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Absti·act. We consider a sta.tionary free boundary problem deseribing the stationary flow 

of fresh and salt water in a porous medium. The salt water is supposed to lw. fib:1gnant: whih·.' 

the fresh water on top of it is drawn into wells. In a. previous work it has been shown, that 

for pumping rates Q < Qc,. a solution with smooth interface exists. In thiH part Wt:~ study 

the case Q = Qc.,. in two dimensions; vVe show that the interface has isolated singularities. 

At eac:h singularity the free boundary develops a. cusp or becomes vertical. By mt.~ans of 

local ana.ly:;;is techniques we obta.in the asymptotic: behaviour of the fo7.t:\ boundary at tlH".i-;~ 
singularities. 

AMS Classification: 35 .J 20, 35 R 35 

1. Introduction 

In [4] we formulated a free boundary problem which models the stationary flow of fresh 
and salt groundwater, say, in a reservoir. The fluids are assumed to be separated by an 
abrupt transition, the interface or free boundary, with salt water below fresh water. The 
saltwater is supposed to be stagnant, while the fresh water is drawn into wells which are 
present in the reservoir. 

The variables involved in this problem a.re a reduced potential w and the location u of the 
interface. Further it contains a parameter Q > 0 which is proportional to the pumping 
rates of the wells. We demonstrated in (4) that a maximal (or critical) value Qcr of Q exists 
such that for Q < Qc,. the free boundary is smooth, i.e. it can be represented by an analytic 
function u. The proof of this result is based on the local reduction of the problem to the 
one - phase dam problem. For this it is crucial to have w > 0 in an upper neighborhood 
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of the free boundary. For Q = Qcr, without further investigation, the free boundary is 

described by a lower semi-continuous function :g and an upper semi-continuous function 

u, see Theorem 1.1 below. Further we proved that for Q = Q er points in the closure of the 

free boundary exists for which the potential w has points of negativity in any neighborhood. 

The aim of this paper is to make precise how the negativity of w leads to loss of smoothness 

of the free boundary. In particular we show that singularities in the form of cusps occur 

in the free boundary and we specify the local cusp behaviour of w and 'l.l. We prove our 
results for fiow domains of dimension 2. 

First we introduce some notation. Let 

denote the two dimensional reservoir, where for points x E V we often write x = (y, z) with 

y EJa1 , a2 [representing the horizontal coordinate and z E]O, H[ the vertical coordinate. The 

N wells are located at the interior points 

W = {xw(l) : l = 1, ... , N} . 

In order to compensate for the singularities of w at the wells, we introduced in [4] a 

truncated fundamental solution h. Along the vertical boundaries of the reservoir, w satisfies 
the Dirichlet conditions 

w(a1,z) = w(a2,z) = (z- uo)+, 

where uo, with 0 < uo < H, is the salt water level outside V. At the top of the reservoir 
w satisfies the Neumann condition ow 

ov = 1 . 

In (4] we proved, in a more general (N > 2 dimensional) context, the following global 
existence result at Q = Qcr· 

Theore1n 1.1 There exist functions u, Ti: [a1 ,a2]--+ [uo, H], satisfying 

uo :::; IT:::; tt in [a1, a2]; 
u l.s.c. , u u.s.c. in [a1, a2]; 

u = u a.e. in (a1 , az], 

and there exists a pair ( w, 1 ), with w + h E H 1 •2 (V) and I E L 00 (V) satisfying 

(*) j \7( · (\7w + 1ez) = 0 

v 

for all ( E H 1•2 (V) with supp(() CV\ W, such that 

I= X {z<u(y)} in V, 

w = 0 in {z < u(y)}' 
w < 0 in a neighbourhood of W, 

W lies above graph(tr). 
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From this it follows that 
Llw ;::: 0 in V \ W , 

Llw = 0 in {z > u(y)} \ W. 

Throu~ho~t this work we assume that the free boundary does not touch the top of the 
reserv01r, i.e., u :- H .on [a1, a2]· For a given configuration of wells, all withdrawing fluid 
from the reserv01r, this assumption seems to be reasonable. 

In Section 2 we first prove u = u in [ai, a2] and we denote by graph( u ), 

u: = u = u E C([a1,a2]) , 

the free boundary of the problem, i.e. w is harmonic above and zero below. 

In the remaining sections we concentrate on the behaviour of w and u near singular free 
boundary points (y*, u(y*)) E int(V) which satisfy Property 4.17 of [4]. This property says 
that there exists at least one sequence (Yn,zn)-+ (y* ,u(y*)) such that w(yn,zn) < 0. This 
can also be characterized by (y*, u(y*)) E { w < O}. 

Using scaling arguments (blow up techniques) we first show in Section 3 that at a singular 
free boundary point (which we translate to the origin for convenience), the free boundary 
either forms a cusp (k = 1) or becomes vertical (k = 2), see (1, Figure2] or Figure 11 of 
this paper. 

In Section 4 and 5 we prove in a number of steps, using blow up arguments, that the scaled 
function 

with 

converge for r -t 0 to 

wr(x) := w(rx)JrP , {r(x) = -y(rx) , 

(3- km 
- 2 ' 

with c* > O. Moreover, m is odd and m > 3. It is not clear whether as exceptional case 
(and probably unstable case) situations with m > 5 can occur. 

It is proven in Section 5 that free boundary points x = (y, z) satisfy IYI ~ CjzjP. 
Further, in Section 6, we show that the branches of the free boundary near the singularity 
have the form 

{ ±z < 0 : y = f ( z)} 

and that 
lim f(z) = ±c* . 
z-+O zfl 

This clarifies the asymptotic behaviour of the free boundary near the singularity. For the 
standard cusp case (k = 1, m = 3) such an expansion has been e~pec~ed because special 
solutions with such a behaviour have been found, see references given m (4]. For the part. 
of the free boundary below the singularty we prove that f' ( z) -+ 0 as z /' 0, which shows 
that indeed the free boundary becomes vertical. In the concluding section we shall pose 
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some conjectures a.nd open qu~-stions related to the behaviour of the free boundary. In 
particular we discuss the occurrence of vertical cusps, the location of cusps in the reservoir 
and the assumption made that the free bou11dary does not touch the top of the reservoir. 

2. Preliminary remarks and tools 

As a first observation we note that the weak differential equation ( *) together with the 
boundary conditions implies that w is Holder continuous in V\ W. Moreover, w is Lipschitz 
continuous locally in V \ W. This can be seen as in Alt & van Duijn [3, Theorem 3.7). 
Indeed ( *) implies that 

I f (w - w(x ))' '5 C · r 
88,.(r) 

for all Br(x) CV\ W, a.nd w is harmonic in the set {w f. O} \ W. 
Next we consider a comparison lemma, that we often shall use to obtain non-oscillation 
results. 

2.1 Comparison Lemma. Consider a rectangle 

R =]a,b[x]O,c(C V \ W. 

For x E R and so E IR.1 consider the unit vector 

1 
uo := .J 2 (-so, 1) 

So + 1 

and the function v : R-+ {O, oo[ given by 

otherwise . 
v ( x) = { 0-../,..:s~;::+=l Vo . ( x - .i) for 110 • ( x - x) > 0 1 

If x and so are chosen such that w:::; v on 8R, then 

(i) w 5: v in R, 
(ii) w = 0, "t = 1 in { v = 0}. 

Remark. The function vis a solution of the dam problem. 

Proof. We use the Baiocchi transformation. Let ( E H 1•2 (R) with ( = O near the vertical 
walls of R. Then set 

c 

((y,z) := j ((y,s)ds. 

II 

Because w = 0 and/= 1 in {O $ z < uo}, the function (is a.n admissible test function in 
the differential equation 



for ( w ,--y). It leads to 

J V( · (\7w - (1 - -y)ez) = 0. 
R 

In this equation we substitute 

giving 

z 

w(y,z):= jw(y,s)ds, 

0 

jcv(·Vw+(l-1)()- j ((·,c)w(-,c)=O. 
R {z=c} 

As a test function we take ( = (w - v)+, where 

This gives 

z 

v(x,z) = J v(x,s)ds. 

0 

j IV(w - v)+l2 + j (1 -1)(w - v)+ 
R {v=O} 

- j 'Y(w-v)++ j (w-v)+hc)(v{·,c)-w(·,c))=O. 
{v>O} {z=c} 

849 

The third term only has a contribution when w > v. Suppose there exists (y0 , zo) E R 
such that w(yo, zo) > v(yo, zo) ;::: 0. Then there must also exist z1 < z0 where w(y0 , z1 ) > 
0 and hence w > 0 in Be ((yo, z1)) for some e > 0. This implies that 'Y = 0 in and 
above Be((yo, z1)). In particular !'(Yo, zo) = 0, which shows that the third term gives no 
contribution. Since the second and fourth term are nonnegati:ve, the first term implies 
w < v in R and in particular w :$ 0 in {v = O}. The equation .dw = 1 - ~I shows that 
w is subharmonic in the set {v = O}. Then either w < 0 or w:::::: 0 in {v = O}. The first 
possibility contradicts w = w = 0 in {O < z < uo}. Hence w = 0, w = 0 and ~ = 1 in 
{v=O}. D 

We apply the Comparison Lemma to prove that the free boundary is continuous. 

Proof. The continuity and the boundary conditions for w and u > uo imply that u = ft 
at the boundary points a1 and a2 • To show equality for an arbitrary point Yo E]a1, a2[, 
consider sequences Yn --+yo and Qn /I Qcr so that 

UQ" (yn) --+ u(yo) , 

where UQn denotes the free boundary of the solution obtained in [4) with pumping rate 
Q = Qn. We distinguish two possibilities. 
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( i) A sequence can be chosen which oscillates around Yo: i.e. Yo is between Yn and Yn+ 1 

for all n E JN. We argue as follows. Let c > O. Then there exists no E IN such that for 
all n ~no 

"' 
UQ,.(Yn) > u(yo) - ~ · 

For n ~ no we define 

and we consider 

Rn := {(y1 z) : 0 < z < Zn, y between Yn and Yn+i} . 

Then we have for n > n 0 , n sufficiently large, WQ,,+ 1 = 0 along the vertical sides of Rn 
and WQ,..+i < c/2 along the top of Rn (using the monotonicity of WQ in Q and using 
the Holder continuity of wq uniformly with respect to Q < Qcr, see [4; Proposition 
4.7]. Using the function v(y,z) = (z- Zn +~)+and so= 0 in the Comparison Lemma 
we conclude that WQn+i = 0 and /Qn+i = 1 in the set 

{(y, z) : 0 < z < Zn - c/2 and y between Yn and Yn+i} , 

implying in particular 

Thus (by definition of u) 

u(yo) > u(yo) - c:, 

giving the desired equality. 

(ii) No sequence can be chosen with oscillations around yo, i.e. all the sequences (Yn)n 
come from the same side, say from the right. Then applying the Comparison Lemma 
similar as in case (i) we are lead to a situation in which we have, see also Figure 1, 

u(yo) :S limsupu(y) < u(yo) and liminfu(y) = u(y0 ) . 
YtYo Y-l-Yo 

Refering to Figure 1 we have 

w = 0 , I= 1 in B n {y > Yo} 

and 

Llw = 0 , r = 0 in B n {y < Yo}. 

Moreover, by a global argument, w :;I:. 0 in B n {y <yo}. Since -Llw = Bz'Y = 0 in B, 
we obtaln a contradiction with w = 0 in B n {y > y0 }. 0 



graph(U:) 

graph(u) 

u(yo) 

Llw = 0 
1' = 0 
w=;EO 

1=1 
w=O B 

Fig. 1. Possible configuration near discontinuity. 
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Let (y*,u(y*)) E int(V) be a free boundary point satisfying Property 4.17 of [4], i.e. a 
cusp. We translate this point to the origin 0) by shifting the coordinates so that y* = 0 
and u(y*) = 0. We first define 

2.3 Definition. Let B C IR-2 denote an open ball centered at 0. We call w E H 1•2 (B) n 
C0 (B) a phase of w at 0 if w(w - w) = 0 in B and if {w =/. O} n B is non-empty and 
connected with 0 as a boundary point. We have \lw · \lw = IV'wl2 and w has a sign. In 
section 7 we prove that w has only finitely many (m E JN) phases at 0. Moreover, we prove 
that in some smaller concentric ball B CB we have a decomposition w = E~1 Wi, where 
Wi are the phases of w at 0. 

Since 1' = 1 and w = 0 in a neighborhood of the vertical line below the origin 0, any test 
function from identity ( *) can be changed there arbitrarily. We have 

2.4 Proposition (Separation Lemma) Below 0 test functions from expression {*) can 
have different values from both sides, i. e. 

j V(·(Vw+1ez)=O 

Br 

for all ( E Hl,2(Br \ {(O, z) : -r < z < O}) having support in Bri where Br denotes the 

open ball in IR.2 with center 0 and radius r > 0. 
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Proof. For ( as above and c;, > 0 small, consider the expression 

((y,z)+((-y,z) ((y,z+c:)-((-y,z+c:) 
2 + 2 

The first term belongs to Hd• 2 (Br ). The second term vanishes on {(O, z) : z > -c} and 
near DBr. Because-,= 1, w = 0 in a neighborhood of the segment {(O,z): -r < z < -c} 
also the second term is an admissible test function for ( * ). Hence we may substitute this 
expression into the equation. Letting e -t 0 gives the result. o 

Next we show that for any phase w of w, the values of j\7wj and l!f are balanced near O 
in the following sense: 

2.5 Proposition. There exists a constant C > 0 s1tch that for every r > 0 

and 

lwl 2 < C sup lwl2 , 

Br\B~ 

Proof. By linear scaling we can take r = 1. Set ( = w172 with 7] E C0 (B 1 ) in expression 
(*).Then 

j 'V(w712 ) • \lw + j \7(wry2 ) ·'"'fez= O . 

B1 81 

Since/= 0 in { w -=f. O} the second term vanishes. The first term can be written as 

o = j \7(w112 ) • \7w = j 112 IVwl 2 +2jw\lq·11\lw . 

B1 B1 Bi 

Hence 

j 112 l\lwl2 :5 4 j w2 IV11l 2 . 

Bi B1 

When choosing 17 as cut-off function from B 1 ; 2 to B 1 we obtain the first pair of estimates. 
For the second pair we use the fact that lwl is subharmonic in B 1 . Then by Poisson's 
integral for any ~ :S r < 1 



271" 

sup lwl < C j Jw(rern)I de 
B1;2 

0 

27!" 

< C j J8ew(rei8 )1 d(J ( using w(re-irr/2 ) = O) 
0 

211" 

< C j IV'tu(rei8) I dB . 
0 

Squaring and integrating over r gives the result. 
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0 

For several purposes we need that w can.not have long zero curves above and near the free 
boundary. This is the content of the following two propositions. 

2.6 Proposition. Let (w,1) be any (sub)solution of the local differential equation (*}. 
Suppose there exists a rectangle R C V in which (w,-y) satisfies the properties as listed in 
Figure 2. Then for some c > OJ depending only on the geometry of the rectangle, 

Proof In the weak inequality for a subsolution we choose ( E C0 (R) , (?: D , such that 

Bz( < o 
oz( > O 

8z( > C > 0 

in 
lil 

lll 

{ Z2 - ~ < z < z2} n R 
{ z1 < z < z2 - ~} n R 

D cc {z1 < z < z1 + ~} n R 

This gives (the first inequality arises for subsolutions) 

where 
where 
where 

- j '\lw · '\!(, > j /8z( > j 18z( > C , 

R R D 

where the constant c also depends on D. Hence 

J [\7wl2 > c > 0 . 

supp(t;:) 

1=D 
0<1:$1 

"( = 1 

Since dist(supp((),8R) > O, we can apply the ~st p~t of t~e proof of Proposition 2.~ 
with an appropriate test function tow and obtam the mequahty. 



854 

z 

z, ___ T ___ -~~-~-:-=~---o __ 
h 

l •-----------------w-
)' = l, w = 0 

Z1 ---- -----'--------~ 

YI 

h 
4 

t 
t 
h 
4 

t 

Fig. 2. Properties of (w, 'Y) in R. 

y 

2. 7 Proposition. Suppose there is a continuous Jordan curve (not closed) in the rectangle 

{ z1 + ~ < z < z2 - ~} n R, going from the left boundary to the right boundary as in Figure 
9, S'ILCh that 

I' above graph( u) , 

w = 0 on r' 
w > 0 in a right neighborhood of I', looking in the direction of r . 

Then for some c > 0, depending only on the geometry of the rectangle and on the Lipschitz 
constant of w, 

lw(x)I ~ c j or some x E R below I' . 

Proof. I' divides the rectangle R into exactly two subdomains R+ (left of I') and R- (right 
of I'). Let 

w* := { ~ in R+ 
in R_ 

Since w > 0 in R- near I', it follows that Llw* ~ 0 above the free boundary. Hence (w* ,1) 
is a subsolution of equation ( *) in R. Applying Proposition 2.6 gives 

j lw*l2 > c > 0 . 
R 
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w =0 

\ 
f.b. = graph(u) 

Fig. 3. Situation nea.r I'. 

He11ce there mmit exist points x ER- for which lw(x)l > c > 0, where c only <lepeud~ 
on the geometry of the rectangle. o 

For future use we also give here the monotonicity formula for them-phases. 

2.8 Monotonicity For1nula. Suppose w has m E 1N phases {wi : i = 1, ... , m} at 0. 
For each phase Wi we define 

(2.1) for 0 < r < ro < oo , 

where K > 1. Moreover, let 

m 

(2.2) <p(r) :=IT tpi(r) for 0 < r < ro < oo . 
i=l 

A value n, > 1 is related to the fact that { w = 0} on each sphere might cover a certain 
sector. To be precise, we assume that there a.re values 0 < fi(r) < 1 - ~ with t5(r) -+ 0 as 

r -+ 0 such that 

(2.3) 
1 i8 1 

2rr.C1 ({0 E [0,2rr]: w(re ) = 0}) ~ 1 - x:(l _ o(r)) , 

where£} denotes the one dimensional Lebesgue measure. It thc11 follows, that 

(2.4) 

in distributional sense. In particular, 
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(2.5) log ) :$ log )+ ] 
r 

If the fundion r i-+ &(r)/r is integrable, e.g. if 
implies that t.p is bounded. case that J = 0 
increasing in r. The proof of (2.4) is given in Appendix A. 
[2], we decompose w into two contributions according to 

It':= W+ - U.l-

where w::.1: := max{O, ±w }. Then we consider the functions 

some a > then 
gives that t.p is monotonically 

a special case, see Alt et al. 

(2.6) for 0 < r < ro < oo , 

i.e., m = 2 and x = 1, consequently Ei = 0. It follows that 

(2.7) <p(r) := 'P+(r) · ifl-(r) for 0 < r < ro < oo 

is monotonically increasing in r. 

3. Sublinear decay of solution. 

First let us note, that w decays at least linearly at the cusp, here situated at the origin 0, 
Le. 

w(x) = O(lxl) as x--> 0. 

The follows from the Lipschitz contiuuity. This Lipschitz continuity also implies that the 
functions <f!± in 2.8 are bounded and 'Pi(r) :5 Cr2 -11:m. 

The aim of this section is to prove that w decays faster than linearly, i.e. 

w(x) = o(jxl) as x--> 0 . 

For this we apply blow-up techniques to the decomposition w = w+ - w_, 
We first show 

3.1 Proposition. For the function <p in (2. 7) we have 

limip(r) = 0 . 
r.j.0 

Proof. Suppose that limr.i.o ip(r) 2: C > 0. Then consider the blow-up (r + 0) 

w(rx) 
Wr(x) := -- and 1'r(x) := Jl(rx) for x E B 

r 

where B denotes any ball in IR.2 centered at 0. Using the Lipschitz-continuity of w we 
obtain as in [3] for a subsequence (rk)k with rk \>t Di 
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w1;; := Wr,. -+ Wo uniformly in B and strongly in H1,2(B) , 

lk := /r,. -+ /o weakly star in L00(B), 

with wo E H~~;~~.2) a:id 'Yo E L00 (IR2 ). Further, because i.fJ is bounded away from zero, 
the blow-up limit is a lmear two-phase solution. Since w(O, z) = O for z:::; o, we must hnw~ 

wo(O, z) = 0 for all z E lR with for instance Wo > 0,10 = 0 in {y > O} and Wo < o,~fo :::: 0 

in {y < 0}. However by the Separation Lemma we also have all Wo ( 0± I z) :::: 0 for z < 0, a 
contradiction. o 

3.2 Proposition. There is no sequence r + 0 for which 

supw+ = o(r) and supw_ ~er with c > O . 
Br B, 

Proof. Suppose such a sequence (rk)kEl'l exists. Then consider the blow up 

Wk(x) ·.-- w(rkx) 
Tk 

for x E B1 . 

The assumption implies the existence of points Xk in B 1 satisfying 

-wk(xk) > c and Xk-+ xo in B1 . 

By the Lipschitz continuity we have -wk > c/2 in B0(x0 ) for some o > 0 and fork large. 

Therefore the blow up wo satisfies -wo ~ c/2 in Bs(x0 ), w0 :S 0 in B 1 aud w0 (0) = 0. The 

property L1w0 2: 0 is inherited 1 hence giving a contradiction. D 

3.3 Proposition. w_(x) = o(jxl) as x-+ 0. 

Proof. We argue by contradiction. Suppose there is a sequence ( rk )k with rk '\J 0, for which 

By Proposition 3.2 also 

Applying the second inequality of Proposition 2.5 gives 

tp±(2rk) = f 1Vw±l2 ~ c , 

B2 .. ,. 

which contradicts the conclusion of Proposition 3.1. 

Therefore we concentrate on the sublinear decay of w+ We first prove 

0 

3.4 Proposition. Let (wo,/o) be the blow up limit obtained for a sequence (rk)k with 

rk + 0. If x E JR.2 satisfies 
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\:/t > 0: ; 0 =/= 0 in L 00(B,(x)) , 

then there exist.• a sequence (.r.dk with Xk = (yk, Zk)-+ x such that /k = 1 and w1c == 0 in 
a neighborhood of the :Jegments 

{yk} x ] - Lk, Zk[ where Lk i:s a suitable big number. 

Proof The sequence (xk )k is constructed as follows. The convergence of 1k implies that for 
ea.eh t > 0, there exists k E IN such that "/k =/:- 0 in L00(B,(.i)). Since (Wk,'"Yk) is obtained 
from ( w. /') by scaling, we have that 

{1'k =I= O} = h1c = l} = { z < Uk(y)} 

is the subgraph of the scaled, continuous free boundary. Hence we can select a point Xk 

from the open set {z < ttk(y)} n B~(x). Then choose Lk so that (yk, -Lk) lies on the 
bottom of the scaled domain V. 0 

We are now ready to prove the essential pa.rt of the section. 

3.5 Proposition. w+(x) = o{!xl) as x -+ 0. 

Proof. Again we argue by contradiction. Assume for some c > 0, there is a sequence (xk)k 
with Xk -+ 0 and 

w+(xk) > 
lxkl - c · 

Let rk := lxkl and consider the corresponding blow up sequence WA: as above. For a 
subsequence, denoted again by (rk)k, we have (wk,'Yk)-+ (wo,(o) as in Proposition 3.1. 
Moreover we have 

Xk 
ek := - -+ea=: (yo, zo) . 

rk 

By Proposition 3.3, w_(x) = o(jxl) as x -+ 0. Therefore we conclude wo 2: 0 in 1R2• 

Moreover by the convergence properties of the sequence 

and the Lipschitz continuity implies 

(3.1) Wo ;::: c/2 and /O = 0 in BJ0 (eo) for some t5o > 0 . 

Thus for the blow up limit Wo we have a situation as show in the figure below. 
First we show 

(3.2) w+(O,z) = o(z) for z + 0. 

If not, we can choose the above sequence such that Xfc = (YA:,Zk) with Yk = O and Zk > 0, 
giving eo = (0, 1). Now assume that Wo is harmonic in the half plane {y > O}. Since w0 ~ 0 
everywhere a.nd, by {3.1), wo > 0 in B80 ((0, l))n{y > 0} we must havew0 > O and therefore 
also "Yo = 0 in {y > O}. As in the Separation Lemm.a. we have that the weak differential 
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Fig. 4. Situation for wo, with possi hie position for ea. 
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equation for (wo,/o) also holds for test functions ( E G0 ({y > O} U{y = O, z < O}). Using 
L1wo = 0 and /o = 0 in {y > O} this means that 

8ywo(O+, z) = 0 for all z < 0 . 

But since wo(O, z) = 0 for z < 0 (inherited from w) we have a contradiction with the 
Hopf-principle. 
Therefore there exists a point x = (Y, z) with fj > 0 so that w0 is not harmonic in any 
neighborhood of x. Then clearly /o satisfies the assumption of Proposition 3.4 at :i: (other
wise we would have /o = 0 and thus Llwo = 0 in some neighborhood of x). Let Xk = (yk, Zk) 

denote the points from Proposition 3.4 and consider the rectangle 

R = {(y,z): 0 < y < Yk and -Lk < z < min{O,zk}}, 

where again Lk is a suitably chosen large number. By Proposition 3.4 and because w(O, z) = 
0 for z < 0 we have Wk = 0 along the vertical boundaries of R. At the top1 using the 
Lipschitz continuity of w, we have Wk ::; Gyk and near the bottom /k = l and Wk = 0 by 
the choice of Lk. Then the Comparison Lemma 2.1 with so = 0 gives 1k = 1 and Wk = 0 
lil 

{(y, z) : 0 < y < Yk and - L1c < z < min{O, zk} - Cyk} . 

Letting k-+ oo and repeating the same procedure in the half plane {y < O} leads to the 

situation from Figure 5. 
By the regularity theory for the dam problem (see Alt [1]), this implies that the blow-up 
( w0 , /o) has a smooth free boundary, say graph( tLo), passing through the z-axis at a point 

(0, zo) with 0 < zo < 1, such that wo > 0, ')'o = 0 above graph(uo) and wo = 0, /o = 1 
below graph(u0 ). We show now that this leads to a contradiction. 
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\ I ' , .. , .. , ........... _____ ., Wo ~ 0 

0 
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/ X1 

Wo =0 1------

Wo = 0,/o = 1 

I 

Fig. 5. Situation for blow up limit ( wo, /o). 

Let so := ub(O). For o > 0 consider the linear solution ViS from Comparison Lemma 2.1 
with x = (0, zo - o). 
Now let 0 < e < e0 (small) be given. By the smoothness of uo and wo we have 

luo(Y) - uti(O)yl ~ C1 (eo)e2 for !YI < e: 

and 

(3.3) lwo(x) -vo(x)I < C2(eo)e2 for x E Be(O,zo) . 

Then taking o = C e2 , where C is chosen large and independent of e, we have 

Vo> Wo in Be(O, zo) n {wo > O} 

and the free boundary of v,; is below graph(u0 ). 

At each free boundary point (y, ua(y)), the function 'Yo satisfies the assumption of Propo~ 
sition 3.4. Hence for k sufficiently large (wk -+ w0 uniformly) we can select e/; near -~e 
and et near frc, and apply the Comparison Lemma 2.1 to the scaled solution (wk,/k) in 
the rectangle 

R =] - e:;,e![ x ] - Lk,sup{uo(Y): ·-e:; < y <et}[. 

As a result we find 

Wk = 0, /k = 1 below the free boundary of v0 in {e;; < y < e:t}. 
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By (3.3), the positivity of wo above graph(u0 ) and again the uniform convergence of Wk, 

it follows that for· sufficiently large k 

Wk > Q, ]k = 0 above the free boundary of v_ 0 in {c/; < y <Ek}· 

Thus we are left with the region between the free boundaries of v0 and v_6 , which is a very 
flat strip of width O(c2 ) and length 0(£). Now the origin 0 is an accumulation point of 
{ Wk < O} because it satisfies Property 4.17 of [4]. First this implies that zo -8 ::; 0. Second 
there must be curves on which Wk < 0 coming from outside the strip an<l approaching 0 
arbitrarily close. These curves must come either from the left or the right. For <lefinit<~ness 
consider a curve coming from the right. Define the rectangle 

Re := { (y, z) : IY - ~I < i and lz - zol < h } 

with h =Cc., C large. Then there exists a curve in Re going from the left side of Re to the 
right side and lying inside the strip so that Wk < 0 on this curve. Moreover, Wk > 0 near 
and above its free boundary. Therefore, after the scaling 

- 1 wk(x) := -wk(c:x) 
e 

we obtain a situation as in Proposition 2.7, where a Jordan curve I' separates { Wk < O} 
above it from { Wk > O} below it. We deduce that in the flat strip points must exist 
where lwkl ~ c£. Letting k -too we obtain that there exists a point x in the strip with 
lw0 (x)I >cc. But since lvo(x)I::; Co= Cc2 we conclude from (3.3) that lwo{x)I ~ Cc.2 , a 
contradiction for small c. 
Therefore we conclude that (3.2) holds. 
For the blow up w 0 this implies 

wa(O, z) = 0 , also for z > 0 , 

and by (3.1) 
dist(eo, {y = O}) > oa . 

For definiteness, let ea = (yo, zo) has Yo > 0. 
Next we choose so > max{O, 2.!Q. }, i.e. the point eo is below the line with slope sa/2, 
passing through the origin. Sinc~0 ek -+ e0 , also ek is below this line for large k. Choosing 
such a k (fixed), we consider a second sequence (ek1)1;:;:k defined by 

l E IN, l > k . 

It satisfies 

(3.4) 
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0 

Fig. 6. The sequence (e;,!)1:;::.1: C {w.1: > O} 
converges to 0 tangent to the co-direction. 

Below we shall use the Comparison Lemma 2.1 with a function v defined for x = (0,0) 

and so as above. First fix h > 2.s0 and take any L sufficiently large. We have for 0 S z S h 

z 
v(O,z)= 2 1 So+ 

and, from (3.2), 

(3.5) 

where e k --+ 0 as k -+ oo. Therefore if k is large enough (depending on h) we have 

wk(O,z) S v(O,z) for all z E [-L, h]. 

Now assume there is a point x = (y, i) E R00 := JO, 2[ x ]h, oo[ satisfying the assumption 

of Proposition 3.4. Then from this proposition it follows that for large k, there is Yk E 

]O, 2[, say, so that (Yk. h) is below the free boundary of Wk. Now consider the rectangle 

R1;: := }O! Yt[ x ] - L, h[. Then also 

Wk(Yk,z) = 0:::; v(y1.: 1 z) for all z E [-L,h]. 

Along the top of Rk we have (by the Lipschitz continuity and using (3.5)) 

Wk(y,h) $ C for 0 $ y $ Yk(< 2) 1 

where C, for large k, can be chosen independently of k and h. But 

( = h - yso > h - 2.s0 > C 
v y, 2 " 

S~ + 1 - s0 + 1 -

for h large enough. Hence it follows from the Comparison Lemma that w1c = O in { v = O}, 
i.e. below the line with slope so. This contradicts (3.4), see also Figure 6. Therefore /o = 0 



in R00 • Using 
obtain that 

Hence 

monotonicity 
= 0 in the domain 

D := R00 u 

(Ozio :;::; 0) and refering to (3.1 and Figure 4: 1 w~ 

Llwo = 0 in D. 

By (3.1) and the strong maximum principle 

Wo > 0 in D 1 

while 

(3.6) w(O, = 0 for all z E JR. 

So fa.r we worked only in the halfspace {y > 0}. To obtain a contradiction we also have to 
consider the situation for y < 0. There are two possibilities: either 

wo(eo) > 0 for some eo = hio,zo) with Yo< 0 

( eo not. necessarily a unit vector), or w0 = 0 in {y = O}. In the first case there are points 
Xk with 

x1. _ w(x1c) (xk) (- ) 
- -t eo 1 = Wk - -t Wo (;Q > 0 , 
r'k rk rk 

As in (3.1) we conclude that /o = 0 in some ball B;s0 (e0 ). Then it follows as above1 tha.t 

for some h the function Wo is positive and harmonic in} - 2yo, O[x]h, oo[, and that ~to:::: 0 
in this rectangle. Therefore 'Yo = 0 in 

so that w0 has to be harmonic in this region. But then (3.6) contradicts the strong maxi

mum principle. In the second case 8z')'o = 0 in 

] - co, 2[x]h, oo[ , 

so that again w0 is hannonic in this region, again a contradiction. This completes the proof 

of Proposition 3.5. D 

As a consequence we have 

3.6 Theorem. 

(i) 

(ii) 

w(x) = o(lx!) 
. u(y) 
hm-- = +oo 
y.j.O y 

lim u( -y) = +co 
y-!J) y 

where at least one limit is -oo. 

as x -t O; 

or - oo 1 

or - oo, 
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Note that 
lim u(y) = -oo , 
y.t.O y 

1. it(-y) 
lID = -OO 
y.j.0 y 

refers to the cusp case, a.nd 

1. u(y) 
im-- = -oo, 
y.j,.O y 

lim u(-y) = +oo 
y.j..0 y 

refers to the vertical case with w = 0 on the left of the origin (see Figure 2 from [4]). 

Proof of the theorem. The first assertion is equivalent to Propositions 3.3 and 3.5. To prove 

the second part, we first suppose that 

. u(y) 
s := limsup-- > -oo. 

y"\,O y 
(3.7) 

Let (Yk)k with Yk ~ 0 be a corresponding sequence, choose any so < s, and let v be the 

linear solution in the Comparison Lemma 2.1 with slope so and x = 0. We consider the 

rectangle 
Rk :=]0, Yk(x] - L, u(yk)[ 

where the height -L corresponds to the bottom of the translated domain\/. By the choice 

of so and property (i) we have that w :S v on EJRk for k large enough. The Comparison 

Lemma then gives 

w = 0, I= 1 in Sk := {(y,z); 0 < y < Yk and z < yso} , 

and thus 

u(y) ~so for small 0 < y < Yk· 
y 

Letting so -t s, we therefore obtain from (3. 7) that 

Next assume that 

(3.8) 

1. . f u(y) 
S = lIDlll -- . 

y~O y 

s < 00 

This means that for given£ > 0 there exists o > 0 such that 

(s - c)y < u(y) < (s + e:)y for 0 < y < o 

and consequently 

Liw 
in { (y, z) : z > ( s + £ )y , 0 < y < J} 

and 



w = o} 
= 1 

in { ( y, z} : z < ( s - e )y , O < y < cS}. 

Then the same holds for the scaled functions 

1 
W.k(x) := -w(rkx) and ')'k(x) := 1(rkx) 

1'k 
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but now with Ok = ~ instead of o. We obtain for all sufficiently large k the situation from 
Figure 7. Then we apply Proposition 2.6 and obtain that 

z .dwk = 0 

/k = 0 
.,.. ,... slope ( s + E) 

----------- / 

0 1 

Wk =0 

/k = 1 

... ,... slope ( s - E) _,., 

Fig. 7. Situation after scaling for all ( Wk, l'k). 

for all k sufficiently large. 

However this contradicts the a-property of w a.nd rules out the possibility (3.8). The 

remammg case lS 

limsup u(y) = -oo . 
y"'40 y 

Si1nilar results can be obtained for the left side. Finally, assume that both limits are +oo: 

i.e. 
lim u(y) = +oo = lim u(-y) 
y.j..O y y.j.0 y 
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Set Yk = t and 

and consider the rectangle 
R1;: :=]- Yk,Yk[x]-L,uk[ 

with L > a. Since lwl ::; CkUk on the top of Rk by Theorem 3.6(i) with Ck -+ 0 ask -+ oo, 
we can apply the Comparison Lemma with s0 = 0 and obtain that 

w = 0 , / = 1 in {(y, z) : !YI < Yk and z <Uk - euk}. 

This means that 'Yk = 1 for large k in a full neighborhood of the origin, contradicting the 
fact that this is a free boundary point. This completes the proof of the theorem. O 

4. Topological properties 

In this section we study the properties of local anf global connected components of { w =f. 0}. 
Let xo =(yo, z0 ) E V \ W with 

(4.1) w(xo) = 0 and zo ;::: u(yo) . 

Then x0 lies on the boundary of {w # O}. The following statements will be relative to an 
open set UC V \ W with x 0 EU. Consider an open set D with 

(4.2) 
(4.3) 

DcUn{w=fO}, w=O on UnfJD, 
Xo E 8D. 

Then the following holds. 

4.1 Proposition. Let D satisfy (4.2) and (4.3). Then the number of sets G satisfying 

(4.4) 

(4.5) 

G is a connected component of D, 

xo E BG 

is positive and finite. Moreover, for each G satisfying (4.4) the closure G contains points 
of{w:fO}n8U. 

Proof. The last statement follows, since otherwise w = 0 on 8G. Since w is harmonic in G, 
it would follow that w = 0 in G. 

The assertion follows easily if zo > u(yo) in (4.1). For, in a neighbourhood of xo 

w(x) = Reh(x) 

with a nontrivial holomorphic function h satisfying h(xo) = 0. In other words, 

h(x) = a(x - xo) 111(l + h(x)) 

with a E (Jj \ {O}, m ;::: 1, and a holomorphic function h satisfying h(xo) = O. Therefore 
h(r(x)) = a(x - x0 )m for a unique local conformal transformation T given by 
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r(x) = xo + (x - x0 )(1 + h(r(x)))- .!. . 

Then near xo the set {w o r O} · t f 2 h fi h = cons1s s o m ray, t ere ore t ere are at n1ost 2m 
domains G. 

Now let Xo be on the free boundary. For convenience, let xo = O. For e, o > O small 
enough consider the rectangle 

R :=] - J,8[x] - c,c[, 

sjmilarly, R' with o' = ~ and t:' = t· Since u is continuous we can choose o so that 

(4.6) Rngraph(u) C {lzl < ~} 

Let G be any set satisfying ( 4.4) and 

(4.7) G n R' :f f/J. 

Since G touches 8U there exists a curve r : [O, 1} -t G with 1(0) E oR' and 1'(1) E 8R. 
Assume there are infinite many domains Gi, i E IN, with corresponding curves "'Ii· We 
claim that 

(4.8) supdist(li(t), graph(u)) -t 0 as i -too. 
t 

If not, there are points ei = !i(ti) converging, for a subsequence i -t oo, to a point e E R 
above graph(u). Since ei belong to different components Gi we must have w(O = 0. But 
then it follows as in the first part of the proof, that only finitely many domains Gi can 
enter a small neighbourhood of e. This proves (4.8). 

Then it follows from (4.6) that /i([O, l]) C {lzl <~}for large i. Therefore !'i(l) E 8R 
has horizontal coordinate +8 or -o. For definiteness consider the first case and the rectangle 

R" :=]01
1 o[x] - e,£[ . 

Since Ii and li+I belong to different connected components of D, there must be1 at 
least for a subsequence i -t oo, curves. I'i between Ii and 'Yi+1 going through R" from 
left to right and having the property of Proposition 2. 7. Consequently there are points 
Xi ER" between I'i and graph(u) with lw(xi)I > c > 0, where c is independent of i. But 
(4.8) together with the continuity of w gives w(xi) -t 0 as i -too. This proves that there 
are only finitely many domains Gi 1 i = 1, ... , n, satisfying ( 4.4) and ( 4. 7). Since 

n u ( Gi n R') = D n R' 
i=l 

it follows from (4.3) that some Gio has to satisfy (4.5). 0 

4.2 Proposition. If D satisfies (4.2) and (4.S} then there exists a continuous curve in D 

with xo as continuous limit. 

Proof. Choose a sequence of balls Uk := Bri. (xo), k 2: 1, r1 sufficiently small, and Tk '\.i 0 
as k -too. Define Do:= D. Using Proposition 4.1 choose inductively Dk, k > 1, so that 
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"Y = 0 

--~'Yi 
----~ f.b. 

R 

( 4.9) 

R' ..._ ______________ -4---------

Fig. 8. The curves /i· 

6.w = 0 

"Y = 1 

y = 5' 

Dk is a connected component of Dk-1 n Uk 

R" 

y=6 

1'•+1 

with Xo E 8Dk. Since Dk touches auk there are points Xk E Dk n auk+l· Fix such a 
sequence (xk)k21· By construction Xk+1 E Dk+l C Dk. Therefore there are curves 

-y: [k~l'~]-+DkCUk with 1(k!l) =xk+1, 1(~) =xk. 

Then 1(t) -t xo as t -t 0. 0 

As a consequence we obtain that locally the number phases is well defined. 

4.3 Proposition. Let Xo as in (4-1) and Uo := Br0(xo) CV\ W. Moreover let U be an 
open set with xo E U C U0 • Then the fallowing holds: 

(i) There exists an m ~ 1 so that there are exactly m connected components Gi) i = 
1, ... ,m, of {w =f:. O} n U with xo E 8Gi. 

(ii) The number m in (i) is independent of U. 

(iii) There exists an r1 > 0 with 
m 

Br1 (xo) C LJ Gi. 
i=l 

Proof. The first assertion is Proposition 4.1 for D = {w =f:. O} n U. To prove (iii) consider 
the open set 
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Fig. 9. The domains Dk. 

m 

D := U \ LJ Gi, 
i=l 

which satisfies ( 4.2). If D would satisfy ( 4.3) then by Proposition 4.1 there is a connected 
component G of D with xo E 8G. This contradicts the definition of m. Therefore x0 rt, D, 
i.e., Br1 (xo) n D = 0 for some r1 > 0. 

To prove (ii) let xo EU C U and denote by m the corresponding number from (i). By 
Proposition 4.2 there are curves /i :}O, I] ---t Gi with 'Yi(O) = 0. 

Choose ti > 0 so that /i(t) E U for 0 ::; t s; ti and denote by Ch the connected 
component of {w !- O} n fJ containing /i(ti). Then Xo E 8Gj and m > m is proved. Now 
assume that m > m. Then there are connected components G1 , G2 of { w =f. O} n U with 
xo E 8Gi belonging to the same Gio. Using Proposition 4.2 there are curves "Ii connecting 
xo within Gi to some point Xi E Gi, and x1 and X2 are connected within Gia by a curve 
/O· Denote by f{ the compact set enclosed by 10, ')'1, {2· By the maximum principle (note 
that U0 is a ball not touching W) w has the same sign in J( as in Gio· But then {o can be 
contracted within {w =f. O} to a curve inside U, so that G1 and G2 are connected. 0 

We now give some consequenses of the above considerations. 

4.4 Corollary. Let m and Gi as in 4.8 (i). Then Wi := Xa, w belong to H 1•2 (Uo) and 

m 

w = L Wi in Br1 (xo). 
i=l 

Therefore m coincides with the number of phases in Definition 2.S. 
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4.5 Remark. The number of (global) connected components of { w ::j:. O} is finite. 

Proof. Since L1w = 0 above the free boundary and away from the wells we find, by the 
maximum principle, that each such component either contains a well, or as part of its 
boundary a segment { ai} x] u0 , H] where w > 0, or touches the top of V. But there w can 
have only finitely many sign changes for, the free boundary stays away from the top hence 
there w is real analytic. 0 

4.6 Proposition. Let D C V be a connected component of { w < O}. Then D can contain 
at most one free boundary point. 

Proof. Suppose Xo, X1 E an n v are two district free boundary points. By Proposition 4.2, 
there exists a Jordan arc I' C D connecting xo and x 1 , see Figure 10 (left). 

I 
I 

('.,/ 
I 

I 

,,.., ...- --- ..... 

D 

w<O 

Fig.10. Consequence of two free boundary points in 8D. 

Applying the maximum principle gives w < 0 in the domain bounded by I' and the free 
boundary between Xo and xi, see Figure 10 (right). Then for a ball B as indicated in 
the figure, we have w < 0 above the free boundary and w = 0 below it. This contradicts 
Llw ;::: 0 in B. O \ 

4. 7 Theorem. The mLmber of cusps is les,q or equal the number of wells. 

Proof. Each cusp belongs to the closure of { w < O}. By Proposition 4.1 the cusp is in 
the closure of a connected component D of { w < O}. But D has to contain a well, since 
otherwise w is harmonic in D with w = 0 on 8D outside the top on V and ~";; = 1 on the 
top of V. The maximum principle then gives w 2: 0 in D, a. contradiction. The assertion 
then follows using Proposition 4.6. o 

4.8 Proposition. {i) Near a cusp the free boundary is smooth and w > O m an upper 
neighbourhood. 
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(ii) At a cusp the number m in 4.3 satisfies m ~ 3. 

Proof. By Theorem 4. 7 and the definition of a cusp we know that w > 0 in an upper 
neighborhood of the free boundary near a cusp, except at the cusp. Then (i) follows af
ter applying the regularity theory for the dam problem in suitably chosen left and right 
neighborhoods of the cusps, and (ii) follows since the cusp lies in the closure of {w < O} 
as in the proof of the previous theorem. O 

Next we consider some local properties of w at a cusp, which again, for convenience, has 
been translated to the origin 0. We first make an assumption about the decay of the free 
boundary near the cusp. Suppose 

(A) : There exist constants C, a > 0 such that for small !YI 
IYI < Clu(y)l1+C¥ · 

This assumption implies 

4.9 Le1nma. Let (A) be satisfied. Then in a neighborhood of 0 there exists a conformal 
transformation r satisfying 

(i) r(O) = 0, 

(ii) r and r-1 are continuous up to the boundary, 

(iii) on every cone C above the free boundary with vertex at 0 

~jr(x) - xl + IV'(T(x) - x)I --1- 0 for x EC, lxl --1- 0 
lxl 

Proof. The proof of this technical lemma is given in Appendix B. 

r r 

vertical case 
rusp ras1' 
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As a consequence we have the following. The function w o r-1 is harmonic and non
trivial in the transformed (shaded) regions and vanishes along the boundary. This means 
that for 

( 4.10) k = 1 in the cusp case, k = 2 in the vertical case, 

there is a real number a f=. 0 and some integer m ~ 1 with 

(4.11) 

Here h is a holomorhic function satisfying Im fi( () = 0 if Im ( = 0. Since m is the number 
of components of {w o r- 1 '/:- O} near 0, it has to coincide with the number m in 4.3. It 
follows from 4.4 and 4.8 that 

m is odd and m ~ 3. 

The properties of 1 imply that them phases are separated by smooth curves which have 
a tangent at 0. For instance, if m = 3 the two possibilities are sketched in Figure 11. 

LJ) < 0 

w>O 

Fig.11. Distribution of phases with m = 3. 

Further we obtain for any phase w of w the non-degeneracy result: there exist a constant 
c > 0 such that for small r > 0 

( 4.12) j IV7wl2 ~ crkm . 

Br\Br/2 
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5. Blow up. 

In this section we investigate the Holder exponent of the free boundary at a cusp, which 
again is situated at the origin 0. As in Definition 2.3 {see also 4.4) we decompose 1D 

according to 
m 

w = L Wi in Bro CV\ W (ro small), 
i=l 

where m denotes the number of phases at 0. For each phase Wi we define a corresponding 
exponent 0:1 :]O, ro] -t IR by 

for 0 < r $ ro. 

Using Proposition 2.5 and the sublinear decay of w at 0, see Theorem 3.6 (i), we see that 
for each phase ra;(r) -t 0 along any sequencer \.i 0. Hence all ai(r) > 0 for 0 < r S r·0 

with ro sufficiently small. 

5.1 Remark. Let us phrase the Monotonicity Formula 2.8 into terms of a:1(r). It follows 
from Theorem 3.6 (ii) (for the vertical case) that for 0 < r 1 < ro we can choose c(1·i) with 
E(r1) \_ Q as r1 \, 0 such that (2.4) is satisfied for 0 < r < r1 with o(r) == 0 and 

{ 1 fork= 1, 
(5.1) K; = K;(ri) = 2 - c:(ri) fork= 2. 

Here k is defined as in (4.10). Then (2.5) becomes 

for 0 < r < r 1 with C =~·Hence 

(5.2) 
1 m K,ffi - 2 1 log C 
m ~ O:i(r) > 2 - m log(l/r) for 0 < r < 11. 

Later we show that this estimate is sharp in the cusp case (i.e. k = 1 in ( 4.10)) · 

Next define the smallest exponent 

a(r) :== . min ai(r) for 0 < r < ro 
i=l, ... ,m 

and consider the blow-up, for x E B1 and 0 <PS ro, 

wp(x) :=w(px)/p1+a(p), /p(x) :=ry(px). 
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The pair ( w p, IP) satisfies 

(5.3) j \I(· (\lwp + P~rp)ez) = o for all ( E CQ°(B1) 

Bi 

and 

{5.4) ~ J IY'wpl2 = p-2rx(p) f !Vwl2 = t PZ(a;(p)-et(p)) E (1, m] 
B1 Bp i=l 

This means that we have scaled so that Wp in B1 carries the phase with the biggest Dirichlet 
integral in BP. However other phases might become very small for w P if p is small. The 
reason is that at this point we do not know that the phases, in other words the values O:ii 

are balanced towards each other. The first result relates the values a:i(r) to Assumption 
(A) in Section 4. 

5.2 Proposition. There exists a constant C > 0 such that for points (y, z) E Br on the 
free boundary of (w,1) we have 

lzl :::; ~ implies !YI :::; C r 1+a(r) , 

for all r > 0 sufficiently small. 

Proof. To prove this result we first scale and show that for points (fj, z) E B 1 on the free 
boundary, i.e. graph( Ur), of ( Wri /r) we have 

(5.5) - 1 lzl < 2 implies 1111 ~ C ra(r) for all r > 0 small enough. 

Let rJ E CQ°(B1) be a fixed cut-off function satisfying 0 < T/ ::; 1 and 1'] = 1 on B118 . 

Substitution into (5.3) and using (5.4) yields 

or 

1"Ct~r) j "tr8zT] = - j \171 · \lwr ::; C 

Bi Bi 

+1 J rJ(y, Ur(Y)) dy S C r°'(r) for 0 < r < ro. 

-1 

The integral in this inequality can be bounded from below by 

.C1({y: IYI:::; "1- and lur(Y)I S ~}). 

By Theorem 3.6 (ii), the free boundary u is vertical at 0, from both sides. Hence for points 
('fj, z) E B1 on the free boundary of Wr we have that IDl/lz) is small, if r is small. Therefore, 
for small r, if lzl ::; ! then !YI ::; i. 
For definiteness let us consider 0:::; fj ~ i· If we now can show that 
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3 
lur(Y)I :S 4 for all 0 < y:::; y 

then assertion (5.5) follows from the above inequalities and th f f th · · · 
1 t e proo o e proposition is 

comp e e. 

We distinguish two situations. 

() 

~!l'r = 0 
-Yr = 0 

w,.=0,/r=l 

f.h. 

0 

Awr = 0 
'Tr = 0 

I 
I 
I 
I 
I 

- L - -
I 
I 
I 
I 
I 
I Wr = 0 
I ~fr = l 
I 
I 

Fig. 12. Possible configurations near 0 

Case 1: i < 0 (see Figure 12 (left)). Then 

'f} :S crlzl with er--+ 0 as r --+ 0, 

Ur(Y) '.:S 0 for 0 '.:Sy :Sy and small r, 

both as a consequence of Theorem 3.6 (ii). Applying the Comparison Lemma 2.1 with 
so = 0 to the scaled equation gives 

ur(Y) ~ z - Ci) for 0 $ y $ i} 

or 
3 

ur(Y) > i(l +Ocr);?: - 4 for r small enough. 
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Gase 2: z > 0 (see Figure 12 (right)). Then 

- < er with er -+ 0 as r -+ 0, Y-2 
ur(Y) 2 0 for 0 ::S y ::S y and small r. 

Now we argue as follows. Let z1 := £ > z and assume that for some YI E]O, y[ we have 
ur(yi) 2 z1 (in Figure 12 (right) we have chosen ur(Y1) = z1 ). Further, let 

Y2 := sup{y > fj : Ur(Y) < zi} . 

If y is as in this definition then (ry 1 rz1 ) lies above the free boundary of w with 0 < rz1 < r. 
The vertical shape of the free boundary at 0, see Theorem 3.6 (ii), then implies that y2 

exists and 
Y2 ::; crZ1 with er -t 0 as r --+ 0. 

We apply the Comparison Lemma 2.1 with so = 0 in the rectangle ]Y1, Y2 [ x J - oo, z1 [ and 
obtain that 

In particular at y = y: 
z 2 z1 - Cy2 2 z1(l - Gc:r) 

for small r a contradiction to z ::; k. 0 

If o: would stay strictly positive as r --+ 0, then by Proposition 5.2 we could apply the 
conformal transformation of Lemma 4.6 which would tell us that in a sense the phases of 
w are balanced. If this is not the case then o:(r) -t 0 for a subsequence r -+ 0. We then 
still have the possibility to study the blow-up limit of Wr. For the usual linear blow-up 
sequence the blow-up limit is globally defined since w is Lipschitz continuous. Here the 
values of w are stretched more in order to obtain Wr with a Dirichlet integral satisfying 
(5.4). The purpose of this stretching is to have the chance to pick up a non-trivial blow-up 
limit. By ( 5.4) the blow-up limit will exist in B1 , but it needs not to exist outside B1• 

Moreover, the problem which could arise is that the blow-up limit might vanish in any ball 
BJ with o < 1, having a gradient concentrated near 8B1 , despite of property (5.4). On 
the other hand, such a degeneracy of Wr is in favour of high values of o:( Or)· The following 
proposition takes care of this situation in a precise way. 

5.3 Proposition. Let rk := 2-kro. Assume that there exist constants (3, I> O so that for 
r = rk 

(5.6) ( f )1/2 ( )1/2 
jVw!2 :::; 2--y f IVw 12 or that a(r) ~ (3. 

B,.1 2 Br 

Then 
li~~f o(s) > min{(3, /} . 

Proof. Define for given M > 0 the function 
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W(r) == max{ (f 1Vwl2) ! , MrP} , O < r < ro . 
Br 

Let k E JN. If the first inequality in (5.6) is satisfied then it follows from rl~ = r;-i1/1 
k+I ~ k 

that 
!li(rk+1) s; 2-ao!P'(rk) with ao := min{,B,'Y}. 

If the second inequality in (5.6) holds, then 

f l\7wJ2 = ~ r2a;(r1c) < m r2a(ri,) < n 2{) 
~ k _ k _ 1 rk , 

B i=I 
ri. 

implying 

f l\7wJ2 s; 4 f \\7wl2 s; 4mrZfJ s; (2-1Mr~) 2 
B,.,.+1 B,.,. 

if M was chosen such that M 2 21'+1 ,,;m. Hence 

!P(rk+i) s; max{2-1'Mr~, Mr~+1 } s; 2-a0 Yi(rk). 

Thus in either case we have the iterative estimate 

resulting in 
!li(rk) s; (}k!P'(ro) fork E JN. 

Now let 0 < r < r0 and choose k E JN such that 'k+l < r s; 'k· Then 

Using that 

2-k-1 r > rk+1 = ro 
log 2r 

k > ___ r_o 

log2 

we conclude that 

for some C > O. On the other hand 

(f IVwl') !t = (t, r2a;(r)) ! > ra(r) ' 

Br 

implying the assertion of the proposition. 0 



878 

If (5.6) holds along the sequence (rk)k, then according to Proposition 5.2 the free bound
ary is Holder continuous at the cusp. This implies Assumption (A) in Section 7 and its 
consequences. Therefore we consider an arbitrary sequence p \.i 0 along which (5.6) does 
not hold: i.e. for which there exist constants o0 ,/3o > 0 such that 

(5.7) J j\7wl2 ~ oo j j\7w[2 and a(p) :::; /30 
Bp/ 2 Bp 

as p \.i 0. Then for the blow up sequence (wp, "fp), satisfying (5.3), we obtain using (5.4) 
the nondegeneracy 

(5.8) j l'\7wpl 2 2 80 J !Vwpl2 > 7r0o , 

B1/2 Bi 

i.e. wp will have a nontrivial blow-up limit. To this end we first transform the functions /p 

into, see also Figure 13, 

/p(y, z) m cusp case, 

(5.9) 1p(y, z) := "/p(y,z) in {y > O} 

} 1 -1p(y,z) -1 in {y < O} 
in vertical case, 

where in the vertical case we assume for definiteness the flow domain to be on the right
hand side. 

rp = 11 
I 
I 
I 
I 
I 

ir = 0 
ip = 0 

Fig. 13. Definition of iP· 

)p = 0 
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Clearly 

Moreover, it follows from Proposition 5.2 {see (5.5)) that for lzl < 1 and p sufficientlv 
~~ i J 

(5.10) 

and thus 

,:Yp(x,z) = 0 for /YI> C. p"'(P), 

+ 1 
2 

J /')tp(y, z)/ d < C 
pa(p) Y - . 

-~ 

Further define functions l~ : ( - t, + ~] -+ IR by 

z;(z) := J :Yp(y, z) d 
pa(p) Y for lzl :5 !· 

They satisfy 0 :5 z li:(z) :5 C/zl and they are monotone non-increasing (since f/z-r :5 0). 

It is now possible to choose a subsequence p \.c 0 along which 

wp-+ w* weakly in H 1'2 (B1) (see (5.2)) and a.e. in B1 , 

z;-+ zt weakly star in L00 (] - !, +![), 
a(p)-+ a* E [O,,Bo]. 

Replacing the test functions in the weak equation for ( w p, ')tp) as was done in the Separation 
Lemma (thus with (±(z) := ((0±, z) having different values on -t < z < 0, but the same 
values for z > O) we obtain 

0 = J Vwp · V( + J p2~p) 8z( + j p2fp) 8z( · 
B1 B1n{y>O} B1n{y<O} 

Then 8 -+ 0 gives 

0 = j V( · \7w* + j ztaz(+ + j t;8z(-

B1 {y=O} {y=O} 

(5.11) 

for all such test functions (. From this limit equation and the convergence properties of 
w P and the free boundaries we conclude that w* satisfies the properties from Figure 14. 
To exclude the possibility of a vanishing blow up limit w* observe that Proposition 2.5 
and inequality (5.8) imply the existence of a positive constant c such that 

lwp] 2 2 c j j\7wpl2 2 c8o . 

B1;2 
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Fig. 14. Properties of blow up limit w. 

Since wp -t w* strongly in L 2 (B 1) we have indeed . 

w* ¥:- 0 in the shaded regions from Figure 14. 

As an immediate consequence we have 

5.4 Lemma. There exist m* > 1 odd and c* > 0 such that the following expansion holds: 

w.(x) = c* Re(-ixm• (1 + h(x))) 

for small Ix I with Im x > 0, where x = i k (-ix) k 12 and h is a holomorphic function with 
Im h(x) = O for Imx = o. 

Proof The asymptotic behaviour of the blow up limit at the orgin, with m* E JN and 
c* E 1R \ {O}, follows from the properties shown in Figure 14. Moreover, it follows from 
(5.11) that in the cusp case (k = 1) 

±oyw*(O±, z) = -Bzl;(z) ~ 0 for -1 < z < 0, 

where the monotonicity of z; is a consequence of the approximation process. In the vertical 
case (k = 2) 

Oyw*(O+, z) = -Bzl;(z) ~ 0 -1 < ±z < 0. 

Checking the sign of w* from the above expansion with these inequalities it follows that 
c* > 0 and that m* is odd. D 

We emphasize once again that the limit function w* results here from a particular blow 
up, i.e., for a particular subsequence p \. 0 along which the blow up is non-degenerate. 
Next we show that the number of phases is conserved in this blow up process. We do this 
in two steps and show first 

5.5 Lemma. m* ~ m. 
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Proof. Let o > 0 be fixed and sufficiently small 80 that 1·n th·e ball B tl d' t 'b · 
h f o 1e rn r1 ut1on 

of the m* p ases o w* at 0 over the domains D1 D 1·s as · F' 15 { ) I l 
. h 1 h ' · · · , m. in 1gure a . n t ie 

figures we s ow on Y t e cusp case with m = 3 We select p · t E D 1 h * · mn s x i i sue l t at 

lw*(x1)! 2 c, for some c > 0. 

w. > 0 I 
I 
I 

D~ I D' 
I l 

I 
I 

-..j.-
I 

(a) 
(b) 

Fig. 15. (a) Distribution of m. phases of w. in B0 ; (b) Construction of the subsets Df 

In the arguments below we need that Wp becomes uniformly small on circles close to the 
origin. Using the uniform boundedness of the Dirichlet's integral for Wp, we can use Courant 
[6, Lemma 3.1] to obtain that for any pair a< r1 < r2 < 1, there exists Tp E [r1,r2) such 
that 

2 27rm 
w (rp) < logr2/r1 ' 

where w ( r P) denotes the oscillation of w P on 8Brp. Since w P vanishes below 0, this implies 

(5.12) for all p > 0. 

We use this result as follows. Consider a ball Be, with e ( V£. << b') chosen such that 
B../in {xi} = 0 for all i = 1, ... , m •. Further we select subsets Di, satisfying Xi E Df C Di, 
which touch the circle 8Be, see Figure 15 (b). By the convergence of Wp we have for p 

sufficiently small, 

(5.13) 
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Choose p such that (5.13) holds. Then by (5.12) and the choice of c, there existsµ:= rp E 

[c, Ve] such that 

provided c is chosen small enough. Finally choose points ai E BBµ n Df for i = 1, ... , m*. 

Now suppose m * > m. Then at least two domains Dfi and Df 2 must belong to the same 

component of {wp -=f. O} and within this component the sets Df1 and Df2 can be connected 

by a curve up on which wp has a fixed sign (for definiteness, say positive). The sets Df1 

and Df are separated by a third set, say Df0 , on which w p < 0. We can choose (J' p so that 

it start~ at ai1 and stops at ai2 • Now there are two possibilities. 

Wp < 0 

(b) 

Fig.16. (a) The curve ap encloses region where Wp has opposite sign; (b) The curve ar> passes 
throug the small ball Bir 

The curve O'p encloses the set Df0 where Wp has opposite sign, see Figure 16 (a). Since 

Wp > -c/4 on DBµ and Wp > 0 on ap, the maximum principle gives that wp > -c/4 in 
Df0 and in particular wp(Xi0 ) > -c/4, a contraction. 
The other possibility is that o-p passes through the small ball BI! when connecting ai1 and 

ai2 , see Figure 20 b. Then we argue as follows. Choose 0 < c* < c such that Be* n O'p = 0. 
In the ball Be• we select a point b, with wp(b) < 0, which belongs to the same component 

of {wp < O} as the set Di0 • Then the only possible connection between aio and bin that 
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component, is by a curve rp which encloses either D· D 
maximum principle to reach a contradiction. i1 or i2. As before we apply the 

0 
Next we show 

5.6 Lemma. m* ~ m. 

Proof. If m > m*, then between two adJ'acent domains ne and ne b t th f 
e i 1+ 1, or e ween e ree 

boundary and, say, D 1 there must be remaining components of {wp-=/:- O}. 

0 

Di , say, Wp > 0 

Fig. 17. Additional phases of Wp between Di and Df+1 

The first possibility leads to the situation depicted in Figure 17. which holds for all p suffi
ciently small (at least those p ')I 0, along which the sequence Wp converges). Consequently, 

in each transversal cross-section along the strip between Di and Df+i (we selected£ small), 
there are points at which Wp has a zero difference-quotient. By the C 1-convergence of wp 

we now conclude that \Jw* = 0 along the curve separating Di and Di+l • see the picture 
on the right in Figure 17. This clearly contradicts the behaviour of w* in Lemma 5.4. 
Next we consider the second possibility. Then the additional phases of Wp enter along 
the free boundary. The argument used above does not apply here because of the missing 

C1-convergence. We therefore proceed as follows. 
Near the free boundary the distribution of components of { Wp -=/:- O} must be similar to the 

situation shown in Figure 18 (a). _ 
Then for p sufficiently small we can choose a domain D C B 1 and a function tb p : D -+ JR., 
having properties as described in Figure 18 (b).Clearly Wp is superbarmonic in D. Because 

it vanishes near {y = 0} we have 
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I 
I 
I 

0 

Wp :- Q 
I 
I 
I 
I 
I 

l i\) 

0 

' 

I 
I 

Wp > Wp = 0 

(b) 

Fig. 18. (a) Sign-changes of wp near free boundary; (b) Definition of the function Wp on DC B1 

j vc. 'Vwp ~ o 
D 

for all ( E Cgo(D U {y = O} ), ( ~ 0. Since Wp is bounded in H 1 •2 (B1 ), see (5.4), we also 
have ibp bounded in H 1•2 (D). Hence along an appropriate subsequence p '\i 0, wp -+ w* 
as well as Wp-+ w* weakly in H 1•2 (D). Since the domain where Wp =f. Wp collapses to the 
vertical line {y = O} asp '\i 0 we have w* = w* in D. Hence for test functions (as above 

0 < J 'V( · 'Vw* = J (811 w* , 

D 8Dn{y=O} 

a contraction to Lemma 5.4. O 

5. 7 Corollary. m* > 3. 

Proof. By Lemma 5.6 and Proposition 4.8 we have m* > m ~ 3. 0 

Having established that w* has the same number of phases as w, we prove next that 
a* > kn;-2, independent of the choice of the sequence p '\i 0 satisfying (5.7). · 

5 8 L > km-2 . emma. a*_ -r· 

Proof. We decompose Wp and w. into their phases at 0: 

m 

Wp = LWpi 

i=l 

m 

and w. = L w.1 in Bp (p small). 
i=l 
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Here we used that m* = m by 5.5 and 5.6, and the numbering is so that w . -'- . . . kl . Hl 2(B ) Th .c pi--. w*i wea y m ' i . ere1ore 

Since, see (5.4), 

we find that 

Thus for small p 

E~rf j IY'wpil 2 > j IV'w*112 2 c >a . 
B1 B1 

~ j IVwp1l2 = p2(ci;(p)-oi(p)) ' 

B1 

liminf p2(oi;(p)-cx(p)) > .:_ 
p~O - 7!' , 

c 
O:i(P) - a:(p) ~ - 1 . 

log-
P 

Summing over i and using (5.2) we get 

~m-2 C 
a(p)> --

- 2 log l 
p 

with K. as in (5.1). Letting first p '\i 0 and then r 1 '\i 0 we obtain the desired inequality. o 
So far we have controlled a(r) from below only for certain subsequences for which (5.7) 

holds. Using Proposition 5.3 we now show that a:(r) remains positive for all small r. 

5.9 Lemma. liminfr-i-o a(r) 2 ki~-2 . 

Proof. Take any 0 < a 0 < lm~-2 and I= ao. Let us assume that (5.6) does not hold for 
some small ro. Then there exists a sequence p '\i 0 for which ( 5. 7) holds with 

o0 = 2-21- 2 and /30 = ao . 

Following the above blow up argument, Lemma 5.8 implies that 

km-2 
/30 2 li~~~f a(p) =a* 2 2 , 

a contradicition. Hence (5.6) holds for some small ro. Consequently, by Proposition 5.3, 

liminf a(r) 2: ao . 
r~O 

Since a 0 < k~-2 was chosen arbitrarily the proof is complete. D 
Using this result we are able to prove that on small balls Br the phases Wi are balanced 

towards each other. 

5.10 Lemma. There exist constants c > 0, C > 0 such that for small r and i = 1,, .. , m 
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(5.14) c rkm < J IV"wil2 < C Tkrn . 

Br 

Proof. By Lemma 5.9 we have a(r) 2 a0 > 0 for small r (ao as in the proof of 5.9.). Then 
Proposition 5.2 implies that the free boundary becomes vertical at 0 in a Holder sense, 
that is, Assumption (A) in Section 4 (with a = ao) is satisfied. Thus Lemma 4.9 can be 
applied and therefore (4.12) holds, i.e. 

(5.15) j l'Vwil2 > crkm . 

Br 

Now let us look at the Monotonicity Formula 2.8. It follows from Assumption (A) (in the 
vertical case) that (2.3) is satisfied with r;, = k and 

o(r) = { 0 cusp case, 
C r°'0 vertical case. 

Thus r.p is bounded and in Remark 5.1 we obtain instead of (5.2) 

Using (5.15) we find 

Consequently 

(5.16) 

1 .;:..., km - 2 C 
-L,_,ai(r);:::: ---. 
m . 1 2 log 1 

i= r 

km-2 C 
O:i(r) < 2 + 1--1 for i = 1, ... ,m. 

og;: 

lai(r)- km-21 < ~' 
2 log r: 

which is equivalent to the assertion. D 
Now we are able to consider the blow-up with respect to the exponent k'!{" - 2 instead 

of a(r): 

(5.16) 

where 

( 5.17) 

Wr(x) := w(rz)/rf3 1 f'r(x) = [(rx) , 

km 
{3·- -.- 2 . 

Moreover with i'r as in (5.9) we define now 

(5.18) J :Yr(y,z)dy. 

{0$±y~~} 

We now show 
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5.11 Theorem. Let Wr and l'!- be as in (5.16), (5.18). Then w --+ w weakly in H1,2(JR.11 ) 
:l: [± . f. l ' 0 ( r * /or. 

and lr -+ * umJ~rm Yin Cloe Ill) as r-+ 0. The limits w., 1;= satisfy (5.11) and for .11orne 
c* > 0 they are given by 

(5.19) 

and for z > 0 

(5.20) 
lZ:(-z) = c*z/3 and z;=(z) = 0 in cusp case, 

z;=(:i=z) = ±c*zP and l~(±z) = 0 in vertical case. 

Proof. Let R > 0. It follows from (5.14) that the phases Wri of Wr are bounded in H 1•2(BR) 
for small r. Moreover, by (5.10) and (5.16), the functions l!; are bounded in C0([-R,R]) 
for small r. Thus there exist w*, 1;= such that for certain subsequences wr-+ w,,. weakl)p in 
H 1•2 (BR) and l~-+ z; weakly star in L00 (J - R,R[). 

Since Assumption (A) in Section 4 is satisfied we can apply Lemma 4.9. It follows from 
(4.11) that 

wr(x)-+ aRe(-ixm) 

uniformly in x, locally in every cone as in 4.9 (iii), which gives (5.19) with c,,. := a. The 
identity (5.11) follows as before and repeating the proof of Lemma 5.4 gives c* > 0. 
Moreover, it follows from (5.19) that with x = y + iz 

flyw* lz=O = c*{3-ym-f; . 

Thus the identities in the proof of Lemma 5.4 give 

(5.21) 

for -1 < z < 0 in the cusp case and -1 < ±z < 0 in the vertical case. Now, by (5.16), we 
have in Proposition 5.2 

lzl ~ i implies IYI :::; C rP 

for free boundary points (y, z) E Br1 or 

(5.22) 

Then :Yr(Y, z) = 0 for IYI > C rl3-1 lzlfi and we infer that 

1z;(z)I < C lzlP. 

Th.is also holds for zt- so that (5.20) follows from (5.21). The uniform convergence of l;
follows from the monotonicity of these functions and the continuity of the limit z;:.. 

Finally, since c* = a is independent of the chosen subsequence it follows that the whole 
sequence converges. D 

5.12 Remark. The free boundary becomes vertical at 0 in the Holder sense {5.22), where 
the exponent f3 > ! is given by (5.17). For the standard cusp case (k = 1, m = 3) we have 
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f3:::: ~·The result (5.22) does not imply that the free boundary is a C 1 curve from the left 
or right at the cusp. This will be proved in Section 6. 

6. Regularity of free boundary at cusp 

In a number of steps we show here that at the cusp the free boundary becomes vertical in 
a G1-manner. We are able to prove this for the cusp case and partially for the vertical case 
(that is, for the part of the free boundary which lies below the critical point). For the proof 
we need to estimate the gradient of a harmonic function, defined in an open, bounded and 
connected domain, in terms of its value at the boundary. The following proposition gives 
the precise statement. It is a generalization of a result of Alt & Gilardi [5, Lemma 7 .5]. 

6.1 Proposition. Let D c IR-2 be open, bounded and connected, and let h : D --+ IR be 
harmonic. Further let]{ c IR.2 be compact such that lR-2 \ J{ is connected. Then 

(6.1) 

(6.2) 

implies 

\Y'hl < C , for some C > 0. 

dist(\7h(x),K) -t 0 as dist(x,8D) -t 0. 

Vh(x) E ]{ for all x ED. 

Proof. If \lh = constant in D then \lh E J( by (6.2). If Y'h =F constant in D it follows 
that "'Vh is an open mapping (since D is connected and h : D 4' <lJ holomorphic). We 
argue by contraction. Thus suppose \1 h( x 0 ) rf:. I< for some x 0 E D. Then consider a curve 
u: [O,oo[-+ IR2 \]{with a(O) = Y'h(xo) satisfying 

(6.3) 

(6.4) 
la(s)I 4' oo ass 4' oo, 
dist(a([O, oo[), K) > d > 0 . 

Related to u, consider the interval 

I= {t?: 0: o-(s) E {Vh(x): x ED} for 0 < s :St}. 

I is non empty since 0 E J. Because Y'h is an open mapping I is open, and by (6.1), (6.3) it 
is bounded. Therefore to:= sup I< oo does not belong to I. Choose tm /' t0 and Xm ED 
with u(tm) = \lh(xm)- Since to ~ I the sequence (xm)m has no accumulation point in D, 
therefore dist(xm, 8D) --+ 0 as m--+ oo. Then dist(a(tm), J{)-+ 0 by (6.2), a contradiction 
to (6.4). D 

We consider the free boundary near the origin 0 where the singularity is situated. It 
sufficies to consider a right neighbourhood. We want to show that u is monotone there. 
For this let 

1f 
0 $ c.p < 2 and e = e( cp) : = exp( -i<p) 

and consider the ray 



with 0 < 8 < '¥- (see Figure 19). By Theorem 5.11 we have for x ER 

Vw ... (x) · e = c*,B!xl,8-l cos((/3 - 1)6 + t.p) > o 
provided 

(6.5) 
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Since the blow up sequence Wr converges to w., with smooth convergence in the set 
where w* is harmonic, we also have for a fixed x 0 E R 

'Vwr(xo) · e > 0 for all small r, 

hence 

(6.6) \7w(x) · e > 0 for x ER, lxl small. 

From now on we assume that ( 6.5) is satisfied. Let us choose a ball BP around O so that 

(6.6) holds for x E Rn Bp and so that in BP the free boundary to the right of the cusp lies 

below R. vVe then denote by Q the domain enclosed by R, 8Bp, and the free boundary 
graph(u). 

We show 

6.2 Lemma. There exists a neighbourhood of 0 in Q in which 

\7w · e 2 0. 

Proof Since the free boundary becomes vertical at 0 (Theorem 3.6 (ii)), there are points 

Xi E an on the free boundary with Xi -+ 0 as i -+ 00 so that v(xi) . e > 0. Here v is the 

normal towards the flow domain. On the free boundary we have 

(\7w - ez) · v = 0 and w = 0 , 

therefore 

(6.7) \7w =e .. · vv. 

This implies that 
\i'w(xi) · e == ez · v(xi)v(xi) · e > 0 . 

Let Di denote the connected component of n n {Vw . e > O} containing Xi as boundary 

point. Let us £rst make the following assumption: 

(6.8) 
There exists a subsequence, again denoted by (xi)i, 
with the property that Di n R =f 0. 

We shall show that from this assumption the lemma follows. Note that if such a sequence 

exists, then by (6.6) all the corresponding Di's coincide and contain part of the ray R up to 

0. On R we select points Xi with Xi -+Oas i -too, and we consider curves in the connected 

component, connecting the points Xi and Xi and the points x; and Xj for a suitable pair 
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Fig. 19. Construction of the set D. 

j > i, as in Figure 19. Let D be the region enclosed by the free boundary, Rand these two 
curves. 

By construction, 

\lw(x) · e > 0 for all x E aD \ graph(u). 

On the free boundary we have by (6.7) 

Moreover, since the free boundary does not become vertical on oD we have there v · ez ~ 
c > 0, hence 

\lw. ez ~ c2 > 0 on an n graph(u). 

Consequently "Vw has values on an in the set K from Figure 20. 
Then Proposition 6.1 implies 

\lw(D) c Ji. 

Since "Vw is an open mapping, any neighborhood of a free boundary point is mapped into 
a neighborhood of a point on the circle in Figure 20. Hence, the part of]{ outside the 
half space { z E <C ; z · e > 0} cannot be attained. Therefore 

'\/ w · e > 0 in D 
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Fig. 20. 'Vw(8D) c K. 

from which the lemma follows after letting i,j -+ oo. To complete the proof we have to 
show that assumption (6.8) is the only possibility. We argue by contradicition. If (6.8) does 
not hold then the following three cases need to be checked. 

(i) Di does not touch R, the origin, and EJB P' 

The properties of Di imply that \lw · e = 0 on fJD \ graph(u). Arguing as before with 
D :=Di we obtain \lw · e = 0 on Di contradicting the definition of Di. 

(ii) Infinitely many Di's reach O. 
This implies a situation as in Figure 21. Consider some {Vw · e < O} component D enclosed 
by two of the D2's and the free boundary. We want to apply the argument used in (i) to 
the set D. This is straight forward if D does not extend to the origin. If, however, as in 
Figure 21. the origin belongs to 8D, we need to estimate Vw(x) · e, x E D, as x -+ 0. Since 
D is contained in the cone bounded by the vertical and R, and since \lw · e is harmonic 
and bounded in D and vanishes on 8D \ (graph(u) U 0), we conclude that 

I \7 w ( x) · e I -+ 0 for x E D, x -+ 0. 

This allows us to apply the argument from (i) to reach a contradiction. 

(iii) Infinitely many sets Di touch 8Bp. 
If two domains Di1 and Di2 enclose a set D as in (ii) we proceed as there. Otherwise this 

leads to a situation as shown in Figure 22, where sign changes of \1 w · e accumulate in 
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f.b. 

Fig. 21. Di's reaching 0. 

the domain where \Jw · e is harmonic. This yields a contradiction as in the first part of 
Propositjon 4.1. 
We are now in a position to prove 

6.3 Theore1n. The free boundary becomes vertical at 0 in a C 1 -manner. 

Proof. Taking i.p = 0 in Lemma 6.2 it follows that Oyw > 0 in a neighborhood of 0 below 
R. This implies that the free boundary to the right of the cusp is non-increasing in y, i.e. 
near 0 it has the form 

(6.9) {(y,z):-oo<z<O, y>O, y=f(z)}. 

for some <So > 0. Since u is analytic away from the cusp it follows that f is analytic and 
f'(z) < 0. Now choose any 0 < i.p < f in Lemma 6.2. This implies that v · e > 0 on the 
free boundary in a neighborhood of 0 below R. Therefore there exists 8r.p > 0 so that 

for -61.p < z < 0, i.e. If' (z) I < cot 'f'· 
Beside this we can show 

(1,-j'(z)) · e > 0 

6.4 Theorem. The function f in {6.9} satisfies 

0 
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Fig. 22. Accumulation of sign changes of 'Vw. e. 

. f(z) 
hm-1 IR =c*. z/0 Z /J 

Proof. Since the free boundary has a representation as in (6.9) it follows that in (5.18) 

z;(z) = rl-/3 J(rz) . 
r 

Set z = 1 and use Theorem 5.11. 
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0 

6.5 Note. Next we consider, in the vertical case, the part of the free boundary above 0. 

For definiteness we again assume that the flow domain lies to the right. We now take 

1r 
0 <.5:. cp < 2 , e = e( cp) = exp( i'P) , 

R := { r exp ( i; -i8) : r > 0} 
with 0 < (} < ~· Then, with(} as in (6.5), we find the same formula for \7w* · e along R. 
Proceeding as before, we obtain (for <p = O) the existence off (as in (6.9)) with 

. f(z) 
hm-1 la= -c*. 
z/0 Z /J 
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However, for i.p > 0 we do not get any additional information. Therefore with this method 
Theorem 6.3 cannot be proven. 

7. Concluding remarks. 

In this paper we develop the local analysis concerning the behaviour of the reduced po
tential and the interface near such singular points, provided they belong to the interior of 
the flow domain and provided N = 2. That singular points are in the interior seems to be 
clear by physical intuition. In fact, for our rectangular domain the interface is expected to 
be below the position of the highest well, provided all wells withdraw fluid. However we 
were not able to prove this. The restriction to two space dimensions was imposed to apply 
typical two dimensional free boundary methods. 

As a result of the local analysis we obtain that at a singular free boundary point 
the free boundary either forms a cusp or becomes vertical. Which of the two will arise is 
determined by global arguments. For instance, we conjecture that a well configuration as 
in Figure 23, with one well pumping fluid in and one well pumping fluid out, may lead to 
vertical interfaces. 

Lb. 
n~rtin1l 

salt 

fresh 

t ---·--t 
t -·-~ 

f.b. 
vertical 

Fig. 23. Well configuration leading to vertical singularities. 

With respect to the local behaviour, we observe that we have no regularity results for 
the function f, see Section 6, related to the branch above the singularity (vertical case). 
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Also an expansion for the derivative off, i.e. j'(z)jz/3-1 -+ ±/3c* as z-+ O, is left aH an 
open problem. 

Finally v:e me~tion t~at the proofs in this paper do not carry over to the three dimen
sional case, m which a different, not polynomial asymptotic expansion, is expected. 

Appendix A: Monotonicity formula. 

Consider a continous function w : Bro -+ IR, ro > 0, which is harmonic outside its zero 
set. Assume w has a decomposition 

m 

w= LWi 
i=l 

where Wi E H 1'2 (Bro) n c0 (B1'0) are the phases of w at the center 0 of Bro (see Definition 
2.3). Then 'Pi defined as in (2.1) are absolutely continuous positive functions on ]O, ro[. We 
want to show that 

(A.l) (logip)'(r) ~ -Km2 o(r) 
r 

where r.p is defined as in (2.2) and the function 6 is chosen so that (2.3) holds. 
We have for almost all 0 < r < ro 

(A.2) 

with 

1 m t.p~(r) K,m2 m Si(r) 
(logr.p) (r) = ~ - = -- + 2:-

L..t 11l·(r) r r 
i=l ri i=1 

r J 1Vwil2 

Si(r) := Jrl"Vwil2 ' 

where Sr is the sphere 8Br. The monotonicity and the harmonicity of w implies that for 

( E Cf)(Br0 ) 

o = j V'((wi). V'w; = j (IY'wil2 + f w,V( · Vw; · 

B Bro Bro ro 

Therefore for almost all r 

(A.3) 

On the other hand 
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(A.4) 

Defining vi(x) := wi(rx) for x E S1 it follows from (A.3) and (A.4) that 

if Ai is the smallest eigenvalue of 82 I 8()2 with homogeneous Dirichlet data on S1 n {vi =I= O}. 
Denoting by li the relative length of this set with respect to S1 we have Ai 2:: (2li)-2 and 
therefore 

(A.5) 
m m l 

Lsi(r) > L f. 
i=l i=l i 

Moreover, by (2.3), 
m 1 

L::: zi < ( )) . 
i=l - K:(l - 6 r 

With this constraint the right-hand side in (A.5) becomes minimal for li 
&(r)))-1 , thus 

m 

L si(r) 2 m 2K(l - 6(r)) , 
i=l 

and together with (A.2) the assertion (A.1) follows. 

Appendix B: Proof of Lemma 4.9 

(mt1:(l -

Let Condition (A) be satisfied. In complex coordinates ( = (-ix)kf?. = ( 1 +i(2 the 
transformed free boundary I' lies, near the origin, between the curves I'±= {!'±(it) : t E 
IR}. Here/±(():= ( · (1 ± M(a) are conformal transformations near the origin, M large. 

Let r 0 > 0 (small) and D the domain bounded by parts of {(1 = r 0 }, {(2 = ±ro}, and 
r. If r intersects the lines {(2 = ±ro} more than once, we take the points where r coming 
from the origin hits this lines for the first time, see Figure 24. Now consider the harmonic 
function h on D and continuous in D such that h = ro on the upper boundary, h linear on 
the sides, and h = 0 on the part I'o of 8D belonging to I'. Similar define D± with respect 
to I'± and harmonic functions h±. (Note: We do not know that CJD is a Lipschitz graph 
near the origin, but the flatness at the origin implies the existence of h.) 

Then (extending functions by 0 beyond I'o, I'±) 



(B.l) 

' ' ' 

/ 
/ 

/ 
/ 

/ 
/ 

Re ( = (1 

D 

---- -- --. .__,_ -

Fig. 24. Construction of domains D, D+ and D-. 

h_ ~ h:::;; h+. 
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/ 

/r
/ 
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Moreover, using regularity theory and Hopf principle for the harmonic functions h± o ~I± 
it follows that h± are ci,cx up to the boundaries I'± and that 

(B.2) h_(() ~ c dist(CI'-) 

for some c > 0. Now consider the blow-up sequence 

1 
hr(() := -h(r() , 

r 

and similarly h±r. We claim: 

B.1 Proposition. For some constant c* > 0 

locally unifomly in {(1 > O}. 

Proof. For small r > O let Sr be the smallest number such that h < srh+ in Er. Clearly Sr 

decreases when r decreases and by (B.1) and (B.2) 

s,.. := lim Sr > 0 . 
r-+0 
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Since 
0 ::::; hr ::::; Srh+r in B1, 

hr are bounded harmonic functions locally in B1 n { (1 > 0}. Therefore there exists a 
harmonic function h. in B1 n { (1 > O} so that for a subsequence r -+ 0 

Since 

it follows that 

0 S h* < s*h. 

Assume that h*((o) < s*h((o) for some (o. Then 

h* ::::; s)i - Oo in Be0 ((0) 

for some co> 0 and t5o > 0. Then for small r 

b"o 
fr:= Srh+r - hr 2 2 in Be0 ((0). 

Moreover fr is superharmonic in D+r n B 1 , non-negative on the boundary. Therefore, by 
Hopf principle, there is a constant ea > 0 independent of r such that for ( E D+r· n B 1; 2 

fr(()> co dist((,I'+r) > ch+r 

with c > 0 independent of r. Thus 

hr < (sr - c)h+r in B1;2, 

which says that Sr/'1. S Sr - c. Letting r -+ 0 this is a contradiction. O 
It follows from the Proposition that on each cone {reicp : r > 0 and jcp/ s f - t5} and 

for each mul tiindex /3 = (/31 , f32) 2 0 

(B.3) 

Now define the conjugate harmonic function k: D-+ lR of h by 

1 

k(() := j \lh(cr<:(t)) · (-iO"((t)) dt 
0 

where ac; :]O, 1[-+ D with ac;(O) = 0, a-c(l) =(,and Recr((O) > O. 

B.2 Proposition. The holomorphic function 

1 . 
T(x) := -(h(() + ik{()) for ( = (-ix)k/2 

c. 

has the properties stated in Lemma 4.9. 



899 

Proof. It follows from (B.3) that k is well de£ned and h b k · 
(l rl) r 0 i on eac cone as a ove ·{<) = 

c*(2 +o .., as'> -+ ·For 0 < £ < ro there are exactly to points(± E 8D with}((±) - -

Therefore D n {h < c:} and D n {h > c:} are connected sets so that I'e: := fJ{h2 >e:e} li=~ 
to be a smooth curve from (- to (+ on which V h ..J. o Th's · r· th t k · · 1 
. . I' . e . e r · i imp ies a · is strict y 
mcreasmg on a:. Also k is contmuous up to I'o \ {O} and str" tly · · tl 

{ } _ . . ic mcreasmg on ie two 
parts of I'o \ 0 . Therefore r := h + ik is one-to-one if we can show th t Vh · · t bl, 
on I'o \ { 0} and a is m egra c 

j 0-vh d'H1 -+ f B-vh d1l1 as c-+ 0 

r~ I'o 

(B.4) 

(vis chosen so that a_vh > 0). Now, as c;-+ O, 

j 1Vhl2 = j \l(h - c:)+ \lh = f (h - c:)+Bvhd1-l1 

Dn{ h>e} D 8D 

-+ J h&vh d1i1 < 00 , 

8D\I'o 

thus \lh E L 2 (D). Then with the cut-off function ??r(O := min(l, ~<list((, 8Br)) 

Oe:,r := f T/r8vhd'H.1 = j \117/\lh = O(llV(l!L2(B2 r))-+ 0 

8(Dn{h<e:}) Dn{h<e} 

as r -+ 0. Since for small r 

de:,r = j B-vh d1-l1 + j 8vh d1-l1 - J 'IJrO-vh d1-l1 

r. {h<i!:}naD I'a\{o} 

(B.4) follows by letting first r -t 0 and then c -t 0. 

References 

0 

[1] Alt, H.W.: The fluid flow through porous media. Regularity of the free boundary. 
Manuscripta Math. 21, 255-272 (1977). 

(2) Alt, H.W., L.A. Caffarelli & A. Friedman: Variational problems with two-phases and 
their free boundaries. Trans. AMS 282, 431-459 (1984). 

[3) Alt, H.W. & C.J. van Duijn: A stationary flow of fresh and salt groundwater in a 
coastal aquifer. Nonlinear Analysis TMA 14, 625-656 (1990). 

(4) Alt, H.W. & C.J. van Duijn: A free boundary problem involving a cusp. Part I: Global 
Analysis. European J. Appl. Math. 4, 39-63 (1993). 

(5] Alt, H.W. & G. Gilardi: The Behavior of the Free Boundary for the Dam Problem. 
Ann. Scuola Norm. Sup. Pisa, IV Ser., 9, 571-626 (1981). 



900 

[6] Courant, R.: Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. Sprin
ger-Verlag, New York (reprint 1977). 

H.W. Alt 
Institut ffu angewandte Mathematik der Universitat Bonn 
Wegelerstra:Be 6, D-53115 Bonn. 

C.J. van Duijn 
Centrum voor Wiskunde en Informatica ( CWI) 
Kruislaan 413, NL - 1098SJ Amsterdam 


