$
w_{*}(x)=c_{*} \operatorname{Im}\left(\tilde{x}^{m}\right), \quad \tilde{x}=i^{k}(-i x)^{k / 2}
$$

with $c_{*}>0$. Moreover, m is odd and $m \geq 3$. It is not clear whether as exceptional case (and probably unstable case) situations with $m \geq 5$ can occur.

It is proven in Section 5 that free boundary points $x=(y, z)$ satisfy $|y| \leq C|z|^{\beta}$. Further, in Section 6, we show that the branches of the free boundary near the singularity have the form

$$
\{ \pm z<0: y=f(z)\}
$$

and that

$$
\lim _{z \rightarrow 0} \frac{f(z)}{z^{\beta}}= \pm c_{*}
$$

This clarifies the asymptotic behaviour of the free boundary near the singularity. For the standard cusp case ($k=1, m=3$) such an expansion has been expected because special solutions with such a behaviour have been found, see references given in [4]. For the part of the free boundary below the singularty we prove that $f^{\prime}(z) \rightarrow 0$ as $z \nearrow 0$, which shows that indeed the free boundary becomes vertical. In the concluding section we shall pose
some conjectures and opern questions related to the behaviour of the free boundary. In particular we discuss the occurrence of vertical cusps, the location of cusps in the reservoir and the assumption made that the free boundary does not touch the top of the reservoir.

2. Preliminary remarks and tools

As a first observation we note that the weak differential equation (*) together with the boundary conditions implies that w is Hölder continuous in $\bar{V} \backslash W$. Moreover, w is Lipschitz continuous locally in $V \backslash W$. This can be seen as in Alt \& van Duijn [3, Theorem 3.7]. Indeed (*) implies that

$$
\left|f_{a B_{r}(x)}(w-w(x))\right| \leq C \cdot r
$$

for all $\overline{B_{r}(x)} \subset V \backslash W$, and w is harmonic in the set $\{w \neq 0\} \backslash W$.
Next we consider a comparison lemma, that we often shall use to obtain non-oscillation results.

2.1 Comparison Lemma. Consider a rectangle

$$
R=] a, b[\times] 0, c[\subset V \backslash W
$$

For $\hat{x} \in R$ and $s_{0} \in \mathbb{R}$, consider the unit vector

$$
\nu_{0}:=\frac{1}{\sqrt{s_{0}^{2}+1}}\left(-s_{0}, 1\right)
$$

and the function $v: \bar{R} \rightarrow[0, \infty[$ given by

$$
v(x)= \begin{cases}\frac{1}{\sqrt{s_{0}^{2}+1}} \nu_{0} \cdot(x-\hat{x}) & \text { for } \nu_{0} \cdot(x-\hat{x})>0 \\ 0 & \text { otherwise }\end{cases}
$$

If \hat{x} and s_{0} are chosen such that $w \leq v$ on ∂R, then

$$
\begin{aligned}
& \text { (i) } w \leq v \text { in } \bar{R}, \\
& \text { (ii) } w=0, \gamma=1 \text { in }\{v=0\} .
\end{aligned}
$$

Remark. The function v is a solution of the dam problem.
Proof. We use the Baiocchi transformation. Let $\zeta \in H^{1,2}(R)$ with $\zeta=0$ near the vertical walls of R. Then set

$$
\bar{\zeta}(y, z):=\int_{z}^{c} \zeta(y, s) d s
$$

Because $w=0$ and $\gamma=1$ in $\left\{0 \leq z \leq u_{0}\right\}$, the function $\bar{\zeta}$ is an admissible test function in the differential equation
for (w, γ). It leads to

$$
\int_{R} \nabla \bar{\zeta} \cdot\left(\nabla w-(1-\gamma) e_{z}\right)=0
$$

In this equation we substitute

$$
\bar{w}(y, z):=\int_{0}^{z} w(y, s) d s
$$

giving

$$
\int_{R}(\nabla \zeta \cdot \nabla \bar{w}+(1-\gamma) \zeta)-\int_{\{z=c\}} \zeta(\cdot, c) w(\cdot, c)=0
$$

As a test function we take $\zeta=(\bar{w}-\bar{v})_{+}$, where

$$
\bar{v}(x, z)=\int_{0}^{z} v(x, s) d s
$$

This gives

$$
\begin{aligned}
& \int_{R}\left|\nabla(\bar{w}-\bar{v})_{+}\right|^{2}+\int_{\{v=0\}}(1-\gamma)(\bar{w}-\bar{v})_{+} \\
& -\int_{\{v>0\}} \gamma(\bar{w}-\bar{v})_{+}+\int_{\{z=c\}}(\bar{w}-\bar{v})_{+}(\cdot, c)(v(\cdot, c)-w(\cdot, c))=0
\end{aligned}
$$

The third term only has a contribution when $\bar{w}>\bar{v}$. Suppose there exists (y_{0}, z_{0}) $\in R$ such that $\bar{w}\left(y_{0}, z_{0}\right)>\bar{v}\left(y_{0}, z_{0}\right) \geq 0$. Then there must also exist $z_{1}<z_{0}$ where $w\left(y_{0}, z_{1}\right)>$ 0 and hence $w>0$ in $B_{\varepsilon}\left(\left(y_{0}, z_{1}\right)\right)$ for some $\varepsilon>0$. This implies that $\gamma=0$ in and above $B_{\varepsilon}\left(\left(y_{0}, z_{1}\right)\right)$. In particular $\gamma\left(y_{0}, z_{0}\right)=0$, which shows that the third term gives no contribution. Since the second and fourth term are nonnegative, the first term implies $\bar{w} \leq \bar{v}$ in \bar{R} and in particular $\bar{w} \leq 0$ in $\{v=0\}$. The equation $\Delta \bar{w}=1-\gamma$ shows that \bar{w} is subharmonic in the set $\{v=0\}$. Then either $\bar{w}<0$ or $\bar{w} \equiv 0$ in $\{v=0\}$. The first possibility contradicts $w=\bar{w}=0$ in $\left\{0<z<u_{0}\right\}$. Hence $\bar{w}=0, w=0$ and $\gamma=1$ in $\{v=0\}$.
We apply the Comparison Lemma to prove that the free boundary is continuous.
2.2 Theorem. $\bar{u}=\overline{\bar{u}} \in C\left(\left[a_{1}, a_{2}\right]\right)$.

Proof. The continuity and the boundary conditions for w and $\bar{u} \geq u_{0}$ imply that $\bar{u}=\overline{\bar{u}}$ at the boundary points a_{1} and a_{2}. To show equality for an arbitrary point yo $\left.\in\right] a_{1}, a_{2}[$, consider sequences $y_{n} \rightarrow y_{0}$ and $Q_{n} \nearrow Q_{c r}$ so that

$$
u_{Q_{n}}\left(y_{n}\right) \rightarrow \overline{\bar{u}}\left(y_{0}\right)
$$

where $u_{Q_{n}}$ denotes the free boundary of the solution obtained in [4] with pumping rate $Q=Q_{n}$. We distinguish two possibilities.
(i) A sequence can be chosen which oscillates around y_{0} : i.e. y_{0} is between y_{n} and y_{n+1} for all $n \in \mathbb{N}$. We argue as follows. Let $\varepsilon>0$. Then there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$

$$
u_{Q_{n}}\left(y_{n}\right)>\overline{\bar{u}}\left(y_{0}\right)-\frac{\varepsilon}{2} .
$$

For $n \geq n_{0}$ we define

$$
z_{n}:=\min \left\{u_{Q_{n}}\left(y_{n}\right), u_{Q_{n+1}}\left(y_{n+1}\right)\right\}
$$

and we consider

$$
R_{n}:=\left\{(y, z): 0<z<z_{n}, y \text { between } y_{n} \text { and } y_{n+1}\right\} .
$$

Then we have for $n \geq n_{0}, n$ sufficiently large, $w_{Q_{n+1}}=0$ along the vertical sides of R_{n} and $w_{Q_{n+1}}<\varepsilon / 2$ along the top of R_{n} (using the monotonicity of w_{Q} in Q and using the Hölder continuity of w_{Q} uniformly with respect to $Q \leq Q_{c r}$, see [4; Proposition 4.7]. Using the function $v(y, z)=\left(z-z_{n}+\frac{\varepsilon}{2}\right)_{+}$and $s_{0}=0$ in the Comparison Lemma we conclude that $w_{Q_{n+1}}=0$ and $\gamma_{Q_{n+1}}=1$ in the set

$$
\left\{(y, z): 0<z<z_{n}-\varepsilon / 2 \text { and } y \text { between } y_{n} \text { and } y_{n+1}\right\},
$$

implying in particular

$$
u_{Q_{n+1}}\left(y_{0}\right) \geq z_{n}-\frac{\varepsilon}{2}>\overline{\bar{u}}\left(y_{0}\right)-\varepsilon .
$$

Thus (by definition of \bar{u})

$$
\bar{u}\left(y_{0}\right)>\overline{\bar{u}}\left(y_{0}\right)-\varepsilon,
$$

giving the desired equality.
(ii) No sequence can be chosen with oscillations around y_{0}, i.e. all the sequences $\left(y_{n}\right)_{n}$ come from the same side, say from the right. Then applying the Comparison Lemma similar as in case (i) we are lead to a situation in which we have, see also Figure 1,

$$
\bar{u}\left(y_{0}\right) \leq \underset{y \uparrow y_{0}}{\lim \sup } \overline{\bar{u}}(y)<\overline{\bar{u}}\left(y_{0}\right) \quad \text { and } \quad \liminf _{y \nmid y_{0}} \bar{u}(y)=\overline{\bar{u}}\left(y_{0}\right)
$$

Refering to Figure 1 we have

$$
w=0, \gamma=1 \text { in } B \cap\left\{y>y_{0}\right\}
$$

and

$$
\Delta w=0, \gamma=0 \text { in } B \cap\left\{y<y_{0}\right\} .
$$

Moreover, by a global argument, $w \not \equiv 0$ in $B \cap\left\{y<y_{0}\right\}$. Since $-\Delta w=\partial_{z} \gamma=0$ in B, we obtain a contradiction with $w=0$ in $B \cap\left\{y>y_{0}\right\}$.

Fig. 1. Possible configuration near discontinuity.
Let $\left(y^{*}, u\left(y^{*}\right)\right) \in \operatorname{int}(V)$ be a free boundary point satisfying Property 4.17 of [4], i.e. a cusp. We translate this point to the origin O, by shifting the coordinates so that $y^{*}=0$ and $u\left(y^{*}\right)=0$. We first define
2.3 Definition. Let $B \subset \mathbb{R}^{2}$ denote an open ball centered at O. We call $\tilde{w} \in H^{1,2}(B) \cap$ $C^{0}(B)$ a phase of w at O if $\tilde{w}(w-\tilde{w})=0$ in B and if $\{\tilde{w} \neq 0\} \cap B$ is non-empty and connected with O as a boundary point. We have $\nabla w \cdot \nabla \tilde{w}=|\nabla \tilde{w}|^{2}$ and \tilde{w} has a sign. In section 7 we prove that w has only finitely many ($m \in \mathbb{N}$) phases at O. Moreover, we prove that in some smaller concentric ball $\tilde{B} \subset B$ we have a decomposition $w=\sum_{i=1}^{m} w_{i}$, where w_{i} are the phases of w at O.

Since $\gamma=1$ and $w=0$ in a neighborhood of the vertical line below the origin O, any test function from identity $(*)$ can be changed there arbitrarily. We have
2.4 Proposition (Separation Lemma) Below O test functions from expression (*) can have different values from both sides, i.e.

$$
\int_{B_{r}} \nabla \zeta \cdot\left(\nabla w+\gamma e_{z}\right)=0
$$

for all $\zeta \in H^{1,2}\left(B_{r} \backslash\{(0, z):-r<z \leq 0\}\right)$ having support in B_{r}, where B_{r} denotes the open ball in \mathbb{R}^{2} with center O and radius $r>0$.

Proof. For ζ as above and $\varepsilon>0$ small, consider the expression

$$
\frac{\zeta(y, z)+\zeta(-y, z)}{2}+\frac{\zeta(y, z+\varepsilon)-\zeta(-y, z+\varepsilon)}{2} .
$$

The first term belongs to $H_{0}^{1,2}\left(B_{r}\right)$. The second term vanishes on $\{(0, z): z>-\varepsilon\}$ and near ∂B_{r}. Because $\gamma=1, w=0$ in a neighborhood of the segment $\{(0, z):-r<z<-\varepsilon\}$ also the second term is an admissible test function for (*). Hence we may substitute this expression into the equation. Letting $\varepsilon \rightarrow 0$ gives the result.

Next we show that for any phase \tilde{w} of w, the values of $|\nabla \tilde{w}|$ and $\frac{|\bar{w}|}{r}$ are balanced near O in the following sense:
2.5 Proposition. There exists a constant $C>0$ such that for every $r>0$

$$
\int_{B_{\frac{r}{2}}}|\nabla \tilde{w}|^{2} \leq C \frac{1}{r^{2}} \int_{B_{r} \backslash B_{\frac{r}{2}}}|\tilde{w}|^{2} \leq C \sup _{B_{r} \backslash B_{\frac{F}{2}}}|\tilde{w}|^{2}
$$

and

$$
\sup _{B_{\frac{r}{2}}}|\tilde{w}|^{2} \leq C\left(\int_{\partial B_{\frac{s_{r}}{4}}} \tilde{w}\right)^{2} \leq C \int_{B_{r}}|\nabla \tilde{w}|^{2}
$$

Proof. By linear scaling we can take $r=1$. Set $\zeta=\tilde{w} \eta^{2}$ with $\eta \in C_{0}^{\infty}\left(B_{1}\right)$ in expression (*). Then

$$
\int_{B_{1}} \nabla\left(\tilde{w} \eta^{2}\right) \cdot \nabla w+\int_{B_{1}} \nabla\left(\tilde{w} \eta^{2}\right) \cdot \gamma e_{z}=0
$$

Since $\gamma=0$ in $\{\tilde{w} \neq 0\}$ the second term vanishes. The first term can be written as

$$
0=\int_{B_{1}} \nabla\left(\tilde{w} \eta^{2}\right) \cdot \nabla \tilde{w}=\int_{B_{1}} \eta^{2}|\nabla \tilde{w}|^{2}+2 \int_{B_{1}} \tilde{w} \nabla \eta \cdot \eta \nabla \tilde{w}
$$

Hence

$$
\int_{B_{1}} \eta^{2}|\nabla \tilde{w}|^{2} \leq 4 \int_{B_{1}} \tilde{w}^{2}|\nabla \eta|^{2}
$$

When choosing η as cut-off function from $B_{1 / 2}$ to B_{1} we obtain the first pair of estimates. For the second pair we use the fact that $|\tilde{w}|$ is subharmonic in B_{1}. Then by Poisson's integral for any $\frac{3}{4} \leq r \leq 1$

$$
\begin{aligned}
\sup _{B_{1 / 2}}|\tilde{w}| & \leq C \int_{0}^{2 \pi}\left|\tilde{w}\left(r e^{i \theta}\right)\right| d \theta \\
& \leq C \int_{0}^{2 \pi}\left|\partial_{\theta} \tilde{w}\left(r e^{i \theta}\right)\right| d \theta \quad\left(\quad \text { using } \tilde{w}\left(r e^{-i \pi / 2}\right)=0\right) \\
& \leq C \int_{0}^{2 \pi}\left|\nabla \tilde{w}\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

Squaring and integrating over r gives the result.
For several purposes we need that w cannot have long zero curves above and near the free boundary. This is the content of the following two propositions.
2.6 Proposition. Let (w, γ) be any (sub)solution of the local differential equation (*). Suppose there exists a rectangle $R \subset V$ in which (w, γ) satisfies the properties as listed in Figure 2. Then for some $c>0$, depending only on the geometry of the rectangle,

$$
\int_{R}|w|^{2} \geq c
$$

Proof. In the weak inequality for a subsolution we choose $\zeta \in C_{0}^{\infty}(R), \zeta \geq 0$, such that

$$
\begin{array}{ccccc}
\partial_{z} \zeta \leq 0 & \text { in } & \left\{z_{2}-\frac{h}{4}<z<z_{2}\right\} \cap R & \text { where } & \gamma=0 \\
\partial_{z} \zeta \geq 0 & \text { in } & \left\{z_{1}<z<z_{2}-\frac{h}{4}\right\} \cap R & \text { where } & 0 \leq \gamma \leq 1 \\
\partial_{z} \zeta \geq c>0 & \text { in } & D \subset \subset\left\{z_{1}<z<z_{1}+\frac{h}{4}\right\} \cap R & \text { where } & \gamma=1
\end{array}
$$

This gives (the first inequality arises for subsolutions)

$$
-\int_{R} \nabla w \cdot \nabla \zeta \geq \int_{R} \gamma \partial_{z} \zeta \geq \int_{D} \gamma \partial_{z} \zeta \geq c
$$

where the constant c also depends on D. Hence

$$
\int_{\operatorname{supp}(\varsigma)}|\nabla w|^{2} \geq c>0
$$

Since $\operatorname{dist}(\operatorname{supp}(\zeta), \partial R)>0$, we can apply the first part of the proof of Proposition 2.5 with an appropriate test function to w and obtain the inequality.

Fig. 2. Properties of (w, γ) in R.
2.7 Proposition. Suppose there is a continuous Jordan curve (not closed) in the rectangle $\left\{z_{1}+\frac{h}{4}<z<z_{2}-\frac{h}{4}\right\} \cap R$, going from the left boundary to the right boundary as in Figure 3, such that

$$
\begin{aligned}
& \Gamma \text { above } \operatorname{graph}(u), \\
& w=0 \text { on } \Gamma \\
& w>0 \text { in a right neighborhood of } \Gamma, \text { looking in the direction of } \Gamma .
\end{aligned}
$$

Then for some $c>0$, depending only on the geometry of the rectangle and on the Lipschitz constant of w,

$$
|w(x)| \geq c \quad \text { for some } x \in R \text { below } \Gamma
$$

Proof. Γ divides the rectangle R into exactly two subdomains R_{+}(left of Γ) and R_{-}(right of Γ). Let

$$
w^{*}:= \begin{cases}0 & \text { in } R_{+} \\ w & \text { in } R_{-}\end{cases}
$$

Since $w>0$ in $R_{\text {_ near }} \Gamma$, it follows that $\Delta w^{*} \geq 0$ above the free boundary. Hence (w^{*}, γ) is a subsolution of equation (*) in R. Applying Proposition 2.6 gives

$$
\int_{R}\left|w^{*}\right|^{2} \geq c>0
$$

Fig. 3. Situation near Γ.
Hence there must exist points $x \in R_{\text {- for }}$ which $|w(x)| \geq c>0$, where c only depends on the geometry of the rectangle.

For future use we also give here the monotonicity formula for the m-phases.
2.8 Monotonicity Formula. Suppose w has $m \in \mathbb{N}$ phases $\left\{w_{i}: i=1, \ldots, m\right\}$ at O. For each phase w_{i} we define

$$
\begin{equation*}
\varphi_{i}(r):=\frac{1}{r^{\kappa m}} \int_{B_{r}}\left|\nabla w_{i}\right|^{2} \quad \text { for } 0<r<r_{0}<\infty \tag{2.1}
\end{equation*}
$$

where $\kappa \geq 1$. Moreover, let

$$
\begin{equation*}
\varphi(r):=\prod_{i=1}^{m} \varphi_{i}(r) \quad \text { for } 0<r<r_{0}<\infty \tag{2.2}
\end{equation*}
$$

A value $\kappa>1$ is related to the fact that $\{w=0\}$ on each sphere might cover a certain sector. To be precise, we assume that there are values $0 \leq \delta(r)<1-\frac{1}{\kappa}$ with $\delta(r) \rightarrow 0$ as $r \rightarrow 0$ such that

$$
\begin{equation*}
\frac{1}{2 \pi} \mathcal{L}^{1}\left(\left\{\theta \in[0,2 \pi]: w\left(r e^{i \theta}\right)=0\right\}\right) \geq 1-\frac{1}{\kappa(1-\delta(r))} \tag{2.3}
\end{equation*}
$$

where \mathcal{L}^{1} denotes the one dimensional Lebesgue measure. It then follows, that

$$
\begin{equation*}
\frac{d}{d r} \log \varphi(r) \geq-\kappa m^{2} \frac{\delta(r)}{r} \tag{2.4}
\end{equation*}
$$

in distributional sense. In particular,

$$
\begin{equation*}
\log \varphi(r) \leq \log \varphi\left(r_{0}\right)+\kappa m^{2} \int_{r}^{r_{0}} \frac{\delta(\tilde{r})}{\tilde{r}} d \tilde{r} . \tag{2.5}
\end{equation*}
$$

If the function $r \mapsto \delta(r) / r$ is integrable, e.g. if $\delta(r) \leq C r^{\alpha}$ for some $\alpha>0$, then (2.5) implies that φ is bounded. In case that $\delta=0$ inequality (2.5) gives that φ is monotonically increasing in r. The proof of (2.4) is given in Appendix A. As a special case, see Alt et al. [2], we decompose w into two contributions according to

$$
w:=w_{+}-w_{-}
$$

where $w_{ \pm}:=\max \{0, \pm w\}$. Then we consider the functions

$$
\begin{equation*}
\varphi_{ \pm}(r):=\int_{B_{r}}\left|\nabla w_{ \pm}\right|^{2} \quad \text { for } 0<r<r_{0}<\infty \tag{2.6}
\end{equation*}
$$

i.e., $m=2$ and $\kappa=1$, consequently $\delta=0$. It follows that

$$
\begin{equation*}
\varphi(r):=\varphi_{+}(r) \cdot \varphi_{-}(r) \quad \text { for } 0<r<r_{0}<\infty \tag{2.7}
\end{equation*}
$$

is monotonically increasing in r.

3. Sublinear decay of solution.

First let us note, that w decays at least linearly at the cusp, here situated at the origin O, i.e.

$$
w(x)=\mathcal{O}(|x|) \quad \text { as } x \rightarrow 0
$$

The follows from the Lipschitz continuity. This Lipschitz continuity also implies that the functions $\varphi_{ \pm}$in 2.8 are bounded and $\varphi_{i}(r) \leq C r^{2-\kappa m}$.
The aim of this section is to prove that w decays faster than linearly, i.e.

$$
w(x)=o(|x|) \quad \text { as } x \rightarrow O .
$$

For this we apply blow-up techniques to the decomposition $w=w_{+}-w_{-}$.
We first show
3.1 Proposition. For the function φ in (2.7) we have

$$
\lim _{r \not 0} \varphi(r)=0
$$

Proof. Suppose that $\lim _{r \downarrow 0} \varphi(r) \geq C>0$. Then consider the blow-up $(r \nmid 0)$

$$
w_{r}(x):=\frac{w(r x)}{r} \text { and } \gamma_{r}(x):=\gamma(r x) \quad \text { for } x \in B
$$

where B denotes any ball in \mathbb{R}^{2} centered at O. Using the Lipschitz-continuity of w we obtain as in [3] for a subsequence $\left(r_{k}\right)_{k}$ with $r_{k} \searrow 0$,

$$
\begin{aligned}
w_{k} & :=w_{r_{k}} \rightarrow w_{0} \text { uniformly in } B \text { and strongly in } H^{1,2}(B), \\
\gamma_{k} & :=\gamma_{r_{k}} \rightarrow \gamma_{0} \text { weakly star in } L^{\infty}(B),
\end{aligned}
$$

with $w_{0} \in H_{l o c}^{1,2}\left(\mathbb{R}^{2}\right)$ and $\gamma_{0} \in L^{\infty}\left(\mathbb{R}^{2}\right)$. Further, because φ is bounded away from zero, the blow-up limit is a linear two-phase solution. Since $w(0, z)=0$ for $z \leq 0$, we must have $w_{0}(0, z)=0$ for all $z \in \mathbb{R}$ with for instance $w_{0}>0, \gamma_{0}=0$ in $\{y>0\}$ and $w_{0}<0, \gamma_{0}=0$ in $\{y<0\}$. However by the Separation Lemma we also have $\partial_{\nu} w_{0}(0 \pm, z)=0$ for $z<0$, a contradiction.
3.2 Proposition. There is no sequence $r \not \downarrow 0$ for which

$$
\sup _{B_{r}} w_{+}=o(r) \quad \text { and } \quad \sup _{B_{r}} w_{-} \geq c r \quad \text { with } c>0
$$

Proof. Suppose such a sequence $\left(r_{k}\right)_{k \in \mathbb{N}}$ exists. Then consider the blow up

$$
w_{k}(x):=\frac{w\left(r_{k} x\right)}{r_{k}} \quad \text { for } x \in B_{1}
$$

The assumption implies the existence of points x_{k} in B_{1} satisfying

$$
-w_{k}\left(x_{k}\right) \geq c \quad \text { and } \quad x_{k} \rightarrow x_{0} \quad \text { in } B_{1}
$$

By the Lipschitz continuity we have $-w_{k} \geq c / 2$ in $B_{\delta}\left(x_{0}\right)$ for some $\delta>0$ and for k large. Therefore the blow up w_{0} satisfies $-w_{0} \geq c / 2$ in $B_{\delta}\left(x_{0}\right), w_{0} \leq 0$ in B_{1} and $w_{0}(0)=0$. The property $\Delta w_{0} \geq 0$ is inherited, hence giving a contradiction.

3.3 Proposition. $w_{-}(x)=o(|x|)$ as $x \rightarrow 0$.

Proof. We argue by contradiction. Suppose there is a sequence $\left(r_{k}\right)_{k}$ with $r_{k} \searrow 0$, for which

$$
\sup _{B_{r_{k}}} \frac{w_{-}}{r_{k}} \geq c>0
$$

By Proposition 3.2 also

$$
\sup _{B_{r_{k}}} \frac{w_{+}}{r_{k}} \geq c>0
$$

Applying the second inequality of Proposition 2.5 gives

$$
\varphi_{ \pm}\left(2 r_{k}\right)=\int_{B_{2 r_{k}}}\left|\nabla w_{ \pm}\right|^{2} \geq c
$$

which contradicts the conclusion of Proposition 3.1.
Therefore we concentrate on the sublinear decay of w_{+}. We first prove
3.4 Proposition. Let $\left(w_{0}, \gamma_{0}\right)$ be the blow up limit obtained for a sequence $\left(r_{k}\right)_{k}$ with $r_{k} \not \downarrow 0$. If $\tilde{x} \in \mathbb{R}^{2}$ satisfies

$$
\forall \varepsilon>0: \gamma_{0} \neq 0 \quad \text { in } L^{\infty}\left(B_{\varepsilon}(\tilde{x})\right)
$$

then there exists a sequence $\left(x_{k}\right)_{k}$ with $x_{k}=\left(y_{k}, z_{k}\right) \rightarrow \bar{x}$ such that $\gamma_{k}=1$ and $w_{k}=0$ in a neighborhood of the segments
$\left.\left\{y_{k}\right\} \times\right]-L_{k}, z_{k}\left[\right.$ where L_{k} is a suitable big number.
Proof. The sequence $\left(x_{k}\right)_{k}$ is constructed as follows. The convergence of γ_{k} implies that for each $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that $\gamma_{k} \neq 0$ in $L^{\infty}\left(B_{\varepsilon}(\tilde{x})\right.$). Since (w_{k}, γ_{k}) is obtained from (w, γ) by scaling, we have that

$$
\left\{\gamma_{k} \neq 0\right\}=\left\{\gamma_{k}=1\right\}=\left\{z<u_{k}(y)\right\}
$$

is the subgraph of the scaled, continuous free boundary. Hence we can select a point x_{k} from the open set $\left\{z<u_{k}(y)\right\} \cap B_{z}(\tilde{x})$. Then choose L_{k} so that $\left(y_{k},-L_{k}\right)$ lies on the bottom of the scaled domain V.

We are now ready to prove the essential part of the section.
3.5 Proposition. $w_{+}(x)=o(|x|)$ as $x \rightarrow 0$.

Proof. Again we argue by contradiction. Assume for some $c>0$, there is a sequence $\left(x_{k}\right)_{k}$ with $x_{k} \rightarrow 0$ and

$$
\frac{w_{+}\left(x_{k}\right)}{\left|x_{k}\right|} \geq c
$$

Let $r_{k}:=\left|x_{k}\right|$ and consider the corresponding blow up sequence w_{k} as above. For a subsequence, denoted again by $\left(r_{k}\right)_{k}$, we have $\left(w_{k}, \gamma_{k}\right) \rightarrow\left(w_{0}, \gamma_{0}\right)$ as in Proposition 3.1. Moreover we have

$$
e_{k}:=\frac{x_{k}}{r_{k}} \rightarrow e_{0}=:\left(y_{0}, z_{0}\right)
$$

By Proposition 3.3, $w_{-}(x)=o(|x|)$ as $x \rightarrow 0$. Therefore we conclude $w_{0} \geq 0$ in \mathbb{R}^{2}. Moreover by the convergence properties of the sequence

$$
c \leq \frac{w\left(x_{k}\right)}{r_{k}}=w_{k}\left(\frac{x_{k}}{r_{k}}\right) \rightarrow w_{0}\left(e_{0}\right)
$$

and the Lipschitz continuity implies

$$
\begin{equation*}
w_{0} \geq c / 2 \quad \text { and } \gamma_{0}=0 \quad \text { in } B_{\delta_{0}}\left(e_{0}\right) \text { for some } \delta_{0}>0 \tag{3.1}
\end{equation*}
$$

Thus for the blow up limit w_{0} we have a situation as show in the figure below. First we show

$$
\begin{equation*}
w_{+}(0, z)=o(z) \quad \text { for } z \downarrow 0 \tag{3.2}
\end{equation*}
$$

If not, we can choose the above sequence such that $x_{k}=\left(y_{k}, z_{k}\right)$ with $y_{k}=0$ and $z_{k}>0$, giving $e_{0}=(0,1)$. Now assume that w_{0} is harmonic in the half plane $\{y>0\}$. Since $w_{0} \geq 0$ everywhere and, by (3.1), $w_{0}>0$ in $B_{\delta_{0}}((0,1)) \cap\{y>0\}$ we must have $w_{0}>0$ and therefore also $\gamma_{0}=0$ in $\{y>0\}$. As in the Separation Lemma we have that the weak differential

Fig. 4. Situation for w_{0}, with possible position for e_{0}.
equation for $\left(w_{0}, \gamma_{0}\right)$ also holds for test functions $\zeta \in C_{0}^{\infty}(\{y>0\} \cup\{y=0, z<0\})$. Using $\Delta w_{0}=0$ and $\gamma_{0}=0$ in $\{y>0\}$ this means that

$$
\partial_{y} w_{0}(0+, z)=0 \quad \text { for all } z<0 .
$$

But since $w_{0}(0, z)=0$ for $z<0$ (inherited from w) we have a contradiction with the Hopf-principle.
Therefore there exists a point $\tilde{x}=(\tilde{y}, \tilde{z})$ with $\tilde{y}>0$ so that w_{0} is not harmonic in any neighborhood of \tilde{x}. Then clearly γ_{0} satisfies the assumption of Proposition 3.4 at \tilde{x} (otherwise we would have $\gamma_{0}=0$ and thus $\Delta w_{0}=0$ in some neighborhood of $\left.\tilde{x}\right)$. Let $x_{k}=\left(y_{k}, z_{k}\right)$ denote the points from Proposition 3.4 and consider the rectangle

$$
R=\left\{(y, z): 0<y<y_{k} \text { and }-L_{k}<z<\min \left\{0, z_{k}\right\}\right\},
$$

where again L_{k} is a suitably chosen large number. By Proposition 3.4 and because $w(0, z)=$ 0 for $z<0$ we have $w_{k}=0$ along the vertical boundaries of R. At the top, using the Lipschitz continuity of w, we have $w_{k} \leq C y_{k}$ and near the bottom $\gamma_{k}=1$ and $w_{k}=0$ by the choice of L_{k}. Then the Comparison Lemma 2.1 with $s_{0}=0$ gives $\gamma_{k}=1$ and $w_{k}=0$ in

$$
\left\{(y, z): 0<y<y_{k} \text { and }-L_{k}<z<\min \left\{0, z_{k}\right\}-C y_{k}\right\}
$$

Letting $k \rightarrow \infty$ and repeating the same procedure in the half plane $\{y<0\}$ leads to the situation from Figure 5.
By the regularity theory for the dam problem (see Alt [1]), this implies that the blow-up (w_{0}, γ_{0}) has a smooth free boundary, say graph $\left(u_{0}\right)$, passing through the z-axis at a point $\left(0, z_{0}\right)$ with $0 \leq z_{0} \leq 1$, such that $w_{0}>0, \gamma_{0}=0$ above graph $\left(u_{0}\right)$ and $w_{0}=0, \gamma_{0}=1$ below graph $\left(u_{0}\right)$. We show now that this leads to a contradiction.

Fig. 5. Situation for blow up limit $\left(w_{0}, \gamma_{0}\right)$.
Let $s_{0}:=u_{0}^{\prime}(0)$. For $\delta>0$ consider the linear solution v_{δ} from Comparison Lemma 2.1 with $\hat{x}=\left(0, z_{0}-\delta\right)$.
Now let $0<\varepsilon<\varepsilon_{0}$ (small) be given. By the smoothness of u_{0} and w_{0} we have

$$
\left|u_{0}(y)-u_{0}^{\prime}(0) y\right| \leq C_{1}\left(\varepsilon_{0}\right) \varepsilon^{2} \quad \text { for }|y|<\varepsilon
$$

and

$$
\begin{equation*}
\left|w_{0}(x)-v_{0}(x)\right| \leq C_{2}\left(\varepsilon_{0}\right) \varepsilon^{2} \quad \text { for } x \in B_{\varepsilon}\left(0, z_{0}\right) \tag{3.3}
\end{equation*}
$$

Then taking $\delta=C \varepsilon^{2}$, where C is chosen large and independent of ε, we have

$$
v_{\delta}>w_{0} \quad \text { in } B_{\varepsilon}\left(0, z_{0}\right) \cap\left\{w_{0}>0\right\}
$$

and the free boundary of v_{δ} is below graph $\left(u_{0}\right)$.
At each free boundary point ($y, u_{0}(y)$), the function γ_{0} satisfies the assumption of Proposition 3.4. Hence for k sufficiently large ($w_{k} \rightarrow w_{0}$ uniformly) we can select ε_{k}^{-}near $-\frac{7}{8} \varepsilon$ and ε_{k}^{+}near $\frac{7}{8} \varepsilon$, and apply the Comparison Lemma 2.1 to the scaled solution (w_{k}, γ_{k}) in the rectangle

$$
R=]-\varepsilon_{k}^{-}, \varepsilon_{k}^{+}[\times]-L_{k}, \sup \left\{u_{0}(y):-\varepsilon_{k}^{-} \leq y \leq \varepsilon_{k}^{+}\right\}[.
$$

As a result we find

$$
w_{k}=0, \gamma_{k}=1 \quad \text { below the free boundary of } v_{\delta} \text { in }\left\{\varepsilon_{k}^{-}<y<\varepsilon_{k}^{+}\right\}
$$

By (3.3), the positivity of w_{0} above $\operatorname{graph}\left(u_{0}\right)$ and again the uniform convergence of w_{k}, it follows that for sufficiently large k

$$
w_{k}>0, \quad \gamma_{k}=0 \quad \text { above the free boundary of } v_{-\delta} \text { in }\left\{\varepsilon_{k}^{-}<y<\varepsilon_{k}^{+}\right\}
$$

Thus we are left with the region between the free boundaries of v_{δ} and $v_{-\delta}$, which is a very flat strip of width $\mathcal{O}\left(\varepsilon^{2}\right)$ and length $\mathcal{O}(\varepsilon)$. Now the origin O is an accumulation point of $\left\{w_{k}<0\right\}$ because it satisfies Property 4.17 of [4]. First this implies that $z_{0}-\delta \leq 0$. Second there must be curves on which $w_{k}<0$ coming from outside the strip and approaching O arbitrarily close. These curves must come either from the left or the right. For definiteness consider a curve coming from the right. Define the rectangle

$$
R_{\varepsilon}:=\left\{(y, z):\left|y-\frac{\varepsilon}{2}\right|<\frac{\varepsilon}{4} \text { and }\left|z-z_{0}\right|<h\right\}
$$

with $h=C \varepsilon, C$ large. Then there exists a curve in R_{ε} going from the left side of R_{ε} to the right side and lying inside the strip so that $w_{k}<0$ on this curve. Moreover, $w_{k}>0$ near and above its free boundary. Therefore, after the scaling

$$
\tilde{w}_{k}(x):=\frac{1}{\varepsilon} w_{k}(\varepsilon x)
$$

we obtain a situation as in Proposition 2.7, where a Jordan curve Γ separates $\left\{\tilde{w}_{k}<0\right\}$ above it from $\left\{\tilde{w}_{k}>0\right\}$ below it. We deduce that in the flat strip points must exist where $\left|w_{k}\right| \geq c \varepsilon$. Letting $k \rightarrow \infty$ we obtain that there exists a point x in the strip with $\left|w_{0}(x)\right| \geq c \varepsilon$. But since $\left|v_{0}(x)\right| \leq C \delta=C \varepsilon^{2}$ we conclude from (3.3) that $\left|w_{0}(x)\right| \leq C \varepsilon^{2}$, a contradiction for small ε.
Therefore we conclude that (3.2) holds.
For the blow up w_{0} this implies

$$
w_{0}(0, z)=0, \text { also for } z>0
$$

and by (3.1)

$$
\operatorname{dist}\left(e_{0},\{y=0\}\right)>\delta_{0}
$$

For definiteness, let $e_{0}=\left(y_{0}, z_{0}\right)$ has $y_{0}>0$.
Next we choose $s_{0}>\max \left\{0,2 \frac{z_{0}}{y_{0}}\right\}$, i.e. the point e_{0} is below the line with slope $s_{0} / 2$, passing through the origin. Since $e_{k} \rightarrow e_{0}$, also e_{k} is below this line for large k. Choosing such a k (fixed), we consider a second sequence $\left(e_{k l}\right)_{l \geq k}$ defined by

$$
e_{k l}:=\frac{r_{l}}{r_{k}} e_{l} \quad l \in \mathbb{N}, l \geq k
$$

It satisfies

$$
\begin{align*}
& e_{k l}=\frac{x_{l}}{r_{k}} \rightarrow 0 \quad \text { for } l \rightarrow \infty \\
& \frac{e_{k l}}{\left|e_{k l}\right|}=e_{l} \rightarrow e_{0} \quad \text { for } l \rightarrow \infty \tag{3.4}\\
& w_{k}\left(e_{k l}\right)=\frac{1}{r_{k}} w\left(x_{l}\right)>0
\end{align*}
$$

Fig. 6. The sequence $\left(e_{k l}\right)_{\geq \geq k} \subset\left\{w_{k}>0\right\}$ converges to O tangent to the e_{0}-direction.

Below we shall use the Comparison Lemma 2.1 with a function v defined for $\hat{x}=(0,0)$ and s_{0} as above. First fix $h>2 s_{0}$ and take any L sufficiently large. We have for $0 \leq z \leq h$

$$
v(0, z)=\frac{z}{s_{0}^{2}+1}
$$

and, from (3.2),

$$
\begin{equation*}
w_{k}(0, z) \leq \varepsilon_{k} z \tag{3.5}
\end{equation*}
$$

where $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$. Therefore if k is large enough (depending on h) we have

$$
w_{k}(0, z) \leq v(0, z) \quad \text { for all } z \in[-L, h] .
$$

Now assume there is a point $\left.\tilde{x}=(\tilde{y}, \tilde{z}) \in R_{\infty}:=\right] 0,2[\times] h, \infty[$ satisfying the assumption of Proposition 3.4. Then from this proposition it follows that for large k, there is $y_{k} \in$ $] 0,2\left[\right.$, say, so that $\left(y_{k}, h\right)$ is below the free boundary of w_{k}. Now consider the rectangle $\left.R_{k}:=\right] 0, y_{k}[\times]-L, h[$. Then also

$$
w_{k}\left(y_{k}, z\right)=0 \leq v\left(y_{k}, z\right) \quad \text { for all } z \in[-L, h] .
$$

Along the top of R_{k} we have (by the Lipschitz continuity and using (3.5))

$$
w_{k}(y, h) \leq C \quad \text { for } 0 \leq y \leq y_{k}(<2)
$$

where C, for large k, can be chosen independently of k and h. But

$$
v(y, h)=\frac{h-y s_{0}}{s_{0}^{2}+1} \geq \frac{h-2 s_{0}}{s_{0}^{2}+1} \geq C
$$

for h large enough. Hence it follows from the Comparison Lemma that $w_{k}=0$ in $\{v=0\}$, i.e. below the line with slope s_{0}. This contradicts (3.4), see also Figure 6. Therefore $\gamma_{0}=0$
in R_{∞}. Using the monotonicity of $\gamma_{0}\left(\partial_{z} \gamma_{0} \leq 0\right)$ and refering to (3.1) and Figure 4, we obtain that $\gamma_{0}=0 \mathrm{in}$ the domain

$$
\left.\left.D:=R_{\infty} \cup(] y_{0}-\delta_{0}, y_{0}+\delta_{0}[\times] z_{0}, \infty\right]\right)
$$

Hence

$$
\Delta w_{0}=0 \quad \text { in } D
$$

By (3.1) and the strong maximum principle

$$
w_{0}>0 \quad \text { in } D
$$

while

$$
\begin{equation*}
w(0, z)=0 \quad \text { for all } z \in \mathbb{R} \tag{3.6}
\end{equation*}
$$

So far we worked only in the halfspace $\{y>0\}$. To obtain a contradiction we also have to consider the situation for $y<0$. There are two possibilities: either

$$
w_{0}\left(\tilde{e}_{0}\right)>0 \text { for some } \tilde{e}_{0}=\left(\tilde{y}_{0}, \tilde{z}_{0}\right) \text { with } \tilde{y}_{0}<0
$$

(\tilde{e}_{0} not necessarily a unit vector), or $w_{0}=0$ in $\{y=0\}$. In the first case there are points \tilde{x}_{k} with

$$
\frac{\tilde{x}_{k}}{r_{k}} \rightarrow \tilde{e}_{0}, \quad \frac{w\left(\tilde{x}_{k}\right)}{r_{k}}=w_{k}\left(\frac{\tilde{x}_{k}}{r_{k}}\right) \rightarrow w_{0}\left(\tilde{e}_{0}\right)>0 .
$$

As in (3.1) we conclude that $\gamma_{0}=0$ in some ball $B_{\bar{\delta}_{0}}\left(\tilde{e}_{0}\right)$. Then it follows as above, that for some \tilde{h} the function w_{0} is positive and harmonic in $]-2 \tilde{y}_{0}, 0[\times] \tilde{h}, \infty\left[\right.$, and that $\%_{0}=0$ in this rectangle. Therefore $\gamma_{0}=0$ in

$$
]-2 \tilde{y}_{0}, 2[\times] \max \{h, \tilde{h}\}, \infty[
$$

so that w_{0} has to be harmonic in this region. But then (3.6) contradicts the strong maximum principle. In the second case $\partial_{z} \gamma_{0}=0$ in

$$
]-\infty, 2[\times] h, \infty[
$$

so that again w_{0} is harmonic in this region, again a contradiction. This completes the proof of Proposition 3.5.
As a consequence we have

3.6 Theorem.

(ii)

$$
\begin{align*}
& w(x)=o(|x|) \quad \text { as } x \rightarrow 0 ; \tag{i}\\
& \lim _{y \not 0} \frac{u(y)}{y}=+\infty \text { or }-\infty \text {, } \\
& \lim _{y+0} \frac{u(-y)}{y}=+\infty \text { or }-\infty,
\end{align*}
$$

where at least one limit is $-\infty$.

Note that

$$
\lim _{y \downarrow 0} \frac{u(y)}{y}=-\infty, \quad \lim _{y \not 0} \frac{u(-y)}{y}=-\infty
$$

refers to the cusp case, and

$$
\lim _{y \not 0} \frac{u(y)}{y}=-\infty, \quad \lim _{y \not 0} \frac{u(-y)}{y}=+\infty
$$

refers to the vertical case with $w=0$ on the left of the origin (see Figure 2 from [4]).

Proof of the theorem. The first assertion is equivalent to Propositions 3.3 and 3.5. To prove the second part, we first suppose that

$$
\begin{equation*}
s:=\underset{y>0}{\limsup } \frac{u(y)}{y}>-\infty \tag{3.7}
\end{equation*}
$$

Let $\left(y_{k}\right)_{k}$ with $y_{k} \searrow 0$ be a corresponding sequence, choose any $s_{0}<s$, and let v be the linear solution in the Comparison Lemma 2.1 with slope s_{0} and $\hat{x}=0$. We consider the rectangle

$$
\left.R_{k}:=\right] 0, y_{k}[\times]-L, u\left(y_{k}\right)[
$$

where the height $-L$ corresponds to the bottom of the translated domain V. By the choice of s_{0} and property (i) we have that $w \leq v$ on ∂R_{k} for k large enough. The Comparison Lemma then gives

$$
w=0, \gamma=1 \text { in } S_{k}:=\left\{(y, z) ; 0<y<y_{k} \text { and } z<y s_{0}\right\}
$$

and thus

$$
\frac{u(y)}{y} \geq s_{0} \quad \text { for small } 0<y<y_{k}
$$

Letting $s_{0} \rightarrow s$, we therefore obtain from (3.7) that

$$
s=\liminf _{y \searrow 0} \frac{u(y)}{y} .
$$

Next assume that

$$
\begin{equation*}
s<\infty \tag{3.8}
\end{equation*}
$$

This means that for given $\varepsilon>0$ there exists $\delta>0$ such that

$$
(s-\varepsilon) y<u(y)<(s+\varepsilon) y \quad \text { for } 0<y<\delta
$$

and consequently

$$
\left.\begin{array}{rl}
\Delta w & =0 \\
\gamma & =0
\end{array}\right\} \quad \text { in }\{(y, z): z>(s+\varepsilon) y, 0<y<\delta\}
$$

and

$$
\left.\begin{array}{l}
w=0 \\
\gamma=1
\end{array}\right\} \quad \text { in }\{(y, z): z<(s-\varepsilon) y, 0<y<\delta\} .
$$

Then the same holds for the scaled functions

$$
w_{k}(x):=\frac{1}{r_{k}} w\left(r_{k} x\right) \text { and } \gamma_{k}(x):=\gamma\left(r_{k} x\right)
$$

but now with $\delta_{k}=\frac{\delta}{r_{k}}$ instead of δ. We obtain for all sufficiently large k the situation from Figure 7. Then we apply Proposition 2.6 and obtain that

Fig. 7. Situation after scaling for all (w_{k}, γ_{k}).

$$
\sup _{R}\left|w_{k}\right| \geq c>0 \quad \text { for all } k \text { sufficiently large. }
$$

However this contradicts the o-property of w and rules out the possibility (3.8). The remaining case is

$$
\underset{y \searrow 0}{\limsup } \frac{u(y)}{y}=-\infty
$$

Similar results can be obtained for the left side. Finally, assume that both limits are $+\infty$: i.e.

$$
\lim _{y \not 0} \frac{u(y)}{y}=+\infty=\lim _{y \ngtr 0} \frac{u(-y)}{y} .
$$

Set $y_{k}=\frac{1}{k}$ and

$$
u_{k}:=\min \left\{u\left(y_{k}\right), u\left(-y_{k}\right)\right\} .
$$

and consider the rectangle

$$
\left.R_{k}:=\right]-y_{k}, y_{k}[\times]-L, u_{k}[
$$

with $L>0$. Since $|w| \leq \varepsilon_{k} u_{k}$ on the top of R_{k} by Theorem 3.6(i) with $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$, we can apply the Comparison Lemma with $s_{0}=0$ and obtain that

$$
w=0, \gamma=1 \quad \text { in }\left\{(y, z):|y|<y_{k} \text { and } z<u_{k}-\varepsilon u_{k}\right\} .
$$

This means that $\gamma_{k}=1$ for large k in a full neighborhood of the origin, contradicting the fact that this is a free boundary point. This completes the proof of the theorem.

4. Topological properties

In this section we study the properties of local anf global connected components of $\{w \neq 0\}$.
Let $x_{0}=\left(y_{0}, z_{0}\right) \in V \backslash W$ with

$$
\begin{equation*}
w\left(x_{0}\right)=0 \quad \text { and } \quad z_{0} \geq u\left(y_{0}\right) \tag{4.1}
\end{equation*}
$$

Then x_{0} lies on the boundary of $\{w \neq 0\}$. The following statements will be relative to an open set $U \subset V \backslash W$ with $x_{0} \in U$. Consider an open set D with

$$
\begin{align*}
& D \subset U \cap\{w \neq 0\}, \quad w=0 \quad \text { on } U \cap \partial D \tag{4.2}\\
& x_{0} \in \partial D \tag{4.3}
\end{align*}
$$

Then the following holds.
4.1 Proposition. Let D satisfy (4.2) and (4.3). Then the number of sets G satisfying

$$
\begin{align*}
& G \text { is a connected component of } D, \tag{4.4}\\
& x_{0} \in \partial G \tag{4.5}
\end{align*}
$$

is positive and finite. Moreover, for each G satisfying (4.4) the closure \bar{G} contains points of $\{w \neq 0\} \cap \partial U$.

Proof. The last statement follows, since otherwise $w=0$ on ∂G. Since w is harmonic in G, it would follow that $w=0$ in G.

The assertion follows easily if $z_{0}>u\left(y_{0}\right)$ in (4.1). For, in a neighbourhood of x_{0}

$$
w(x)=\operatorname{Re} h(x)
$$

with a nontrivial holomorphic function h satisfying $h\left(x_{0}\right)=0$. In other words,

$$
h(x)=a\left(x-x_{0}\right)^{m}(1+\tilde{h}(x))
$$

with $a \in \mathbb{C} \backslash\{0\}, m \geq 1$, and a holomorphic function \tilde{h} satisfying $\tilde{h}\left(x_{0}\right)=0$. Therefore $h(\tau(x))=a\left(x-x_{0}\right)^{m}$ for a unique local conformal transformation τ given by

$$
\tau(x)=x_{0}+\left(x-x_{0}\right)(1+\tilde{h}(\tau(x)))^{-\frac{1}{m}} .
$$

Then near x_{0} the set $\{w \circ \tau=0\}$ consists of $2 m$ ray, therefore there are at most $2 m$ domains G.

Now let x_{0} be on the free boundary. For convenience, let $x_{0}=0$. For $\varepsilon, \delta>0$ small enough consider the rectangle

$$
R:=]-\delta, \delta[\times]-\varepsilon, \varepsilon[
$$

similarly, R^{\prime} with $\delta^{\prime}=\frac{\delta}{2}$ and $\varepsilon^{\prime}=\frac{\epsilon}{2}$. Since u is continuous we can choose δ so that

$$
\begin{equation*}
R \cap \operatorname{graph}(u) \subset\left\{|z|<\frac{\varepsilon}{4}\right\} \tag{4.6}
\end{equation*}
$$

Let G be any set satisfying (4.4) and

$$
\begin{equation*}
G \cap R^{\prime} \neq \emptyset . \tag{4.7}
\end{equation*}
$$

Since G touches ∂U there exists a curve $\gamma:[0,1] \rightarrow G$ with $\gamma(0) \in \partial R^{\prime}$ and $\gamma(1) \in \partial R$. Assume there are infinite many domains $G_{i}, i \in \mathbb{N}$, with corresponding curves γ_{i}. We claim that

$$
\begin{equation*}
\sup _{t} \operatorname{dist}\left(\gamma_{i}(t), \operatorname{graph}(u)\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty \tag{4.8}
\end{equation*}
$$

If not, there are points $\xi_{i}=\gamma_{i}\left(t_{i}\right)$ converging, for a subsequence $i \rightarrow \infty$, to a point $\xi \in \bar{R}$ above $\operatorname{graph}(u)$. Since ξ_{i} belong to different components G_{i} we must have $w(\xi)=0$. But then it follows as in the first part of the proof, that only finitely many domains G_{i} can enter a small neighbourhood of ξ. This proves (4.8).

Then it follows from (4.6) that $\gamma_{i}([0,1]) \subset\left\{|z|<\frac{e}{2}\right\}$ for large i. Therefore $\gamma_{i}(1) \in \partial R$ has horizontal coordinate $+\delta$ or $-\delta$. For definiteness consider the first case and the rectangle

$$
\left.R^{\prime \prime}:=\right] \delta^{\prime}, \delta[\times]-\varepsilon, \varepsilon[.
$$

Since γ_{i} and γ_{i+1} belong to different connected components of D, there must be, at least for a subsequence $i \rightarrow \infty$, curves. Γ_{i} between γ_{i} and γ_{i+1} going through $R^{\prime \prime}$ from left to right and having the property of Proposition 2.7. Consequently there are points $x_{i} \in R^{\prime \prime}$ between Γ_{i} and $\operatorname{graph}(u)$ with $\left|w\left(x_{i}\right)\right| \geq c>0$, where c is independent of i. But (4.8) together with the continuity of w gives $w\left(x_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. This proves that there are only finitely many domains $G_{i}, i=1, \ldots, n$, satisfying (4.4) and (4.7). Since

$$
\bigcup_{i=1}^{n}\left(G_{i} \cap R^{\prime}\right)=D \cap R^{\prime}
$$

it follows from (4.3) that some $G_{i_{0}}$ has to satisfy (4.5).
4.2 Proposition. If D satisfies (4.2) and (4.9) then there exists a continuous curve in D with x_{0} as continuous limit.

Proof. Choose a sequence of balls $U_{k}:=B_{r_{k}}\left(x_{0}\right), k \geq 1, r_{1}$ sufficiently small, and $r_{k} \searrow 0$ as $k \rightarrow \infty$. Define $D_{0}:=D$. Using Proposition 4.1 choose inductively $D_{k}, k \geq 1$, so that

Fig. 8. The curves γ_{i}.

$$
\begin{equation*}
D_{k} \text { is a connected component of } D_{k-1} \cap U_{k} \tag{4.9}
\end{equation*}
$$

with $x_{0} \in \partial D_{k}$. Since D_{k} touches ∂U_{k} there are points $x_{k} \in D_{k} \cap \partial U_{k+1}$. Fix such a sequence $\left(x_{k}\right)_{k \geq 1}$. By construction $x_{k+1} \in D_{k+1} \subset D_{k}$. Therefore there are curves

$$
\gamma:\left[\frac{1}{k+1}, \frac{1}{k}\right] \rightarrow D_{k} \subset U_{k} \quad \text { with } \quad \gamma\left(\frac{1}{k+1}\right)=x_{k+1}, \gamma\left(\frac{1}{k}\right)=x_{k}
$$

Then $\gamma(t) \rightarrow x_{0}$ as $t \rightarrow 0$.
As a consequence we obtain that locally the number phases is well defined.
4.3 Proposition. Let x_{0} as in (4.1) and $U_{0}:=B_{r_{0}}\left(x_{0}\right) \subset V \backslash W$. Moreover let U be an open set with $x_{0} \in U \subset U_{0}$. Then the following holds:
(i) There exists an $m \geq 1$ so that there are exactly m connected components $G_{i}, i=$ $1, \ldots, m$, of $\{w \neq 0\} \cap U$ with $x_{0} \in \partial G_{i}$.
(ii) The number m in (i) is independent of U.
(iii) There exists an $r_{1}>0$ with

$$
B_{r_{1}}\left(x_{0}\right) \subset \bigcup_{i=1}^{m} \bar{G}_{i}
$$

Proof. The first assertion is Proposition 4.1 for $D=\{w \neq 0\} \cap U$. To prove (iii) consider the open set

Fig. 9. The domains D_{k}.

$$
D:=U \backslash \bigcup_{i=1}^{m} \bar{G}_{i}
$$

which satisfies (4.2). If D would satisfy (4.3) then by Proposition 4.1 there is a connected component G of D with $x_{0} \in \partial G$. This contradicts the definition of m. Therefore $x_{0} \notin \bar{D}$, i.e., $B_{r_{1}}\left(x_{0}\right) \cap \bar{D}=\emptyset$ for some $r_{1}>0$.

To prove (ii) let $x_{0} \in \tilde{U} \subset U$ and denote by \tilde{m} the corresponding number from (i). By Proposition 4.2 there are curves $\left.\left.\gamma_{i}:\right] 0,1\right] \rightarrow G_{i}$ with $\gamma_{i}(0)=0$.

Choose $t_{i}>0$ so that $\gamma_{i}(t) \in \tilde{U}$ for $0 \leq t \leq t_{i}$ and denote by \tilde{G}_{i} the connected component of $\{w \neq 0\} \cap \tilde{U}$ containing $\gamma_{i}\left(t_{i}\right)$. Then $x_{0} \in \partial \tilde{G}_{i}$ and $\tilde{m} \geq m$ is proved. Now assume that $\tilde{m}>m$. Then there are connected components $\tilde{G}_{1}, \tilde{G}_{2}$ of $\{w \neq 0\} \cap \tilde{U}$ with $x_{0} \in \partial \tilde{G}_{i}$ belonging to the same $G_{i_{0}}$. Using Proposition 4.2 there are curves γ_{i} connecting x_{0} within \tilde{G}_{i} to some point $\tilde{x}_{i} \in \tilde{G}_{i}$, and \tilde{x}_{1} and \tilde{x}_{2} are connected within $G_{i_{0}}$ by a curve γ_{0}. Denote by K the compact set enclosed by $\gamma_{0}, \gamma_{1}, \gamma_{2}$. By the maximum principle (note that U_{0} is a ball not touching W) w has the same sign in K as in $G_{i_{0}}$. But then γ_{0} can be contracted within $\{w \neq 0\}$ to a curve inside \tilde{U}, so that \tilde{G}_{1} and \tilde{G}_{2} are connected.

We now give some consequenses of the above considerations.
4.4 Corollary. Let m and G_{i} as in 4.3 (i). Then $w_{i}:=\chi_{G_{i}} w$ belong to $H^{1,2}\left(U_{0}\right)$ and

$$
w=\sum_{i=1}^{m} w_{i} \quad \text { in } B_{r_{1}}\left(x_{0}\right)
$$

Therefore m coincides with the number of phases in Definition 2.9.
4.5 Remark. The number of (global) connected components of $\{w \neq 0\}$ is finite.

Proof. Since $\Delta w=0$ above the free boundary and away from the wells we find, by the maximum principle, that each such component either contains a well, or as part of its boundary a segment $\left.\left.\left\{a_{i}\right\} \times\right] u_{0}, H\right]$ where $w>0$, or touches the top of V. But there w can have only finitely many sign changes for, the free boundary stays away from the top hence there w is real analytic.
4.6 Proposition. Let $D \subset V$ be a connected component of $\{w<0\}$. Then \bar{D} can contain at most one free boundary point.

Proof. Suppose $x_{0}, x_{1} \in \partial D \cap V$ are two district free boundary points. By Proposition 4.2, there exists a Jordan arc $\Gamma \subset D$ connecting x_{0} and x_{1}, see Figure 10 (left).

Fig. 10. Consequence of two free boundary points in ∂D.

Applying the maximum principle gives $w<0$ in the domain bounded by Γ and the free boundary between x_{0} and x_{1}, see Figure 10 (right). Then for a ball B as indicated in the figure, we have $w<0$ above the free boundary and $w=0$ below it. This contradicts $\Delta w \geq 0$ in B.
4.7 Theorem. The number of cusps is less or equal the number of wells.

Proof. Each cusp belongs to the closure of $\{w<0\}$. By Proposition 4.1 the cusp is in the closure of a connected component D of $\{w<0\}$. But D has to contain a well, since otherwise w is harmonic in D with $w=0$ on ∂D outside the top on V and $\frac{\partial w}{\partial \nu}=1$ on the top of V. The maximum principle then gives $w \geq 0$ in D, a contradiction. The assertion then follows using Proposition 4.6.
4.8 Proposition. (i) Near a cusp the free boundary is smooth and $w>0$ in an upper neighbourhood.
(ii) At a cusp the number m in 4.3 satisfies $m \geq 3$.

Proof. By Theorem 4.7 and the definition of a cusp we know that $w>0$ in an upper neighborhood of the free boundary near a cusp, except at the cusp. Then (i) follows after applying the regularity theory for the dam problem in suitably chosen left and right neighborhoods of the cusps, and (ii) follows since the cusp lies in the closure of $\{w<0\}$ as in the proof of the previous theorem.

Next we consider some local properties of w at a cusp, which again, for convenience, has been translated to the origin O. We first make an assumption about the decay of the free boundary near the cusp. Suppose
(A) : There exist constants $C, \alpha>0$ such that for small $|y|$

$$
|y| \leq C|u(y)|^{1+\alpha}
$$

This assumption implies
4.9 Lemma. Let (A) be satisfied. Then in a neighborhood of O there exists a conformal transformation τ satisfying
(i) $\tau(0)=0$,
(ii) τ and τ^{-1} are continuous up to the boundary,
(iii) on every cone C above the free boundary with vertex at O

$$
\frac{1}{|x|}|\tau(x)-x|+|\nabla(\tau(x)-x)| \rightarrow 0 \quad \text { for } x \in C,|x| \rightarrow 0
$$

Proof. The proof of this technical lemma is given in Appendix B.

As a consequence we have the following. The function $w \circ \tau^{-1}$ is harmonic and nontrivial in the transformed (shaded) regions and vanishes along the boundary. This means that for

$$
\begin{equation*}
k=1 \text { in the cusp case, } k=2 \text { in the vertical case, } \tag{4.10}
\end{equation*}
$$

there is a real number $a \neq 0$ and some integer $m \geq 1$ with

$$
\begin{equation*}
w \circ \tau^{-1}(\zeta)=\operatorname{Re}\left(-i a \tilde{\zeta}^{m}(1+\tilde{h}(\tilde{\zeta}))\right) \text { with } \tilde{\zeta}=i^{k}(-i \zeta)^{k / 2} \tag{4.11}
\end{equation*}
$$

Here \tilde{h} is a holomorhic function satisfying $\operatorname{Im} \tilde{h}(\tilde{\zeta})=0$ if $\operatorname{Im} \tilde{\zeta}=0$. Since m is the number of components of $\left\{w \circ \tau^{-1} \neq 0\right\}$ near O, it has to coincide with the number m in 4.3. It follows from 4.4 and 4.8 that

$$
m \text { is odd and } m \geq 3
$$

The properties of τ imply that the m phases are separated by smooth curves which have a tangent at O. For instance, if $m=3$ the two possibilities are sketched in Figure 11.

Fig. 11. Distribution of phases with $m=3$.

Further we obtain for any phase \tilde{w} of w the non-degeneracy result: there exist a constant $c>0$ such that for small $r>0$

$$
\begin{equation*}
\int_{B_{r} \backslash B_{r / 2}}|\nabla \tilde{w}|^{2} \geq c r^{k m} \tag{4.12}
\end{equation*}
$$

5. Blow up.

In this section we investigate the Hölder exponent of the free boundary at a cusp, which again is situated at the origin O. As in Definition 2.3 (see also 4.4) we decompose w according to

$$
w=\sum_{i=1}^{m} w_{i} \quad \text { in } B_{r_{0}} \subset V \backslash W\left(r_{0} \text { small }\right)
$$

where m denotes the number of phases at O. For each phase w_{i} we define a corresponding exponent $\left.\left.\alpha_{i}:\right] 0, r_{0}\right] \rightarrow \mathbb{R}$ by

$$
\left(f_{B_{r}}\left|\nabla w_{i}\right|^{2}\right)^{1 / 2}=r^{\alpha_{i}(r)} \quad \text { for } 0<r \leq r_{0} .
$$

Using Proposition 2.5 and the sublinear decay of w at O, see Theorem 3.6 (i), we see that for each phase $r^{\alpha_{i}(r)} \rightarrow 0$ along any sequence $r \searrow 0$. Hence all $\alpha_{i}(r)>0$ for $0<r \leq r_{0}$ with r_{0} sufficiently small.
5.1 Remark. Let us phrase the Monotonicity Formula 2.8 into terms of $\alpha_{i}(r)$. It follows from Theorem 3.6 (ii) (for the vertical case) that for $0<r_{1}<r_{0}$ we can choose $\varepsilon\left(r_{1}\right)$ with $\varepsilon\left(r_{1}\right) \searrow 0$ as $r_{1} \searrow 0$ such that (2.4) is satisfied for $0<r<r_{1}$ with $\delta(r)=0$ and

$$
\kappa=\kappa\left(r_{1}\right)= \begin{cases}1 & \text { for } k=1 \tag{5.1}\\ 2-\varepsilon\left(r_{1}\right) & \text { for } k=2\end{cases}
$$

Here k is defined as in (4.10). Then (2.5) becomes

$$
\begin{aligned}
\prod_{i=1}^{m} r^{\alpha_{i}(r)} & =\left(r^{-2 m} \prod_{i=1}^{m} \int_{B_{r}}\left|\nabla w_{i}\right|^{2}\right)^{1 / 2} \\
& =\left(r^{\kappa m^{2}-2 m} \varphi(r)\right)^{1 / 2} \leq C r^{m \frac{\kappa m-2}{2}}
\end{aligned}
$$

for $0<r<r_{1}$ with $C=\sqrt{\varphi\left(r_{1}\right)}$. Hence

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} \alpha_{i}(r) \geq \frac{\kappa m-2}{2}-\frac{1}{m} \frac{\log C}{\log (1 / r)} \quad \text { for } 0<r<r_{1} \tag{5.2}
\end{equation*}
$$

Later we show that this estimate is sharp in the cusp case (i.e. $k=1$ in (4.10)).
Next define the smallest exponent

$$
\alpha(r):=\min _{i=1, \ldots, m} \alpha_{i}(r) \quad \text { for } 0<r \leq r_{0}
$$

and consider the blow-up, for $x \in B_{1}$ and $0<\rho \leq r_{0}$,

$$
w_{\rho}(x):=w(\rho x) / \rho^{1+\alpha(\rho)}, \quad \gamma_{\rho}(x):=\gamma(\rho x)
$$

The pair (w_{ρ}, γ_{ρ}) satisfies

$$
\begin{equation*}
\int_{B_{1}} \nabla \zeta \cdot\left(\nabla w_{\rho}+\frac{\gamma_{\rho}}{p^{\alpha(\rho)}} e_{z}\right)=0 \quad \text { for all } \zeta \in C_{0}^{\infty}\left(B_{1}\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\pi} \int_{B_{1}}\left|\nabla w_{\rho}\right|^{2}=\rho^{-2 \alpha(\rho)} f_{B_{\rho}}|\nabla w|^{2}=\sum_{i=1}^{m} \rho^{2\left(\alpha_{i}(\rho)-\alpha(\rho)\right)} \in[1, m] \tag{5.4}
\end{equation*}
$$

This means that we have scaled so that w_{ρ} in B_{1} carries the phase with the biggest Dirichlet integral in B_{ρ}. However other phases might become very small for w_{ρ} if ρ is small. The reason is that at this point we do not know that the phases, in other words the values α_{i}, are balanced towards each other. The first result relates the values $\alpha_{i}(r)$ to Assumption (A) in Section 4.
5.2 Proposition. There exists a constant $C>0$ such that for points $(y, z) \in B_{r}$ on the free boundary of (w, γ) we have

$$
|z| \leq \frac{r}{2} \quad \text { implies } \quad|y| \leq C r^{1+\alpha(r)}
$$

for all $r>0$ sufficiently small.
Proof. To prove this result we first scale and show that for points $(\tilde{y}, \tilde{z}) \in B_{1}$ on the free boundary, i.e. $\operatorname{graph}\left(u_{r}\right)$, of $\left(w_{r}, \gamma_{r}\right)$ we have

$$
\begin{equation*}
|\tilde{z}| \leq \frac{1}{2} \quad \text { implies } \quad|\tilde{y}| \leq C r^{\alpha(r)} \quad \text { for all } r>0 \text { small enough. } \tag{5.5}
\end{equation*}
$$

Let $\eta \in C_{0}^{\infty}\left(B_{1}\right)$ be a fixed cut-off function satisfying $0 \leq \eta \leq 1$ and $\eta=1$ on $B_{7 / 8}$. Substitution into (5.3) and using (5.4) yields

$$
\frac{1}{r^{\alpha(r)}} \int_{B_{1}} \gamma_{r} \partial_{z} \eta=-\int_{B_{1}} \nabla \eta \cdot \nabla w_{r} \leq C
$$

or

$$
\int_{-1}^{+1} \eta\left(y, u_{r}(y)\right) d y \leq C r^{\alpha(r)} \quad \text { for } 0<r<r_{0}
$$

The integral in this inequality can be bounded from below by

$$
\mathcal{L}^{1}\left(\left\{y:|y| \leq \frac{1}{4} \text { and }\left|u_{r}(y)\right| \leq \frac{3}{4}\right\}\right)
$$

By Theorem 3.6 (ii), the free boundary u is vertical at O, from both sides. Hence for points $(\tilde{y}, \tilde{z}) \in B_{1}$ on the free boundary of w_{r} we have that $|\tilde{y}| /|\tilde{z}|$ is small, if r is small. Therefore, for small r, if $|\tilde{z}| \leq \frac{1}{2}$ then $|\tilde{y}| \leq \frac{1}{4}$.
For definiteness let us consider $0 \leq \tilde{y} \leq \frac{1}{4}$. If we now can show that

$$
\left|u_{r}(y)\right| \leq \frac{3}{4} \quad \text { for all } 0<y \leq \tilde{y}
$$

then assertion (5.5) follows from the above inequalities and the proof of the proposition is complete.

We distinguish two situations.

Fig. 12. Possible configurations near O

Case 1: $\tilde{z}<0$ (see Figure 12 (left)). Then

$$
\begin{gathered}
\tilde{y} \leq \varepsilon_{r}|\tilde{z}| \quad \text { with } \varepsilon_{r} \rightarrow 0 \text { as } r \rightarrow 0 \\
u_{r}(y) \leq 0 \quad \text { for } 0 \leq y \leq \tilde{y} \text { and small } r
\end{gathered}
$$

both as a consequence of Theorem 3.6 (ii). Applying the Comparison Lemma 2.1 with $s_{0}=0$ to the scaled equation gives

$$
u_{r}(y) \geq \tilde{z}-C \tilde{y} \quad \text { for } 0 \leq y \leq \tilde{y}
$$

or

$$
u_{r}(y) \geq \tilde{z}\left(1+C \varepsilon_{r}\right) \geq-\frac{3}{4} \quad \text { for } r \text { small enough. }
$$

Case 2: $\tilde{z}>0$ (see Figure 12 (right)). Then

$$
\begin{aligned}
& \tilde{y} \leq \frac{\varepsilon_{r}}{2} \quad \text { with } \varepsilon_{r} \rightarrow 0 \text { as } r \rightarrow 0 \\
& u_{r}(y) \geq 0 \quad \text { for } 0 \leq y \leq \tilde{y} \text { and small } r
\end{aligned}
$$

Now we argue as follows. Let $z_{1}:=\frac{3}{4}>\tilde{z}$ and assume that for some $\left.y_{1} \in\right] 0, \tilde{y}[$ we have $u_{r}\left(y_{1}\right) \geq z_{1}$ (in Figure 12 (right) we have chosen $\left.u_{r}\left(y_{1}\right)=z_{1}\right)$. Further, let

$$
y_{2}:=\sup \left\{y>\tilde{y}: u_{\tau}(y)<z_{1}\right\} .
$$

If y is as in this definition then $\left(r y, r z_{1}\right)$ lies above the free boundary of w with $0<r z_{1}<r$. The vertical shape of the free boundary at O, see Theorem 3.6 (ii), then implies that y_{2} exists and

$$
y_{2} \leq \varepsilon_{r} z_{1} \quad \text { with } \varepsilon_{r} \rightarrow 0 \text { as } r \rightarrow 0
$$

We apply the Comparison Lemma 2.1 with $s_{0}=0$ in the rectangle] $y_{1}, y_{2}[\times]-\infty, z_{1}[$ and obtain that

$$
u_{r}(y) \geq z_{1}-C\left(y_{2}-y_{1}\right) \quad \text { for } y_{1} \leq y \leq y_{2}
$$

In particular at $y=\tilde{y}$:

$$
\tilde{z} \geq z_{1}-C y_{2} \geq z_{1}\left(1-C \varepsilon_{r}\right)
$$

for small r a contradiction to $\tilde{z} \leq \frac{1}{2}$.
If α would stay strictly positive as $r \rightarrow 0$, then by Proposition 5.2 we could apply the conformal transformation of Lemma 4.6 which would tell us that in a sense the phases of w are balanced. If this is not the case then $\alpha(r) \rightarrow 0$ for a subsequence $r \rightarrow 0$. We then still have the possibility to study the blow-up limit of w_{r}. For the usual linear blow-up sequence the blow-up limit is globally defined since w is Lipschitz continuous. Here the values of w are stretched more in order to obtain w_{r} with a Dirichlet integral satisfying (5.4). The purpose of this stretching is to have the chance to pick up a non-trivial blow-up limit. By (5.4) the blow-up limit will exist in B_{1}, but it needs not to exist outside B_{1}. Moreover, the problem which could arise is that the blow-up limit might vanish in any ball B_{δ} with $\delta<1$, having a gradient concentrated near ∂B_{1}, despite of property (5.4). On the other hand, such a degeneracy of w_{r} is in favour of high values of $\alpha\left(\delta_{r}\right)$. The following proposition takes care of this situation in a precise way.
5.3 Proposition. Let $r_{k}:=2^{-k} r_{0}$. Assume that there exist constants $\beta, \gamma>0$ so that for $r=r_{k}$

$$
\begin{equation*}
\left(f_{B_{r / 2}}|\nabla w|^{2}\right)^{1 / 2} \leq 2^{-\gamma}\left(f_{B_{r}}|\nabla w|^{2}\right)^{1 / 2} \quad \text { or that } \alpha(r) \geq \beta \tag{5.6}
\end{equation*}
$$

Then

$$
\liminf _{s \searrow 0} \alpha(s) \geq \min \{\beta, \gamma\}
$$

Proof. Define for given $M>0$ the function

$$
\Psi(r):=\max \left\{\left(f_{B_{r}}|\nabla w|^{2}\right)^{\frac{1}{2}}, M r^{\beta}\right\}, \quad 0<r<r_{0}
$$

Let $k \in \mathbb{N}$. If the first inequality in (5.6) is satisfied then it follows from $r_{k+1}^{\beta}=2^{-\beta} r_{k}^{\beta}$ that

$$
\Psi\left(r_{k+1}\right) \leq 2^{-\alpha_{0}} \Psi\left(r_{k}\right) \quad \text { with } \quad \alpha_{0}:=\min \{\beta, \gamma\}
$$

If the second inequality in (5.6) holds, then

$$
f_{B_{r_{k}}}|\nabla w|^{2}=\sum_{i=1}^{m} r_{k}^{2 \alpha_{i}\left(r_{k}\right)} \leq m r_{k}^{2 \alpha\left(r_{k}\right)} \leq m r_{k}^{2 \beta}
$$

implying

$$
f_{B_{r_{k}+1}}|\nabla w|^{2} \leq 4 f_{B_{k_{k}}}|\nabla w|^{2} \leq 4 m r_{k}^{2 \beta} \leq\left(2^{-\gamma} M r_{k}^{\beta}\right)^{2}
$$

if M was chosen such that $M \geq 2^{\gamma+1} \sqrt{m}$. Hence

$$
\Psi\left(r_{k+1}\right) \leq \max \left\{2^{-\gamma} M r_{k}^{\beta}, M r_{k+1}^{\beta}\right\} \leq 2^{-\alpha_{0}} \Psi\left(r_{k}\right)
$$

Thus in either case we have the iterative estimate

$$
\Psi\left(r_{k+1}\right) \leq \theta \Psi\left(r_{k}\right) \quad \text { with } \theta=2^{-\alpha_{0}}<1
$$

resulting in

$$
\Psi\left(r_{k}\right) \leq \theta^{k} \Psi\left(r_{0}\right) \quad \text { for } k \in \mathbb{N}
$$

Now let $0<r \leq r_{0}$ and choose $k \in \mathbb{N}$ such that $r_{k+1}<r \leq r_{k}$. Then

$$
\left(f_{B_{r}}|\nabla w|^{2}\right)^{\frac{1}{2}} \leq 2\left(f B_{r_{k}}|\nabla w|^{2}\right)^{\frac{1}{2}} \leq 2 \theta^{k} \Psi\left(r_{0}\right)
$$

Using that

$$
r>r_{k+1}=2^{-k-1} r_{0} \Rightarrow k>-\frac{\log \frac{2 r}{r_{0}}}{\log 2} \Rightarrow \theta^{k} \leq\left(\frac{2 r}{r_{0}}\right)^{\alpha_{0}}
$$

we conclude that

$$
\left(f_{B_{r}}|\nabla w|^{2}\right)^{\frac{1}{2}} \leq C r^{\alpha_{0}}
$$

for some $C>0$. On the other hand

$$
\left(f_{B_{r}}|\nabla w|^{2}\right)^{\frac{1}{2}}=\left(\sum_{i=1}^{m} r^{2 \alpha_{i}(r)}\right)^{\frac{1}{2}} \geq r^{\alpha(r)}
$$

implying the assertion of the proposition.

If (5.6) holds along the sequence $\left(r_{k}\right)_{k}$, then according to Proposition 5.2 the free boundary is Hölder continuous at the cusp. This implies Assumption (A) in Section 7 and its consequences. Therefore we consider an arbitrary sequence $\rho \searrow 0$ along which (5.6) does not hold: i.e. for which there exist constants $\delta_{0}, \beta_{0}>0$ such that

$$
\begin{equation*}
\int_{B_{\rho / 2}}|\nabla w|^{2} \geq \delta_{0} \int_{B_{\rho}}|\nabla w|^{2} \quad \text { and } \quad \alpha(\rho) \leq \beta_{0} \tag{5.7}
\end{equation*}
$$

as $\rho \searrow 0$. Then for the blow up sequence $\left(w_{\rho}, \gamma_{\rho}\right)$, satisfying (5.3), we obtain using (5.4) the nondegeneracy

$$
\begin{equation*}
\int_{B_{1 / 2}}\left|\nabla w_{\rho}\right|^{2} \geq \delta_{0} \int_{B_{1}}\left|\nabla w_{\rho}\right|^{2} \geq \pi \delta_{0} \tag{5.8}
\end{equation*}
$$

i.e. w_{ρ} will have a nontrivial blow-up limit. To this end we first transform the functions γ_{ρ} into, see also Figure 13,

$$
\tilde{\gamma}_{\rho}(y, z):=\left\{\begin{array}{ll}
\gamma_{\rho}(y, z) & \text { in cusp case } \tag{5.9}\\
\gamma_{\rho}(y, z) & \text { in }\{y>0\} \\
1-\gamma_{\rho}(y, z)-1 & \text { in }\{y<0\}
\end{array}\right\} \quad \text { in vertical case }
$$

where in the vertical case we assume for definiteness the flow domain to be on the righthand side.

Fig. 13. Definition of $\tilde{\gamma}_{\rho}$.

Clearly

$$
\int_{B_{1}} \nabla \zeta \cdot\left(\nabla w_{\rho}+\frac{\tilde{\gamma}_{\rho}}{\rho^{\alpha(\rho)}} e_{z}\right)=0 \quad \text { for all } \zeta \in C_{0}^{\infty}\left(B_{1}\right)
$$

Moreover, it follows from Proposition 5.2 (see (5.5)) that for $|z| \leq \frac{1}{2}$ and ρ sufficiently small

$$
\begin{equation*}
\tilde{\gamma}_{\rho}(x, z)=0 \quad \text { for }|y|>C \cdot \rho^{\alpha(\rho)} \tag{5.10}
\end{equation*}
$$

and thus

$$
\int_{-\frac{1}{2}}^{+\frac{1}{2}} \frac{\left|\tilde{\gamma}_{\rho}(y, z)\right|}{\rho^{\alpha(\rho)}} d y \leq C
$$

Further define functions $l_{\rho}^{ \pm}:\left[-\frac{1}{2},+\frac{1}{2}\right] \rightarrow \mathbb{R}$ by

$$
l_{\rho}^{ \pm}(z):=\int_{\left\{0 \leq \pm y \leq \frac{1}{2}\right\}} \frac{\tilde{\gamma}_{\rho}(y, z)}{\rho^{\alpha(\rho)}} d y \quad \text { for }|z| \leq \frac{1}{2}
$$

They satisfy $0 \leq z l_{\rho}^{ \pm}(z) \leq C|z|$ and they are monotone non-increasing (since $\partial_{z} \gamma \leq 0$).
It is now possible to choose a subsequence $\rho \searrow 0$ along which

$$
\begin{aligned}
& w_{\rho} \rightarrow w_{*} \quad \text { weakly in } H^{1,2}\left(B_{1}\right)(\text { see }(5.2)) \text { and a.e. in } B_{1} \\
& l_{\rho}^{ \pm} \rightarrow l_{*}^{ \pm} \quad \text { weakly star in } L^{\infty}(]-\frac{1}{2},+\frac{1}{2}[) \\
& \alpha(\rho) \rightarrow \alpha_{*} \in\left[0, \beta_{0}\right] .
\end{aligned}
$$

Replacing the test functions in the weak equation for ($w_{\rho}, \tilde{\gamma}_{\rho}$) as was done in the Separation Lemma (thus with $\zeta^{ \pm}(z):=\zeta(0 \pm, z)$ having different values on $-\frac{1}{2}<z<0$, but the same values for $z>0$) we obtain

$$
0=\int_{B_{1}} \nabla w_{\rho} \cdot \nabla \zeta+\int_{B_{1} \cap\{y>0\}} \frac{\tilde{\gamma}_{\rho}}{\rho^{\alpha(\rho)}} \partial_{z} \zeta+\int_{B_{1} \cap\{y<0\}} \frac{\tilde{\gamma}_{\rho}}{\rho^{\alpha(\rho)}} \partial_{z} \zeta .
$$

Then $\delta \rightarrow 0$ gives

$$
\begin{equation*}
0=\int_{B_{1}} \nabla \zeta \cdot \nabla w_{*}+\int_{\{y=0\}} l_{*}^{+} \partial_{z} \zeta^{+}+\int_{\{y=0\}} l_{*}^{-} \partial_{z} \zeta^{-} \tag{5.11}
\end{equation*}
$$

for all such test functions ζ. From this limit equation and the convergence properties of w_{ρ} and the free boundaries we conclude that w_{*} satisfies the properties from Figure 14. To exclude the possibility of a vanishing blow up limit w_{*} observe that Proposition 2.5 and inequality (5.8) imply the existence of a positive constant c such that

$$
\int_{B_{1} \backslash B_{1 / 2}}\left|w_{\rho}\right|^{2} \geq c \int_{B_{1 / 2}}\left|\nabla w_{\rho}\right|^{2} \geq c \delta_{0} .
$$

Fig. 14. Properties of blow up limit w_{*}

Since $w_{\rho} \rightarrow w_{*}$ strongly in $L^{2}\left(B_{1}\right)$ we have indeed

$$
w_{*} \not \equiv 0 \text { in the shaded regions from Figure } 14
$$

As an immediate consequence we have
5.4 Lemma. There exist $m_{*} \geq 1$ odd and $c_{*}>0$ such that the following expansion holds:

$$
w_{*}(x)=c_{*} \operatorname{Re}\left(-i \tilde{x}^{m *}(1+\tilde{h}(\tilde{x}))\right)
$$

for small $|x|$ with $\operatorname{Im} \tilde{x}>0$, where $\tilde{x}=i^{k}(-i x)^{k / 2}$ and \tilde{h} is a holomorphic function with $\operatorname{Im} \tilde{h}(\tilde{x})=0$ for $\operatorname{Im} \tilde{x}=0$.

Proof. The asymptotic behaviour of the blow up limit at the orgin, with $m_{*} \in \mathbb{N}$ and $c_{*} \in \mathbb{R} \backslash\{0\}$, follows from the properties shown in Figure 14. Moreover, it follows from (5.11) that in the cusp case ($k=1$)

$$
\pm \partial_{y} w_{*}(0 \pm, z)=-\partial_{z} l_{*}^{ \pm}(z) \geq 0 \quad \text { for }-1<z<0
$$

where the monotonicity of $l_{*}^{ \pm}$is a consequence of the approximation process. In the vertical case ($k=2$)

$$
\partial_{y} w_{*}(0+, z)=-\partial_{z} l_{*}^{ \pm}(z) \geq 0 \quad-1< \pm z<0
$$

Checking the sign of w_{*} from the above expansion with these inequalities it follows that $c_{*}>0$ and that m_{*} is odd.
We emphasize once again that the limit function w_{*} results here from a particular blow up, i.e., for a particular subsequence $\rho \searrow 0$ along which the blow up is non-degenerate. Next we show that the number of phases is conserved in this blow up process. We do this in two steps and show first
5.5 Lemma. $m_{*} \leq m$.

Proof. Let $\delta>0$ be fixed and sufficiently small so that in the ball B_{δ} the distribution of the m_{*} phases of w_{*} at 0 over the domains D_{1}, \ldots, D_{m}, is as in Figure 15 (a). In the figures we show only the cusp case with $m_{*}=3$. We select points $x_{i} \in D_{i}$ such that

$$
\left|w_{*}\left(x_{i}\right)\right| \geq c, \quad \text { for some } c>0
$$

Fig. 15. (a) Distribution of m_{*} phases of w_{*} in B_{δ}; (b) Construction of the subsets D_{i}^{ϵ}

In the arguments below we need that w_{ρ} becomes uniformly small on circles close to the origin. Using the uniform boundedness of the Dirichlet's integral for w_{ρ}, we can use Courant [6, Lemma 3.1] to obtain that for any pair $0<r_{1}<r_{2}<1$, there exists $r_{\rho} \in\left[r_{1}, r_{2}\right]$ such that

$$
\omega^{2}\left(r_{\rho}\right) \leq \frac{2 \pi m}{\log r_{2} / r_{1}}
$$

where $\omega\left(r_{\rho}\right)$ denotes the oscillation of w_{ρ} on $\partial B_{r_{\rho}}$. Since w_{ρ} vanishes below O, this implies

$$
\begin{equation*}
\sup _{\partial B_{r_{\rho}}}\left|w_{\rho}\right| \leq \sqrt{\frac{2 \pi m}{\log r_{2} / r_{1}}} \quad \text { for all } \rho>0 \tag{5.12}
\end{equation*}
$$

We use this result as follows. Consider a ball B_{ε}, with $\varepsilon(\sqrt{\varepsilon} \ll \delta)$ chosen such that $B_{\sqrt{\varepsilon}} \cap\left\{x_{i}\right\}=\emptyset$ for all $i=1, \ldots, m_{*}$. Further we select subsets D_{i}^{ϵ}, satisfying $x_{i} \in D_{i}^{\epsilon} \subset D_{i}$, which touch the circle ∂B_{ε}, see Figure 15 (b). By the convergence of w_{ρ} we have for ρ sufficiently small,

$$
\begin{equation*}
w_{\rho}(x) \neq 0 \quad \text { for } x \in D_{i}^{\varepsilon} \text { and }\left|w_{\rho}\left(x_{i}\right)\right|>c / 2 \tag{5.13}
\end{equation*}
$$

Choose ρ such that (5.13) holds. Then by (5.12) and the choice of ε, there exists $\mu:=r_{\rho} \in$ $[\varepsilon, \sqrt{\varepsilon}]$ such that

$$
\sup _{\partial B_{\mu}}\left|w_{\rho}\right| \leq \sqrt{\frac{4 \pi m}{\log \frac{1}{\varepsilon}}}<c / 4,
$$

provided ε is chosen small enough. Finally choose points $a_{i} \in \partial B_{\mu} \cap D_{i}^{\varepsilon}$ for $i=1, \ldots, m_{*}$. Now suppose $m^{*}>m$. Then at least two domains $D_{i_{1}}^{\varepsilon}$ and $D_{i_{2}}^{\varepsilon}$ must belong to the same component of $\left\{w_{\rho} \neq 0\right\}$ and within this component the sets $D_{i_{1}}^{\varepsilon_{2}}$ and $D_{i_{2}}^{\varepsilon}$ can be connected by a curve σ_{ρ} on which w_{ρ} has a fixed sign (for definiteness, say positive). The sets $D_{i_{1}}^{\varepsilon}$ and $D_{i_{2}}^{\varepsilon}$ are separated by a third set, say $D_{i_{0}}^{\varepsilon}$, on which $w_{\rho}<0$. We can choose σ_{ρ} so that it starts at $a_{i_{1}}$ and stops at $a_{i_{2}}$. Now there are two possibilities.

(a)

(b)

Fig. 16. (a) The curve σ_{ρ} encloses region where w_{ρ} has opposite sign; (b) The curve σ_{ρ} passes throug the small ball B_{ε}

The curve σ_{ρ} encloses the set $D_{i_{0}}^{\varepsilon}$ where w_{ρ} has opposite sign, see Figure 16 (a). Since $w_{\rho}>-c / 4$ on ∂B_{μ} and $w_{\rho}>0$ on σ_{ρ}, the maximum principle gives that $w_{\rho}>-c / 4$ in $D_{i_{0}}^{\varepsilon}$ and in particular $w_{\rho}\left(x_{i_{0}}\right)>-c / 4$, a contraction.
The other possibility is that σ_{ρ} passes through the small ball B_{ε} when connecting $a_{i_{1}}$ and $a_{i_{2}}$, see Figure 20 b . Then we argue as follows. Choose $0<\varepsilon^{*}<\varepsilon$ such that $\bar{B}_{\varepsilon^{*}} \cap \sigma_{\rho}=\emptyset$. In the ball $B_{\varepsilon^{*}}$ we select a point b, with $w_{p}(b)<0$, which belongs to the same component of $\left\{w_{\rho}<0\right\}$ as the set $D_{i_{0}}^{\varepsilon}$. Then the only possible connection between $a_{i_{0}}$ and b in that
component, is by a curve τ_{ρ} which encloses either $D_{i_{1}}$ or $D_{i_{2}}$. As before we apply the maximum principle to reach a contradiction.

Next we show
5.6 Lemma. $m_{*} \geq m$.

Proof. If $m>m_{*}$, then between two adjacent domains D_{i}^{e} and D_{i+1}^{ε}, or between the free boundary and, say, D_{1}^{ε} there must be remaining components of $\left\{w_{\rho} \neq 0\right\}$.

Fig. 17. Additional phases of w_{ρ} between D_{i}^{ε} and D_{i+1}^{ε}

The first possibility leads to the situation depicted in Figure 17. which holds for all ρ sufficiently small (at least those $\rho \searrow 0$, along which the sequence w_{ρ} converges). Consequently, in each transversal cross-section along the strip between D_{i}^{ϵ} and D_{i+1}^{ϵ} (we selected ε small), there are points at which w_{ρ} has a zero difference-quotient. By the C^{1}-convergence of w_{ρ} we now conclude that $\nabla w_{*}=0$ along the curve separating D_{i} and D_{i+1}, see the picture on the right in Figure 17. This clearly contradicts the behaviour of w_{*} in Lemma 5.4.
Next we consider the second possibility. Then the additional phases of w_{ρ} enter along the free boundary. The argument used above does not apply here because of the missing C^{1}-convergence. We therefore proceed as follows.
Near the free boundary the distribution of components of $\left\{w_{\rho} \neq 0\right\}$ must be similar to the situation shown in Figure 18 (a).
Then for ρ sufficiently small we can choose a domain $D \subset B_{1}$ and a function $\tilde{w}_{\rho}: \bar{D} \rightarrow \mathbb{R}$, having properties as described in Figure $18(\mathrm{~b})$. Clearly \tilde{w}_{ρ} is superharmonic in D. Because it vanishes near $\{y=0\}$ we have

(a)

(b)

Fig. 18. (a) Sign-changes of w_{ρ} near free boundary; (b) Definition of the function \tilde{w}_{ρ} on $D \subset B_{1}$

$$
\int_{D} \nabla \zeta \cdot \nabla \tilde{w}_{\rho} \geq 0
$$

for all $\zeta \in C_{0}^{\infty}(D \cup\{y=0\}), \zeta \geq 0$. Since w_{ρ} is bounded in $H^{1,2}\left(B_{1}\right)$, see (5.4), we also have \tilde{w}_{ρ} bounded in $H^{1,2}(D)$. Hence along an appropriate subsequence $\rho \searrow 0, \tilde{w}_{\rho} \rightarrow \tilde{w}_{*}$ as well as $w_{\rho} \rightarrow w_{*}$ weakly in $H^{1,2}(D)$. Since the domain where $\tilde{w}_{\rho} \neq w_{\rho}$ collapses to the vertical line $\{y=0\}$ as $\rho \searrow 0$ we have $\tilde{w}_{*}=w_{*}$ in D. Hence for test functions ζ as above

$$
0 \leq \int_{D} \nabla \zeta \cdot \nabla w_{*}=\int_{\partial D \cap\{y=0\}} \zeta \partial_{\nu} w_{*}
$$

a contraction to Lemma 5.4.

5.7 Corollary. $m_{*} \geq 3$.

Proof. By Lemma 5.6 and Proposition 4.8 we have $m_{*} \geq m \geq 3$.
Having established that w_{*} has the same number of phases as w, we prove next that $\alpha_{*} \geq \frac{k m-2}{2}$, independent of the choice of the sequence $\rho \searrow 0$ satisfying (5.7).
5.8 Lemma. $\alpha_{*} \geq \frac{k m-2}{2}$.

Proof. We decompose w_{ρ} and w_{*} into their phases at 0 :

$$
w_{\rho}=\sum_{i=1}^{m} w_{\rho i} \quad \text { and } \quad w_{*}=\sum_{i=1}^{m} w_{* i} \quad \text { in } B_{\rho}(\rho \text { small })
$$

Here we used that $m_{*}=m$ by 5.5 and 5.6 , and the numbering is so that $w_{\rho i} \rightarrow w_{* i}$ weakly in $H^{1,2}\left(B_{1}\right)$. Therefore

$$
\liminf _{\rho \searrow 0} \int_{B_{1}}\left|\nabla w_{\rho i}\right|^{2} \geq \int_{B_{1}}\left|\nabla w_{* i}\right|^{2} \geq c>0
$$

Since, see (5.4),

$$
\frac{1}{\pi} \int_{B_{1}}\left|\nabla w_{\rho i}\right|^{2}=\rho^{2\left(\alpha_{i}(\rho)-\alpha(\rho)\right)}
$$

we find that

$$
\liminf _{\rho \searrow 0} \rho^{2\left(\alpha_{i}(\rho)-\alpha(\rho)\right)} \geq \frac{c}{\pi}
$$

Thus for small ρ

$$
\alpha_{i}(\rho)-\alpha(\rho) \leq \frac{C}{\log \frac{1}{\rho}}
$$

Summing over i and using (5.2) we get

$$
\alpha(\rho) \geq \frac{\kappa m-2}{2}-\frac{C}{\log \frac{1}{\rho}}
$$

with κ as in (5.1). Letting first $\rho \searrow 0$ and then $r_{1} \searrow 0$ we obtain the desired inequality.
So far we have controlled $\alpha(r)$ from below only for certain subsequences for which (5.7) holds. Using Proposition 5.3 we now show that $\alpha(r)$ remains positive for all small r.
5.9 Lemma. $\liminf \operatorname{fin}_{r \rightarrow 0} \alpha(r) \geq \frac{k m-2}{2}$.

Proof. Take any $0<\alpha_{0}<\frac{k m-2}{2}$ and $\gamma=\alpha_{0}$. Let us assume that (5.6) does not hold for some small r_{0}. Then there exists a sequence $\rho \searrow 0$ for which (5.7) holds with

$$
\delta_{0}=2^{-2 \gamma-2} \quad \text { and } \quad \beta_{0}=\alpha_{0}
$$

Following the above blow up argument, Lemma 5.8 implies that

$$
\beta_{0} \geq \liminf _{\rho \neq 0} \alpha(\rho)=\alpha_{*} \geq \frac{k m-2}{2}
$$

a contradicition. Hence (5.6) holds for some small r_{0}. Consequently, by Proposition 5.3,

$$
\liminf _{r \times 0}^{\lim } \alpha(r) \geq \alpha_{0} .
$$

Since $\alpha_{0}<\frac{k m-2}{2}$ was chosen arbitrarily the proof is complete.
Using this result we are able to prove that on small balls B_{r} the phases w_{i} are balanced towards each other.
5.10 Lemma. There exist constants $c>0, C>0$ such that for small r and $i=1, \ldots, m$

$$
\begin{equation*}
c r^{k m} \leq \int_{B_{r}}\left|\nabla w_{i}\right|^{2} \leq C r^{k m} \tag{5.14}
\end{equation*}
$$

Proof. By Lemma 5.9 we have $\alpha(r) \geq \alpha_{0}>0$ for small r (α_{0} as in the proof of 5.9.). Then Proposition 5.2 implies that the free boundary becomes vertical at 0 in a Hölder sense, that is, Assumption (A) in Section 4 (with $\alpha=\alpha_{0}$) is satisfied. Thus Lemma 4.9 can be applied and therefore (4.12) holds, i.e.

$$
\begin{equation*}
\int_{B_{r}}\left|\nabla w_{i}\right|^{2} \geq c r^{k m} \tag{5.15}
\end{equation*}
$$

Now let us look at the Monotonicity Formula 2.8. It follows from Assumption (A) (in the vertical case) that (2.3) is satisfied with $\kappa=k$ and

$$
\delta(r)= \begin{cases}0 & \text { cusp case } \\ C r^{\alpha_{0}} & \text { vertical case }\end{cases}
$$

Thus φ is bounded and in Remark 5.1 we obtain instead of (5.2)

$$
\frac{1}{m} \sum_{i=1}^{m} \alpha_{i}(r) \geq \frac{k m-2}{2}-\frac{C}{\log \frac{1}{r}}
$$

Using (5.15) we find

$$
\alpha_{i}(r) \leq \frac{k m-2}{2}+\frac{C}{\log \frac{1}{r}} \quad \text { for } i=1, \ldots, m
$$

Consequently

$$
\begin{equation*}
\left|\alpha_{i}(r)-\frac{k m-2}{2}\right| \leq \frac{C}{\log \frac{1}{r}} \tag{5.16}
\end{equation*}
$$

which is equivalent to the assertion.
Now we are able to consider the blow-up with respect to the exponent $\frac{\mathrm{km}}{2}-2$ instead of $\alpha(r)$:

$$
\begin{equation*}
w_{r}(x):=w(r x) / r^{\beta}, \quad \gamma_{r}(x)=\gamma(r x) \tag{5.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta:=\frac{k m}{2} \tag{5.17}
\end{equation*}
$$

Moreover with $\tilde{\gamma}_{r}$ as in (5.9) we define now

$$
\begin{equation*}
l_{r}^{ \pm}(z):=r^{1-\beta} \int_{\left\{0 \leq \pm y \leq \frac{1}{2}\right\}} \tilde{\gamma}_{r}(y, z) d y \tag{5.18}
\end{equation*}
$$

We now show
5.11 Theorem. Let w_{r} and $l_{\tau}^{ \pm}$be as in (5.16), (5.18). Then $w_{r} \rightarrow w_{*}$ weakly in $H_{l o c}^{1,2}\left(\mathbb{R}^{n}\right)$ and $l_{r}^{ \pm} \rightarrow l_{*}^{ \pm}$uniformly in $C_{l o c}^{0}(\mathbb{R})$ as $r \rightarrow 0$. The limits $w_{*}, l_{*}^{ \pm}$satisfy (5.11) and for some $c_{*}>0$ they are given by

$$
\begin{equation*}
w_{*}(x)=c_{*} \operatorname{Re}\left(-i \tilde{x}^{m}\right) \quad \text { with } \quad \tilde{x}=i^{k}(-i x)^{k / 2} \tag{5.19}
\end{equation*}
$$

and for $z \geq 0$

$$
\begin{align*}
& l_{*}^{ \pm}(-z)=c_{*} z^{\beta} \text { and } l_{*}^{ \pm}(z)=0 \text { in cusp case } \\
& l_{*}^{ \pm}(\mp z)= \pm c_{*} z^{\beta} \text { and } l_{*}^{ \pm}(\pm z)=0 \text { in vertical case. } \tag{5.20}
\end{align*}
$$

Proof. Let $R>0$. It follows from (5.14) that the phases $w_{r i}$ of w_{r} are bounded in $H^{1,2}\left(B_{R}\right)$ for small r. Moreover, by (5.10) and (5.16), the functions $l_{r}^{ \pm}$are bounded in $C^{0}([-R, R])$ for small r. Thus there exist $w_{*}, l_{*}^{ \pm}$such that for certain subsequences $w_{r} \rightarrow w_{*}$ weakly in $H^{1,2}\left(B_{R}\right)$ and $l_{r}^{ \pm} \rightarrow l_{*}^{ \pm}$weakly star in $L^{\infty}(]-R, R[)$.

Since Assumption (A) in Section 4 is satisfied we can apply Lemma 4.9. It follows from (4.11) that

$$
w_{r}(x) \rightarrow a \operatorname{Re}\left(-i \tilde{x}^{m}\right)
$$

uniformly in x, locally in every cone as in 4.9 (iii), which gives (5.19) with $c_{*}:=a$. The identity (5.11) follows as before and repeating the proof of Lemma 5.4 gives $c_{*}>0$. Moreover, it follows from (5.19) that with $\tilde{x}=\tilde{y}+i \tilde{z}$

$$
\left.\partial_{y} w_{*}\right|_{z \approx 0}=c_{*} \beta \tilde{y}^{m-\frac{2}{\hbar}} .
$$

Thus the identities in the proof of Lemma 5.4 give

$$
\begin{equation*}
-\partial_{z} l_{*}^{ \pm}(z)=c_{*} \beta|z|^{\beta-1} \tag{5.21}
\end{equation*}
$$

for $-1<z<0$ in the cusp case and $-1< \pm z<0$ in the vertical case. Now, by (5.16), we have in Proposition 5.2

$$
|z| \leq \frac{r}{2} \quad \text { implies } \quad|y| \leq C r^{\beta}
$$

for free boundary points $(y, z) \in B_{r}$, or

$$
\begin{equation*}
|y| \leq C|z|^{\beta} . \tag{5.22}
\end{equation*}
$$

Then $\tilde{\gamma}_{r}(y, z)=0$ for $|y| \geq C r^{\beta-1}|z|^{\beta}$ and we infer that

$$
\left|l_{r}^{ \pm}(z)\right| \leq C|z|^{\beta} .
$$

This also holds for $l_{*}^{ \pm}$so that (5.20) follows from (5.21). The uniform convergence of $l_{r}^{ \pm}$ follows from the monotonicity of these functions and the continuity of the limit $l_{*}^{ \pm}$.

Finally, since $c_{*}=a$ is independent of the chosen subsequence it follows that the whole sequence converges.
5.12 Remark. The free boundary becomes vertical at 0 in the Hölder sense (5.22), where the exponent $\beta \geq \frac{3}{2}$ is given by (5.17). For the standard cusp case ($k=1, m=3$) we have
$\beta=\frac{3}{2}$. The result (5.22) does not imply that the free boundary is a C^{1} curve from the left or right at the cusp. This will be proved in Section 6.

6. Regularity of free boundary at cusp

In a number of steps we show here that at the cusp the free boundary becomes vertical in a C^{1}-manner. We are able to prove this for the cusp case and partially for the vertical case (that is, for the part of the free boundary which lies below the critical point). For the proof we need to estimate the gradient of a harmonic function, defined in an open, bounded and connected domain, in terms of its value at the boundary. The following proposition gives the precise statement. It is a generalization of a result of Alt \& Gilardi [5, Lemma 7.5].
6.1 Proposition. Let $D \subset \mathbb{R}^{2}$ be open, bounded and connected, and let $h: D \rightarrow \mathbb{R}$ be harmonic. Further let $K \subset \mathbb{R}^{2}$ be compact such that $\mathbb{R}^{2} \backslash K$ is connected. Then

$$
\begin{align*}
& |\nabla h| \leq C, \quad \text { for some } C>0 \tag{6.1}\\
& \operatorname{dist}(\nabla h(x), K) \rightarrow 0 \quad \text { as } \quad \operatorname{dist}(x, \partial D) \rightarrow 0 \tag{6.2}
\end{align*}
$$

implies

$$
\nabla h(x) \in K \quad \text { for all } x \in D
$$

Proof. If $\nabla h=$ constant in D then $\nabla h \in K$ by (6.2). If $\nabla h \neq$ constant in D it follows that ∇h is an open mapping (since D is connected and $h: D \rightarrow \mathbb{C}$ holomorphic). We argue by contraction. Thus suppose $\nabla h\left(x_{0}\right) \notin K$ for some $x_{0} \in D$. Then consider a curve $\sigma:\left[0, \infty\left[\rightarrow \mathbb{R}^{2} \backslash K\right.\right.$ with $\sigma(0)=\nabla h\left(x_{0}\right)$ satisfying

$$
\begin{align*}
& |\sigma(s)| \rightarrow \infty \quad \text { as } s \rightarrow \infty \tag{6.3}\\
& \operatorname{dist}(\sigma([0, \infty[), K) \geq d>0 \tag{6.4}
\end{align*}
$$

Related to σ, consider the interval

$$
I=\{t \geq 0: \sigma(s) \in\{\nabla h(x): x \in D\} \text { for } 0 \leq s \leq t\}
$$

I is non empty since $0 \in I$. Because ∇h is an open mapping I is open, and by (6.1),(6.3) it is bounded. Therefore $t_{0}:=\sup I<\infty$ does not belong to I. Choose $t_{m} \nearrow t_{0}$ and $x_{m} \in D$ with $\sigma\left(t_{m}\right)=\nabla h\left(x_{m}\right)$. Since $t_{0} \notin I$ the sequence $\left(x_{m}\right)_{m}$ has no accumulation point in D, therefore $\operatorname{dist}\left(x_{m}, \partial D\right) \rightarrow 0$ as $m \rightarrow \infty$. Then dist $\left(\sigma\left(t_{m}\right), K\right) \rightarrow 0$ by (6.2), a contradiction to (6.4).

We consider the free boundary near the origin 0 where the singularity is situated. It sufficies to consider a right neighbourhood. We want to show that u is monotone there. For this let

$$
0 \leq \varphi<\frac{\pi}{2} \quad \text { and } \quad e=e(\varphi):=\exp (-i \varphi)
$$

and consider the ray

$$
R:=\left\{r \exp \left(-i \frac{\pi}{2}+i \theta\right): r>0\right\}
$$

with $0<\theta<\frac{\pi}{2}$ (see Figure 19). By Theorem 5.11 we have for $x \in R$

$$
\nabla w_{*}(x) \cdot e=c_{*} \beta|x|^{\beta-1} \cos ((\beta-1) \theta+\varphi)>0
$$

provided

$$
\begin{equation*}
(\beta-1) \theta<\frac{\pi}{2}-\varphi \tag{6.5}
\end{equation*}
$$

Since the blow up sequence w_{r} converges to w_{*}, with smooth convergence in the set where w_{*} is harmonic, we also have for a fixed $x_{0} \in R$

$$
\nabla w_{r}\left(x_{0}\right) \cdot e>0 \quad \text { for all small } r
$$

hence

$$
\begin{equation*}
\nabla w(x) \cdot e>0 \quad \text { for } x \in R,|x| \text { small } \tag{6.6}
\end{equation*}
$$

From now on we assume that (6.5) is satisfied. Let us choose a ball B_{ρ} around 0 so that (6.6) holds for $x \in R \cap B_{\rho}$ and so that in B_{ρ} the free boundary to the right of the cusp lies below R. We then denote by Ω the domain enclosed by $R, \partial B_{\rho}$, and the free boundary $\operatorname{graph}(u)$.

We show
6.2 Lemma. There exists a neighbourhood of O in Ω in which

$$
\nabla w \cdot e \geq 0
$$

Proof. Since the free boundary becomes vertical at O (Theorem 3.6 (ii)), there are points $x_{i} \in \partial \Omega$ on the free boundary with $x_{i} \rightarrow 0$ as $i \rightarrow \infty$ so that $\nu\left(x_{i}\right) \cdot e>0$. Here ν is the normal towards the flow domain. On the free boundary we have

$$
\left(\nabla w-e_{z}\right) \cdot \nu=0 \quad \text { and } \quad w=0
$$

therefore

$$
\begin{equation*}
\nabla w=e_{z} \cdot \nu \nu \tag{6.7}
\end{equation*}
$$

This implies that

$$
\nabla w\left(x_{i}\right) \cdot e=e_{z} \cdot \nu\left(x_{i}\right) \nu\left(x_{i}\right) \cdot e>0
$$

Let D_{i} denote the connected component of $\Omega \cap\{\nabla w \cdot e>0\}$ containing x_{i} as boundary point. Let us first make the following assumption:

There exists a subsequence, again denoted by $\left(x_{i}\right)_{i}$, with the property that $\bar{D}_{i} \cap R \neq \emptyset$.
We shall show that from this assumption the lemma follows. Note that if such a sequence exists, then by (6.6) all the corresponding D_{i} 's coincide and contain part of the ray R up to 0 . On R we select points \tilde{x}_{i} with $\tilde{x}_{i} \rightarrow 0$ as $i \rightarrow \infty$, and we consider curves in the connected component, connecting the points x_{i} and \tilde{x}_{i} and the points x_{j} and \tilde{x}_{j} for a suitable pair

Fig. 19. Construction of the set D.
$j>i$, as in Figure 19. Let D be the region enclosed by the free boundary, R and these two curves.

By construction,

$$
\nabla w(x) \cdot e>0 \quad \text { for all } x \in \partial D \backslash \operatorname{graph}(u)
$$

On the free boundary we have by (6.7)

$$
\left|\nabla w-\frac{1}{2} e_{z}\right|=\frac{1}{2}
$$

Moreover, since the free boundary does not become vertical on ∂D we have there $\nu \cdot e_{z} \geq$ $c>0$, hence

$$
\nabla w \cdot e_{z} \geq c^{2}>0 \quad \text { on } \partial D \cap \operatorname{graph}(u)
$$

Consequently ∇w has values on ∂D in the set K from Figure 20.
Then Proposition 6.1 implies

$$
\nabla w(\bar{D}) \subset K
$$

Since ∇w is an open mapping, any neighborhood of a free boundary point is mapped into a neighborhood of a point on the circle in Figure 20. Hence, the part of K outside the halfspace $\{z \in \mathbb{C} ; z \cdot e>0\}$ cannot be attained. Therefore

$$
\nabla w \cdot e \geq 0 \quad \text { in } \bar{D}
$$

Fig. 20. $\nabla w(\partial D) \subset K$.
from which the lemma follows after letting $i, j \rightarrow \infty$. To complete the proof we have to show that assumption (6.8) is the only possibility. We argue by contradicition. If (6.8) does not hold then the following three cases need to be checked.
(i) \bar{D}_{i} does not touch R, the origin, and ∂B_{ρ}.

The properties of D_{i} imply that $\nabla w \cdot e=0$ on $\partial D \backslash \operatorname{graph}(u)$. Arguing as before with $D:=D_{i}$ we obtain $\nabla w \cdot e=0$ on D_{i} contradicting the definition of D_{i}.
(ii) Infinitely many D_{i} 's reach O.

This implies a situation as in Figure 21. Consider some $\{\nabla w \cdot e<0\}$ component D enclosed by two of the D_{i} 's and the free boundary. We want to apply the argument used in (i) to the set D. This is straight forward if D does not extend to the origin. If, however, as in Figure 21 the origin belongs to ∂D, we need to estimate $\nabla w(x) \cdot e, x \in D$, as $x \rightarrow 0$. Since D is contained in the cone bounded by the vertical and R, and since $\nabla w \cdot e$ is harmonic and bounded in D and vanishes on $\partial D \backslash(\operatorname{graph}(u) \cup O)$, we conclude that

$$
|\nabla w(x) \cdot e| \rightarrow 0 \quad \text { for } x \in D, x \rightarrow 0 .
$$

This allows us to apply the argument from (i) to reach a contradiction.
(iii) Infinitely many sets D_{i} touch ∂B_{ρ}.

If two domains $D_{i_{1}}$ and $D_{i_{2}}$ enclose a set D as in (ii) we proceed as there. Otherwise this leads to a situation as shown in Figure 22, where sign changes of $\nabla w \cdot e$ accumulate in

Fig. 21. D_{i} 's reaching 0.
the domain where $\nabla w \cdot e$ is harmonic. This yields a contradiction as in the first part of Proposition 4.1.
We are now in a position to prove
6.3 Theorem. The free boundary becomes vertical at O in a C^{1}-manner.

Proof. Taking $\varphi=0$ in Lemma 6.2 it follows that $\partial_{y} w \geq 0$ in a neighborhood of O below R. This implies that the free boundary to the right of the cusp is non-increasing in y, i.e. near O it has the form

$$
\begin{equation*}
\left\{(y, z):-\delta_{0}<z<0, y>0, y=f(z)\right\} \tag{6.9}
\end{equation*}
$$

for some $\delta_{0}>0$. Since u is analytic away from the cusp it follows that f is analytic and $f^{\prime}(z)<0$. Now choose any $0 \leq \varphi<\frac{\pi}{2}$ in Lemma 6.2. This implies that $\nu \cdot e \geq 0$ on the free boundary in a neighborhood of O below R. Therefore there exists $\delta_{\varphi}>0$ so that

$$
\left(1,-f^{\prime}(z)\right) \cdot e \geq 0
$$

for $-\delta_{\varphi}<z<0$, i.e. $\left|f^{\prime}(z)\right| \leq \cot \varphi$.
Beside this we can show
6.4 Theorem. The function f in (6.9) satisfies

Fig. 22. Accumulation of sign changes of $\nabla w \cdot e$.

$$
\lim _{z \neq 0} \frac{f(z)}{|z|^{\beta}}=c_{*}
$$

Proof. Since the free boundary has a representation as in (6.9) it follows that in (5.18)

$$
l_{r}^{+}(z)=r^{1-\beta} \frac{f(r z)}{r}
$$

Set $z=1$ and use Theorem 5.11.
6.5 Note. Next we consider, in the vertical case, the part of the free boundary above O. For definiteness we again assume that the flow domain lies to the right. We now take

$$
\begin{aligned}
& 0 \leq \varphi<\frac{\pi}{2}, \quad e=e(\varphi)=\exp (i \varphi) \\
& R:=\left\{r \exp \left(i \frac{\pi}{2}-i \theta\right): r>0\right\}
\end{aligned}
$$

with $0<\theta<\frac{\pi}{2}$. Then, with θ as in (6.5), we find the same formula for $\nabla w_{*} \cdot e$ along R. Proceeding as before, we obtain (for $\varphi=0$) the existence of f (as in (6.9)) with

$$
\lim _{z \nearrow 0} \frac{f(z)}{|z|^{\beta}}=-c_{*} .
$$

However, for $\varphi>0$ we do not get any additional information. Therefore with this method Theorem 6.3 cannot be proven.

7. Concluding remarks.

In this paper we develop the local analysis concerning the behaviour of the reduced potential and the interface near such singular points, provided they belong to the interior of the flow domain and provided $N=2$. That singular points are in the interior seems to be clear by physical intuition. In fact, for our rectangular domain the interface is expected to be below the position of the highest well, provided all wells withdraw fluid. However we were not able to prove this. The restriction to two space dimensions was imposed to apply typical two dimensional free boundary methods.

As a result of the local analysis we obtain that at a singular free boundary point the free boundary either forms a cusp or becomes vertical. Which of the two will arise is determined by global arguments. For instance, we conjecture that a well configuration as in Figure 23, with one well pumping fluid in and one well pumping fluid out, may lead to vertical interfaces.

Fig. 23. Well configuration leading to vertical singularities.
With respect to the local behaviour, we observe that we have no regularity results for the function f, see Section 6, related to the branch above the singularity (vertical case).

Also an expansion for the derivative of f, i.e. $f^{\prime}(z) / z^{\beta-1} \rightarrow \pm \beta c_{*}$ as $z \rightarrow 0$, is left as an open problem.

Finally we mention that the proofs in this paper do not carry over to the three dimensional case, in which a different, not polynomial asymptotic expansion, is expected.

Appendix A: Monotonicity formula.

Consider a continous function $w: B_{r_{0}} \rightarrow \mathbb{R}, r_{0}>0$, which is harmonic outside its zero set. Assume w has a decomposition

$$
w=\sum_{i=1}^{m} w_{i}
$$

where $w_{i} \in H^{1,2}\left(B_{r_{0}}\right) \cap C^{0}\left(B_{r_{0}}\right)$ are the phases of w at the center O of $B_{r_{0}}$ (see Definition 2.3). Then φ_{i} defined as in (2.1) are absolutely continuous positive functions on $] 0, r_{0}[$. We want to show that

$$
\begin{equation*}
(\log \varphi)^{\prime}(r) \geq-\kappa m^{2} \frac{\delta(r)}{r} \tag{A.1}
\end{equation*}
$$

where φ is defined as in (2.2) and the function δ is chosen so that (2.3) holds.
We have for almost all $0<r<r_{0}$

$$
\begin{equation*}
(\log \varphi)^{\prime}(r)=\sum_{i=1}^{m} \frac{\varphi_{i}^{\prime}(r)}{\varphi_{i}(r)}=-\frac{\kappa m^{2}}{r}+\sum_{i=1}^{m} \frac{s_{i}(r)}{r} \tag{A.2}
\end{equation*}
$$

with

$$
s_{i}(r):=\frac{r \int_{S_{r}}\left|\nabla w_{i}\right|^{2}}{\int_{B_{r}}\left|\nabla w_{i}\right|^{2}},
$$

where S_{r} is the sphere ∂B_{r}. The monotonicity and the harmonicity of w implies that for $\zeta \in C_{0}^{\infty}\left(B_{r_{0}}\right)$

$$
0=\int_{B_{r_{0}}} \nabla\left(\zeta w_{i}\right) \cdot \nabla w_{i}=\int_{B_{r_{0}}} \zeta\left|\nabla w_{i}\right|^{2}+\int_{B_{r_{0}}} w_{i} \nabla \zeta \cdot \nabla w_{i}
$$

Therefore for almost all r

$$
\begin{equation*}
\int_{B_{r}}\left|\nabla w_{i}\right|^{2}=\int_{S_{r}} w_{i} \frac{\partial w_{i}}{\partial r} \leq\left(\int_{S_{r}} w_{i}^{2}\right)^{1 / 2}\left(\int_{S_{r}}\left(\frac{\partial w_{i}}{\partial r}\right)^{2}\right)^{1 / 2} . \tag{A.3}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\int_{S_{r}}\left|\nabla w_{i}\right|^{2} & =\int_{S_{r}}\left(\left(\frac{\partial w_{i}}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial w_{i}}{\partial \theta}\right)^{2}\right) \tag{A.4}\\
& \geq 2\left(\int_{S_{r}}\left(\frac{\partial w_{i}}{\partial r}\right)^{2}\right)^{1 / 2}\left(\int_{S_{r}}\left(\frac{1}{r} \frac{\partial w_{i}}{\partial \theta}\right)^{2}\right)^{1 / 2}
\end{align*}
$$

Defining $v_{i}(x):=w_{i}(r x)$ for $x \in S_{1}$ it follows from (A.3) and (A.4) that

$$
s_{i}(r) \geq 2\left(\frac{\int_{S_{1}}\left(\frac{\partial v_{i}}{\partial \theta}\right)^{2}}{\int_{S_{1}} v_{i}^{2}}\right)^{1 / 2} \geq 2 \sqrt{\lambda_{i}}
$$

if λ_{i} is the smallest eigenvalue of $\partial^{2} / \partial \theta^{2}$ with homogeneous Dirichlet data on $S_{1} \cap\left\{v_{i} \neq 0\right\}$. Denoting by l_{i} the relative length of this set with respect to S_{1} we have $\lambda_{i} \geq\left(2 l_{i}\right)^{-2}$ and therefore

$$
\begin{equation*}
\sum_{i=1}^{m} s_{i}(r) \geq \sum_{i=1}^{m} \frac{1}{l_{i}} \tag{A.5}
\end{equation*}
$$

Moreover, by (2.3),

$$
\sum_{i=1}^{m} l_{i} \leq \frac{1}{\kappa(1-\delta(r))}
$$

With this constraint the right-hand side in (A.5) becomes minimal for $l_{i}=(m \kappa(1-$ $\delta(r)))^{-1}$, thus

$$
\sum_{i=1}^{m} s_{i}(r) \geq m^{2} \kappa(1-\delta(r))
$$

and together with (A.2) the assertion (A.1) follows.

Appendix B: Proof of Lemma 4.9

Let Condition (A) be satisfied. In complex coordinates $\zeta=(-i x)^{k / 2}=\zeta_{1}+i \zeta_{2}$ the transformed free boundary Γ lies, near the origin, between the curves $\Gamma_{ \pm}=\left\{\gamma_{ \pm}(i t): t \in\right.$ $\mathbb{R}\}$. Here $\gamma_{ \pm}(\zeta):=\zeta \cdot\left(1 \pm M \zeta^{\alpha}\right)$ are conformal transformations near the origin, M large.

Let $r_{0}>0$ (small) and D the domain bounded by parts of $\left\{\zeta_{1}=r_{0}\right\},\left\{\zeta_{2}= \pm r_{0}\right\}$, and Γ. If Γ intersects the lines $\left\{\zeta_{2}= \pm r_{0}\right\}$ more than once, we take the points where Γ coming from the origin hits this lines for the first time, see Figure 24. Now consider the harmonic function h on D and continuous in \bar{D} such that $h=r_{0}$ on the upper boundary, h linear on the sides, and $h=0$ on the part Γ_{0} of ∂D belonging to Γ. Similar define $D_{ \pm}$with respect to $\Gamma_{ \pm}$and harmonic functions $h_{ \pm}$. (Note: We do not know that ∂D is a Lipschitz graph near the origin, but the flatness at the origin implies the existence of h.)

Then (extending functions by 0 beyond $\Gamma_{0}, \Gamma_{ \pm}$)

Fig. 24. Construction of domains D, D_{+}and D_{-}.

$$
\begin{equation*}
h_{-} \leq h \leq h_{+} . \tag{B.1}
\end{equation*}
$$

Moreover, using regularity theory and Hopf principle for the harmonic functions $h_{ \pm} 0 \gamma \pm$ it follows that $h_{ \pm}$are $C^{1, \alpha}$ up to the boundaries $\Gamma_{ \pm}$and that

$$
\begin{equation*}
h_{-}(\zeta) \geq c \operatorname{dist}\left(\zeta, \Gamma_{-}\right) \tag{B.2}
\end{equation*}
$$

for some $c>0$. Now consider the blow-up sequence

$$
h_{r}(\zeta):=\frac{1}{r} h(r \zeta),
$$

and similarly $h_{ \pm r}$. We claim:
B.1 Proposition. For some constant $c_{*}>0$

$$
h_{*}(\zeta):=\lim _{r \rightarrow 0} h_{r}(\zeta)=c_{*} \zeta_{1}
$$

locally unifomly in $\left\{\zeta_{1}>0\right\}$.
Proof. For small $r>0$ let s_{r} be the smallest number such that $h \leq s_{r} h_{+}$in B_{r}. Clearly s_{r} decreases when r decreases and by (B.1) and (B.2)

$$
s_{*}:=\lim _{r \rightarrow 0} s_{r}>0 .
$$

Since

$$
0 \leq h_{r} \leq s_{r} h_{+r} \quad \text { in } B_{1}
$$

h_{r} are bounded harmonic functions locally in $B_{1} \cap\left\{\zeta_{1}>0\right\}$. Therefore there exists a harmonic function h_{*} in $B_{1} \cap\left\{\zeta_{1}>0\right\}$ so that for a subsequence $r \rightarrow 0$

$$
h_{r} \rightarrow h_{*} \quad \text { in } C_{l o c}^{0}\left(B_{1} \cap\left\{\zeta_{1}>0\right\}\right) .
$$

Since

$$
h_{+r}(\zeta) \rightarrow \partial_{1} h_{+}(0) \max \left(\zeta_{1}, 0\right)=: \tilde{h}(\zeta)
$$

it follows that

$$
0 \leq h_{*} \leq s_{*} \tilde{h}
$$

Assume that $h_{*}\left(\zeta_{0}\right)<s_{*} \tilde{h}\left(\zeta_{0}\right)$ for some ζ_{0}. Then

$$
h_{*} \leq s_{*} \tilde{h}-\delta_{0} \quad \text { in } \overline{B_{\varepsilon_{0}}\left(\zeta_{0}\right)}
$$

for some $\varepsilon_{0}>0$ and $\delta_{0}>0$. Then for small r

$$
f_{r}:=s_{r} h_{+r}-h_{r} \geq \frac{\delta_{0}}{2} \quad \text { in } \overline{B_{\varepsilon_{0}}\left(\zeta_{0}\right)}
$$

Moreover f_{r} is superharmonic in $D_{+r} \cap B_{1}$, non-negative on the boundary. Therefore, by Hopf principle, there is a constant $c_{0}>0$ independent of r such that for $\zeta \in D_{+r} \cap B_{1 / 2}$

$$
f_{r}(\zeta) \geq c_{0} \operatorname{dist}\left(\zeta, \Gamma_{+r}\right) \geq c h_{+r}
$$

with $c>0$ independent of r. Thus

$$
h_{r} \leq\left(s_{r}-c\right) h_{+r} \quad \text { in } B_{1 / 2},
$$

which says that $s_{r / 2} \leq s_{r}-c$. Letting $r \rightarrow 0$ this is a contradiction.
It follows from the Proposition that on each cone $\left\{r e^{i \varphi}: r>0\right.$ and $\left.|\varphi| \leq \frac{\pi}{2}-\delta\right\}$ and for each multiindex $\beta=\left(\beta_{1}, \beta_{2}\right) \geq 0$

$$
\begin{equation*}
\partial^{\beta}\left(h(\zeta)-c_{*} \zeta_{1}\right)=o\left(|\zeta|^{1-|\beta|}\right) \quad \text { as } \zeta \rightarrow 0 \tag{B.3}
\end{equation*}
$$

Now define the conjugate harmonic function $k: D \rightarrow \mathbb{R}$ of h by

$$
k(\zeta):=\int_{0}^{1} \nabla h\left(\sigma_{\zeta}(t)\right) \cdot\left(-i \sigma_{\zeta}^{\prime}(t)\right) d t
$$

where $\left.\sigma_{\zeta}:\right] 0,1\left[\rightarrow D\right.$ with $\sigma_{\zeta}(0)=0, \sigma_{\zeta}(1)=\zeta$, and $\operatorname{Re} \sigma_{\zeta}^{\prime}(0)>0$.
B. 2 Proposition. The holomorphic function

$$
\tau(x):=\frac{1}{c_{*}}(h(\zeta)+i k(\zeta)) \quad \text { for } \zeta=(-i x)^{k / 2}
$$

has the properties stated in Lemma 4.9.

Proof. It follows from (B.3) that k is well defined, and on each cone as above $k(\zeta)=$ $c_{*} \zeta_{2}+o(|\zeta|)$ as $\zeta \rightarrow 0$. For $0<\varepsilon<r_{0}$ there are exactly to points $\zeta_{\varepsilon}^{ \pm} \in \partial D$ with $h\left(\zeta_{\varepsilon}^{ \pm}\right)=\varepsilon$. Therefore $D \cap\{h<\varepsilon\}$ and $D \cap\{h>\varepsilon\}$ are connected sets so that $\Gamma_{\varepsilon}:=\partial\{h>\varepsilon\}$ has to be a smooth curve from ζ_{ε}^{-}to ζ_{ε}^{+}on which $\nabla h \neq 0$. This implies that k is strictly increasing on Γ_{ε}. Also k is continuous up to $\Gamma_{0} \backslash\{0\}$ and strictly increasing on the two parts of $\Gamma_{0} \backslash\{0\}$. Therefore $\tilde{\tau}:=h+i k$ is one-to-one if we can show that ∇h is integrable on $\Gamma_{0} \backslash\{0\}$ and

$$
\begin{equation*}
\int_{\Gamma_{c}} \partial_{-\nu} h d \mathcal{H}^{1} \rightarrow \int_{\Gamma_{0}} \partial_{-\nu} h d \mathcal{H}^{1} \quad \text { as } \varepsilon \rightarrow 0 \tag{B.4}
\end{equation*}
$$

(ν is chosen so that $\partial_{-\nu} h>0$). Now, as $\varepsilon \rightarrow 0$,

$$
\begin{aligned}
\int_{D \cap\{h>\varepsilon\}}|\nabla h|^{2}= & \int_{D} \nabla(h-\varepsilon)_{+} \nabla h=\int_{\partial D}(h-\varepsilon)_{+} \partial_{\nu} h d \mathcal{H}^{1} \\
& \rightarrow \int_{\partial D \backslash \Gamma_{0}} h \partial_{\nu} h d \mathcal{H}^{1}<\infty
\end{aligned}
$$

thus $\nabla h \in L^{2}(D)$. Then with the cut-off function $\eta_{r}(\zeta):=\min \left(1, \frac{1}{r} \operatorname{dist}\left(\zeta, \partial B_{r}\right)\right)$

$$
\delta_{\varepsilon, r}:=\int_{\partial(D \cap\{h<\varepsilon\})} \eta_{r} \partial_{\nu} h d \mathcal{H}^{1}=\int_{D \cap\{h<\varepsilon\}} \nabla \eta_{r} \nabla h=\mathcal{O}\left(\|\nabla \zeta\|_{L^{2}\left(B_{2 r}\right)}\right) \rightarrow 0
$$

as $r \rightarrow 0$. Since for small r

$$
\delta_{\varepsilon, r}=\int_{\Gamma_{\varepsilon}} \partial_{-\nu} h d \mathcal{H}^{1}+\int_{\{h<\varepsilon\} \cap \partial D} \partial_{\nu} h d \mathcal{H}^{1}-\int_{\Gamma_{0} \backslash\{0\}} \eta_{r} \partial_{-\nu} h d \mathcal{H}^{1}
$$

(B.4) follows by letting first $r \rightarrow 0$ and then $\varepsilon \rightarrow 0$.

References

[1] Alt, H.W.: The fluid flow through porous media. Regularity of the free boundary. Manuscripta Math. 21, 255-272 (1977).
[2] Alt, H.W., L.A. Caffarelli \& A. Friedman: Variational problems with two-phases and their free boundaries. Trans. AMS 282, 431-459 (1984).
[3] Alt, H.W. \& C.J. van Duijn: A stationary flow of fresh and salt groundwater in a coastal aquifer. Nonlinear Analysis TMA 14, 625-656 (1990).
[4] Alt, H.W. \& C.J. van Duijn: A free boundary problem involving a cusp. Part I: Global Analysis. European J. Appl. Math. 4, 39-63 (1993).
[5] Alt, H.W. \& G. Gilardi: The Behavior of the Free Boundary for the Dam Problem. Ann. Scuola Norm. Sup. Pisa, IV Ser., 9, 571-626 (1981).
[6] Courant, R.: Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. Sprin-ger-Verlag, New York (reprint 1977).

H.W. Alt

Institut für angewandte Mathematik der Universität Bonn Wegelerstraße 6, D-53115 Bonn.

C.J. van Duijn

Centrum voor Wiskunde en Informatica (CWI)
Kruislaan 413, NL - 1098SJ Amsterdam

