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A FREE BOUNDARY PROBLEM INVOLVING A CUSP
Part II: LOCAL ANALYSIS
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Abstract. We consider a stationary free boundary problem describing the stationary How
of fresh and salt water in a porous medium. The salt water is supposed to be stagnant, while
the fresh water on top of it is drawn into wells. In a previous work it has been shown, that
for pumping rates @@ < Q.. a solution with smooth interface exists. In this part we study
the case @ = Q. in two dimensions. We show that the interface has isolated singularities.
At each singularity the [ree boundary develops a cusp or becomes vertical. By means of
local analysis techniques we obtain the asymptotic behaviour of the free boundary at these
singularities.

AMS Classification: 35.] 20, 35 R 35

1. Imtroduction

In [4] we formulated a free boundary problem which models the stationary flow of fresh
and salt groundwater, say, in a reservoir. The fluids are assumed to be separated by an
abrupt transition, the interface or free boundary, with salt water below fresh water. The
saltwater is supposed to be stagnant, while the fresh water is drawn into wells which are
present in the reservoir.

The variables involved in this problem are a reduced potential w and the location u of the
interface. Further it contains a parameter ¢ > 0 which is proportional to the pumping
rates of the wells. We demonstrated in [4] that a maximal (or critical) value Qcr of @ existfs
such that for Q < Q., the free boundary is smooth, i.e. it can be represented by an analytic
function u. The proof of this result is based on the local reduction of the pro{alem to the
one - phase dam problem. For this it is crucial to have w > 0 in an upper neighborhood
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of the free boundary. For Q@ = Q.r, without further investigation, the free boundary is
described by a lower semi-continuous function u and an upper semi—continuous function
@, see Theorem 1.1 below. Further we proved that for @@ = Q. points in the closure of the
free boundary exists for which the potential w has points of negativity in any neighborhood.

The aim of this paper is to make precise how the negativity of w leads to loss of smoothness
of the free boundary. In particular we show that singularities in the form of cusps occur
in the free boundary and we specify the local cusp behaviour of w and u. We prove our
results for low domains of dimension 2.

First we introduce some notation. Let
V =]ay,a[x]0, H], —c0o<a;<a; <oo,

denote the two dimensional reservoir, where for points ¢ € V' we often write z = (y, z) with
y €}ay, az| representing the horizontal coordinate and z €]0, H| the vertical coordinate. The
N wells are located at the interior points

WZ{:EVV([):l: 1,...,N} .

In order to compensate for the singularities of w at the wells, we introduced in [4] a
truncated fundamental solution h. Along the vertical boundaries of the reservoir, w satisfies

the Dirichlet conditions
w(ay,z) = w(az,2) = (z —ug)+ ,

where 1o, with 0 < up < H, is the salt water level outside V. At the top of the reservoir
w satisfies the Neumann condition P
w

— =1.

ov

In [4] we proved, in a more general (N > 2 dimensional) context, the following global
existence result at @ = Q..

Theorem 1.1  There ezist functions U, : [a1,a2] — [uo, H], satisfying

uo €T <L %W in [a1, as;

and there ezists a pair (w,7v), withw + h € HY*(V) and v € L>®(V) satisfying

(%) V¢ (Vi + ve;) = 0
/

for all { € H'*(V) with supp(¢) C V \ W, such that

Y= Xz<up} 0V,

w=0in{z <7(y)},

w < 0 in a neighbourhood of W,
W lies above graph(%).
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From this it follows that
Aw>0in V\ W,

Aw=0in {z > Ty} \W .

Throughout this work we assume that the free boundary does not touch the top of the

reservoir, i.e.,, & < H on [a1, az]. For a given configuration of wells, all withdrawing fluid
from the reservoir, this assumption seems to be reasonable.

In Section 2 we first prove % = ¥ in [a;, az] and we denote by graph(u),
w="=7 € C([ar,as]) ,
the free boundary of the problem, i.e. w is harmonic above and zero below.

In the remaining sections we concentrate on the behaviour of w and u near singular free
boundary points (y*,u(y")) € int(V') which satisfy Property 4.17 of [4]. This property says
that there exists at least one sequence (yn,2,) — (¥*,u(y")) such that w(y,, zp) < 0. This
can also be characterized by (y*,u(y*)) € {w < 0}.

Using scaling arguments (blow up techniques) we first show in Section 3 that at a singular
free boundary point (which we translate to the origin for convenience), the free boundary
either forms a cusp (k = 1) or becomes vertical (k = 2), see [1, Figure2] or Figure 11 of
this paper.

In Section 4 and 5 we prove in a number of steps, using blow up arguments, that the scaled
function

we(z) = w(rz)/r? , (z) =(rz),
with

converge for r — 0 to

with ¢, > 0. Moreover, m is odd and m > 3. It is not clear whether as exceptional case
(and probably unstable case) situations with m > 5 can occur.

It is proven in Section 5 that free boundary points z = (y,z) satisfy iy] < Clz|P.
Further, in Section 6, we show that the branches of the free boundary near the singularity
have the form

{£z<0:y = f(2)}
and that

lim f(j) =dcp .
z—30 2z

This clarifies the asymptotic behaviour of the free boundary near the singularity. For t'he.
standard cusp case (k = 1, m = 3) such an expansion has been expected because special
solutions with such a behaviour have been found, see references given in [4]. For the part.
of the free boundary below the singularty we prove that f'(z) = 0 as z 7 0, which shows
that indeed the free boundary becomes vertical. In the concluding section we shall pose
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some conjectures and open questions related to the behaviour of the free boundary. In
particular we discuss the occurrence of vertical cusps, the location of cusps in the reservoir
and the assumption made that the free boundary does not touch the top of the reservoir.

2. Preliminary remarks and tools

As a first observation we note that the weak differential equation () together with the
boundary conditions implies that w is Holder continuous in V'\ W. Moreover, w is Lipschitz
continuous locally in V' \ W. This can be scen as in Alt & van Duijn [3, Theorem 3.7].
Indeed (*) implies that

I f (w—w@))| <C-r

88B.(x)

for all B.(r) C V\ W, and w is harmonic in the set {w # 0} \ W.
Next we consider a comparison lemma, that we often shall use to obtain non-oscillation
results.

2.1 Comparison Lemma. Consider a rectangle
R =]a,b[x]0,c[Cc V\W .
For £ € R and sg € IR, consider the unit vector

1
——(—sp, 1
V/sh + 1( 1)
and the function v : R — [0, co] given by

)= { g (=) o (=820,
0

otherwise .

Up 1=

If  and sg are chosen such that w < v on OR, then

(i) w<wvinR,
(17) w=0,v=1in{v=0}.

Remark. The function v is a solution of the dam problem.

Proof. We use the Baiocchi transformation. Let ¢ € H*?(R) with ¢ = 0 near the vertical
walls of R. Then set

C(y,2) = f C(y,s)ds.

Becausew =0andy=1in {0 <z < UQ}A, the function ¢ is an admissible test function in
the differential equation
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for (w, 7). It leads to

[ 9E (Vu-(1= ey =0
R

In this equation we substitute

w(y, z) ::jw(y,s)ds ,
0

giving
JECTmra-0- [ doute=o.
R {z=c}

As a test function we take ( = (W~ v),., where

F4

v(z,2) = /'u(:c,s) ds .

0

This gives
[1v@-w.+ Ja-n@-v.
R {v=0}
- [r@ =+ [ @906~ i) =0.
{v>0} {z=c}

The third term only has a contribution when @ > 7. Suppose there exists (yg,20) € R
such that W(yo, z0) > T(yo, 2z0) = 0. Then there must also exist z; < 2o where w(yo,z1) >
0 and hence w > 0 in B.((yo,#1)) for some ¢ > 0. This implies that v = 0 in and
above B.((yo, 21)). In particular v(yo,z0) = 0, which shows that the third term gives no
contribution. Since the second and fourth term are nonnegative, the first term implies
W < % in R and in particular @ < 0 in {v = 0}. The equation AW = 1 — v shows that
W is subharmonic in the set {v = 0}. Then either W < 0 or W = 0 in {v = 0}. The first
possibility contradicts w = W =01in {0 < z < up}. Hence @ =0, w =0 and y = 1 in
{v=0}. 0

We apply the Comparison Lemma to prove that the free boundary is continuous.
2.2 Theorem. 7 = 7 € C([ay,a2)).

Proof. The continuity and the boundary conditions for w and @ > ug imply that T = @
at the boundary points a; and az. To show equality for an arbitrary point yo €la;,asf,
consider sequences ¥, — yo and @, " Qer so that

uQ, (yn) = ©(yo) »

where ug, denotes the free boundary of the solution obtained in [4] with pumping rate
@ = Q,. We distinguish two possibilities.
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(i) A sequence can be chosen which oscillates around yo: i.e. yo is between y, and y,,
for all n € IN. We argue as follows. Let € > 0. Then there exists ng € IN such that for
alln > ng

uQn(yn) > ﬁ(yo) - :2: -
For n > ng we define
Zn = Inin{uQn (yﬂ. )‘) uQn+l (yn+1 )}

and we consider
Ry :={(y,2): 0 < z < zp,, y between y, and yniy1} .

Then we have for n > ng, n sufficiently large, wq,,,, = 0 along the vertical sides of R,
and wq,,, < £/2 along the top of R, (using the monotonicity of wg in @ and using
the Holder continuity of wg uniformly with respect to @ < Q.,, see [4; Proposition
4.7]. Using the function v(y, z) = (2 — zp + § )+ and so = 0 in the Comparison Lemma
we conclude that wq,,, = 0 and vq,,,, = 1 in the set

{ly,2) : 0 < 2z < z, — €/2 and y between y, and yn41},
implying in particular
€ =
uQn+l(y0) 2 2n — '2— > U(yo) — €.
Thus (by definition of T@)

Z(yo) > ulyo) — &,

giving the desired equality.

(ii) No sequence can be chosen with oscillations around yp, i.e. all the sequences (yn)n
come from the same side, say from the right. Then applying the Comparison Lemma
similar as in case (1) we are lead to a situation in which we have, see also Figure 1,

u(yo) < limsupZ(y) < T(yo) and liminf@(y) = G(yo) -
ytyo ¥y

Refering to Figure 1 we have
w=0, y=1in BN{y >y}

and
Aw=0,v=0inBnN{y <yo}

Moreover, by a global argument, w # 0 in BN {y < yo}. Since —Aw = 8,y =0 in B,
we obtain a contradiction with w =01in BN {y > y}. O
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graph(%)
graph(a)

— T

graph( ) u(yo)
graph(u)

Fig. 1. Possible configuration near discontinuity.

Let (y*,u(y*)) € int(V) be a free boundary point satisfying Property 4.17 of [4], i.e. a
cusp. We translate this point to the origin O, by shifting the coordinates so that y* = 0
and u(y*) = 0. We first define

2.3 Definition. Let B C IR? denote an open ball centered at O. We call & € HL2(B) n
C°(B) a phase of w at O if w(w — %) = 0 in B and if {& # 0} N B is non—empty and
connected with O as a boundary point. We have Vw - Vi = |V|? and @& has a sign. In
section 7 we prove that w has only finitely many (m € IN) phases at O. Moreover, we prove
that in some smaller concentric ball B C B we have a decomposition w = E:’;l w;, where
w; are the phases of w at O.

Since v = 1 and w = 0 in a neighborhood of the vertical line below the origin O, any test
function from identity (%) can be changed there arbitrarily. We have

2.4 Proposition (Separation Lemma) Below O test functions from ezpression (x) can
have different values from both sides, i.e.

/V(-(Vw +ve;) =0
B,

for all ¢ € HY2(B, \ {(0,2) : —r < z < 0}) having support in B, where B, denotes the
open ball in IR? with center O and radius r > 0.
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Proof. For  as above and ¢ > 0 small, consider the expression

C(y1z) + C(_yaz) + C(yﬁ z +E) - C(""‘y;Z +€)
2 2 )

The first term belongs to Hy'?(B,). The second term vanishes on {(0,2) : z > —¢} and
near 9B,. Because v = 1, w = 0 in a neighborhood of the segment {(0,2) : —r < z < —¢}
also the second term is an admissible test function for (*). Hence we may substitute this
expression into the equation. Letting ¢ — 0 gives the result. O

Next we show that for any phase i of w, the values of |V@| and l}'T?l are balanced near Q
in the following sense:

2.5 Proposition. There ezists a constant C > 0 such that for every r > 0

1
/IVTIJP SC;'Z / ]tbl2 < C sup |1I)[2 ,

B.\B
By B.\Bg 5
and
2
sup]tb|2£C< ][ 71:) SC’/’V‘JJIZ .
By 885 B.

Proof. By linear scaling we can take r = 1. Set { = @wn? with n € C$°(B;) in expression
(%). Then

/V(ﬁm?) -Vw + /V(tbnz) cve,=0.
Bl Bl
Since v = 0 in {0 $ 0} the second term vanishes. The first term can be written as

0= /V(zﬁrﬂ-Vﬁ;: /nﬁlvwlz +2/"&3V7)-T;V'¢I}.
B; By B,

Hence

/ IVl <4 [ w*val?
By B,

When choosing 7 as cut—off function from By /; to By we obtain the first pair of estimates.

For the second pair we use the fact that 10| is subharmonic in B;. Then by Poisson’s
integral for any —i— <r<l1
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21
sup || < C |15(7‘ei9)]cl9

1/2
! 0

2T
<C / |Bgw(re®)|df  ( using B(re~i"/?) = ()
0
27
< C/|Vzb(reie)|d9 .
0

Squaring and integrating over r gives the result. O

For several purposes we need that w cannot have long zero curves above and near the free
boundary. This is the content of the following two propositions.

2.6 Proposition. Let (w,v) be any (sub)solution of the local differential equation (%),
Suppose there emists a rectangle R C V' in which (w,~) satisfies the properties as listed in
Figure 2. Then for some ¢ > 0, depending only on the geometry of the rectangle,

/]wlzzc.
R

Proof. In the weak inequality for a subsolution we choose { € C§°(R) ,{ = 0, such that

0.( <0 in {zg~%<z<22}(‘lR where v o= .
0.¢ >0 in {z1<z<zz~%}ﬂR where 0<~4<1 |,
0.(>e¢>0 in DCC{z1<z<z1+%}ﬂR where =1

This gives (the first inequality arises for subsolutions)

-/Vw.vcz]vazcz/vazczfz,
R R D

where the constant ¢ also depends on D. Hence
Vw2 >ec>0.
supp(¢)

Since dist(supp(¢),R) > 0, we can apply the first part of the proof of Proposition 2.5
with an appropriate test function to w and obtain the inequality. a
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Fig. 2. Properties of (w,v) in R.

2.7 Proposition. Suppose there is a continuous Jordan curve (not closed) in the rectangle
{z1 + i’- <z< zg— %} N R, going from the left boundary to the right boundary as in Figure
8, such that

I'" above graph(u) ,
w=0onl,
w > 0 in a right neighborhood of I', looking in the direction of I’

Then for some c > 0, depending only on the geometry of the rectangle and on the Lipschitz
constant of w,

lw(z)| = ¢ for some z € R below I .

Proof. I divides the rectangle R into exactly two subdomains R (left of I') and R_ (right
of I'). Let

* {0 in R+

w* = .
w in R_

Since w > 0 in R_ near I', it follows that Aw* > 0 above the free boundary. Hence (w*,7)
is a subsolution of equation (*) in R. Applying Proposition 2.6 gives

/Iw*|2_>_c>0.
R
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ib. = graph(u)

Fig. 3. Situation near [".

Hence there must exist points ¢ € R for which |w(z)] > ¢ > 0, where ¢ only depends
on the geometry of the rectangle. O

For future use we also give here the monotonicity formula for the m-phases.

2.8 Monotonicity Formula. Suppose w has m € IN phases {w; : i = 1,...,m} at O.
For each phase w; we define

(2.1) (,9,‘(1") = 'f‘:m [!VU}«;[Z for0<r<rg<oo,
B.
where k > 1. Moreover, let
m
(2.2) o(r) == an,-(r) for0 <r<rg<oo.
1=1

A value k > 1 is related to the fact that {w = 0} on each sphere might cover a certain
sector. To be precise, we assume that there are values 0 < §(r) <1— L with é(r) = 0 as
r — 0 such that

, 1
(2.3) %—r-ﬁl({g € [0,27] : w(re®) =0}) 21— w1 —8(r))

where £1 denotes the one dimensional Lebesgue measure. It then follows, that
d 2 3(r)
(2.4) . log (1) > —Kkm "

in distributional sense. In particular,



L [8(F) ..
(2.5) log o(r) < logp(ro) + rch/ -(§1 dr .

r

If the function r — &(r)/r is integrable, e.g. if é(r) < Cr® for some & > 0, then (2.5)
implies that ¢ is bounded. In case that § = 0 inequality (2.5) gives that ¢ is monotonically
increasing in ». The proof of (2.4} is given in Appendix A. As a special case, see Alt et al.
[2], we decompose w into two contributions according to

Wwi= Wy — Wa

where wy := max{0, £w}. Then we consider the functions

(2.6) pi(r) = ][)Vwi[2 for0<r<ry<oo,
B,

i.e., m = 2 and x = 1, consequently § = 0. It follows that
(2.7) p(r) i=p4(r) - o-(r) for0<r<rg<oo

is monotonically increasing in r.

3. Sublinear decay of solution.

First let us note, that w decays at least linearly at the cusp, here situated at the origin O,
ie.

w(z)=0(lz]) asz—-0.

The follows from the Lipschitz continuity. This Lipschitz continuity also implies that the
functions @+ in 2.8 are bounded and w;(r) < Cri—*m,
The aim of this section is to prove that w decays faster than linearly, i.e.

w(z)=o(|z]) asz—-O0.

For this we apply blow-up techniques to the decomposition w = wy — w_.
We first show

3.1 Proposition. For the function ¢ in (2.7) we have

li =0.
;g@(r)

Proof. Suppose that limryo ¢(r) 2 C > 0. Then consider the blow-up (r | 0)

w(rz)
T

we(z) = and y.(z) :=4(rz) forze B

where B denotes any ball in R? centered at O. Using the Lipschitz-continuity of w we
obtain as in [3] for a subsequence (ri)x with rx \, 0,
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Wk = Wr, — Wo uniformly in B and strongly in H2(B) ,
Yk ‘= T — Yo weakly star in L°°(B),

. 1,2
with wo € H;g, (IRZ) and Yo € L*(IR?). Further, because ¢ is bounded away from zero,
the blow—up limit is a linear two-phase solution. Since w(0, z) = 0 for z < 0, we must have
wg(0,2) = 0 for all z € IR with for instance wo > 0,10 = 0 in {y > 0} and wg < 0,70 =0

in {y < 0}. However by the Separation Lemma we also have 9,wq(0+,2) = 0 for z < 0, a
contradiction. :

3.2 Proposition. There is no sequence v | 0 for which
s;p wy =o(r) and supw->er withe>0.
Proof. Suppose such a sequence (rg)ren exists. Then consider the blow up

w(rrz)
Tk

wi(z) := for z € B; .

The assumption implies the existence of points z; in Bj satisfying
—wi(zr)2c and =z —z0 in Bp.

By the Lipschitz continuity we have —wy > ¢/2 in Bs(zo) for some & > 0 and for k large.
Therefore the blow up wq satisfies —wp > ¢/2 in Bs(ze), we £ 0in B; and we(0) = 0. The
property Awg > 0 is inherited, hence giving a contradiction. G

3.3 Proposition. w_(z) = o(|z]) as z — 0.

Proof. We argue by contradiction. Suppose there is a sequence (r Y& with rx \, 0, for which

w_
sup— >¢>0.

B., Tk

By Proposition 3.2 also

w
sup—i20>0.

B,, Tk

Applying the second inequality of Proposition 2.5 gives
px(2ry) = ][ Vwz]* > ¢,
B!Zrk
which contradicts the conclusion of Proposition 3.1. a

Therefore we concentrate on the sublinear decay of w4. We first prove

3.4 Proposition. Let (wo,v0) be the blow up limit obtained for a sequence (T )k with
rr 4 0. If £ € IR? satisfies
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Ve>0:v #£0 in L(B(7)) ,

then there ezists a sequence (ry)x with Tk = (yx,2k) — T such that vk =1 and wy =0 in
a neighborhood of the segments
{yr} x ] — Ly, zx] where Ly is a suitable big number.

Proof. The sequence (z )k is constructed as follows. The convergence of 7y, implies that for
each ¢ > 0, there exists k € IN such that yx # 0 in L*(B,(%)). Since (wg, ) is obtained
from (w,~) by scaling, we have that

{ #0} = {m =1} = {z < ur(y)}

is the subgraph of the scaled, continuous free boundary. Hence we can select a point z;
from the open set {z < ux(y)} N B.(). Then choose Li so that (yx,—Lx) lies on the
bottom of the scaled domain V. 0

We are now ready to prove the essential part of the section.
3.5 Proposition. wy(z) = o(|z]) as £ — 0.

Proof. Again we argue by contradiction. Assume for some ¢ > 0, there is a sequence (z;);
with . — 0 and
wy(zk) >e.
|z
Let r; := |zx| and consider the corresponding blow up sequence w; as above. For a
subsequence, denoted again by (rx)x, we have (wg,vx) — (wo,Y0) as in Proposition 3.1.
Moreover we have

Tk
er = — — o =: (Yo, %0) .
Tk

By Proposition 3.3, w—(z) = o(]z|) as z — 0. Therefore we conclude wg > 0 in IR%
Moreover by the convergence properties of the sequence
w(a:k)

Tk
c< = wr(—) = wo(eo) ,
Tk T

and the Lipschitz continuity implies
(3.1) wo > ¢/2 and =0 in Bs,(e&) for some &y > 0 .

Thus for the blow up limit wg we have a situation as show in the figure below.
First we show

(3.2) w4+(0,2) =o(z) forzl]O.

If not, we can choose the above sequence such that zx = (yx, 2) with yx = 0 and 2z > 0,
giving eg = (0, 1). Now assume that wg is harmonic in the half plane {y > 0}. Since wg > 0
everywhere and, by (3.1), wo > 01in Bs,((0,1))N{y > 0} we must have wg > 0 and therefore
also 79 = 0 in {y > 0}. As in the Separation Lemma we have that the weak differential
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Fig. 4. Situation for wy, with possible position for eg.

equation for (wo, o) also holds for test functions ( € C§°({y > 0} U{y =0,z < 0}). Using
Awg = 0 and y9 = 0 in {y > 0} this means that

Oywo(0+,2z) =0 forallz<0.

But since wo(0,z) = 0 for z < 0 (inherited from w) we have a contradiction with the
Hopf-principle.

Therefore there exists a point & = (§,#) with § > 0 so that wp is not harmonic in any
neighborhood of Z. Then clearly o satisfies the assumption of Proposition 3.4 at & (other-
wise we would have v = 0 and thus Awg = 0 in some neighborhood of &). Let 21 = (yx, z)
denote the points from Proposition 3.4 and consider the rectangle

R={(y,z):0 <y <yrand — Ly <z <min{0, 2 }},

where again Ly, is a suitably chosen large number. By Proposition 3.4 and because w(0, z) =
0 for z < 0 we have wy = 0 along the vertical boundaries of R. At the top, using the
Lipschitz continuity of w, we have wy < Cyx and near the bottom vx = 1 and wr =0 by
the choice of Li. Then the Comparison Lemma 2.1 with so = 0 gives 7x = 1 and wx =0
n

{(y,2): 0 <y <yr and — Ly < z <min{0, z} — Cyr} .

Letting k — co and repeating the same procedure in the half plane {y < 0} leads to the
situation from Figure 5.

By the regularity theory for the dam problem (see Alt {1]), this implies that the blow-up
(wo,~0) has a smooth free boundary, say graph(uo), passing through the z-axis at a point
(0,20) with 0 < z < 1, such that wo > 0, 70 = 0 above graph(uo) and wo = 0, 70 = 1
below graph(ug). We show now that this leads to a contradiction.
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Fig. 5. Situation for blow up limit (wo, o).

Let s := uf(0). For § > 0 consider the linear solution vs from Comparison Lemma 2.1
with & = (0, zp — 4).
Now let 0 < € < ¢g (small) be given. By the smoothness of ug and wo we have

luo(y) — up(0)y| < Ci(eo)e®  for y| <«
and
(3.3) lwo(z) —vo(z)] € Ca(e0)e®  for z € Be(0,20) -
Then taking § = Ce?, where C is chosen large and independent of €, we have
vs > wo in B.(0,20) N {wp > 0}

and the free boundary of vs is below graph(ug).
At each free boundary point (y,uo(y)), the function 7o satisfies the assumption of Propo-
sition 3.4. Hence for k sufficiently large (wy — wp uniformly) we can select g near —Ze

and &f near ¢, and apply the Comparison Lemma 2.1 to the scaled solution (wg, k) in
the rectangle

R=]—eg,ef[ x ] — Li,sup{uo(y) : —e5 Sy <ef}.
As a result we find

wg = 0,7 =1 below the free boundary of vs in {g;, <y < 6}0"}
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By (3.3), the positivity of wg above gr aph(ug) and again the uniform convergence of wy,
it follows that for sufficiently large k

wp >0, %=0 above the free boundary of v_s in {ef <y < ¢}}.

Thus we are left with the region between the free boundaries of vs and v_z, which is a very
flat strip of width O(e?) and length O(e). Now the origin O is an accumulation point of
{wk < 0} because it satisfies Property 4.17 of [4]. First this implies that zg — & < 0. Second
there must be curves on which wy < 0 coming from outside the strip and approaching O
arbitrarily close. These curves must come either from the left or the right. For definiteness
consider a curve coming from the right. Define the rectangle

Rei={ (y,z)lly—%|<§and|z—-zol<h}

with A = C¢, C large. Then there exists a curve in R, going from the left side of R, to the
right side and lying inside the strip so that w; < 0 on this curve. Moreover, wg > 0 near
and above its free boundary. Therefore, after the scaling

wr(z) = i—wk(em)

we obtain a situation as in Proposition 2.7, where a Jordan curve I' separates {u < 0}
above it from {wi > 0} below it. We deduce that in the flat strip points must exist
where |wg| > ce. Letting & — co we obtain that there exists a point z in the strip with
lwo(z)| > ce. But since |vo(z)| < C'§ = Ce? we conclude from (3.3) that |wo(z)| < Ce?, a
contradiction for small €.

Therefore we conclude that (3.2) holds.

For the blow up wg this implies

wo(0,2) =0, alsoforz>0,

and by (3.1)
dist(eg, {y = 0}) > do .

For definiteness, let ep = (yo, 20) has yo > 0.

Next we choose so > max{0,222}, i.e. the point e is below the line with slope so/2,
passing through the origin. Since. er — €g, also ey is below this line for large k. Choosing
such a k (fixed), we consider a second sequence (ex1)i>k defined by

ekz”-zl—ez leN,I>k.
Tk

It satisfies

T
ek1=-i->0 for [ — o0,
Tk
€1
(34) —-—L—Lze[——)EO forl-—-)oo,
‘ lex]

1
wr(exr) = ;—;w(fcz) >0.
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slope s80/2

| Ckk = €k
direction of g

sequence {ex }1>k

Fig. 6. The sequence (ex)ipx C {ws > 0}
converges to O tangent to the eo—direction.

Below we shall use the Comparison Lemma 2.1 with a function v defined for & = (0,0)
and 3o as above. First fix h > 2sg and take any L sufficiently large. We havefor 0 <z <h

z
and, from (3.2),
(3.5) wi(0,2) < &xz

where £z — 0 as k — oco. Therefore if k is large enough (depending on k) we have
wi(0,2) < v(0,2) forallze [-L,h].

Now assume there is a point # = (§,2) € Reo := ]0,2[ X ]A, oo[ satisfying the assumption
of Proposition 3.4. Then from this proposition it follows that for large k, there is y; €
10,2[, say, so that (yx,%) is below the free boundary of wg. Now consider the rectangle
Ry :=0,yx[ x | = L, h[. Then also

wi(ye,z) =0 < v(yr,z) forall z €[-L,A].
Along the top of Ry we have (by the Lipschitz continuity and using (3.5))
wr(y,h) < C  for 0<y<ye(<2),
where C, for large &, can be chosen independently of & and h. But

oy, h) = h - ysgo N h —2sq >

s2+1 T si+1 ™

for h large enough. Hence it follows from the Comparison Lemma that wy = 0 in {v = 0},
i.e. below the line with slope sq. This contradicts (3.4), see also Figure 6. Therefore v =0
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in Reo. Using the r‘nonotonicity of 70 (8:70 £ 0) and refering to (3.1) and Figure 4, we
obtain that v = 0 in the domain '

D := Reo U (Jyo — 8o, Y0 + do[x]20,0]) .

Hence
Awe =0 in D.

By (3.1) and the strong maximum principle

wo >0 in D,
while
(3.6) w(0,z) =0 for all z € IR.

So far we worked only in the halfspace {y > 0}. To obtain a contradiction we also have to
consider the situation for y < 0. There are two possibilities: either

wo(€o) > 0 for some &g = (fg, 7o) with §p < 0

(€0 not necessarily a unit vector), or wp =0 in {y = 0}. In the first case there are points
I with

Tk . w( T z .
— =&, (L)zwk(—-k—)éwo(eo)>0.
Tk Tk Tk

As in (3.1) we conclude that 7o = 0 in some ball B; _(&). Then it follows as above, that

for some h the function wy is positive and harmonic in ] — 24, 0{x]%, co[, and that ~o = 0
in this rectangle. Therefore 75 = 0 in

] = 24, 2[x] max{h, ]:L},OO[ )

so that wg has to be harmonic in this region. But then (3.68) contradicts the strong maxi-
mum principle. In the second case 8;7 = 0 in

] = 00,2[x]h,00[ ,

so that again wp is harmonic in this region, again a contradiction. This completes the proof
of Proposition 3.5. =

As a consequence we have

3.6 Theorem.

(z) w(z) = o(|zl|) as z — 0;

(z2) limy-(-yl =400 or —00,
#0 Yy
lim u(=y) =400 Or —00,
wo ¥y

where at least one limit 1s —o0.
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Note that

lim—uiy—) = —o00, lm u(=y) = —00
vi0 Yy yio Y

refers to the cusp case, and
limw=—oo, limgg:-gl:—i—oo
yi0 Y wo Y

refers to the vertical case with w = 0 on the left of the origin (see Figure 2 from [4]).

Proof of the theorem. The first assertion is equivalent to Propositions 3.3 and 3.5. To prove
the second part, we first suppose that

) u
(3.7) § 1= hmsup—glﬁ > —00 .

™o Y

Let (yx)x with yr N\, O be a corresponding sequence, choose any so < s, and let v be the
linear solution in the Comparison Lemma 2.1 with slope sg and £ = 0. We consider the
rectangle

Ry :=]0, yx[x] — L, u(ys)(
where the height —L corresponds to the bottom of the translated domain V. By the choice

of sg and property (i) we have that w < v on ORy for k large enough. The Comparison
Lemma then gives

w=0,y=1in Sk :={(y,2);0 <y < yx and z < yso} ,

and thus
u_gjy_)-zso for small 0 < y < yg.

Letting so — s, we therefore obtain from (3.7) that

s = liminf E—(#y)— }
¥™\0 Y
Next assumne that
(3.8) 5 <00

This means that for given € > 0 there exists § > 0 such that
(s—e)y<uly) < (s+¢e)y for0<y<é
and consequently

Aw

i
o

in {(y,2) 12> (s+e)y, 0<y<d}

Il
o

v

and
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w = 0

. In {(y,2):z2<(s—€)y, 0<y< b}
’7 proncd

Then the same holds for the scaled functions

1
wi(z) 1= Hw(rkx) and vi(z) := y(rix)

. Y .
but now with §; = ;- instead of §. We obtain for all sufficiently large k the situation from

Figure 7. Then we apply Proposition 2.6 and obtain that

z Awg =0
_ - slope (s +¢)

_ - slope (s —¢)

Fig. 7. Situation after scaling for all (ws,vx).

sup |lwg| 2¢>0 for all k sufficiently large.
R

However this contradicts the o-property of w and rules out the possibility (3.8). The
remaining case is

lim sup M = —00 .

™o ¥
Similar results can be obtained for the left side. Finally, assume that both limits are +oo:
le.
V) N ) N

yi0 Y ylo Yy
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Set Yk = 71.- and

uk += min{u(y), u(~yx)} .
and consider the rectangle

R :=] = yr, g [x] — L, ug

with L > 0. Since |w| < gpuy on the top of Ry by Theorem 3.6(i) with e — 0 as k — oo,
we can apply the Comparison Lemma with sg = 0 and obtain that

w=0,v=1 in{(y,2): |yl <yrand z < up —euz}.

This means that v, = 1 for large k in a full neighborhood of the origin, contradicting the
fact that this is a free boundary point. This completes the proof of the theorem. a

4. Topological properties

In this section we study the properties of local anf global connected components of {w % 0}.
Let g = (yo,ZO) eV \ W with

(41) w(llio) =0 and Zg Z u(yg) .

Then z; lies on the boundary of {w # 0}. The following statements will be relative to an
open set U C V \ W with zo € U. Consider an open set D with

(4.2) DcUn{w#0}, w=0 on UNID,
(4.3) zo € OD .

Then the following holds.

4.1 Proposition. Let D satisfy (4.2) and (4.8). Then the number of sets G satisfying

(4.4) G 1s a connected component of D,

(4.5) To € 0G

is positive and finite. Moreover, for each G satisfying (4.4) the closure G contains points
of {fws#0}naUu.

Proof. The last statement follows, since otherwise w = 0 on 9G. Since w is harmonic in G,
it would follow that w =0 in G.
The assertion follows easily if 2o > u(yo) in (4.1). For, in a neighbourhood of zg

w(z) = Reh(z)
with a nontrivial holomorphic function h satisfying h(zo) = 0. In other words,
h(z) = a{z — z0)™(1 + h(z))

with a € €\ {0}, m > 1, and a holomorphic function h satisfying h(zo) = 0. Therefore
h(7(z)) = a(z — zo)™ for a unique local conformal transformation 7 given by
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7(2) = 20 + (z — z0)(1 + h(r(z)))"* .
Then near zo the set {w o7 = 0} consists of 2m ray, therefore there are at most 2m
domains G.

Now let zo be on the free boundary. For convenience, let zg = 0. For £, > 0 small
enough consider the rectangle

R:=]—6,6[x] —ee[,

. . ! . ¢ . . .
similarly, R’ with §' = S and ¢’ = 5. Since u is continuous we can choose § so that

(4.6) RNgraph(u) C {lzl < %} .

Let G be any set satisfying (4.4) and
(4.7) GNR #0.

Since G touches AU there exists a curve «v : [0,1}] - G with v(0) € R’ and (1) € R.
Assume there are infinite many domains G;, i € IN, with corresponding curves ~;. We
claim that

(4.8) sup dist(yi(t), graph(u)) - 0 as i — oco.
t

If not, there are points £; = ~;(¢;) converging, for a subsequence i — o0, to a point £ € R
above graph(u). Since ¢; belong to different components G; we must have w(£) = 0. But
then it follows as in the first part of the proof, that only finitely many domains G; can
enter a small neighbourhood of . This proves (4.8).

Then it follows from (4.6) that v;([0,1]) C {|z| < §} for large i. Therefore v;(1) € OR
has horizontal coordinate 44 or —4. For definiteness consider the first case and the rectangle

R" :=]8',8[x] — e, €[ .

Since «; and ;41 belong to different connected components of D, there must be, at
least for a subsequence i — oo, curves. I; between v; and <41 going through R” from
left to right and having the property of Proposition 2.7. Consequently there are points
z; € R" between I'; and graph(u) with |w(z;)| = ¢ > 0, where ¢ is independent of i. But
(4.8) together with the continuity of w gives w(z;) — 0 as ¢ —» co. This proves that there
are only finitely many domains Gj, ¢ = 1,...,n, satisfying (4.4) and (4.7). Since

(GinR)=DnER

1=1

it follows from (4.3) that some G, has to satisfy (4.5). (]

4.2 Proposition. If D satisfies (4.2) and (4.8) then there ezists a continuous curve in D
with o as continuous limit.

Proof. Choose a sequence of balls Uk := By, (20), £ 2 1, 11 sufficiently small, and rx ™\, 0
as k — 0o. Define Dp := D. Using Proposition 4.1 choose inductively D, k > 1, so that
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Fig. 8. The curves ;.

(4.9) Dy is a connected component of Dy_; N Uy

with zg € 0Dy. Since Dy touches OUg there are points zx € Di N OUk4y. Fix such a
sequence (T )r>1. By construction x4y € Dy C Dy. Therefore there are curves

v [Z—:];_——i—,%] — D C Uy with 'y(z—-_—i—i) = Tky1, 7(%) =z .

Then «(t) = 20 as t — 0. 0
As a consequence we obtain that locally the number phases is well defined.

4.3 Proposition. Let xo as in (4.1) and Up := Bro(z0) C V \ W. Moreover let U be an
open set with xg € U C Uy. Then the following holds:

(i) There ezists an m 2 1 so that there are ezactly m connected components G;, i =
1L...,m, of {fw # 0} N U with zo € 8G;.

(1) The number m in (i) is independent of U.
(111) There ezists an vy > 0 with

m
B (m) C | JGi.
=1

Proof. The first assertion is Proposition 4.1 for D = {w # 0} N U. To prove (iii) consider
the open set
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Fig. 9. The domains Dy.

m
D:=U\ U G;,
i=1
which satisfies (4.2). If D would satisfy (4.3) then by Proposition 4.1 there is a connected
component G of D with zq € OG. This contradicts the definition of m. Therefore zo ¢ D,
i.e., By (20) N D = { for some r; > 0.
To prove (ii) let 2o € U C U and denote by 77 the corresponding number from (i). By
Proposition 4.2 there are curves +; :}0,1] = G; with ;(0) = 0. 5
Choose t; > 0 so that v;(t) € Ufor0 <t <t and denote by G; the connected
component of {w # 0} N U containing +;(t;). Then zq € 8G; and 7 > m is proved. Now
assume that /= > m. Then there are connected components G, G2 of {w # 0} N U with
zo € OG; belonging to the same G;,. Using Proposition 4.2 there are curves ; connecting
zo within G; to some point Z; € é’i, and Z; and %, are connected within Gy, by a curve
v0. Denote by K the compact set enclosed by 7o, 71, 72. By the maximum principle (note
that Up is a ball not touching W) w has the same sign in K as in G,. But then 7o can be
contracted within {w 5 0} to a curve inside U, so that Gy and Gb are connected. O
We now give some consequenses of the above considerations.

4.4 Corollary. Let m and G; as in 4.8 (1). Then w; := x5 w belong to H'2(Uy) and

m
w= Zw; in By, (zo)-

=1

Therefore m coincides with the number of phases in Definition 2.5.
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4.5 Remark. The number of (global) connected components of {w # 0} is finite.

Proof. Since Aw = 0 above the free boundary and away from the wells we find, by the
maximum principle, that each such component either contains a well, or as part of its
boundary a segment {a;}x]uo, H] where w > 0, or touches the top of V. But there w can
have only finitely many sign changes for, the free boundary stays away from the top hence
there w is real analytic. a

4.6 Proposition. Let D C V be a connected component of {w < 0}. Then D can contain
at most one free boundary point.

Proof. Suppose zg,7; € 0D NV are two district free boundary points. By Proposition 4.2,
there exists a Jordan arc I' C D connecting zq and zi, see Figure 10 (left).

|
|
I
I
I
I
|
!
I
!
[
I
I

Fig. 10. Consequence of two free boundary points in 8.D.

Applying the maximum principle gives w < 0 in the domain bounded by I and the free
boundary between zo and z;, see Figure 10 (right). Then for a ball B as indicated in
the figure, we have w < 0 above the free boundary and w = 0 below it. This contradicts
Aw > 0in B. a

4.7 Theorem. The number of cusps 13 less or equal the number of wells.

Proof. Each cusp belongs to the closure of {w < 0}. By Proposition 4.1 the cusp is in
the closure of a connected component D of {w < 0}. But D has to contain a well, since
otherwise w is harmonic in D with w = 0 on 8D outside the top on V and %1:- = 1 on the
top of V. The maximum principle then gives w > 0 in D, a contradiction. The assertion
then follows using Proposition 4.6. 0

4.8 Proposition. (i) Near a cusp the free boundary is smooth and w > 0 in an upper
nesghbourhood.
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(i1) At a cusp the number m in 4.8 satisfies m > 3.

Proof. By Theorem 4.7 and the definition of a cusp we know that w > 0 in an upper
neighbor]?ood of the frec? boundary near a cusp, except at the cusp. Then (i) follows af-
ter applying the regularity theory for the dam problem in suitably chosen left and right

neighborhoods of the cusps, and (ii) follows since the cusp lies in the closure of {w < 0}
as in the proof of the previous theorem. 0

Next we consider some local properties of w at a cusp, which again, for convenience, has
been translated to the origin O. We first make an assumption about the decay of the free
boundary near the cusp. Suppose

(A) : There exist constants C, @ > 0 such that for small |yl
lyl < Clu(y)*= .

This assumption implies

4.9 Lemma. Let (A) be satisfied. Then in a neighborhood of O there exists a conformal
transformation T satisfying

(1) 7(0) =0,
(ii) T and 771 are continuous up to the boundary,

(i) on every cone C above the free boundary with vertez at O

—1'-|T(w) o +|V(r(z) —2)| =0 forzeC, |z =0

|z

Proof. The proof of this technical lemma is given in Appendix B.

-
ool
1~.

. cusp case
vertical case
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As a consequence we have the following. The function w o 7! is harmonic and non-

trivial in the transformed (shaded) regions and vanishes along the boundary. This means
that for

(4.10) k = 1 in the cusp case, k = 2 in the vertical case,
there is a real number a # 0 and some integer m > 1 with
(4.11) wo77Y(() = Re(—ial™ (1 + h(())) with = i¥(—i{)*/2 .

Here h is a holomorhic function satisfying Im A({) = 0 if Im ¢ = 0. Since m is the number
of components of {wo 77! # 0} near O, it has to coincide with the number m in 4.3. It
follows from 4.4 and 4.8 that

misodd and m>3.

The properties of 7 imply that the m phases are separated by smooth curves which have
a tangent at O. For instance, if m = 3 the two possibilities are sketched in Figure 11.

w<0

w>0

w> 0

w=1{

Fig. 11. Distribution of phases with m = 3.

Further we obtain for any phase 1w of w the non-degeneracy result: there exist a constant
¢ > 0 such that for small 7 > 0

(4.12) / |V |? > erkm |
B"\Br]2
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5. Blow up.

In this section we investigate the Holder exponent of the free boundary at a cusp, which

again is situated at the origin 0. As in Definition 2.3 (see also 4.4) we decompose w
according to

w=Y w; inBy; CV\W (ro small),

t=]

where m denotes the number of phases at O. For each phase w; we define a corresponding
exponent ¢; :J0,r9] = IR by

1/2
(][ |Vwi|2> =740 for0<r < rg.

r

Using Proposition 2.5 and the sublinear decay of w at O, see Theorem 3.6 (i), we see that

for each phase r@i(r) — @ along any sequence r N\, 0. Hence all a;(r) > 0for 0 < r < rg
with r¢ sufficiently small.

5.1 Remark. Let us phrase the Monotonicity Formula 2.8 into terms of a;(r). It follows
from Theorem 3.6 (ii) (for the vertical case) that for 0 < r; < ro we can choose g(r;) with
e{r1) \y 0 as 1 N\ 0 such that (2.4) is satisfied for 0 < r < r; with é(r) =0 and

1 for k=1,
(5.1) E:n(rl)={2_6(r1) for k=1,

Here k is defined as in (4.10). Then (2.5) becomes

for 0 < r < r; with C = /¢(r1). Hence

1 — km—2 1 logC
— . S S U DL f < .
(5.2) E a;(r) = 5 Tog(1/7) or0<r<nr

i=1
Later we show that this estimate is sharp in the cusp case (i.e. k =1 in (4.10)).
Next define the smallest exponent

a(r) == riain ai(r) for0<r<mg
i=1,...,m

and consider the blow-up, for z € By and 0 < p < 7o,

wy() := w(pz)/p* TP, y(z) = v(pz) .
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The pair (w,,y,) satisfies

(5.3) /V( (Vw, + %ez) =0 forall { € C§°(By)
B P
and
(54) = 19wt = g2 fgupt = 3 oo ) € 1, m)
B, B, i=1

This means that we have scaled so that w, in B; carries the phase with the biggest Dirichlet
integral in B,. However other phases might become very small for w, if p is small. The
reason is that at this point we do not know that the phases, in other words the values «a;,
are balanced towards each other. The first result relates the values o;(r) to Assumption
(A) in Section 4.

5.2 Proposition. There exists a constant C > 0 such that for points (y,z) € B, on the
free boundary of (w,~y) we have

2| < = implies |y| < Crt¥el)

N3

for all v > 0 sufficiently small.

Proof. To prove this result we first scale and show that for points (j, Z) € By on the free
boundary, i.e. graph(u,), of (wr,v-) we have

1
(5.5) |2] < 5 implies  |§| £ Cr*™  for all r > 0 small enough.

Let n € C§°(B1) be a fixed cut-off function satisfying 0 < n < 1 and n = 1 on Bys.
Substitution into (5.3) and using (5.4) yields

1
;‘,;(T)/Vrﬁzn—‘:-fvn'VwrSC

B By

or
+1

/Tl(y,ur(y)) dy < Cr*M  for0<r < rg.
21

The integral in this inequality can be bounded from below by
L'({y : |yl < § and Jur(y)| < &)).

By Theorem 3.6 (ii), the free boundary u is vertical at O, from both sides. Hence for points

(#, 2) € By on the free boundary of w, we have that |j|/|Z| is small, if r is small. Therefore,
for small r, if |7 < 1 then |§] < &

For definiteness let us consider 0 £ g < % If we now can show that
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3
lur(y)| < i forall 0 < y <§

then assertion (5.5) follows from t ; " N
romplete. (5.5) om the above inequalities and the proof of the proposition is

We distinguish two situations.

{eron) (=1, 32)

D) - ——
S—

=
O A

w, =0,9, =1 0

Fig. 12. Possible configurations near O

Case 1: 2 < 0 (see Figure 12 (left)). Then
j<er#| withe, —»0asr =0,

ur(y) <0 for 0 <y < g and small r,

both as a consequence of Theorem 3.6 (ii). Applying the Comparison Lemma 2.1 with
50 = 0 to the scaled equation gives

up(y) 2 2—Cf for0<y <y

or
ur(y) = (14 Cer) 2 -—% for r small enough.
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Case 2: 7 > 0 (see Figure 12 (right)). Then

with e, = 0asr — 0,

us(y) >0 for 0 <y <7 andsmallr.

Now we argue as follows. Let 2z := % > # and assume that for some y; €]0,J][ we have
ur(y1) > z1 (in Figure 12 (right) we have chosen u,(y1) = 21). Further, let

yo :=sup{y > J:ur(y) <21} .

If y is as in this definition then (ry,rz;) lies above the free boundary of w with 0 < rz; <r.
The vertical shape of the free boundary at O, see Theorem 3.6 (ii), then implies that y,
exists and '

yo < &rzy  withe, +0asr—0.

We apply the Comparison Lemma, 2.1 with sg = 0 in the rectangle Jyi,ya[x | — 00, z1{ and
obtain that

ur(y) 221 —Clya —y1) foryn Sy <.

In particular at y = ¢:
22 2z1—Cyp 2 z1(1 — Cg;)

for small r a contradiction to Z < 1. a

If & would stay strictly positive as r — 0, then by Proposition 5.2 we could apply the
conformal transformation of Lemma 4.6 which would tell us that in a sense the phases of
w are balanced. If this is not the case then a(r) — 0 for a subsequence r — 0. We then
still have the possibility to study the blow-up limit of w,. For the usual linear blow-up
sequence the blow-up limit is globally defined since w is Lipschitz continuous. Here the
values of w are stretched more in order to obtain w, with a Dirichlet integral satisfying
(5.4). The purpose of this stretching is to have the chance to pick up a non-trivial blow-up
limit. By (5.4) the blow-up limit will exist in B;, but it needs not to exist outside Bj.
Moreover, the problem which could arise is that the blow-up limit might vanish in any ball
Bjs with ¢ < 1, having a gradient concentrated near 0By, despite of property (5.4). On

the other hand, such a degeneracy of w, is in favour of high values of (é,). The following
proposition takes care of this situation in a precise way.

5.3 Proposition. Let ry := 27 *ry. Assume that there exist constants B,7v > 0 so that for
T =Tk

(5.6) ( ][ ]Vw12>1/2 <277 ( ][ |Vw|2>1/2 or that o(r) > 8.
B

r/2 r

Then
hin\%lfa(s) > min{8,~} .

Proof. Define for given M > 0 the function
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o(r) = max{ (;[ 1%12)% , Mrﬁ} L O<r<ro.

Let k& € IN. If the first inequality in (5.6) is satisfied then it follows from e b1 =277 r
that

U(ree1) S27°0(ry)  with oo :=min{8,~} .
If the second inequality in (5.6) holds, then

m
][ |Vw|* = Zriai(r”) < mri_a("’) <mr?,
Brk l'—‘l
implying
][ [Vw|? < 4 ][ |Vwl|? < 4mriﬁ < (2""’M7'f)2
Br +1 B,
if M was chosen such that M > 27t /m. Hence
P(rp41) < max{277M 'rf , M"'£+1} <27%U(ry) .
Thus in either case we have the iterative estimate
W("'k—l—l) < 9!?(7’]:) with § =272 < 1,

resulting in

U(rk) < g*w(ry) for k € IN.
Now let 0 < r < rp and choose k € IN such that rz4+1 < 7 £ rg. Then

3 \ 3 o
(ilvm) SZ(][BT,AW) < 26*%(ro)

Using that
}.Og %t . 27\ oo
r>rip1 =25 = kE>- logzs = < (;‘5) )

we conclude that 3
() <o
B,

for some C > 0. On the other hand

1 m .%
(froat)! = () 0.
By

=1

implying the assertion of the proposition.
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If (5.6) holds along the sequence (7 )i, then according to Proposition 5.2 the free bound-
ary is Holder continuous at the cusp. This implies Assumption (A) in Section 7 and its
consequences. Therefore we consider an arbitrary sequence p “\, 0 along which (5.6) does
not hold: i.e. for which there exist constants dg, 8o > 0 such that

(5.7) / |Vw|? 25o/|‘§7'w[2 and «a(p) < fo
B2 B,

as p \¢ 0. Then for the blow up sequence {w,,~,), satisfying (5.3), we obtain using (5.4)
the nondegeneracy

(5.8) / IV, > 6 / V|2 > 760
Byj2 B,

i.e. w, will have a nontrivial blow-up limit. To this end we first transform the functions ~,
into, see also Figure 13,

Yo(y, 2) in cusp case,

(5'9) &P(yaz) = 7P(ya z) in {y > 0}
in vertical case,
L= y(y,2) =1 in{y <0}

where in the vertical case we assume for definiteness the flow domain to be on the right-

hand side.

Fig. 13. Definition of 7,.
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Clearly .
Y
/VC- (pr + —p—a—&-)-ez) =0 forall ( € C$(B,).
B;

Moreover, it follows from Proposition 5.2 (see (5.5)) that for lz| < % and p sufficiently
small - ’

(510) :)'p(.’B,Z) ={ for Iyl >C- pﬂ'(P),
and thus
+-§;I
:Yp(y;z“
-————pa(p) dy<C.

Z1
2
Further define functions l;': [-3,+3] =+ Rby

£ Tely, 2)
I5(2) := / ——‘;71—(—;)——dy for |z] < 1.

{o<=y<3}

They satisfy 0 < z l;*:(z) < C|z| and they are monotone non-increasing (since 9,7 < 0).
It is now possible to choose a subsequence p \, 0 along which

wp, — w, weakly in H1?(By) (see (5.2)) and a.e. in By,

15— ¥ weakly star in L®(] — 1, +1[),

a(p) = a, € [0,80] .

Replacing the test functions in the weak equation for (w,,,) as was done in the Separation
Lemma (thus with (¥(2) := ((0+, z) having different values on —1 < z < 0, but the same
values for z > 0) we obtain

pa(P)

0= [va,ver [ Toct [ Tec.
B Blﬂ{y>0} B[ﬁ{y‘(O}

Then § — 0 gives

(5.11) 0= [ve-vut [ acts | wec

B1 {y=0} {y=0}
for all such test functions ¢. From this limit equation and the convergence properties of
w, and the free boundaries we conclude that w. satisfies the properties from Figure 14.

To exclude the possibility of a vanishing blow up limit w, observe that Proposition 2.5
and inequality (5.8) imply the existence of a positive constant ¢ such that

/ > ¢ / Vaw,l? 2 cbo

Bl\B1[2 BI/Z
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Fig. 14. Properties of blow up limit w.

Since w, — w, strongly in L*(B;) we have indeed .

w, # 0 in the shaded regions from Figure 14.

As an immediate consequence we have

5.4 Lemma. There extst m, > 1 odd and c, > 0 such that the following expansion holds:
wa(z) = co Re(—22™ (14 h(Z)))

for small |z| with Im& > 0, where & = i*¥(—iz)*/% and b is a holomorphic function with
Imh(Z) =0 for Imz = 0.

Proof. The asymptotic behaviour of the blow up limit at the orgin, with m, € IN and

¢« € R\ {0}, follows from the properties shown in Figure 14. Moreover, it follows from
(5.11) that in the cusp case (k =1)

+0,w. (0%, 2) = —=8,1F(2) >0 for —1 < 2 <0,
where the monotonicity of [T is a consequence of the approximation process. In the vertical
case (k = 2)
Oywa(04,2) = =0,1F(2) >0 —-1< +z<0.
Checking the sign of w, from the above expansion with these inequalities it follows that
cx > 0 and that m. is odd. 0

We emphasize once again that the limit function w, results here from a particular blow

up, ie., for a particular subsequence p “\, 0 along which the blow up is non-degenerate.

Next we show that the number of phases is conserved in this blow up process. We do this
in two steps and show first

5.5 Lemma. m, < m.
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Proof. Let & > 0 be fixed and sufficiently small so that in the ball Bs the distribution
of the m., phases of w, at 0 over the domains Di,...,Dp, is as in Figure 15 (). In the
figures we show only the cusp case with m, = 3. We select points z; € D; such that

lwa(zi)] > ¢, for some ¢ > 0.

(a)
(b)

Fig. 15. (a) Distribution of m. phases of w. in Bs; (b) Construction of the subsets Df

In the arguments below we need that w, becomes uniformly small on circles close to the
origin. Using the uniform boundedness of the Dirichlet’s integral for w,, we can use Courant
[6, Lemma 3.1] to obtain that for any pair 0 < ry < ry < 1, there exists r, € [r1,72] such

that
& 2mm

2 & —
wilrp) < logra/r1
where w(r,) denotes the oscillation of w, on 8B;,. Since w, vanishes below O, this implies

2mm

———— forall p>0.
logra /T

(5.12) sup |w,| <
To

We use this result as follows. Consider a ball B., with ¢ (/€ << &) chosen such that

B ;N {z;} = B for alli = 1,...,m.. Further we select subsets D, satisfying «; € Df C D;,

which touch the circle 8B,, see Figure 15 (b). By the convergence of w, we have for p

sufficiently small,

(5.13) wy(z) #0 for z € Df and |wp(xi)| > c/2.
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Choose p such that (5.13) holds. Then by (5.12) and the choice of €, there exists p:=r, €
(€, /€] such that

drm
sup jwp| £ T <c/4,
) log =
provided € is chosen small enough. Finally choose points a; € 8B, NDf for1=1,...,m,.

Now suppose m* > m. Then at least two domains Df and Df, must belong to the same
component of {w, # 0} and within this component the sets Df, and D, can be connected
by a curve o, on which w, has a fixed sign (for definiteness, say positive). The sets Dj
and Df, are separated by a third set, say Df , on which w, < 0. We can choose o, so that
it starts at a;, and stops at a;,. Now there are two possibilities.

{a)

(b)

Fig.16. (a) The curve o, encloses region where w, has opposite sign; (b) The curve o, passes
throug the small ball B,

The curve o, encloses the set D} where w, has opposite sign, see Figure 16 (a). Since
w, > —c/4 on OB, and w, > 0 on 0,, the maximum principle gives that w, > —c/4 in
D and in particular w,(zi,) > —c/4, a contraction.
The other possibility is that o, passes through the small ball B, when connecting a;, and
ai,, see Figure 20 b. Then we argue as follows. Choose 0 < e* < ¢ such that B.» N o, =0.
In the ball B.» we select a point b, with w,(b) < 0, which belongs to the same component
of {w, < 0} as the set Df . Then the only possible connection between a;, and b in that
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component, i-S by a curve 7, which encloses either D;, or D;,. As before we apply the
maximum principle to reach a contradiction. 0O

Next we show

5.6 Lemma. m, > m.

Proof. If m > m,, then between two adjacent domains Df and D%, or between the frec
boundary and, say, Df there must be remaining components of {w, # 0}.

Df—i—l y Say, wp< 0

D, say, w, > 0

Fig. 17. Additional phases of w, between D{ and Df,,

The first possibility leads to the situation depicted in Figure 17. which holds for all p suffi-
ciently small (at least those p \, 0, along which the sequence w, converges). Consequently,
in each transversal cross-section along the strip between Df and Df,, (we selected ¢ small),
there are points at which w, has a zero difference-quotient. By the C .convergence of w,
we now conclude that Vw, = 0 along the curve separating D; and D;41, see the picture
on the right in Figure 17. This clearly contradicts the behaviour of w, in Lemma 5.4.
Next we consider the second possibility. Then the additional phases of w), enter along
the free boundary. The argument used above does not apply here because of the missing
C*'-convergence. We therefore proceed as follows.

Near the free boundary the distribution of components of {w, # 0} must be similar to the
situation shown in Figure 18 (a). .

Then for p sufficiently small we can choose a domain D C By and a function @, : D = IR,
having properties as described in Figure 18 (b). Clearly 1, is superharmonic in D. Because

it vanishes near {y = 0} we have
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0
?
l
N\ D

N
L£.bY

W, = w, = 0

wP='LDp>0
!
|
'wp>111p=0 wp=1bp<0

(a) (b)

Fig. 18. (a) Sign-changes of w, near free boundary; (b) Definition of the function @, on D C B,
D

for all ¢ € C&°(D U {y = 0}), { > 0. Since w, is bounded in H}?(B;), see (5.4), we also
have W, bounded in H'?(D). Hence along an appropriate subsequence p N\, 0, 0, — s
as well as w, — wx weakly in H?(D). Since the domain where W, # w, collapses to the
vertical line {y = 0} as p N\, 0 we have W, = w, in D. Hence for test functions ( as above

o< [vevo.= [ o,
D

8DN{y=0}
a contraction to Lemma 5.4. |
5.7 Corollary. m, > 3.
Proof. By Lemma 5.6 and Proposition 4.8 we have m, > m > 3. O

Having established that w. has the same number of phases as w, we prove next that
oy > ""’2"2 , independent of the choice of the sequence p \, 0 satisfying (5.7).

5.8 Lemma. o, > L’%:-z-

Proof. We decompose w, and wy into their phases at 0:

m m
Wy = pr,- and w, = Z'w*; in B, (p small).

1=1 i=1
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Here we used that my = m by 5.5 and 5.6, and the numberin

in H?(B;). Therefore 8 s so that wpi — w,; weakly

lixgl\iglf/ Vw2 > / Vw.il* >e¢>0.
By B,

Since, see (5.4),
1
B,

we find that

lim inf p2(ei () —ale)) » &
N0 T

Thus for small p

C
ai(p) —alp) < 7= .
Og '5
Summing over ¢+ and using (5.2) we get
Km — 2 c
a(p) 2 —5— - —3
0og :;

with « as in (5.1). Letting first p N\, 0 and then 7; \, 0 we obtain the desired inequality. O
So far we have controlled a(r) from below only for certain subsequences for which (5.7)
holds. Using Proposition 5.3 we now show that a(r) remains positive for all small r.

5.9 Lemma. liminf, 0 a(r) > kmz‘”2.

Proof. Take any 0 < o < 5—"12:2 and v = og. Let us assume that (5.6) does not hold for

some small ro. Then there exists a sequence p \ 0 for which (5.7) holds with
50 = 2*27_2 and ﬂo =g .

Following the above blow up argument, Lemma 5.8 implies that

km—2
im i = >
Bo > hin\{élf alp) =as > 5

a contradicition. Hence (5.6) holds for some small rp. Consequently, by Proposition 5.3,

liminf er) > ag .
N0

Since cg < ¥Mm=2 was chosen arbitrarily the proof is complete. O
Using this result we are able to prove that on small balls B, the phases w; are balanced

towards each other.

5.10 Lemma. There ezist constants ¢ >0, C > 0 such that for smallr and i =1,...,m
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(5.14) ertm < [Vt <Grém
B,

Proof. By Lemma 5.9 we have «(r) > ag > 0 for small 7 (g as in the proof of §.9.). Then
Proposition 5.2 implies that the free boundary becomes vertical at 0 in a Holder sense,

that is, Assumption (A) in Section 4 (with o = «ao) is satisfied. Thus Lemma 4.9 can be
applied and therefore (4.12) holds, i.e.

(5.18) |Vw;|? > crf™ .
/

Now let us look at the Monotonicity Formula 2.8. It follows from Assumption (A) (in the
vertical case) that (2.3) is satisfied with x = k and

_J0 cusp case,
8(r) = { C r@ vertical case.

Thus ¢ is bounded and in Remark 5.1 we obtain instead of (5.2)

1 km —2 C
m 2 2 = T logl’

t=1

Using (5.15) we find

km — 2 )
a;i(r) < 5 +10g% fori=1,...,m.
Consequently
km —2 C
.16 (r) — <

which is equivalent to the assertion. O

Now we are able to consider the blow-up with respect to the exponent ~k—2”1 — 2 instead
Of a('l‘):

(5.16) wr(z) = w(rz)/r? , ~.(z) =7(rz) ,
where
km

A7 = —.
(5.17) A=
Moreover with 4, as in (5.9) we define now
(5.18) 1F(z) =178 / Yy, 2) dy .

{o<+y<i)

We now show
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5.11 Theorem. Let w, and [* be as in (6.16), (5.18). Then w, — w, weakly in HLA(RM)

and I¥ — IF uniformly in Cf, (R) as r — 0. The limits w,, (% satisfy (5.11) and for some
¢« > 0 they are gwen by

(5.19) 'I.U*(x) = Cx RC(—"Z.'im) with & = ik(_ix)klz ,
and for z > 0

I£(—2) = cu2? and 12 (2) = 0 in cusp case,

5.20)
( I5(Fz) = £e.2? and 1¥(+2) = 0 in vertical case.

Proof. Let R > 0. It follows from (5.14) that the phases w,; of w, are bounded in H!'2(Bg)
for small r. Moreover, by (5.10) and (5.16), the functions (¥ are bounded in C%([—R, R])
for small r. Thus there exist w,, [T such that for certain subsequences w, — w, weakly in
HY?(Bg) and IF — I weakly star in L®(] — R, R]).

Since Assumption (A) in Section 4 is satisfied we can apply Lemma. 4.9. It follows from
(4.11) that

wr(z) — a Re(—1i2™)

uniformly in z, locally in every cone as in 4.9 (iii), which gives (5.19) with ¢, := a. The
identity (5.11) follows as before and repeating the proof of Lemma 5.4 gives c, > 0.
Moreover, it follows from (5.19) that with £ = § + 12

ayw*[2=0 = C*ﬂgm_% .
Thus the identities in the proof of Lemma 5.4 give
(5.21) —01E(2) = c,B)2)f 7}

for —1 < z < 0 in the cusp case and —1 < +2z < 0 in the vertical case. Now, by (5.16), we
have in Proposition 5.2

l2] <€ implies |y| < CrP

[\VE ]

for free boundary points (y, z) € By, or

(5.22) lyl < Claf? .

Then (y, z) = 0 for |y| > C'rP~*|z|# and we infer that
(=) < Clal” .

This also holds for [F so that (5.20) follows from (5.21). The uniform convergence of I
follows from the monotonicity of these functions and the continuity of the limit £,
Finally, since ¢, = a is independent of the chosen subsequence it follows that the whole

sequernce converges. .

5.12 Remark. The free boundary becomes vertical at 0 in the Holder sense (5.22), where
the exponent 3 > % is given by (5.17). For the standard cusp case (k = 1, m = 3) we have
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B =32. The result (5.22) does not imply that the free boundary isa C ! curve from the left
or right at the cusp. This will be proved in Section 6.

6. Regularity of free boundary at cusp

In a number of steps we show here that at the cusp the free boundary becomes vertical in
a C'-manner. We are able to prove this for the cusp case and partially for the vertical case
(that is, for the part of the free boundary which lies below the critical point). For the proof
we need to estimate the gradient of a harmonic function, defined in an open, bounded and
connected domain, in terms of its value at the boundary. The following proposition gives
the precise statement. It is a generalization of a result of Alt & Gilardi [5, Lemma 7.5].

6.1 Proposition. Let D ¢ IR? be open, bounded and connected, and let h : D — IR be
harmonic. Further let I¥ C IR? be compact such that Rr? \ K is connected. Then

(6.1) VR < C, for some C > 0.
(6.2) dist(Vh(z),K) =0 as dist(z,8D) = 0.
implies

Vhiz) € K for allz € D.

Proof. ¥ Vh = constant in D then VA € K by (6.2). If VA # constant in D it follows
that VA is an open mapping (since D is connected and h : D — € holomorphic). We
argue by contraction. Thus suppose Vh(zo) ¢ K for some zo € D. Then consider a curve
0 :[0,c0[— R?\ K with o(0) = Vh(zq) satisfying

(6.3) lo(s)| = 00 as s — o0,
(6.4) dist{(c([0,00[), K) > d > 0.

Related to o, consider the interval
I={t>0:0(s) € {Vh(z):z2 €D} for 0 < s <t}.

I is non empty since 0 € I. Because Vh is an open mapping I is open, and by (6.1), (6.3) it
is bounded. Therefore g := sup I < co does not belong to I. Choose t,, / tg and z,, € D
with 0(t;) = Vh(z,,). Since to ¢ I the sequence (2, )m has no accumulation point in D,
therefore dist(z,,,0D) — 0 as m — oo. Then dist(c(ty), K) — 0 by (6.2), a contradiction
to (6.4). |

We consider the free boundary near the origin 0 where the singularity is situated. It
sufficies to consider a right neighbourhood. We want to show that u is monotone there.
For this let

0Sw<g and e=efp) = exp(—ip)

R .= {rexp(~—ig +z'0) > O}

and consider the ray
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with 0 < @ < 7 (see Figure 19). By Theorem 5.11 we have for z € R

Vu,(z) - e = c.f)z]f 2 cos((f ~ +¢)>0
provided

(6.5) (ﬁ—1>9<§_¢.

Since the blow up sequence w, converges to wy, with smooth convergence in the set
where w, is harmonic, we also have for a fixed 7, € R

Vw,(zp)-e>0 for all small T,

hence
(6.6) Vw(z)-e>0 forz € R, |z| small.

From now on we assume that {6.5) is satisfied. Let us choose a ball B p around 0 so that
(6.6) holds for ¢ € RN B, and so that in B, the free boundary to the right of the cusp lies
below R. We then denote by {2 the domain enclosed by R, 0B,, and the free boundary

graph(u).
We show

6.2 Lemma. There ezists a neighbourhood of O in 2 in which

Vw-e>0.

Proof. Since the free boundary becomes vertical at O (Theorem 3.6 (ii)), there are points
z; € 812 on the free boundary with z; — 0 as 1 — oo so that v(x;) - e > 0. Here v is the
normal towards the flow domain. On the free boundary we have

(Vw—e,)-v=0 and w=0,
therefore
(6.7) Vw=e¢e, -vv.

This implies that
Vw(z;) e =e, v(zi)v(z;)-e>0.

Let D; denote the connected component of 2 N {Vw - e > 0} containing z; as boundary
point. Let us first make the following assumption:

There exists a subsequence, again denoted by (z:)i,
(6.8) with the property that D; N R # {.

We shall show that from this assumption the lemma follows. Note that if such a sequence
exists, then by (6.6) all the corresponding D;’s coincide and contain part of the ray R up to
0. On R we select points &; with #; — 0 as ¢ — o0, and we consider curves in the connecte.d
component, connecting the points z; and #; and the points z; and Z; for a suitable pair
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Fig. 19. Construction of the set D.

J > 1, as in Figure 19. Let D be the region enclosed by the free boundary, R and these two
curves.
By construction,

Vw(z)-e>0 forall z €D\ graph(u).
On the free boundary we have by (6.7)
1
5 -
Moreover, since the free boundary does not become vertical on 8D we have there v - ey >
¢ > 0, hence

[Vw — %ezl =

Vw-e;>c?>0 ondDnN graph(u).

Consequently Vw has values on 0D in the set K from Figure 20.
Then Proposition 6.1 implies
Vw(D)C K .
Since Vw is an open mapping, any neighborhood of a free boundary point is mapped into

a neighborhood of a point on the circle in Figure 20. Hence, the part of K outside the
halfspace {z € C; z- e > 0} cannot be attained. Therefore

Vw-¢e>0 inD
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N l

. . K

T~

Fig. 20. Vw(8D) C K.

from which the lemma follows after letting ¢, 7 — oo. To complete the proof we have to
show that assumption (6.8) is the only possibility. We argue by contradicition. If (6.8) does
not hold then the following three cases need to be checked.

(i) D; does not touch R, the origin, and 0B p-
The properties of D; imply that Vw - e = 0 on 8D \ graph(u). Arguing as before with
D := D; we obtain Vw - e = 0 on D; contradicting the definition of D;.

(ii) Infinitely many D;’s reach O.
This implies a situation as in Figure 21. Consider some {Vw-e < 0} component D enclosed
by two of the D;’s and the free boundary. We want to apply the argument used in (i) to
the set D. This is straight forward if D does not extend to the origin. If, however, as in
Figure 24 the origin belongs to 8D, we need to estimate Vw(z)-e, z € D, as z — 0. Since
D is contained in the cone bounded by the vertical and R, and since Vw - ¢ is harmonic
and bounded in D and vanishes on 8D \ (graph(u) U O), we conclude that

|[Vw(z)-e| +0 forzeD,z—0.

This allows us to apply the argument from (i) to reach a contradiction.

(iii) Infinitely many sets D; touch 8B,. . _
If two domains D;, and D;, enclose a set D as in (ii) we proceed as there. Otherwise th.lS
leads to a situation as shown in Figure 22, where sign changes of Vw - e accumulate in
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Fig.21. D;’s reaching 0.

the domain where Vw - e is harmonic. This yields a contradiction as in the first part of
Proposition 4.1.
We are now in a position to prove

6.3 Theorem. The free boundary becomes vertical at O in a C*-manner.

Proof. Taking ¢ = 0 in Lemma 6.2 it follows that 8yw > 0 in a neighborhood of O below
R. This implies that the free boundary to the right of the cusp is non-increasing in v, i.e.
near O it has the form

(6.9) {(v,2): ~f <2 <0, y>0, y=f(z)} .

for some 8y > 0. Since u is analytic away from the cusp it follows that f is analytic and
f'(z) < 0. Now choose any 0 < ¢ < 7 in Lemma 6.2. This implies that v - e > 0 on the
free boundary in a neighborhood of O below R. Therefore there exists d, > 0 so that

(17 _f,(z)) -e20

for -4, < 2 < 0, i.e. |f/(2)| < cote. O
Beside this we can show

6.4 Theorem. The function f in (6.9) satisfies
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Fig. 22. Accumulation of sign changes of Vw - e.

b 1) _

zl/‘OW*c* )

Proof. Since the free boundary has a representation as in (6.9) it follows that in (5.18)
IF(z) =r1"" frz)
7
Set z = 1 and use Theorem 5.11. O
6.5 Note. Next we consider, in the vertical case, the part of the free boundary above O.
For definiteness we again assume that the flow domain lies to the right. We now take

0£<p<g—, e = e(p) = exp(ip) ,

R:= {rexp(i-g— -—i@) T >0}

with 0 < 6 < Z. Then, with ¢ as in (6.5), we find the same formula for Vw*.- e along R.
Proceeding as before, we obtain (for ¢ = 0) the existence of f (as in (6.9)) with

=) _
Z I
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However, for ¢ > 0 we do not get any additional information. Therefore with this method
Theorem 6.3 cannot be proven.

7. Concluding remarks.

In this paper we develop the local analysis concerning the behaviour of the reduced po-
tential and the interface near such singular points, provided they belong to the interior of
the flow domain and provided N = 2. That singular points are in the interior seems to be
clear by physical intuition. In fact, for our rectangular domain the interface is expected to
be below the position of the highest well, provided all wells withdraw fluid. However we
were not able to prove this. The restriction to two space dimensions was imposed to apply
typical two dimensional free boundary methods.

As a result of the local analysis we obtain that at a singular free boundary point
the free boundary either forms a cusp or becomes vertical. Which of the two will arise is
determined by global arguments. For instance, we conjecture that a well configuration as
in Figure 23, with one well pumping fluid in and one well pumping fluid out, may lead to
vertical interfaces.

fresh

{.h.

vertical

f.h.

vertical

Fig. 28. Well configuration leading to vertical singularities.

With respect to the local behaviour, we observe that we have no regularity results for
the function f, see Section 6, related to the branch above the singularity (vertical case)
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Also an expansion for the derivative of f, i.e. F'(2)/2P=Y = +8¢
open problem. *

Finally we me.ntion t?lat the proofs in this paper do not carry over to the three dimen-
sional case, 1n which a different, not polynomial asymptotic expansion, is expected.

as z = 0, 1s left as an

Appendix A: Monotonicity formula.

Consider a continous function w By, =+ R, ro > 0, which is harmonic outside its zero
set. Assume w has a decomposition

m
wziwi

=1

where w; € HY2(B,,)NC%(B,,) are the phases of w at the center O of By, (see Definition
2.3). Then ¢; defined as in (2.1) are absolutely continuous positive functions on 0, ro[. We
want to show that

(A1) (1og ) (r) > —xm2 2]
where ¢ is defined as in (2.2) and the function § is chosen so that (2.3) holds.

We have for almost all 0 < r < rg

(42 g () =3 B =T 4 350

=1 @i(r i=1

with
rf [Vw;|?
Se
si(r) = fIVw,-P 3
B,

where S, is the sphere 8B,. The monotonicity and the harmonicity of w implies that for
¢ € C5°(Br,)

0= /V(C'wi)'Vwiz /CIV'wilg—f—/w,‘VC»Vm;.
By Bro Bry

Therefore for almost all r

1/2 N 1/2
wn frer=fues(f) (5
Sr ,-

On the other hand
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(A.4) /Iwal2 = /((%?)2 + (%%%)2)
S

r r

>of [(2us) - i%)z -
- / or _/ r 08

Sp r
Defining vi(z) := wi(rz) for z € S it follows from (A.3) and (A.4) that

1/2

sy 22| 2—1| 22,

if A; is the smallest eigenvalue of 8% /86 with homogeneous Dirichlet data on S; N {v; # 0}.

Denoting by [; the relative length of this set with respect to 57 we have A; > (2[;)~? and
therefore

(45) PICOES -

i=1

Moreover, by (2.3),
m
1
R
;l‘ S A=)

With this constraint the right-hand side in (A.5) becomes minimal for I; = (m«(l —
§(r)))1, thus

> silr) 2 mPs(l - 6(r))

=1

and together with (A.2) the assertion (A.1) follows.

Appendix B: Proof of Lemma 4.9

Let Condition (A) be satisfied. In complex coordinates { = (—iz)¥/2 = (¢; + i(, the
transformed free boundary I lies, near the origin, between the curves I'y = {y+(it) 1 t €
IR}. Here 7+(¢) := ¢ - (1 £ M(®) are conformal transformations near the origin, M large.

Let ro > 0 (small) and D the domain bounded by parts of {(; =y}, {¢z = %70}, and
I'. If I intersects the lines {{» = +r¢} more than once, we take the points where I" coming
from the origin hits this lines for the first time, see Figure 24. Now consider the harmonic
function h on D and continuous in D such that A = ry on the upper boundary, h linear on
the sides, and k = 0 on the part Iy of 8D belonging to I'. Similar define D with respect
to I's and harmonic functions hz. (Note: We do not know that 8D is a Lipschitz graph
near the origin, but the flatness at the origin implies the existence of h.)

Then (extending functions by 0 beyond Iy, I'y)
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Re ¢ = (4
D
\ P
N //
N
P
\4\ A I"‘
\ \\ //
\\\ —‘,’
. T — s = —
Im¢=¢ = ~ == _
d =~ ~
7~
Ve ~
d A
AN
/
/ \

Fig. 24. Construction of domains D, D, and D_.

(B.1) ho<h<hy.

Moreover, using regularity theory and Hopf principle for the harmonic functions At o v
it follows that hy are CY® up to the boundaries I'y. and that

(B.2) h—(¢) 2 ¢ dist(¢, T-)

for some ¢ > 0. Now consider the blow-up sequence

he(C) o= =h(r() ,

r

and similarly h4,. We claim:
B.1 Proposition. For some constant ¢+ > 0

h*(C) = }_{E%hr(C) = ¢
locally unifomly in {¢1 > 0}.

Proof. For small r > 0 let s, be the smallest number such that h < s-hy in Br. Clearly s,
decreases when r decreases and by (B.1) and (B.2)

8y :=lims, > 0.
0
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Since
0<h, < Srh+'r in By,

h, are bounded harmonic functions locally in By N {¢; > 0}. Therefore there exists a
harmonic function h, in B; N {{; > 0} so that for a subsequence r — 0

hp = hy in CP_(B1N{¢ > 0}).
Since )
hir(¢) = O1h4(0) max((1, 0) =: A(()
it follows that

~

0 < he <s4h.
Assume that 2.((o) < s+k((o) for some (o. Then

hy < suh— 8 in By (Co)
for some g9 > 0 and &g > 0. Then for small r
fri= Srh-i-r —h > '5'29' in Beo(CO)-

Moreover f, is superharmonic in D4, N By, non-negative on the boundary. Therefore, by
Hopf principle, there is a constant cp > 0 independent of r such that for { € Dy, N B, /2

fr(€) = co dist(¢, I'yr) > chyr
with ¢ > 0 independent of . Thus
hr < (31' - c)h+r in B1/23
which says that s,/ < s, — ¢. Letting » — 0 this is a contradiction. O
It follows from the Proposition that on each cone {re’? : r > 0 and |p| < F — 6} and
for each multiindex 8 = (81,52) > 0
(B.3) P (h(() — 1) = o(|¢*71#) as ¢ — 0.

Now define the conjugate harmonic function k: D — IR of & by

K(C) = / Vh(o(t)) - (—iok(t)) di
Q

where o¢ :]0,1[— D with o¢(0) =0, o¢(1) = ¢, and Reo(0) > 0.
B.2 Proposition. The holomorphic function
1 .
T(z) = Z—(h(C) +1k(()) for (= (—-i:r:)k/2

has the properties stated in Lemwma 4.9.
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Proof. 1t follows from (B.3) that k is well defined, and on each cone as above k(() =
ce(z +0(|C]) as { = 0. For 0 < € < ry there are exactly to points (¥ € 9D with h(CE)=¢
Therefore D N {h < £} and D N {k > €} are connected sets so that I, = 8{h >€£} has
to be a smooth curve from (" to (} on which V4 # 0. This implies that % is strictly
increasing on I. Also k is continuous up to I \ {0} and strictly increasing on the two

parts of Io \ {0}. Therefore 7 := h + ik is one-to-one if we can show that Vh is integrable
on Ip\ {0} and

(B.4) fa..,,hd?{l — /a_,,ham‘ ase — 0
e Io

(v is chosen so that d_,h > 0). Now, as € — 0,
[Vh|? = / V(h—€)+Vh = f(h — €)1 8,h dH*
D aD

— / hO,hdH' < 0,
8D\ T

Dn{h>e}

thus VA € L?(D). Then with the cut-off function #,(¢) := min(1, 1 dist(¢, 8B,))

Sop 1= / neByh dH = / VneVh = O(|V¢|lz3(s,.,) = 0
a(DN{k<e}) Dafh<e)

as r — 0. Since for small r

Se.r =/3~,,h dH! + / O,hdH! — / nrO—ph dH’
T {h<e}ndD To\{0}

(B.4) follows by letting first » — 0 and then & — 0. o
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