
Mobile Channels

for Exogenous Coordination

of Distributed Systems

Semantics, Implementation and Composition

Juan V. Guillen Scholten

Mobile Channels

for Exogenous Coordination

of Distributed Systems
Semantics, Implementation and Composition

Mobile Channels
for Exogenous Coordination

of Distributed Systems
Semantics, Implementation and Composition

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschapen en die der Geneeskunde,
volgens besluit van het College voor Promoties

te verdedigen op woensdag 10 januari 2007
klokke 16.15 uur

door

Juan Visente Guillen Scholten

geboren te Delft
in 1974

Promotiecommissie

Promotor: Prof. Dr. F. Arbab

Co-promotores: Dr. F.S. de Boer

Dr. M.M. Bonsangue

Referent: Prof. Dr. J.-M. Jacquet
University of Namur, Belgium

Overige leden: Prof. Dr. A. Brogi
University of Pisa, Italy

Prof. Dr. J.N. Kok

Prof. Dr. W.-P. de Roever
Christian-Albrechts-University of Kiel, Germany

Prof. Dr. S.M. Verduyn Lunel

The work reported in this thesis has been carried out at the Center for Mathemat-
ics and Computer Science (CWI) in Amsterdam under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

Cover design by Federico Guillen Scholten.

IPA Dissertation Series 2006-21
ISBN 90-6196-541-1

Copyright c© 2006 by Juan V. Guillen Scholten

Contents

I Introduction 1

1 Introduction 3
1.1 Context . 3
1.2 The Thesis . 4
1.3 Contributions . 4
1.4 Outline of the Thesis . 6

2 Mobile Channels 7
2.1 Introduction . 7
2.2 Mobile Channels . 8

2.2.1 Operations . 8
2.2.2 Features and Benefits . 9

2.3 Mobile Agent Example . 11
2.4 A Set of Channel Types . 13

2.4.1 Coordination and Communication Types 13
2.4.2 Coordination Only Types . 15
2.4.3 Other Types . 16

2.5 Discussion . 17

II Semantics 19

3 Semantics without Mobility 21
3.1 Introduction . 21
3.2 A Short Introduction to Petri Nets 22

3.2.1 Elementary Net Systems . 23
3.3 PN Semantics for Mobile Channels and Components 27

3.3.1 Mobile Channel Interface . 27
3.3.2 Component Interaction . 28
3.3.3 PN Composition of Components and Channels 29
3.3.4 A Set of EN and P/T-net Mobile Channels Systems 30

3.4 Analysis and Simulation of PN Models 36
3.5 Discussion and Concluding Remarks 38

i

4 Semantics with Mobility 41
4.1 Introduction . 41
4.2 Extending the π-calculus . 42
4.3 The MoCha-π Calculus . 43

4.3.1 Threads, Channels, Processes and Resources 44
4.3.2 Structural Congruence . 46
4.3.3 Actions . 47
4.3.4 Reaction and other Rules . 49
4.3.5 Sequential Composition . 49

4.4 The MoCha Framework Design Pattern 50
4.4.1 Specifying Channel Types . 50

4.5 Examples . 54
4.5.1 Producer/Consumer Examples 54
4.5.2 Mobile Phones . 58
4.5.3 Mobile Agent . 61

4.6 Conclusions and Related Work . 63

5 Channel-based Semantics for Component Based Software 65
5.1 Introduction . 65
5.2 Components and their Composition 66

5.2.1 Component-Based Software 66
5.2.2 Components and their Interfaces 67
5.2.3 Coordination Among Components 68

5.3 A Semantic Approach . 70
5.3.1 Component Transition System 70
5.3.2 Local Conditions . 71
5.3.3 Global Transition System . 72
5.3.4 Trace Semantics . 73

5.4 Discussion . 75

III Implementation 77

6 The MoCha Middleware: API and Applications 79
6.1 Introduction . 79
6.2 The Application Programming Interface (API) 81

6.2.1 Location and Keys for Components 81
6.2.2 Mobile Channels: Creation and Types 83
6.2.3 Source & Sink Channel-End 85
6.2.4 Channel-End . 90

6.3 Examples . 91
6.3.1 Producer/Consumer . 91
6.3.2 Producer/Producer and Consumer/Consumer 93
6.3.3 Competing Producers and Consumers 95
6.3.4 Untyped Producer/Consumer 96
6.3.5 Crazy Producer and Cooperating Consumers 97

6.4 Applications . 100
6.4.1 Component Based Systems 100

ii

6.4.2 Web Services . 101
6.4.3 Hybrid and Pure P2P Networks 103

6.5 Related Work . 107
6.5.1 Channel-Based Middleware 108
6.5.2 Coordination Middleware . 111
6.5.3 P2P Middleware . 113

7 The MoCha Middleware: Implementation Details 115
7.1 Introduction . 115

7.1.1 Figure Legend . 116
7.2 Choosing the Right Infrastructure 117
7.3 Remote Method Invocation . 119
7.4 MoCha’s Mobile P2P Architecture 120

7.4.1 Using RMI for P2P Networking 120
7.4.2 Mobility on top of RMI . 123

7.5 MoCha’s Channels . 125
7.5.1 General Mobile Channel Implementation Overview 125
7.5.2 Example: FIFO Channel Implementation 127
7.5.3 Channel Implementation Issues 135

7.6 Performance Measurements . 139
7.6.1 RMI and MoCha . 139
7.6.2 Comparing Channel Types 139
7.6.3 (Static) MoCha vs. LighTS 142
7.6.4 Movement of Channel-ends 144
7.6.5 Mobile Components (Moderated Mobility) 144
7.6.6 Mobile Components (High Mobility) 146

8 An Implementation of the Channel-Based Component Model 149
8.1 Integration of Components with Object-Oriented Technology 149
8.2 Implementation in Java . 150

8.2.1 Components in Java . 150
8.2.2 Implementation Overview . 151
8.2.3 The Interface of a Component 151
8.2.4 The Coordination Operations 153
8.2.5 A Small Example . 155

8.3 Related Work and Conclusions . 155

IV Composition 159

9 Composition of Mobile Channels 161
9.1 Introduction . 161
9.2 Reo . 162

9.2.1 Composition of Connectors 163
9.2.2 More about Reo . 165

9.3 Issues Concerning the Distributed Implementation of Reo Connectors 166
9.4 MoCha’s Coordination Components Model 167

9.4.1 Replicator . 168

iii

9.4.2 Non-Deterministic Multiplexer 172
9.4.3 Ordered Multiplexer . 175
9.4.4 Non-Deterministic Demultiplexer 176
9.4.5 Ordered Demultiplexer . 178
9.4.6 Write Gate Transistor . 179
9.4.7 Take Gate Transistor . 181
9.4.8 Write Switch . 182
9.4.9 Take Switch . 185
9.4.10 Useful Connectors . 186
9.4.11 Composition of Connectors 188

9.5 Distributed Dining Philosophers . 189
9.6 Comparisons and Conclusions . 193

9.6.1 Implementing a Subset of Reo 196

V Conclusion 197

10 Conclusion 199
10.1 A Short Summary . 199
10.2 Answering the Main Question of this Thesis 200
10.3 Future Work . 202

Bibliography 204

A MoCha’s Abstract Algorithms 215
A.1 Synchronous Channel . 217
A.2 Lossy Synchronous Channel . 222
A.3 Asynchronous FIFO Channel . 223
A.4 Synchronous Drain Channel . 230
A.5 Asynchronous Spout Channel . 234

Summary 236

Samenvatting 239

Curriculum Vitae 241

iv

Part I

Introduction

1

Chapter 1

Introduction

In the last years, there has been a growing interest for distributed systems in com-
puter science. A distributed system is a collection of independent computers that
appears to its users as a single coherent system [TS02]. An example of such a
system is the Internet, which is the biggest distributed system in the world. The
independent computers of a distributed system are connected to each other through
a network. On each of these computers there is at least one software entity (like
threads, components, databases, applications, etc.) that needs to communicate with
software entities on other computers to achieve some goal. These software entities
are not only distributed among the several computers of a network but they also run
in parallel. Therefore, one of the main challenges in distributed systems is to develop
appropriate theory and infrastructures for the communication and the coordination
of its concurrently running software entities.

In this thesis we investigate the notion of mobile channels. The main question
is: are mobile channels suitable as a communication and coordination mechanism
for distributed systems? To answer this question, we throughly investigate mobile
channels. We do this by defining semantics for them, implementing them, and
providing a model for composition of channels into connectors.

1.1 Context

The work of this thesis is categorized under the computer science field of coordina-
tion. An introduction and explanation of this field is given by Arbab in [Arb98],
where coordination is defined as the study of the dynamic topologies of interactions
among concurrent programs, processes and components of a system, with the goal
of finding solutions to the problem of managing these interactions. For this purpose,
there exist many coordination models, languages, applications and mechanisms.

Arbab classifies these coordination frameworks as either data-oriented or control-
oriented. The activity in a data-oriented coordination framework tends to center
around a substantial shared body of data; the framework is essentially concerned
with what happens to the data. On the other hand, the activity in a control-oriented
coordination framework tends to center around the flow of control; the data flow in
the models and the implementations of these kind of frameworks is more important

3

4 Chapter 1. Introduction

than the data itself.
Another classification that Arbab makes for coordination frameworks is for them

to be either endogenous or exogenous. The first kind provides coordination primitives
that must be incorporated within a computation for its coordination. In applications
that use such frameworks, primitives that affect the coordination of each module
are inside the module itself. In contrast, the second kind of frameworks provide
primitives that support coordination of entities from without. In applications that
use such frameworks, primitives that affect the coordination of each module are
outside the module itself.

According to above classifications, an example of a data-oriented and endoge-
nous coordination language is Linda [CG90], and an example of a control-oriented
exogenous coordination language is MANIFOLD [Arb96a]. We position our work
in the coordination community by classifying the mobile channels of this thesis as
control-oriented and exogenous. For more in depth details about these classifications
and the field of coordination in general we refer to [Arb98].

1.2 The Thesis

In this thesis we present a novel coordination framework that is based on mobile
channels. We call this framework MoCha.

MoCha offers semantics for the specification of the coordination part of dis-
tributed systems and an implementation of mobile channels for the realization of
these specifications. The MoCha semantics and implementation are decoupled from
each other so that they can be used independently if desired.

MoCha is a practical framework, for there is a straightforward relation between
its semantics and its implementation. This makes it easy to actually implement the
desired coordination specified with the semantics. This relation also ensures that
the MoCha semantics are (immediately) implementable. MoCha supports many co-
ordination scenarios with different architectural styles and with their corresponding
distributed architecture.

With MoCha, we demonstrate the usefulness of mobile channels as a communi-
cation and an exogenous coordination mechanism for distributed systems.

1.3 Contributions

The specific contributions of this thesis can be divided in three groups: semantics,
implementation and composition.

In general, semantics is used for modeling, specification and verification purposes.
We define three different kinds of semantics for mobile channels:

• We focus on the concurrency aspect of mobile channels by specifying them
in the Petri Nets formalism. We show how to construct Petri Net models
consisting of mobile channels and components that use them, for the purpose
of analyzing and simulating these models with existing Petri Net theory and
tools.

1.3. Contributions 5

• We focus on process interaction by extending the π-calculus with mobile chan-
nels. We introduce exogenous coordination in this process algebra by allowing
user defined channel types. These channels are not links as in the traditional
π-calculus but special kinds of processes. We also introduce the notion of
channels as resources; processes must compete with each other in order to
gain access to a particular mobile channel.

• We give compositional trace-based semantics for a component-based software
model based on the notion of mobile channels. We demonstrate how suitable
mobile channels are for this kind of system, by showing that they provide a
highly expressive data-flow architecture for the construction of complex coor-
dination schemes, independent of the computation parts of components; i.e.
mobile channels enhance the separation of concerns between the coordination
and the computational aspect of component-based systems.

We present and discuss the details of two implementations that we realized re-
garding mobile channels:

• We implemented mobile channels in distributed systems by developing the
MoCha middleware. With this middleware we show that mobile channels can
efficiently be implemented in distributed systems; this holds for both central-
ized client/server and decentralized peer-to-peer distributed systems architec-
tures. We also show that mobile channels have an easy and intuitive interface
towards components, processes and threads. More technical contributions of
the middleware are:

– A discussion of the technical difficulties and our particular solutions re-
garding the synchronization of distributed software entities.

– A peer-to-peer architecture that is build upon a client/server one.

– An architecture for object mobility in distributed systems.

• We implemented the model for component-based software that we mention
above. This implementation demonstrates that object-oriented languages are
well-suited to implement components and their composition using our coordi-
nation framework of mobile channels. We also show how to integrate the mobile
channels of the MoCha middleware with this implementation of component-
based technology.

We provide a model for composition of mobile channels that takes some of the
ideas of the already existing model Reo [Arb02]. Our main contribution here is the
actual implementation of a subset of Reo in distributed systems. For this purpose, we
introduce the idea of coordination components. These are lightweight components
that are meant for linking channels together according to some transparent coordi-
nation behavior; for example, the coordination specified by parts of a Reo model (or
connector). Our model can be used independently of Reo; the specification of our
models (or connectors) is the composition of the semantics we define in this thesis,
for the actual implementation of these models we use the MoCha middleware.

6 Chapter 1. Introduction

1.4 Outline of the Thesis

We organized this thesis as follows:

• In Chapter 2, we give an intuitive explanation of mobile channels. This expla-
nation is needed to understand the other chapters of this thesis.

• In Chapter 3, we use Petri Nets to define a semantics for mobile channels
without considering mobility. This semantics helps us understand the channel’s
(static) basic behavior, and serves as a guideline to understand the semantics
in the next chapter.

• In Chapter 4, we give a semantics to mobile channels by defining an exoge-
nous coordination calculus. This calculus, called MoCha-π, (also) models the
mobility aspect of channels.

• In Chapter 5, we present a coordination model for component-based software
systems based on the notion of mobile channels. We give a semantics for this
model, taking the point of view of the components that use mobile channels.
This is in contrast with the two previous chapters above, where we focus more
on the mobile channels themselves.

• In Chapter 6, we discuss the MoCha middleware. This is the middleware
that we developed to implement the mobile channels in this thesis. We have
distributed the explanation of the middleware in two chapters. In this first
chapter, we take the point of view of a distributed system developer who
wants to use the middleware but does not want to know anything about its
internal implementation details.

• In Chapter 7, we continue with the MoCha middleware by discussing its im-
plementation details. We conceptually explain the many algorithms and the
internal architecture of the middleware. We also provide performance mea-
surements.

• In Chapter 8, we present the implementation of the coordination model for
component-based software that we introduced in Chapter 5.

• In Chapter 9, we investigate the composition of channels. We do this by
providing a model for composition based on the notion of coordination compo-
nents, where we compose mobile channels into connectors. For specifying these
components we use the Petri Net semantics of Chapter 3 and the MoCha-π
semantics of Chapter 4.

• In Chapter 10, we end with conclusions and discuss future work.

Chapter 2

Mobile Channels

A mobile channel is a coordination primitive that allows anonymous and point-
to-point communication between components in a distributed system. The ends of
such a channel are mobile. This makes it possible to have dynamic reconfiguration of
channel connections between components over time in arbitrary ways. Furthermore,
mobile channels provide (basic) exogenous coordination. Channels allow several dif-
ferent types of connections among components without the components themselves
knowing which channel types they are dealing with.

2.1 Introduction

From a general point of view a channel is a path between two end points. For
example: a passage for water to flow through, a path over which electrical signals
can pass, or a path over which radio waves are transmitted. In this thesis we view
a channel as a communication and coordination primitive between active (software)
entities like processes, threads, and components. This view is not new, and has its
foundations on well-known computer science channel-based models such as Hoare’s
CSP [Hoa85], Milner’s CCS [Mil80], and Milner’s π-calculus [Mil99]. In these models
processes use channels for communication between them.

The motivation for focusing more on the coordination aspects of channels comes
from Arbab’s IWIM model [Arb96b], where not only the communication between
processes is important but also their coordination. The idea and definition of mo-
bile channels as coordination and communication primitives between components in
distributed systems comes from Arbab’s Reo model [Arb02, Arb04].

In this chapter we give an intuitive explanation of mobile channels. In section 2.2
we start with an overview, where we present the major channel-end operations and
discuss the mobile channel features and benefits. In section 2.3 we give an example
of how to use mobile channels illustrating their benefits. We end with section 2.4,
where we give a representative set of mobile channel types. These are the channel
types that we use in this thesis.

7

8 Chapter 2. Mobile Channels

2.2 Mobile Channels

In this section we introduce the general notion of mobile channels. This notion
guides us through the other chapters of this thesis. Observe that, in our explanation
and in the rest of this thesis we often refer to component instances as components
when the context is clear enough to allow such a simplification.

Component Component

BA
Writes

Source

Channel

Sink

Takes

Figure 2.1: General View of a Channel.

A mobile channel is a coordination primitive for communication and coordination
between components in distributed systems. A channel consists of exactly two dis-
tinct ends: usually 〈source, sink〉 for most common channel-types, but also 〈source,
source〉 and 〈sink, sink〉 for special types (see Section 2.4). From the point of view
taken in Figure 2.1, one can see that the ends of a channel are internally (somehow)
related to each other. Therefore, we can regard the source-end as the input-point
of a channel, and the sink-end as the output-point of the same channel. However,
the components of a system don’t have any knowledge of channels nor references to
them. Instead, components may know and refer to channel-ends only. This means
that any component that has a reference to a specific channel-end does not automat-
ically have a reference to the other end of the channel. Furthermore, it also means
that all operations are performed on channel-ends instead of channels.

2.2.1 Operations

We define six basic main operations that can be performed on channel-ends. All
channel operations are synchronous, or blocking; i.e. the active entity performing
the operation suspends its execution until the operation is finished. We omit less
fundamental operations, like inquiry ones, because we don’t need them until the
introduction of the MoCha middleware in Chapter 6. All these operations are defined
in and come from Reo [Arb02]. We start with the Input/Output operations:

• write. Components can write to insert values into the source-end of a channel.

• take. Components can take values by removing them from the sink-end of a
channel.

• read. Read is the non-destructive version of take. The read operation copies
the value offered by the sink-end and leaves the original behind for another
take or read operation.

The data-flow of the I/O operations is locally one way: from a component into a
channel-end or from a channel-end into a component. Besides values, components
may write/take/read channel-end references. This way, components can increase

2.2. Mobile Channels 9

their knowledge of currently available channel-ends in the system.
We continue with the topological operations:

• move. The move operation physically moves a channel-end from one location
to another target location in the network. This operation will become more
clear when we introduce channel-end mobility in Section 2.2.2.

The first four operations are enough to properly work with mobile channels. Some
versions of the MoCha middleware, as presented in Chapter 6, support this basic
set of operations. These middleware versions offer many-to-many mobile channels
to their users. This means that, many components can use a particular channel-end
at the same time; however, a channel-end performs only one operation at a time.

In many cases we want the communication to be one-to-one. This means that
components need to have exclusive access to channel-ends. In the chocoMoCha
middleware (see Chapter 6) and in the semantics given in the next chapters, we
view channel-ends as resources. Therefore, components must now compete with
each other in order to gain access to a particular channel-end. For this purpose, we
introduce two more operations:

• connect. A component successfully connects to a particular channel-end if
either no other component is currently connected to it, or it is already con-
nected to this particular channel-end. In all other cases the component must
wait until this channel-end becomes available.

• disconnect. A component always succeeds in executing this operation. Either
the performing component is connected to a particular channel-end and gets
disconnected from it by this operation, or it is not connected to this channel-
end in the first place and, therefore, stays disconnected after this operation.

2.2.2 Features and Benefits

Channels are point-to-point, they provide a (locally directed) virtual path between
the components involved in a connection. This leads to three immediate benefits:
support for several architectural styles, efficiency, and architectural expressiveness.

(a)

Node

NodeNode

(b)

Client

Server

Client

Client

Figure 2.2: A Client/Server and Peer-to-Peer Architecture using Channels

Channels offer support for several architectural styles, because channels can both
model and implement the communication/coordination aspect of several centralized

10 Chapter 2. Mobile Channels

and decentralized architectures [Sch01]. For example, in Figure 2.2 we show the two
most common architectural styles: (a) a centralized client/server architecture, and
(b) a decentralized peer-to-peer (P2P) architecture. The black thick arrow lines de-
note the channels between the various components. In the first architecture, servers
are components dedicated to specific tasks like managing of disk drives, printers, or
network traffic, whereas clients are components that rely on servers for resources.
Therefore, in Figure 2.2(a) we implement the architecture by simply placing two
channels between each client and the server. In the second architecture, each node
component is both a client and a server at the same time. Therefore, the nodes are
said to be equal. They have equivalent responsibilities, enabling applications that
focus on collaboration and communication in a decentralized and self organizing
way. In principle, each node can communicate with any other node, there are no
architectural restrictions. In Figure 2.2(b) we show a possible P2P network with a
specific channel configuration.

Point-to-point channels can be efficiently implemented in distributed systems.
Especially for decentralized systems, like P2P-networks. For this to be the case,
channels themselves need to be implemented in a decentralized way, like in our
MoCha middleware in Chapter 6.

Component

Component

(a)

Component

Component

(b)

Component

data
space

shared

Component

Component Component

Figure 2.3: Architectural Expressiveness.

Using channels to express the communication carried out within a system is ar-
chitecturally very expressive, because it is easy to see which components (potentially)
exchange data with each other at a particular point in time. This makes it easier to
apply tools for analysis of the dependencies and data-flow. In Figure 2.3 we give an
example of a system using channels (a), and the same system using a shared data
space [And91] (b). In 2.3(a), it is indeed very easy to see which components (poten-
tially) exchange data. In 2.3(b), we have the same four components. The only thing
that we can conclude from this figure is that every component potentially exchanges
data with every other component. However, we know from Figure 2.3(a) that this is
not the case. Therefore, we need extra information about the components and the
shared data space to rule out some non-existing component interactions. In Figure
2.3(a) this information is already present due to the channel connections.

Besides providing point-to-point communication, channels also provide anony-
mous communication. This enables components to exchange messages with other
components without having to know where in the network those other components
reside, who produces and consumes the exchanged messages, and when a particular

2.3. Mobile Agent Example 11

message was produced or will be consumed. Since the components do not know
each other, it is easy to update or exchange any one of the components without the
knowledge of the components at the other sides of the channels it is connected to.

Channels provide transparent (basic) exogenous coordination 1. Channels allow
several different types of connections among components without the components
themselves knowing which channel types they are dealing with. Only the creator of
the channel knows its type, which is (usually) either synchronous or asynchronous.
This makes it possible to coordinate components from the ’outside’ (exogenous), and
thus, change the system’s behavior without changing the components.

The anonymous communication and exogenous coordination features of channels
promote and enhance the separation of concerns between the coordination and the
computational aspect of a system. This makes it easy to develop, maintain and
update the coordination part of a system independently of its computational part.

The ends of a channel are mobile. We introduce here two definitions of mobility:
logical and physical. The first is defined as the property of passing on channel-end
identities through channels themselves to other components in the system; spread-
ing the knowledge of channel-end references by means of channels. The second is
defined as physically moving a channel-end from one location to another location
in a distributed system, where location is a logical address space where components
execute. Both kinds of mobility are supported by the MoCha-framework.

Because communication via channels is also anonymous, when a channel-end
moves, the component at the other side of the channel is not aware nor affected by
this movement.

Mobility allows dynamic reconfiguration of channel connections among the com-
ponents in a system, a property that is very useful and even crucial in systems
where the components themselves are mobile. A component is called mobile when,
in a distributed system, it can move from one location to another. Laptops, mobile
phones, and mobile Internet agents are examples of mobile components. The struc-
ture of a system with mobile components changes dynamically during its lifetime.
Mobile channels give the crucial advantage of moving a channel-end together with
its component, instead of deleting a channel and creating a new one.

2.3 Mobile Agent Example

In this section we illustrate the use and benefits of mobile channels through an ex-
ample that involves mobile Internet components. Suppose we want to use agents to
search for some specific information, e.g., coffee prices, on the Internet. Agents con-
sult different XML[XML00] information sources, like databases and Internet pages.
Each information source has a channel where requests can be issued, and an agent
knows the identity of the source end of this channel plus the location of the in-
formation source. The agents may have a list with these channel-ends available at
their creation, or this information may be passed to them through channels. In our
example, we use a mobile agent that moves to the information sources at various

1Not all exogenous coordination can be done with a set of single mobile channels. However,
mobile channels provide basic exogenous coordination. By regarding them as basic blocks and
composing them together, we can actually cover all exogenous coordination (as we demonstrate in
Chapter 9).

12 Chapter 2. Mobile Channels

locations. An alternative that we will consider later is to create an agent at every
location.

Source Sink

SourceSink

So
ur

ce

Si
nk

Si
nk

So
ur

ce

Source Sink

XML
Information

Source

B

Agent

XML
Information

Source

A

Component

U

Figure 2.4: An Example: a Hopping Agent.

A component U has two channel connections for interaction with a mobile agent,
one to send instructions and the other to receive results. At some point in time,
U asks the agent to search for MoCha-bean prices. Figure 2.4 shows the situation
after the agent moves to the information source A which is in a different Internet
location, as expressed by the dashed lines in the figure. Right after the move, the
agent creates a channel meant for reading information from the information source,
and sends a request to A together with the identity of the source channel-end of the
created channel.

Source Sink

SourceSink

Source Sink

XML
Information

Source

B

Si
nk

So
ur

ce

Agent

So
ur

ce

Si
nk

XML
Information

Source

A

Component

U

Figure 2.5: Moving to Another Location.

At some point in time the agent finishes searching the information source A and
writes all relevant information it finds for the component U into the proper source
channel-end. Regardless of whether or not this information has already been read
by U, the agent moves to the location of the next information source (see Figure

2.4. A Set of Channel Types 13

2.5). Together with the agent, the two ends of the channels connecting it to U also
move with it to this new location. However, the component U is not affected by
this. It can still write to and read from its channel-ends, even during the move;
all data in a mobile channel are preserved while its ends move. For the agent the
advantages of moving the channel-ends along with it is that it avoids all kinds of
problems that arise if it were to delete the channels and create new ones after the
move, e.g., checking if the channels are empty, notifying U that it cannot use them
anymore, perhaps some locking issues to accomplish the latter, etc.

In our alternative version, we have a different non-mobile agent at each location,
instead of one mobile agent, and there are only two channels for interaction with the
component U. The channel-ends meant for the agents then move from one agent to
the other. From the point of view of the component U there is no difference between
the two alternatives in our example.

In our example, the two channel-ends used by U do not move, but it is possible
to have mobility at both ends of a channel; if desired, one can extend the example
by passing these channel-ends on to other components in the system.

As explained in Section 2.2.2, mobile channels allow exogenous coordination.
Therefore, we can choose the types of the channels in order to coordinate the com-
ponents {U, Mobile Agent, and Information Source} from ’outside’. For example, we
can choose either synchronous mobile channels between the Mobile Agent and the
Information Sources to synchronize the data transfer between the two, or we might
consider using asynchronous channel types. All this can be done without rewriting
or recompiling the components in the example.

2.4 A Set of Channel Types

We can create any channel type that we want, as long as we obey the basic proper-
ties given in Section 2.2; namely channels with two ends, and certain operations and
features as defined in that section. Our channel-type can be: synchronous, asyn-
chronous or both, it can be lossy, it can generate values, etc. And, we can always
create a channel type by taking the behavior of simpler types and composing them
together into a new complex one.

In this section, we introduce a representative set of eleven mobile channel types.
These are the channel types that we use in the examples, implementations, models
and semantics of this thesis. Furthermore, all these channel types are implemented
in the MoCha middleware (see Chapter 6).

2.4.1 Coordination and Communication Types

We start with five channel types that have two distinct ends, 〈source,sink〉. All these
types come from and were first defined as mobile channels in Reo [Arb02]. Their
graphical representation is given in Figure 2.6.

• Synchronous channel. The I/O operations on the two ends of this channel
are synchronized. A write on the source-end can succeed only when a take
operation also atomically succeeds on the sink-end, and vice-versa. A read
operation can succeed only when a write operation is being performed on the

14 Chapter 2. Mobile Channels

(a) Synchronous

(d) FIFO

n

(e) FIFO n

(b) Lossy Synchronous

F:<pattern>

(c) Filter (Synchronous)

Figure 2.6: Graphical Representation of Channel Types.

source-end, but the component thread/process performing the write operation
still has to wait until a take operation is performed. Therefore, many read
operations can occur (all reading the same value) until a take operation frees
the waiting writing thread/process.

The synchronous type already appears in early models based on channels, for
example in the π-calculus [Mil99], for it is the most basic type of channel. The
synchronization of this channel is done in the so called ’third party synchro-
nization’ way: while the components are synchronized due to the synchronous
operations that they perform on the channel-ends (see Section 2.2.1) the chan-
nel itself internally synchronizes its ends. The result is the synchronization of
the three entities: the two components and the channel(-ends).

• Lossy synchronous channel. If there is no I/O operation performed on the sink
channel-end (take or read) while writing a value to the source-end, the write
operation always succeeds but the value gets lost. In the case that there is a
take operation being performed on the sink channel-end, the channel behaves
like a normal synchronous type. In the case that there is a read operation being
performed on the sink channel-end, a (future) write operation on the source-
end always succeeds; i.e. the take and read operations behave the same.

This channel type is useful for coordinating a writing component that con-
stantly produces values with a taking component that occasionally needs the
most recent value that the first component produces. For example, we can
coordinate a thermometer component with a display component. The first
component, monitors an outside thermometer and periodically writes values
to the source-end of the channel. The second component, occasionally takes
values from the sink-end of the channel every time its user requests it. Nat-
urally, the display component is not interested in the ’old’ values that were
produced by the thermometer component in between takes. Thankfully, these
values are lost by the lossy synchronous channel.

• Filter (synchronous) channel. The Filter channel behaves like a synchronous
type. However, the filter channel type has a user-defined pattern regarding
the data that goes through it; values that do not match the channel’s pattern
are filtered out (lost). Write operations where the value is filtered out of

2.4. A Set of Channel Types 15

the channel have no influence on, nor are they influenced by, take or read
operations that are performed on the same channel.

We can use this channel type for components that expect a certain pattern of
values from the sink-end.

• Asynchronous unbounded FIFO channel. The I/O operations performed on
the two channel-ends succeed asynchronously. Values written into the source
channel-end are stored in the channel in a FIFO (First In, First Out) buffer
until taken from the sink-end.

This channel type, besides offering buffered communication, outputs the values
in the same order as they where written into it.

• Asynchronous bounded FIFO (FIFO n) channel. This channel behaves in the
same way as the unbounded FIFO one, except that is has a capacity of n
elements. If the channel is full a write operation has to wait until an element
is taken out of the channel first.

This channel type is useful for slowing down fast writing components that
would otherwise insert an enormous amount of values into the channel.

2.4.2 Coordination Only Types

The following six channel types are meant for situations where we are not interested
in communication (data-transfer between components) but only in coordinating the
components using these channel. All of the types have two ends of the same type;
〈source, source〉 or 〈sink, sink〉. These channel types are useful in cases where we
cannot modify the components of a system, in particular, their interaction pattern
with the environment. With these channel types we are, nevertheless, able to coor-
dinate these components in an exogenous way. The graphical representation of these
channel types is given in Figure 2.7. Except for the spout and the drain channel, all
these types come from and were first defined as mobile channels in Reo [Arb02].

(e) Asynchronous Spout

(a) Synchronous Drain (b) Asynchronous Drain (c) Drain

(d) Synchronous Spout (f) Spout

Figure 2.7: Graphical Representation of Channel Types.

Two Source-ends Channels

The following three channels have two source-ends. The values written into these
channels are lost.

16 Chapter 2. Mobile Channels

• Synchronous drain channel. The I/O operations performed on the two ends
are synchronized (i.e. succeed atomically). So a write operation succeeds only
when there is also a write operation being performed on the other channel-end
as well.

• Asynchronous drain channel. The I/O operations performed on the ends of
this channel succeed one at a time exclusively. So the write operations on its
two ends never succeed simultaneously.

• Drain channel. The two source-ends of this channel type are completely in-
dependent of each other; i.e. write operations on its ends do not affect each
other. The difference between this channel type and the asynchronous drain
channel is that with this type the two writes can succeed at the same time.

The rationale for this channel is that, if we are exogenously imposing a syn-
chronization pattern for components by using the two channels above, we must
also be able not to do so by using this channel type.

Two Sink-ends Channels

The following three channels have two sink-ends. The channels produce ran-
dom values for the components to take or read.

• Synchronous spout channel. The I/O operations performed on the two ends are
synchronized (i.e. succeed atomically). A take operation succeeds only when
there is a matching take operation being performed on the other channel-end.
Read operations behave the same as take operations, except that a new value
is made only after a take operation.

• Asynchronous spout channel. The I/O operations performed on the ends of
this channel succeed one at a time exclusively. So the take operations on its
two ends never succeed simultaneously. Read operations behave the same as
take operations, except that a new value is made only after a take operation.

• Spout channel. The two sink-ends of this channel type are completely inde-
pendent of each other; i.e. take and read operations on its ends do not affect
each other. The difference between this channel type and the Asynchronous
spout channel is that with this type the two operations can succeed at the
same time.

The rationale for this channel is the same as for the drain channel.

2.4.3 Other Types

The channel type set we presented is a small one. As we mentioned in the beginning
of this section, there is no limit on the channel types that can be defined. We give
a few examples of other channel types. We didn’t include them into our set, for the
channels that we choose are already enough to form a representative set that we can
use in this thesis.

2.5. Discussion 17

• Asynchronous FIFO Filter. This type is a mix of the (synchronous) Filter
channel and the FIFO channel type. It behaves as a FIFO channel with the
add-on that values that do not match the channel’s pattern are filtered out
(lost).

• Asynchronous shift-lossy FIFO n channel. This is a bounded FIFO channel
with capacity n. If the channel is full a write operation triggers the channel
to delete the oldest value to make room for the new one; i.e. the values in the
channel ’shift’ toward the sink-end of the channel.

• Asynchronous Bag channel. Unlike with the FIFO channel, this channel type
does not follow any ordering when outputting the values that it contains.

• Synchronous FIFO channel. This channel type combines the behavior of the
synchronous channel type with the FIFO one. If there is a simultaneous write
and take operation and the internal buffer is empty, then the channel behaves
like a synchronous one and bypasses its internal buffer. Otherwise, the channel
behaves like a FIFO one.

• Synchronous PlusTwoInteger channel. This channel reacts on the data that it
receives. The channel adds two to every integer value that it receives. Any
other data type goes through the channel unchanged.

• Chameleon n channel. This channel changes its type after every n values that
successfully go through it. For example, it alternates between a FIFO and a
Bag channel type.

2.5 Discussion

The careful reader could remark that according to the definition of exogenous and
endogenous coordination (see Section 1.1) there is no difference between the MoCha
and Linda operations, in the sense that the coordination primitives of both frame-
works seem to be “inside” the module itself. Therefore, the reader could object to
the classification of MoCha as an exogenous coordination framework, while we clas-
sify Linda as an endogenous one. However, despite the fact that both the Linda and
MoCha operations are available within a component, the classification is correct. In
the Linda framework the components know the (fixed) behavior of the Linda tuple
space. They also know what the influence of each Linda coordination primitive has
on this tuple space. Thus, by choosing the type and order of execution of the Linda
operations that each component performs, the components themselves can (in prin-
ciple) determine how they are coordinated in the system. Therefore, we regard the
Linda coordination primitives as being “inside” the module that they coordinate. In
contrast, in the MoCha framework the components don’t know anything about the
behavior of the mobile channel(s) that they are using. Moreover, there is not just
one fixed mobile channel coordination behavior but there are many mobile channel
types (each with its own particular coordination behavior). Thus, the components
are not able to determine how they are coordinated in the system; coordination is
done and specified from the “outside”. Therefore, we regard the MoCha coordination
primitives as being “outside” the module that they coordinate.

18 Chapter 2. Mobile Channels

As we mentioned in the beginning, MoCha uses the same notion of mobile chan-
nels as Reo. Moreover, the mobile channel types that we use in this thesis (see
Section 2.4) are a subset of the ones defined in Reo. Nevertheless, MoCha and Reo
are two different models (or coordination frameworks). In our composition chap-
ter (Chapter 9) we explain the (main) differences and similarities between Reo and
MoCha.

Part II

Semantics

19

Chapter 3

Semantics without Mobility

We have divided the semantics for mobile channels in two chapters. In this first
chapter, we give a semantics to our channels without considering mobility. For this
purpose we use Petri Nets. In Chapter 4, we give a semantics that includes channel
mobility. In this chapter, we give a Petri Net for each mobile channel type. This
will help us understand the channel’s (static) basic behavior. We also discuss how to
compose channels together with components, so that we can make Petri Net models
of systems whose components communicate and are coordinated by using mobile
channels.

3.1 Introduction

A well-known graphically and mathematically founded formalism for the concurrent
behavior of systems is Petri Nets [Pet96]. Petri Nets, named after their creator Petri,
offer well-defined semantics with a clear theoretical foundation [RR98]. This theory
includes extensive analysis and simulation possibilities for the Petri Net models. The
most common analysis are causality, concurrency, conflicts, confusions, deadlocks,
and equivalence.

The Petri Nets formalism is widely used in many different application areas,
both in the academic world and in industry. For example, in [GV02] we can read
how to use Petri Nets in system engineering. Other examples of application are:
modeling of object-oriented systems [Lak01], modeling of Web Service composition
[HB03], modeling of business process management [ADO99, LO03], modeling of
digital circuits [YK98], and modeling of distributed algorithms [Rei98]. Furthermore,
the Petri Nets formalism is well supported by a huge number of commercial and
university tools for design, simulation, and analysis of its models. For an extensive
list of these tools see the state-of-the-art work in [Sto98, BBBKS00, PNW05].

In Chapter 4, we give the full semantics for mobile channels. However, due to
the complexity of this semantics it is hard to understand the internal behavior of
channels. Petri Nets have an intuitively appealing graphical form of presentation
that facilitates the understanding of both information and control flow within the
same formalism. Therefore, this formalism is a good choice for giving the first
semantics to mobile channels in this thesis. This semantics does not model channel

21

22 Chapter 3. Semantics without Mobility

mobility. However, the internal behavior of channels specified using Petri Nets are
easy to understand. The Petri Net based semantics that we provide in this chapter
are helpful to understand the semantics we give in Chapter 4; it is also interesting
to compare the two semantics since the first concentrates on concurrency and the
second on process interaction (π-calculus [Mil99]).

Although not the main purpose of this chapter, Petri Nets are often used as a
modeling language. Since we provide a Petri Net for each mobile channel type (in
this chapter) we can model systems whose components are already specified as Petri
Nets and use channels for the interactions between them. We then automatically
get all the advantages we discussed above: extensive theoretical support, easy usage,
model analysis, simulation of the models, immediate application in different areas,
and extensive tool support. Naturally, we are limited to those systems where there is
no channel mobility; thus we model the interactions and the exogenous coordination
of static systems.

In Section 3.2 we give a short introduction to Petri Nets, where we restrict
ourselves to the theory that is needed in order to understand this chapter. In Section
3.3, we give Petri Net semantics to mobile channels, and show how to compose
channels with components to obtain Petri Net models of systems. In Section 3.4, we
briefly discuss analysis and simulation of these models. We conclude in Section 3.5
with a discussion.

3.2 A Short Introduction to Petri Nets

Petri Net(s), PN for short, is actually a generic name for a whole class of net-based
models which can be divided into three main layers [RE98]. The first layer is the
most fundamental and is especially well suited for a thorough investigation of foun-
dational issues of concurrent systems. The basic model here is that of Elementary
Net Systems [Roz86], or EN systems. The second layer is an “intermediate” model
where one folds some repetitive features of EN systems in order to get more compact
representations. The basic model here is Place/Transition Systems [DR98], or P/T
systems. Finally, the third layer is that of high-level nets, where one uses essentially
algebraic and logical tools to yield “compact nets” that are suited for real-life appli-
cations. Predicate/Transition Nets [Gen87] and Colored Petri Nets [Jen97a] are the
best known high-level models.

Any PN of the three layers above is suitable to model a system. The differ-
ence between the low-level and the high-level PN is best described as the difference
between writing a program in a high-level language as opposed to writing it in a low-
level one [Jen97b]. Furthermore, any PN of any layer can be transformed/translated
into a PN of another layer [Eng04]. Going from a low-level PN to a higher level is
trivial since each level has the same properties as its immediate lower level plus
other added features. Usually, this means that we get the same PN model; with the
same we mean that, we get an equivalent net with the same structure. Going from
a high-level PN to a lower-level one is more difficult. For this purpose a technique
that is called unfolding [Eng04] is used. For example, the unfolding of Colored Petri
Nets to P/T systems is discussed in [Jen97b]. The unfolding of P/T systems to EN
systems is discussed in [Eng91].

For the simple channel semantics without mobility that we want to give in this

3.2. A Short Introduction to Petri Nets 23

chapter, it is sufficient to use the EN systems. This kind of PN offers clear non-
changeable semantic rules and constructs that are easy to understand and follow
(unlike, for example, colored Petri Nets). The theory of EN systems are simpler
than the theory of any PN in the other layers. Furthermore, the theoretical work
available for EN systems is quite extensive and there is more tool support available
for then than for high-level PN.

3.2.1 Elementary Net Systems

We give a short introduction to EN systems. We restrict ourselves to the definitions
that we need in this chapter. For an extensive introduction that also covers several
properties of EN systems, equivalences, and EN analysis we refer to the tutorial
given in [RE98]. A net is the most basic definition of all PN:

Definition 3.2.1 A net is a triple N = (P ,T ,F) where
(1)P and T are finite sets with P ∩ T = ∅,
(2)F ⊆ (P × T) ∪ (T × P),
(3) for every t ∈ T there exist p, q ∈ P such that (p, t), (t , q) ∈ F, and
(4) for every t ∈ T and p, q ∈ P, if (p, t), (t , q) ∈ F, then p 6= q.

The elements of P are called places, the elements of T are called transitions,
elements of X = P ∪T are called elements (of N), and F is called the flow relation
(of N).

Each place p ∈ P can be viewed as representing a possible local state of a system.
At each moment in time a set of local states (places) participate in the global state
of the system. Such a set of places is called a configuration. Graphically, the places
that are part of a configuration are denoted with a token; a small black filled circle.

Definition 3.2.2 A configuration C of a net N = (P ,T ,F) is a subset of P.

Thus, a configuration C of a net is a subset of P where each place contains a token.
We now define an EN system as given in [RE98]:

Definition 3.2.3 An EN system is a quadruple
M = (P ,T ,F ,Cin) where:
(1)(P ,T ,F) is a net and
(2)Cin ⊆ P is the initial configuration

An example of such an EN system is given in Figure 3.2.
Every transition in an EN system can perform an action called fire. This action

takes a token from all the input places and places a token to each output place of the
transition. This action represents a sequential step of a system. However, for this
to happen all the input places of the transition must have a token and its output
places must be empty, since a place can have at most only one token at a time.

Definition 3.2.4 Let M = (P ,T ,F ,Cin) be an EN system and let t ∈ T.
(1) •t are the input places of t, and t• the output places of t.
(2) Let C ⊆ P be a configuration. Then t has concession in C (or t can be fired in
C) if •t ⊆ C and t• ∩ C = ∅, written as t con C.
(3) Let C ,D ⊆ P. Then t fires from C to D if t con C and D = (C −• t) ∪ t•,
written as C [t〉D; this firing of t is also called a sequential step.

24 Chapter 3. Semantics without Mobility

t1

p2

p4 p5

p3p1

(a)

t1

p2

p4 p5

p3p1

(b)

t1

p2

p4 p5

p3p1

(c)

t1

p2

p4 p5

p3p1

(d)

Figure 3.1: Fire and no Fire situations

An example of firing is given in Figure 3.1(a). This figure shows an EN system
that is ready to fire. Figure 3.1(b) is the result of this firing. The EN systems of
Figures 3.1(c) and 3.2(d) cannot fire, the first does not have a token on each input
place, and the second already has a token on an output place that prevents the firing
from happening.

EN Producer/Consumer Example

t1

p
1

t2

p
2

p
5

p
4

p
3

t3

t4

Producer Consumer

Figure 3.2: Producer/Consumer Example

Figure 3.2 shows an elementary net system that models a producer/consumer
system. The processes share a buffer that has the capacity of one element. The
producer inserts an element in this buffer when it is empty, and the consumer takes an
element when it is available in the same buffer. The elementary net of this example is
defined as P = {p1, p2, p3, p4, p5}, T = {t1, t2, t3, t4}, F = {(p1, t1), (t1, p2), (p2, t2),
(t2, p1), (t2, p3), (p3, t3), (p4, t3), (t3, p5), (p5, t4), (t4, p4)}, and Cin = {p1, p4}.

It is easy to see that the first fire action must be Cin [t1〉{p2, p4}, and the next

3.2. A Short Introduction to Petri Nets 25

{p2, p4}[t2〉{p1, p3, p4}. At this point the producer has to wait until the consumer
takes the element out of the buffer place p3 before producing any other element.
There is now a choice in firing transition t1, t3, or both at the same time. If we
fire the first we get {p1, p3, p4}[t1〉{p2, p3, p4}. The system now has to fire t3 next,
{p2, p3, p4}[t3〉{p2, p5}. This last firing action symbolizes the taking of the element
out of buffer p3 by the consumer. We could indefinitely go on firing since there is
no system termination, nor deadlock, in this example.

Another firing sequence could be the following Cin [t1〉{p2, p4} [t2〉{p1, p3, p4}
[t3〉{p1, p5}[t4〉Cin , however, other sequences are possible as well. This is due to
the non-deterministic choice that the system has, it can choose the set of transi-
tions it wishes to fire from a particular configuration. If we maximize the number of
transitions that can happen at the same time we get the following firing sequence:
Cin [t1〉{p2, p4}[t2〉{p1, p3, p4} [{t1, t3}〉{p2, p5} [{t2, t4}〉{p1, p3, p4}, at this point the
sequence repeats itself.

(Sequential) Configuration Graph

t4

{p1,p4}

t1

{p2,p4}

t2

t4

t4

{p1,p3,p4}

t1 t3t4

{p2,p3,p4} {p1,p5}

t3 t1

{p2,p5}

t2

{p1,p3,p5}

t1

{p2,p3,p5}

Figure 3.3: Sequential Configuration Graph

When analyzing the behavior of an EN system it is often useful to construct a
sequential configuration graph (SCG) as defined in [RE98]. This graph represents all
possible firing sequences. In Figure 3.3 we give the SCG of our producer/consumer
EN system example. The nodes of the graph represent possible configurations, and
the arrows represent the firing of a particular transition. This transition is given as a

26 Chapter 3. Semantics without Mobility

label of the arrow. The initial configuration is {p1, p4}, therefore, this configuration
constitutes the root node of the graph.

{p2,p3,p5}

{p1,p4}

t1

{p2,p4}

t2

t4

{t1,t4}

t4
{t1,t3}

t1 t3

{p1,p5}{p2,p3,p4}

t3 t1 {t2,t4}

t4
{p2,p5}

t2

{p1,p3,p5}

{p1,p3,p4}

t1

{t1,t4}

t4

Figure 3.4: Configuration Graph

By analyzing the SCG we can determine the transitions that can concurrently
fire in an EN system. If we add these concurrent firing of transitions steps to the
SCG, we then get the configuration graph (see [RE98]). Figure 3.4 shows the con-
figuration graph of our producer/consumer EN system example. We took the SCG
of Figure 3.3 and added the concurrent steps as dashed arrows to it. For example,
we can get from configuration {p1, p3, p5} to configuration {p2, p3, p4} by first firing
transition t1 and then t4, or vice-versa. Therefore, we added the concurrent step
{p1, p3, p5}[{t1, t4}〉{p2, p3, p4} to the graph.

For the precise definition of the (sequential) configuration graph, the theory and
the methods for finding concurrent steps we refer to the tutorial given in [RE98]. For
the purposes of this chapter, it is enough to know that the sequential configuration
graph represents the sequential steps of an EN system, and, that the configuration
graph represents both the sequential and the concurrent steps.

3.3. PN Semantics for Mobile Channels and Components 27

3.3 PN Semantics for Mobile Channels and Com-
ponents

In this section we give PN semantics to the channels we defined in Section 2.4.
This semantics models the main I/O operations write and take. Since we are not
modeling mobility we omit the topology operations: move, connect, and disconnect.
Besides mobile channels we also characterize the minimal interaction behavior that
components need to have to be able to use our channels. We give a PN for this
behavior. For the purpose of being able to model (static) systems where components
use mobile channels, we show how to compose the PN of channels and components.

We first give the general interface of the mobile channel PN specifications. Next,
we give the PN of the components that use our channels. We, then specify a PN
composition function σ. Finally, we give an EN system for each channel type.

3.3.1 Mobile Channel Interface

From the point of view of the components of a system, the mobile channel EN systems
that we present in this section have all the same interface. We give this interface
in Figure 3.5. Each channel EN system has an internal part that is determined by
it’s type, and an interface that is common to all channel types consisting of four
interface places, two for each channel-end. We graphically denote these places by
marking an extra symbol I on the outside of the circle. These interface places are
part of a protocol to ensure that all write and take operations are blocking; i.e. an
active entity performing such an operation blocks until the operation succeeds and
terminates.

Channel

Sink

I

p
WA

I

p
Source

I

p
RTT

I

Source

Sink

p

Figure 3.5: Interface of a Mobile Channel PN

The places pSource and pWA constitute the interface of the source channel-end. A
component that wants to perform a write operation on this end, puts a token into
place pSource . This token represents the fact that a data element is available but
has not yet been accepted by the channel. In other words, the write operation is
pending between the component and the source channel-end. When the token is

28 Chapter 3. Semantics without Mobility

(b) A Taker

2

t1

t2

p
1

p
RTT

I

p
2

p
Output

I

t1

t2

p
1

p
WA

I

p

I

Input

(a) A Writer

p

Figure 3.6: A Writer and a Taker

removed from this place by the channel, it means that the channel is processing the
write operation. Upon completion of the operation, the channel puts a token in the
interface place pWA as a write acknowledgment.

The places p
Sink

and pRTT constitute the interface of the sink channel-end. A
component that wants to perform a take operation on this end, puts a token in
place pRTT (Ready To Take). This token reveals the desire and willingness of the
component to take a data element from the channel. The channel learns that there
is a component waiting (and wanting) to take an element only when the token in
pRTT successfully “enters” the channel due to a fire action. The channel completes
the take operation by putting a token in the p

Sink
interface place. The component

can then take the token from this place.
We don’t explicitly model a source- and a sink-end in the mobile channel EN

systems. A channel-end is implicitly modeled by its two interface places and the
internal transitions where these places are used as either input or output. Observe
that the semantics of the write and take operations are analogous with the ones
defined in Section 4.3.

3.3.2 Component Interaction

The components of a system interact with mobile channels thought the interface that
we defined in Figure 3.5. From our point of view, a component consists of one or
more active entities (threads or processes) that perform write and take operations. In
Figure 3.6 we give the EN systems of two single entity components. They represent
the minimal behavior that components need to implement regarding the write and
take operations toward channels; i.e. they implement their side of the blocking
protocol as described in Section 3.3.1.

Figure 3.6(a) shows the PN of a simple writer. This net has two interface places
that are meant for composition with channels: {pOutput , pWA}. The initial config-
uration of the net is {p2}. The writer starts the write operation by executing

3.3. PN Semantics for Mobile Channels and Components 29

{p2}[t2〉{pOutput
, p1}. At this point it is blocked for it must wait until it receives

a write acknowledgment; i.e. a token is placed in pWA . If the writer is interacting
with a source channel-end, at the time that it receives the acknowledgment the to-
ken in place pOutput is already gone. Therefore, we end up with the configuration
{p1, pWA

}. The writer completes the operation by performing the sequential step
{p1, pWA

}[t1〉Cin . At this point, it may start writing again.
Figure 3.6(b) shows the PN of a simple taker. This net also has two inter-

face places that are meant for composition with channels: {p
Input

, p
RTT
}. The initial

configuration of this net is {p2}. The taker starts the take operation by execut-
ing {p2}[t2〉{PP1, pRTT

}. At some point in time the channel it is interacting with
takes the token from pRTT , and later puts a token back in place pInput . The result-
ing configuration is {p1, pInput

}. The taker completes the operation by performing
{p1, pInput

}[t1〉Cin . At this point, it may start taking again.

3.3.3 PN Composition of Components and Channels

We have introduced the interface of channels and the interface of components toward
channels. We now show how to compose them in order to obtain one big PN model
of a complete system consisting of channels and components. There are several
construction strategies possible. Our major requirement is for such strategy is, that
one should be able to distinguish the individual components and channels in the
composed system, and it must be easy to decompose and rearrange the system; i.e.
updating and replacing components and channels without having to change the rest
of the system. Therefore, for example, we cannot do composition and optimize the
resulting PN for it may not be possible to decompose after several composition steps
anymore. Our strategy then is to do composition on the interface places. With this
strategy, we don’t have to change the internals of components and channels, it is
easy to recognize the individual parts, and decomposition is also clear and easy to
do. For this purpose we define a composition function that merges interface places:

Definition 3.3.1 Let X1 and X2 be two disjoint EN systems (where X1 = (PX1 ,TX1 ,
FX1 ,Cin−X1) and X2 = (PX2 ,TX2 ,FX2 ,Cin−X2)). Let P1 and P2 be two finite sets
of (interface) places, with P1 ⊆ PX1 , P2 ⊆ PX2 and |P1| = |P2|. Typical elements of
these sets are a ∈ P1 and b ∈ P2. We define σ(X1,P1,X2,P2) to be the composed
EN system Y (where Y = (PY ,TY ,FY ,Cin−Y)). We construct Y as follow:
(1) PY = (PX1 \ P1) ∪ (PX2 \ P2) ∪ Pnew , where
Pnew = {〈ai , bi〉| ai ∈ P1 ∧ bi ∈ P2},
with i as an index from 1 to |P1| = |P2|, and |P1| = |P2| = |Pnew |.
Pnew is a (new) finite set of places, with typical element c ∈ Pnew .
(2) TY = TX1 ∪ TX2 .
(3) FY = (FX1 ∪ FX2 ∪ FI) \ FRem ,
where FI ⊂ FY and FRem ⊂ FX1 ∪ FX2 and are constructed as follow:
∀(i ∈ 1 to |P1|) if (ai , t) ∈ FX1 then (ai , t) ∈ FRem ∧ (ci , t) ∈ FI ,
and if (t , ai) ∈ FX1 then (t , ai) ∈ FRem ∧ (t , ci) ∈ FI ,
∀(i ∈ 1 to |P2|) if (bi , t) ∈ FX2 then (bi , t) ∈ FRem ∧ (ci , t) ∈ FI ,
and if (t , bi) ∈ FX2 then (t , bi) ∈ FRem ∧ (t , ci) ∈ FI .
(4) Cin−Y = (Cin−X1 \ P1) ∪ (Cin−X2 \ P2) ∪ Cin−new , where
(∀i ∈ 1 to |Pnew |)if ai ∈ P1 ∧ ai ∈ Cin−X1 then ci ∈ Cin−new ,

30 Chapter 3. Semantics without Mobility

4So
ur

ce
p W

A

p R
T

T

p 2

t 1

t 2

p 1

p

p
p

tt

So
ur

ce

Si
nk

C
ha

nn
el

O
ut

pu
t

Si
nk

In
pu

t

3
4

3

p

Figure 3.7: Composing a Writer and a Taker with Mobile Channels

and if bi ∈ P2 ∧ bi ∈ Cin−X2 then ci ∈ Cin−new .

The function σ takes two disjoint EN Systems X1 and X2 as parameters. The
function also takes the sets of places P1 and P2 that correspond to the interface
places of, respectively, X1 and X2 that we want to compose (or “merge”). The
result of the function is a new EN System Y that is constructed as follow: (1) Each
place of X1 and X2 is present in Y , except for the interface places of P1 and P2.
Each pair (a, b), whose places are related to each other for having the same index
number, is substituted by a new place c (∈ Pnew) that is inserted in Y . (2) The
composition is done on interface places so the transitions of Y are simply the union
of the ones in X1 and X2. (3) Every flow relation present in either X1 or X2 is
also present in Y . The flow relations that involve the interface places in P1 and
P2, represented in flow relation FRem , are changed to be involved in the new added
places of Pnew , represented in flow relation FI . (4) The Cin of Y is the union of the
ones of X1 and X2. However, the places of P1 and P2 may also be present at the
initial configurations of these two last EN systems. Since these places do not exist
anymore in Y , we add their corresponding new places from Pnew into the initial
configuration.

We now can compose components and channels using our function σ. For exam-
ple, we obtain the EN system Comp of figure 3.7, by applying the σ function to the
writer and taker components and the channel interface of Figure 3.5: Comp =
σ(Taker , {pInput , pRTT },Tmp, {p

Sink
, pRTT }), Tmp = σ(Writer , {pOutput , pWA},Channel ,

{pSource , pWA}. In Section 3.4, we give an example using a concrete channel.

3.3.4 A Set of EN and P/T-net Mobile Channels Systems

We give a PN (EN system) for the majority of the channel types we discussed in
Section 2.4. We omit the PN for the filter channel type because the tokens of EN
systems have no data, and thus the behavior of the filter EN system becomes equal
to the one of the synchronous EN system. We also omit the PN for the asynchronous
unbounded FIFO channel type. The structure of this PN is equal to the one of the
asynchronous FIFO n channel except that the first is a PN with an infinite number
of places and the second a PN with a finite number of places. The reader may find
it interesting to compare the semantics of these mobile channel EN systems with the
semantics that we give in Section 4.4.1.

3.3. PN Semantics for Mobile Channels and Components 31

Source

I

tWrite

p
WA

I

p
Sink

I

p
RTT

I

p

Figure 3.8: The Synchronous Channel EN System

The Synchronous Channel Type

The I/O operations on both ends of a synchronous channel are synchronized. Figure
3.8 shows the EN system of this channel. The internals of this channel type is just
a transition tWrite that synchronizes the four interface places as defined in Section
3.3.1. The places pSource and pRTT are input places of transition tWrite . Therefore,
only when both the writing and the taking components have each inserted a token
in these places, the I/O operations atomically succeeds (at the same time). We
give the sequential firing step: {pSource , pRTT }[tWrite〉{pSink

, pWA}. At the end a token
is inserted in the places p

Sink
and pWA . This indicates the completion of the I/O

operations.

The Lossy Synchronous Channel Type

WT1 tWT2

p
2

p
1 p

3

p
WA

I

t2

t1

p
RTT

I

p
Sink

I

p
Source

I

t

Figure 3.9: The Lossy Synchronous Channel EN System

32 Chapter 3. Semantics without Mobility

With the lossy synchronous channel type, if there is no I/O operation performed
on the sink channel-end while writing a value to the source-end, the write operation
always succeeds but the value gets lost. In all other cases, the channel behaves like
a normal synchronous type.

Figure 3.9 gives the EN system for this channel type. There are two paths for
a successful write operation in this PN. One is determined by the tWT1 transition
and exhibits the behavior of a synchronous channel. The other is determined by the
tWT2 transition and exhibits the lossy behavior of this channel type. The choice
between the first or the second path depends on whether, from the point of view
of the channel, there is a component waiting to take a value or not. A component
indicates its willingness to take a value by putting a token in place pRTT . The
presence of this token is not detectable by the channel. Only after transition t1 fires
the channel knows that a component is ready to accept a value: {p

RTT
}[t1〉{p1, p2}.

In configuration {pSource , p1, p2} there is a component trying to write (due to the
token in place pSource) and a component waiting to take (due to the tokens in places p1

and p2). Transition tWT1 can fire due to the tokens in places p1 and p2. At this time,
transition tWT2 is blocked because of the token in place p2. Therefore, the written
value synchronously flows from pSource to p

Sink
: {pSource , p1, p2}[tWT1〉{pSink

, pWA}.
In configuration {p

Source
} there is a component trying to write but no component

to take. This time transition tWT1 cannot fire due to the lack of a token in place p1.
Transition tWT2 is free to fire, and when it does the value gets lost while the write
operation succeeds. Observe that, there is no need to model an explicit garbage to
delete the written token since the firing of transition t2 already takes care of this.
We give the sequential steps of this lossy path: {pSource}[tWT2〉{p2, p3}[t2〉{pWA}.

The EN system of 3.9 gives an approximation of the actual behavior of a lossy
synchronous channel type. Ideally we want the synchronous path to be taken every
time a component puts a token in place pRTT , i.e. every time a component indicates
its willingness to take, a (future) written value must not get lost. This is easy to
model in higher level PNs (for example, by using constraints). However, up to our
knowledge there is no EN system with finite places that can model this behavior
(EN systems with infinite places can, but we want to avoid them). Nevertheless,
the EN system we give for the lossy synchronous channel type is acceptable for the
purposes of this chapter.

The FIFO n Channel Type

The I/O operations that are performed on the ends of an asynchronous FIFO n
channel succeed asynchronously. Values written into the source channel-end are
internally stored in a buffer until taken from the sink-end. Figure 3.10(a) shows
the EN system of a FIFO 1 channel. As one may expect, the internal buffer of
capacity 1 is modeled by place p

buf
. We write a value into the channel by performing

the sequential step {pSource}[tWrite〉{pbuf
, pWA}, and we take a value by performing the

step {p
buf

, pRTT }[tTake〉{pSink
}. In Figure 3.10(b) we give the EN system for the FIFO

2 channel. Naturally, it contains two buffer places. Figure 3.10(c) gives the general
scheme for a FIFO EN system channel with the buffer capacity of n. Observe, that
if n is infinite (unbounded FIFO channel) we get an EN system with infinite places.

3.3. PN Semantics for Mobile Channels and Components 33

(c) FIFO n

Source

I

p
buf

p
Sink

I

tWrite

p
RTT

p
WA

I

p
Source

I

p
buf1

tWrite

t1

p
buf2

p
Sink

I

p
RTT

tTake

p
WA

I

I

tTake

p
Source

I

p
buf(1)

tWrite

p
WA

I

p
Sink

I

tTake

p
RTT

I

D
as

he
d

pa
tte

rn
 r

ep
ea

ts
 it

se
lf

 u
nt

il
th

er
e

ar
e

n
bu

f
pl

ac
es

p

tbuf(2 to n)

buf(2 to n)

I

(a) FIFO 1 (b) FIFO 2

p

Figure 3.10: The FIFO 1, 2 and n Channel EN Systems

The Synchronous Drain Channel Type

This channel type has two source-ends where the write operations performed on
them are synchronized. Figure 3.11(a) gives the EN system of the synchronous drain
channel. There are no surprises here. The net looks like the one of the synchronous
channel type, except that we now have two source places, two “write acknowledg-
ment” (WA) places, and no sink place nor “ready to take” (RTT) place. The only
sequential step that can happen with this PN is: {pSource1 , pSource2}[tWrite〉{pWA1 , pWA2}.

The Asynchronous Drain Channel Type

The write operations performed on the two source ends of the asynchronous drain
channel type never succeed atomically. This is reflected in the EN system we give
in Figure 3.11(b). Place p3 makes sure that either transition tWrite1 or transition
tWrite2 fires, but not both at the same time.

Let’s assume that there are two simultaneous writes available. The net configu-
ration for this situation is {pSource1 , pSource2}. We can choose to perform the write op-
eration on the left source-end first: {pSource1 , pSource2}[tWrite1〉{pSource2 , p1, p3}. In this
new configuration transition tWrite2 is blocked by the token in place p3 (no write
by the right source-end can happen). However, transition t1 can fire to complete
the write of the left source-end: {pSource2 , p1, p3}[t1〉{pSource2 , pWA1}. At this point
the other write can start. Alternatively, we can perform the write operation on the

34 Chapter 3. Semantics without Mobility

(b) Asynchronous Drain

Write1

p
Source1

I

p
1

p
3

tWrite2

p
Source2

I

p
2

t1 t2

p
WA2

I

p
WA1

I

tWrite1

p
Source1

I

p
WA1

I

tWrite2

p
Source2

I

p
WA2

I

p
Source2

I

p
Source1

I

tWrite

p
WA1

p
WA2

I I

(a) Synchronous Drain

(c) Drain

t

Figure 3.11: The Synchronous-, Asynchronous-, and Drain Channel EN System

right source-end first: {p
Source1 , pSource2}[tWrite2〉{pSource1 , p2, p3}. In this configuration

transition tWrite1 is blocked by the same place p3. Transition t2 fires to complete the
write action: {pSource1 , p2, p3}[t2〉{pSource1 , pWA2}. At this point the other write can
start. We see that we can never fire transitions tWrite1 and tWrite2 concurrently.

The Drain Channel Type

The write operations on the two source-ends of the drain channel type do not affect
each other. We give the EN system in Figure 3.11(c). We see that, indeed, the two
transitions, {tWrite1, tWrite2}, are completely independent of each other; i.e. they
don’t share input nor output places. The sequential steps {pSource1}[tWrite1〉{pWA1}
and {pSource2}[tWrite2〉{pWA2} can happen concurrently.

The Synchronous Spout Channel Type

This channel type has two sink ends where the take operations performed on them are
synchronized. Figure 3.12(a) gives the EN system of the synchronous spout channel
type. The net looks like the one of the synchronous channel type, except that we
now have two sink places, two pair of “ready to take” and “write acknowledgment”
(RTT) places, and no source nor “write acknowledgment” (WA) place. The only
sequential step that can happen with this PN is: {pRTT1 , pRTT2}[tTake〉{pSink1 , pSink2}.

The Asynchronous Spout Channel Type

The take operations performed on the two sink ends of the asynchronous spout
channel type never succeed atomically. This is reflected in the EN system we give in

3.3. PN Semantics for Mobile Channels and Components 35

RTT2

1 tTake1 tTake2 t2

p
2

p
1

p
3

p p p p

p

tTake

p p p

tTake1

pp p

tTake2

p

(b) Asynchronous Spout

I I I I

(a) Synchronous Spout

I I I I

(c) Spout

II I I

RTT1 Sink1 Sink2 RTT2

RTT1 Sink1 Sink2 RTT2 RTT1 Sink1 Sink2

t

Figure 3.12: The Synchronous-, Asynchronous-, and Spout Channel EN System

Figure 3.12(b). Place p2 makes sure that either transition tTake1 or transition tTake2

fires, but not both at the same time.
Let’s assume that there are two simultaneous takes available. The net con-

figuration for this situation is {pRTT1 , pRTT2}. We can choose to perform the take
operation on the left sink-end first: {pRTT1 , pRTT2}[t1〉{pRTT2 , p1, p2}. In this config-
uration the token in place p2 blocks the firing of transition t2 (no take by the right
sink-end can happen). However, transition tTake1 can fire to complete the take of
the left sink-end: {pRTT2 , p1, p2}[tTake1〉{pRTT2 , pSink1}. At this point the other take
can start. Alternatively, we can perform the take operation on the sink-end at the
right first: {pRTT1 , pRTT2}[t2〉{pRTT1 , p2, p3}. In this configuration the token in place
p2 blocks the firing of transition t1. Transition tTake2 fires to complete the take
action:{pRTT1 , p2, p3}[tTake2〉{pRTT1 , pSink2}. At this point the other take can start.
We see that we can never fire transitions tTake1 and tTake2 concurrently.

The Spout Channel Type

The take operations on the two sink-ends of the spout channel type do not affect
each other. We give the EN system in Figure 3.12(c). We see that, indeed, the
two transitions, {tTake1, tTake2}, are completely independent of each other; i.e. they
don’t share input nor output places. The sequential steps {pRTT1}[tTake1〉{pSink1} and
{pRTT2}[tTake2〉{pSink2} can happen concurrently.

36 Chapter 3. Semantics without Mobility

3.4 Analysis and Simulation of PN Models

We now know how to model systems that use our mobile channels by means of PN;
we create such a model by composing the PN of the components with the PN of the
channels we give in this chapter. In this section we briefly discuss the analysis and
simulation of these models. By analyzing and simulating PN models we are able to
identify the (concurrent) exogenous coordination behavior of a system that follows
from the interaction between the components and the mobile channels.

Taker Component

WT2

p
2

p
1 p

3

t2

t1

p
Sink

p
WA

p
Source

p p

tw1

tw2

p
t1

p
t2

t t1

t t2

tWT1

p

Lossy Synchronous

Channel

w1 w2

RTT

Writer Component

t

Figure 3.13: An Example of Composition

In Figure 3.13 we give the PN model of a simple system consisting of two com-
ponents and one lossy synchronous channel. These components are the taker and
the writer defined in Section 3.3.2. Bigger systems can be made by using more com-
plex components, for example by using the ones given in Chapter 9. The model of
Figure 3.13 is obtained as σ(Taker , {pInput , pRTT },Tmp1, {p

Sink
, pRTT }), where Tmp1

is σ(Writer , {pOutput , pWA},LossySynchronous, {pSource , pWA}.
We can simulate our example system by playing the “token game” as defined in

[RE98]. This game consists of firing transitions, when possible, to get the system
from one state into another. By doing this we get all the possible states and all the

3.4. Analysis and Simulation of PN Models 37

(7)

Tt2

T1 Tw2 Tt2

{Pw1,Pt1,Psource,Prtt}

T2

Twt2

Tw2

T1

{Pw1,Pt1,Psource,P1,P2}

Tw2 Twt2 Tt2

{Pw1,Pt1,Prtt,P2,P3}

Twt1 T2

{Pw1,Pt1,Prtt,Pwa}

Tw1
Tt2

Tw1

{Pw1,Pt1,P1,P2,Pwa}

Tw1

T1Tw1 Tt1

Tt1Tw2

{Pw2,Pt1,Psink}

{Pw1,Psource,Pt1,Psink}

Tt1 Twt2

{Pw1,P2,P3,Pt1,Psink}

{Pw2,Pt2} = (1)

(4)

(3)

(5) (6)

Tt1 T2

(2) = {Pw2,Pt1,Prtt} {Pw1,Psource,Pt2} = (3)

(4) = {Pw2,Pt1,P1,P2} {Pw1,Pt2,P2,P3} = (5)

(6) = {Pw1,Pt1,Psink,Pwa}

{Pw1,Pt2,Pwa} = (7)

(1)

(2)

(1)

Figure 3.14: The Sequential Configuration Graph of Figure 3.13

possible firing sequences of a system. This information is graphically given in the
sequential configuration graph of Figure 3.14.

Besides simulation, we can also analyze the models for desired, or undesired,
properties and features. For example, by looking at Figure 3.14 we can recognize
(among others) the synchronous and the lossy firing path that we gave for the lossy
synchronous channel in Section 3.3.4; thus, we can verify the exogenous coordination
behavior of this particular channel type and see how it affects the behavior of the
components using this channel.

More general, common and well-supported PN analysis that we can use on our
models include causality, concurrency, conflicts, confusions, deadlocks, and equiva-
lence. For example, we can analyze the sequential configuration graph (of Figure
3.13) for concurrent steps: Basically, every diamond shape in the graph represents
such a step. Figure 3.15 shows the configuration graph of our example system,
where we added dashed lines to the sequential configuration graph for the concurrent
steps. This last graph provides us with even more information about the behavior
of the lossy synchronous channel. For example that the first possible concurrent
step is {pw2, pt2}[{Tt2,Tw2}〉{pw1, pt1, psource , prtt}; we can arrive from configura-
tion {pw2, pt2} to configuration {pw1, pt1, psource , prtt}, by first firing transition Tw2
and then transition Tt2, or vice-versa.

38 Chapter 3. Semantics without Mobility

{Tt2,Twt2}

Tt2

T1 Tw2 Tt2

{Pw1,Pt1,Psource,Prtt}

T2

Twt2

Tw2

T1

{Pw1,Pt1,Psource,P1,P2}

Tw2 Twt2 Tt2

{Pw1,Pt1,Prtt,P2,P3}

Twt1 T2

{Pw1,Pt1,Prtt,Pwa}

Tw1
Tt2

Tw1

{Pw1,Pt1,P1,P2,Pwa}

Tw1

T1Tw1 Tt1

Tt1Tw2

{Pw2,Pt1,Psink}

{Pw1,Psource,Pt1,Psink}

Tt1 Twt2

{Pw1,P2,P3,Pt1,Psink}

{Pw2,Pt2} = (1)

(4)

(3)

(5) (6)

Tt1 T2

(2) = {Pw2,Pt1,Prtt} {Pw1,Psource,Pt2} = (3)

(4) = {Pw2,Pt1,P1,P2} {Pw1,Pt2,P2,P3} = (5)

(6) = {Pw1,Pt1,Psink,Pwa}

{Pw1,Pt2,Pwa} = (7)

(1)

(2)

(1)

(7)

{Tt2,Tw2}

{T1,Tw2}

(3)
{Tt1,Tw2}

{Tt1,Twt2}

{Tw1,Tt1}

{Tt1,T2}

{Tt2,Tw1}

{Tt2,T2}

{T1,Tw1}

Figure 3.15: The Configuration Graph of Figure 3.13

The system we modeled is quite small and simple. As we have seen, analyzing
and simulating this system “by hand” is possible but already not a pleasant task. For
example, look at the size of Figure 3.14. A real application consists of many compo-
nents and many mobile channels. Therefore, modeling such an application quickly
results in a big Petri Net model that is not human-tractable anymore. Fortunately,
there are many tools available for EN systems. For an extensive list of these tools we
refer to the state-of-the-art work in [Sto98, BBBKS00, PNW05]. One such tool we
recommend is the Platform Independent Petri Net Editor (PIPE) tool [BCCGKT05].
The PIPE tool is an open source project, it is free of charge, platform-independent,
offers simulation and analysis modules, and gives XML support.

3.5 Discussion and Concluding Remarks

In this Chapter we gave semantics to mobile channels by using the PN formalism.
This semantics does not model channel mobility, and therefore, all the channel PN
we presented in Section 3.3 are static; the ends of these channels don’t move. We
showed how to achieve PN models from systems whose components communicate
through and are coordinated by mobile channels. In Section 3.4, we briefly discussed
some of the analysis and simulation possibilities for these models.

The next logical step is to extend the channel semantics of this chapter to support
mobility. The question is then whether EN systems are still the right kind of PN

3.5. Discussion and Concluding Remarks 39

to use. For the purposes of this chapter EN systems are a good choice, but we
have seen that the nets of some channels can become quite large. This is the case
with the FIFO n channel PN where the higher the capacity the more buffer places
the PN has. In the case of the unbounded FIFO channel there are even an infinite
number of buffer places. We have also seen that the PN models we produce by
composing channels together with components quickly become huge in size. To
solve this problem we use tools. However, this size explosion of PN suggests that if
we extend each channel PN with a protocol for mobility its semantics will get very
complex to follow. Moreover, even small models consisting of few components and
channels (like the one we gave in Section 3.4) will quickly become human intractable.
A better choice then is to use a higher level PN where we can use constructs such as
constraints to obtain much smaller nets. For example, Colored Petri Nets [Jen97a]
are much more suitable for modeling channel mobility.

Instead of translating all the channel EN systems of this chapter to Colored
Petri Nets, in the next chapter, we are going to use another formalism (or model)
that is far more suitable for giving semantics to our mobile channels. This doesn’t
make the semantics we give in this chapter obsolete. The PN specifications for each
channel type are far more easier to follow than the ones we give in the Chapter 4.
For example, compare the PN specification of a FIFO n channel type in Section
3.3.4 with the specification of the same channel type in Section 4.4.1. Therefore, the
mobile channel semantics of this chapter can be used as a guideline to understand
the ones of Chapter 4. Furthermore, by specifying (static) mobile channels in PN
we get the following advantages: PN theoretical support, PN model analysis and
simulation, immediate application in different areas, and tool support.

40 Chapter 3. Semantics without Mobility

Chapter 4

Semantics with Mobility

In this chapter we present MoCha-π, an exogenous coordination calculus that is
based on mobile channels. Our calculus is an extension of the well-known π-calculus
[Mil99]. The novelty of MoCha-π is that its channels are a special kind of process
that allow other processes to communicate with each other and impose exogenous
coordination through user defined channel types. Also new, is the fact that in our
calculus channels are viewed as resources. Processes must compete with each other
in order to gain access to a particular channel. This makes the calculus more in line
with existing systems.

4.1 Introduction

We introduce an exogenous coordination calculus that is based on mobile channels.
We call this calculus: MoCha-π. With MoCha-π we give semantics to mobile chan-
nels. This semantics includes the interactions between components and channels.
Since MoCha-π is a process algebra [Fok99], in this chapter we talk about processes
instead of components. The difference is that a component consists of one or more
process(es). The specific definition of a component is given in Chapter 5.

Besides giving semantics to channels, our calculus is also very suitable as a logical
framework for modeling (distributed) systems. With MoCha-π we can specify the
communication and coordination aspects of systems. This is useful, for example, for
model-checking purposes in the software development phase.

In the next section we briefly discuss the π-calculus and how it relates to MoCha-
π. In Section 4.3 we present the MoCha-π calculus. Our calculus provides channels
that are more general than the ones of the MoCha framework. Therefore, in Section
4.4, we give a design pattern for specifying channels that are compatible with the
framework. Afterward, we show three examples of how to use our calculus in Section
4.5. We conclude with related work in Section 4.6.

41

42 Chapter 4. Semantics with Mobility

4.2 Extending the π-calculus

The π-calculus [Mil99] is a basic mathematical model that focuses on the interaction
between processes. It is based on the CCS [Mil80] calculus. The main difference with
CCS is that the π-calculus allows dynamical changes in the interconnections between
processes (as they interact). The basic, and only, communication primitive of the
calculus is the channel. Processes write to a channel by means of a send action, and
take from a channel by means of a receive action. The type of the channels in the
standard π-calculus is exclusively synchronous. Besides being able to send values
through a channel, we can also send channels to other processes. The recipient of a
channel can, then, use it for further interaction with other parties. This makes the
changing of channel connections among processes possible in a system.

It seems natural to use the π-calculus to give semantics to our mobile channels.
Here are the major reasons:

• The π-calculus focuses only on process communication and coordination. It
abstracts away from the system’s computational part.

• The π-calculus doesn’t explicitly model the notion of location. The location
of a process in a system is implicitly determined by the channel connections
that it has with other processes. This allows us to model the mobile channels
in such a way that we abstract away from the distribution of a system. This
idea follows from our desire of processes not having to see a difference between
local and inter-local communication. In a real implemented system, the mobile
channels take care of the internal distributed communication.

• Processes in the π-calculus already communicate through channels.

• Like with mobile channels, π-calculus channels can be sent through channels
themselves.

• The π-calculus is easy, but powerful enough, to use.

• There is extensive theoretical work about the π-calculus available. For exam-
ple, see [Mil99], [Par01], and [SW01].

• There is tool support for the π-calculus. For example, the Mobility Workbench
[VM94].

However, there are differences between the MoCha framework and the π-calculus.
Mainly:

• MoCha supports several channel types, the π-calculus supports only one type.

• Components/processes in MoCha know and use channel-ends, the processes of
the π-calculus use channels as a whole instead of their ends.

• In MoCha components/processes see channel-ends as resources. Therefore, a
process has to connect to a particular channel-end first before it can use it. In
the π-calculus, any process can use a channel that it knows at any time.

4.3. The MoCha-π Calculus 43

• The mobile channels of MoCha provide exogenous coordination. In the π-
calculus there is no built-in support for exogenous coordination.

To cope with these differences we considered doing two things. On the one hand,
we can provide π-calculus specifications that implement all the above requirements.
On the other hand, we can extend the π-calculus by introducing higher-level con-
structs to dynamically (i.e. during execution) translate the interaction operations
of MoCha into the basic π-calculus ones.

In the first approach, we need to implement all the missing features that we
want into the π-calculus. We briefly discuss what needs to be done. We start by
implementing a channel-end. The only way to do it in the π-calculus is by defining
it as a process. This channel-end then needs to, somehow, be related with the other
end of the channel. We can choose between linking the channel-ends via π-calculus
synchronous channels, or by creating a process channel that internally relates the
two ends. Naturally, for each channel type we need to define new channel-end pro-
cesses and relate them. For the interactions between the ’normal’ processes and the
channel-ends we need to implement a well-defined interface. Most likely, interac-
tions with channel-end processes go through π-calculus channels. We must make
sure that, somehow, ’normal’ processes know these π-calculus channels and that
they follow the patterns imposed by the channel-end interface. The most difficult
feature to implement is the connect and disconnect operations. Somehow, channel-
ends must keep a list of processes that want to connect to them. Then, they must let
a process know that it has exclusive permission to use the end, and must accept I/O
operations only from that specific process. Afterward, when the process disconnects
they must select another process and notify it.
All of this is implementable in the π-calculus. However, the main reason for us not
to follow this approach is that, since these specifications need to be present with
every model that we make, the specifications of these models become huge and un-
readable. Furthermore, the models get full of details that we are not interested to
see. For example, we don’t want to see how a channel-end process internally handles
the connect operation.

In the second approach, the one we use in this chapter, we create a calculus
that provides high-level constructs and definitions for the notions of channel-ends,
resources, and mobile channel actions. A mobile channel is still defined as a π-
calculus process, but this process is much simpler to define than the one we had to
define with the first approach. We don’t have to define a separate process channel-
end, and the calculus assures a certain interface. We also don’t have to worry about
the implementation of the connect and disconnect operations. The calculus handles
all these operations. We call this calculus: MoCha-π.

4.3 The MoCha-π Calculus

In this section we present the MoCha-π calculus. Our calculus offers high-level
interface write, take, connect and disconnect operations on channels whose behavior is
user-defined. Just like in the MoCha-framework, processes have no direct references
to channels but only to channel-ends, and therefore, all interface operations are
performed on channel-ends.

44 Chapter 4. Semantics with Mobility

We use the π-calculus to implement the I/O interface actions of MoCha-π.
Our calculus transforms all write and take actions into a pattern of traditional π-
calculus ones. It does this transformation when a process is connected to a particular
channel-end and performs an I/O action on it. Therefore, this transformation can be
done only dynamically, when the system is executing. Static transformation of the
MoCha-π interface actions into traditional π-calculus actions is not possible here.

We begin by defining the notions of names, threads, channels, runtime processes
and resources. Afterward, we define each of the MoCha-π actions. Finally, we discuss
structural congruence and introduce the general rules of the calculus.

4.3.1 Threads, Channels, Processes and Resources

We assume that there exists an infinite set N of names, with lower-case elements
that range over N . In the π-calculus names can refer to both data and channels.
In our calculus names, among other things, refer to both data and channel-ends. A
MoCha-π process operates on and exchanges with other processes channel-end names
instead of channel names. To avoid confusion, from now on we refer to π-calculus
channels as links. As we shall see, a MoCha-π channel is a process that uses links
to communicate with other processes. We denote links with c ∈ Links ⊆ N . For
channel-ends we use e ∈ ChannelEnds ⊆ N . Data is represented by d ∈ Data ⊆ N .
Observe that the type sets Links,ChannelEnds, Data are mutually disjoint. However
for convenience, in this chapter we often use the same name for the channel-end and
the link that it is translated to. All data, links, and channel-ends are represented
by a, b, x ∈ N . We assume that our calculus knows the right type of each name.

A system in MoCha-π consists of four kinds of processes: threads, channels, run-
time processes and resources. The first two types are process specifications defined
by the user. The third type consists of the runtime operational semantic processes
of the first two. The last type contains processes without a body. We use capital
letters to denote processes. For example, we use words like: {T ,PRODUCER} for
threads, {K ,FIFO} for channels, {P ,PROCESS} for runtime processes. For re-
sources we use a special notation given in Definition 4.3.2. A system definition is
given by System = 〈D |S 〉, where D is the system declaration consisting of threads
and channels. S is the main statement; an initial thread that creates all other
processes.

To model process creation, we assume an infinite set Id of process identifiers. We
refer to A ∈ Id as an identifier for a runtime process. We refer to AK as an identifier
for a runtime process of a channel. In the process specification we write A(y1, ..., yn)
to indicate the creation, or invocation, of process-id A with parameters y1, ..., yn .
This identifier A has a defining equation of the form A(x1, ..., xn)

def
= P , where all the

parameters are distinct and free names in P . From the congruence rule (6) in Section
4.3.2, we can see that the creation of a process consists of substituting all free names
x1, ..., xn by the actual parameters y1, ..., yn . In [Mil99], Milner presents the basic
π-calculus without process identifiers. Instead he introduces the replication action
!P to replace recursive process definitions. However, in MoCha-π we explicitly want
to model dynamic process creation. This seems to be more natural and closer to the
implementation of the MoCha framework.

Definition 4.3.1 A Thread is a user-defined process specification with grammar Lϕ

4.3. The MoCha-π Calculus 45

that has the following syntax:

T :: =
∑

i∈I

ϕi .Ti | T1|T2 | new x T | A(y1, ..., yn)

where I is any finite indexing set. The actions ϕ of threads are:

e ↓ connect to channel-end e
e ↑ disconnect from channel-end e
e!〈x 〉 write x to channel-end e
e?(x) take x from channel-end e
τ unobservable action

The processes
∑

i∈I ϕi .Ti are called summations or sums. If I = {1, 2}, for example,
then we get the summation ϕ1.T1 + ϕ2.T2. If I = 0 then we get the empty sum
0. The composition T1|T2 indicates that these two processes run concurrently. The
restriction new x T restricts the scope of the name x to process T . Threads may
use the general identifier A. Thus, a thread can dynamically create any process of
type thread or channel in the system.

In our calculus channels, and thus channel-ends, are viewed as resources. There-
fore, processes must compete with each other in order to gain access to a particular
channel-end by connecting to it.

Definition 4.3.2 A resource is a process without a body that always runs in parallel
with the processes of a system. There is a set of resources associated with every
channel-end. Therefore, we define a relation between the name of a channel-end and
its resource names. We denote by Re a resource that belongs to channel-end e.

Channels are processes too. This gives us the advantage that the behavior of
a particular channel type can be defined in terms of actions. Moreover, we shall
see that introducing a new type of channel consists of just defining a new process
without having to make any changes to the existing actions or rules.

Definition 4.3.3 A Channel is a user-defined process specification with grammar
Lϑ that has the following syntax:

K :: =
∑

i∈I

ϑi .Ki | K1|K2 | new x K | Re | AK (y1, ..., yn)

where I is any finite indexing set. The actions ϑ of channels are:

c〈x 〉 send x along link c
c(x) receive x along link c
τ unobservable action

Channels are special kinds of processes because they can perform only the original
π-calculus actions. Channels can use only the channel identifiers AK . Thus, a
channel can create only channel sub-processes and no threads.

Each channel receives at its creation a user defined number of ends e1, e2, e3, ...
to communicate with the non-channel MoCha-π processes. These ends are specified

46 Chapter 4. Semantics with Mobility

as the parameters of the channel process. Upon invocation of a channel process the
parameter ends are automatically translated to their respective π-calculus links that
comply with the I/O channel-end actions; see Section 4.3.3. The channel process
specifies the behavior of its ends. For example, whether an end is a sink, source or
both. The process also specifies the relation between the various ends of the channel
in order to obtain a certain desired behavior. Each end e of a channel process K has
a user defined number of resources Re

1 ,Re
2 ,Re

3 , We use Re ∈ {Re
1 ,Re

2 ,Re
3 , ...} to

refer to any resource of a particular channel-end e.
We now define the (runtime) processes of the user-defined threads and channels.

Definition 4.3.4 A runtime process is an operational semantic process for either
a thread or a channel. Its definition is given by Lπ = Lϕ∪ϑ. The runtime process
expressions are defined by the following syntax:

P :: =
∑

i∈I

πi .Pi | P1|P2 | new x P | e[P] | Re | A(y1, ..., yn)

where I is any finite indexing set, and the actions π = ϕ ∪ ϑ.

All the expressions in this grammar are already defined except for e[P]. This
expression symbolizes the fact that process P is currently connected to channel-end
e.

We introduce two convenient abbreviations for the syntax of threads, channels,
and runtime processes. We omit ‘.0’; for example we write π1.π2.0 as π1.π2. Also,
we write new (a1, ..., an) instead of new a1 ...new an ; for example new a new b is
abbreviated to new (a, b).

4.3.2 Structural Congruence

We define a structural congruence relation. We need this relation to identify the
process expressions that are intuitively equivalent by having the same structure,
but are nevertheless syntactically different. It is clear that for channel processes we
can take the π-calculus definition of structural congruence as given in [Mil99]. For
runtime and thread processes we need to extend this definition due to the addition
of the connected scope e[] to the MoCha-π calculus.

Definition 4.3.5 Two process expressions P and Q in the MoCha-π calculus are
structurally congruent, written P ≡ Q, if we can transform one into the other by
using the following equations (in either direction):

1. Systematic change of bound names (alpha-conversion)

2. Reordering of terms in a summation

2’. P + 0 ≡ P, P + Q ≡ Q + P,
P + (Q + R) ≡ (P + Q) + R

3. P | 0 ≡ P, P | Q ≡ Q | P, P | (Q | R) ≡ (P | Q) | R
4. new x (P | Q) ≡ P | new x Q if x /∈ fn(P)

new x 0 ≡ 0, new (x , y)P ≡ new (y , x)P

4.3. The MoCha-π Calculus 47

5. A(~y) ≡ {y/x}P if A(~x)
def
= P

6. e[g [P]] ≡ g [e[P]]
e[P + Q] ≡ e[P] + e[Q]
e[P] | Rd ≡ e[P | Rd]

where fn(P) are all the free names in process P, with n(Re) = e.

The last law of our added equation (6) states that a resource can “enter” and
“leave” any connected scope. Due to the rules we define in Section 4.3.4, this law is
not needed. However, it is still convenient to define it for achieving more readable
process expressions. Observe that we do not add e[0] ≡ 0, for this is not the case in
our calculus. We want processes to explicitly disconnect from channel-ends.

4.3.3 Actions

We now define the actions of our calculus. For the MoCha-π channel-end topological
actions we define a transition relation −→. For the MoCha-π I/O actions we define
a structural congruence relation.

send : c〈x 〉
This is a π-calculus action where a name x is sent through link c.

receive : c(x)
This is the complementary action of send, where a name x is received through the
link c.

The actions c〈a〉, c(b) combined with the reaction rule of Section 4.3.4 model
the synchronous sending of a name a through link c. The process that receives the
name substitutes all occurrences of name b by a.

connect : (e ↓.P | Q + M) | Re −→ e[P] | Q
For a successful channel-end connection one of the resources Re of the channel-end e
must be available. After the action the resource Re is removed from the expression
(hidden) and is, therefore, not available anymore for any other process outside the
scope [] that might know e. By counting the consumed resources, we know how
many processes are currently connected to the channel-end. Processes that try to
connect to a particular channel-end while all its resources are already taken by other
processes, must wait until a resource becomes available again.

In the MoCha framework design pattern (see Section 4.4) each channel-end has
exactly one resource. The success of a connect operation, therefore, guarantees
exclusive channel-end access for its performing process P .

Components can also successfully connect to a channel-end they are already con-
nected to (see the semantics given in Chapter 5). However, since we are dealing with
processes we omit this particular connect action.

disconnect : e[e ↑ .P | Q + M] −→ P | Q | Re

48 Chapter 4. Semantics with Mobility

If a process P is currently connected to a channel-end e it can disconnect from it by
performing the disconnect action e ↑. After a successful disconnect a resource Re

becomes available to other processes.

Components can also successfully disconnect from a channel-end they are not
connected to in the first place. We omit this particular disconnect action in our
process algebra calculus. We do model this action in Chapter 5, where we introduce
the notion of components.

We now present the rules for the actions write and take. The idea is to dy-
namically transform these high-level interface actions into a communication pattern
consisting of the standard c〈x 〉 and c(x) π-calculus actions. These patterns are
needed to ensure exogenous coordination, by making every MoCha-π I/O action
between a thread and a channel-end synchronous. Instead of a transition relation
we use a structural congruence one for the write and take actions. The rationale for
this choice is to avoid unnecessary transitions in our calculus.

Write : e[e!〈a〉.P | Q + M] ≡ e[e〈a〉.e(λ).P | Q + M]

A write action on a channel-end e is transformed into a communication pattern
using link e if process P is currently connected to the channel-end. For simplicity,
in this chapter we use the same name for the channel-end as well as for the link
it is translated to. In this pattern, first a value a is communicated to the channel
process, then we wait for an acknowledgment λ to be received through e. We shall
always use λ as a special reserved name for acknowledgments and requests (see the
take action). As stated in Section 4.3.1, channels match this I/O link pattern. They
do so by first matching a thread’s send e〈a〉 with a receive e(x). Later, at some
point in time, they match a thread’s receive e(λ) with a send e〈λ〉.

Observe that we don’t have any means to check whether the channel-end e is a
source-end or not. However, we don’t need to. If a sink-end is given, the structural
law translates the interface action into the π-calculus actions anyway. However,
these actions deadlock because they do not match the communication pattern used
by the channel process.

Take : e[e?(b).P | Q + M] ≡ e[e〈λ〉.e(b).P | Q + M]

A take action on a channel-end e is transformed into a π-calculus communica-
tion pattern using its corresponding link e if process P is currently connected to
the channel-end. First, a request λ to take is sent to the channel, then a name b is
received from the channel process through e. As stated in Section 4.3.1, channels
match this link I/O pattern. They do so by first matching a thread’s send e〈λ〉 with
a receive e(λ). Later, at some point in time, they match a thread’s receive e(b) with
a send e〈x 〉. Just like with the write action, we don’t put any restrictions on the
type of the channel-end.

Tau: τ.P + Q −→ P

Finally, τ represents the unobservable action.

4.3. The MoCha-π Calculus 49

Parallel Restriction
P −→ P ′

P |Q −→ P ′|Q
P −→ P ′

new x P −→ new x P ′

Connection(1) Connection(2)
P −→ P ′

e[P] −→ e[P ′]

P | Q −→ P ′ | Q ′

M + e[P] | Q −→ P ′ | e[P ′] | Q ′

Structural Rule
P −→ P ′

Q −→ Q ′ if P ≡ Q and P ′ ≡ Q ′

Reaction:
(c(a).P + M) | (c〈b〉.Q + N) −→ {b/a}P | Q

Figure 4.1: The General Rules of MoCha-π

4.3.4 Reaction and other Rules

We now define the reaction and other support rules of MoCha-π. We take the
π-calculus rules and add two connection rules. All the rules are given in Figure 4.1.

The reaction rule works at the π-calculus level. Therefore, this rule is oblivious
to whether or not processes are connected to particular channel-ends. However, in
MoCha-π we need to take into account that processes may be connected to one or
more channel-ends. Connection rule (1) gives us the means to let a reaction happen
within a connected scope. Connection rule (2) allows a reaction to happen when one
of the two processes involved is in a connected scope, which is the case when a thread
communicates with a channel process. By applying the connection rules several
times a reaction is able to succeed in cases when processes are connected to multiple
channel-ends. For example, the communication in z [e[M + d [e(a).P]] | e〈b〉.Q]
succeeds.

The connection rules also make it possible for the connect and the disconnect
rules to succeed when a process executing a connect or a disconnect action is con-
nected to multiple channel-ends. For example, the connect action in f [d [e ↓ .P]] | Re

succeeds, and the disconnect action in e[Q | d [e ↑ .P]] succeeds as well.

4.3.5 Sequential Composition

The sequential composition is not a primitive operator of MoCha-π nor the π-
calculus, for it can easily be modeled in both calculi. We take the same approach as
in [Mil99]:

Definition 4.3.6 We define the sequential composition, P ;Q (“Q starts, when P
finishes”), by providing the following construction:

50 Chapter 4. Semantics with Mobility

P ;Q
def
= new (start , d)({start/done}P | start(s).Q)

where we assume that process P ends with a done〈d〉 action, and both start and d
are not free in P or Q.

We use the ‘;’ operator in our examples for both channel and thread processes
definitions. There is no need to define sequential composition using MoCha-π actions
for when we interpretor the ‘;’ operator for threads we are already dealing with
runtime processes. For simplicity, in this thesis when working out an example we
assume ‘;’ to be a primitive operator instead of substituting it for above construction.

4.4 The MoCha Framework Design Pattern

The MoCha-π calculus allows channels to have a user defined number of channel-
ends. These ends are of types source, sink or both. For each end there is a user
defined number of associated resources. All of this is specified in the definition of
the channel process type. Therefore, the calculus is more general than the MoCha
framework where there are certain restrictions on the channel-ends and their re-
sources. In order to be able to focus on modeling only the MoCha framework, we
introduce a design pattern. This pattern states that (1) all channels have exactly
two channel-ends; (2) their end types are either sink or source but not both; and (3)
every channel-end has exactly one resource.

To define our own channel types in the MoCha-π calculus, we must write a
channel process that receives the channel-end links as parameters, together with the
capacity of the channel (if any). This process then must match the communication
patterns of the interface write and take operations (see Section 4.3.3) and relate the
ends of the channel using π-calculus actions.

We make one further restriction in our pattern: (4) we demand that the actual
channel-end parameters are all unique and distinct from each other for each channel.
This restriction obligates us to bind the channel-ends before creating a channel, and
to use them for the invocation of only one channel process. For example, S

def
=

new (e1, e2, e3, e4)(K (e1, e2)| K (e3, e4)), where S creates two channel processes of

type K is allowed, but not S
def
= new (e1, e2)(K (e1, e2) |K (e1, e2)), where S creates

two channel processes that share their ends.

4.4.1 Specifying Channel Types

We now give a MoCha-π specification for the majority of the channel types we
discussed in Chapter 2. We omit the filter channel type because in MoCha-π its be-
havior is equal to the one of the synchronous channel type. All of these specifications
conform to the MoCha design pattern. The behavior of these channels is already
given in Section 2.4. The channel processes carry the name of the type. However,
for simplicity in the definition of each channel we refer to it as the channel process K
instead of, for example, SYNCHRONOUS. All the channels receive two links {l , r}
as actual parameters. Each link corresponds to a channel-end used by thread pro-
cesses. For convenience, in the examples we write CE (l) or CE (r) to denote the

4.4. The MoCha Framework Design Pattern 51

channel-end that corresponds to, respectively, link l or r . Upon initialization, all
the channels create one resource for every channel-end. These resources are Rl and
Rr .

Synchronous

K (l , r)
def
= Rl | Rr | K ′(l , r)

K ′(l , r)
def
= l(x).r(λ).(l〈λ〉 | r〈x 〉);K ′(l , r)

This channel process has a source-end CE (l), and a sink-end CE (r). Initially
the process first receives a name, x , from its source-end, then sequentially it receives
a request from its sink-end. Finally, it sends in parallel both an acknowledgment
to its source-end and the name x to its sink-end. Afterward, the process loops and
starts again waiting for the next write on its source-end.

Observe that, a synchronous channel allows the two (take and write) operations
on its ends to succeed atomically. This does not imply that these operations must
be performed simultaneously.

Sometimes the order in which we service the channel-ends does not matter for
a specific channel type. In this case, for the synchronous channel type, it does not
matter if we take a value from the left channel-end first and then a request from the
right one (see above) or vice-versa:

K ′(l , r)
def
= r(λ).l(x).(l〈λ〉 | r〈x 〉);K ′(l , r)

We can even put these actions in parallel:

K ′(l , r)
def
= (l(x) | r(λ));(l〈λ〉 | r〈x 〉);K ′(l , r)

Thus, when the order does not matter, it is up to the taste of the user defining
the particular channel type to decide which order he likes.

Lossy Synchronous

K (l , r)
def
= Rl | Rr | K ′(l , r)

K ′(l , r)
def
= (l(x).((r(λ).(l〈λ〉 | r〈x 〉)) + l〈λ〉));K ′(l , r)

where the left term of the summation has priority over the right one

The lossy synchronous channel consists of two parts: a synchronous and a lossy
part. This is represented by the summation in the channel’s specification. The left
side of the summation is the synchronous part. This is the same specification as
the one of the synchronous channel type given above. The right side of the sum-
mation is the lossy part, where the written name x gets lost. Ideally, we would like
to execute the lossy part only in those cases where there is a write but not a take
action on the channel. However, since the channel has no global information, it has
a non-deterministic choice in choosing any side of the summation. To cope with this
problem we locally impose a priority on the left term of the summation. This way,
we enforce the channel to behave like a synchronous type every time that there is a

52 Chapter 4. Semantics with Mobility

take operation available.

FIFO
K (l , r)

def
= Rl | Rr | K ′(l , r , 0)

K ′(l , r , ~v){|~v |=0} def
= l(v).l〈λ〉.K ′(l , r , 〈v〉)

K ′(l , r , ~v){|~v |≥1} def
= (l(v).l〈λ〉.K ′(l , r , 〈v1, .., v|~v |, v〉))+

(r(λ).r〈v1 ∈ ~v〉.K ′(l , r , 〈v2, .., v|~v |〉))
This is the asynchronous unbounded FIFO channel where we model the buffer as

a vector, or sequence, of names ~v that is passed on as a parameter of the channel
process. Initially, the buffer is empty so the only action possible is a write. After
this action, the written name v is added to the vector. The next possible actions
are either again a write, represented by the left term of the summation, or, a take,
represented by the right side of the same summation. In case of a take action the
first value of the vector, v1, that symbolizes the first written value into the buffer,
is removed from the vector. If after a take action the buffer gets empty, i.e. the
vector has no values, we return to the initial state where there is only a write action
possible.

Observe, that if we want to model a LIFO channel type we merely need to take
v|~v | out of the channel each time, instead of v1. If we want to model a BAG channel
type we can take any vk where k ≤ |~v | out of the channel instead of v1.

FIFO n

K (l , r)
def
= Rl | Rr | K ′(l , r ,n, 0)

K ′(l , r ,n, ~v){|~v |=0} def
= l(v).l〈λ〉.K ′(l , r ,n, 〈v〉)

K ′(l , r ,n, ~v){1≤|~v |≤n−1} def
= (l(v).l〈λ〉.K ′(l , r ,n, 〈v1, .., v|~v |, v〉))+

(r(λ).r〈v1 ∈ ~v〉.K ′(l , r ,n, 〈v2, .., v|~v |〉))

K ′(l , r ,n, ~v){|~v |=n} def
= r(λ).r〈v1 ∈ ~v〉.K ′(l , r ,n, 〈v2, .., vn〉)

The FIFO n channel type has the same specification as the unbounded FIFO
one, with the difference that this channel process has: an extra parameter n that
represents the channel’s capacity, and an extra process specification. This extra
specification states that when the channel reaches its capacity, the length of the vec-
tor sequence ~v is n, the only possible action is a take. Any write operation in that
state is automatically suspended by the calculus until the channel process arrives at
a state where the length of the vector is less than n.

Synchronous Drain

K (l , r)
def
= Rl | Rr | K ′(l , r)

K ′(l , r)
def
= (l(x1).r(x2).(l〈λ〉 | r〈λ〉));K ′(l , r)

This channel type has two source-ends, {CE (l),CE (r)}, that allows operations
to succeed on them only atomically. The channel first receives a value from each
source-end in a sequential manner. Then, it sends an acknowledgment back to the
ends in parallel. Afterward, the process loops and starts again waiting for the next

4.4. The MoCha Framework Design Pattern 53

pair of write actions to be performed on its source-ends.

Asynchronous Drain

K (l , r)
def
= Rl | Rr | K ′(l , r)

K ′(l , r)
def
= ((l(x1).l〈λ〉) + (r(x2).r〈λ〉));K ′(l , r)

This is the asynchronous version of the channel above. The two sources of the
asynchronous drain behave in an exclusively asynchronous way; i.e. never syn-
chronous. To achieve this behavior, the channel specification gives a summation
between the write actions of each channel-end. This way, there is always a choice
between writing to CE (l) or CE (r) but never to both of them at the same time.

Drain
K (l , r)

def
= Rl | Rr | K ′(l) | K ′(r)

K ′(z)
def
= z (x).z 〈λ〉.K ′(z)

In the drain channel type the two source-ends are independent of each other.
Therefore, at initialization, the channel process divides itself into two independent
processes; a process for each source-end that handles the write actions performed on
this end.

Synchronous Spout

K (l , r)
def
= Rl | Rr | K ′(l , r)

K ′(l , r)
def
= new x (l(λ).r(λ).(l〈x 〉 | r〈x 〉));K ′(l , r)

This channel type has two sink-ends, {CE (l),CE (r)}, that allows operations to
succeed on them only atomically. The channel first receives a request, /lambda, from
each sink-end in a sequential manner. Then, it sends a value back to the ends in
parallel. Afterward, the process loops and starts again waiting for the next pair of
take actions to be performed on its source-ends.

Asynchronous Spout

K (l , r)
def
= Rl | Rr | K ′(l , r)

K ′(l , r)
def
= new x ((l(λ).l〈x 〉) + (r(λ).r〈x 〉)));K ′(l , r)

This is the asynchronous version of the channel above. The two sink-ends of the
asynchronous spout channel behave in an exclusively asynchronous way; i.e. never
synchronous. To achieve this behavior, the channel specification gives a summation
between the take actions of each channel-end. This way, there is always a choice
between taking from CE (l) or CE (r) but never from both of them at the same time.

Spout
K (l , r)

def
= Rl | Rr | K ′(l) | K ′(r)

K ′(z)
def
= new x (z (λ).z 〈x 〉);K ′(z)

54 Chapter 4. Semantics with Mobility

In the spout channel type the two sink-ends are independent of each other. There-
fore, at initialization, the channel process divides itself into two independent pro-
cesses; a process for each source-end that handles the take actions performed on this
end.

4.5 Examples

In this section we give three examples that show how to use the MoCha-π calculus
and its benefits. We first give simple producer/consumer examples, then, we continue
with a more representative example about mobile phoning in cars, and we end with
implementing the mobile agent example of Section 2.3.

4.5.1 Producer/Consumer Examples

This is the classical producer/consumer example where, a process P inserts values
into a channel and a process Q takes values from the same channel. With this
example we want to demonstrate the use of the MoCha-π high-level interface actions,
how they are dynamically derived into traditional π-calculus actions, and how these
derived actions make the MoCha-π processes anonymously interact with each other,
while they are being exogenously coordinated. We start by giving the specification
of our system:

S
def
= new(l , r) (P(l) | Q(r) | SYNCHRONOUS (l , r))

P(e)
def
= new d (e ↓ .e!〈d〉.e ↑);P(e)

Q(e)
def
= e ↓ .e?(x).e ↑ .Q(e)

We have a system S that creates three processes: a producer P , a consumer Q ,
and a channel process SYNCHRONOUS . The system binds the channel-end names
and passes them on to the channel. It also passes on the source-end of this channel
to the producer and the sink-end to the consumer. The producer process, P , then
connects to the source-end of the channel, writes a value d to it, and then disconnects
from the end to start the cycle again. Analogous to P , the consumer process, Q ,
connects to the sink-end of the channel, takes a value, and then it disconnects from
this end to start again.

Notice, that due to the exogenous coordination property of the calculus, we can
change the behavior of the system by simply choosing another type of channel be-
tween the processes. For example, we can chose a FIFO channel process. This gives
us the following specification:

S
def
= new(l , r) (P(l) | Q(r) | FIFO(l , r))

P(e)
def
= new d (e ↓ .e!〈d〉.e ↑);P(e)

Q(e)
def
= e ↓ .e?(x).e ↑ .Q(e)

Observer that, we don’t have to change the specification of either the producer or
the consumer process. In fact, these processes don’t notice anything of this change.

4.5. Examples 55

Working out the Synchronous Channel Example

To illustrate how the MoCha-π calculus works, we now show a possible path of ac-
tions of the system where one value is transmitted from the producer to the consumer
process, using the synchronous channel type.
First we initialize the system:

S = new(l , r) (P(l) | Q(r) | SYNC (l , r))
P(l) = new d (l ↓ .l !〈d〉.l ↑);P(l)
Q(r) = r ↓ .r?(x).r ↑ .Q(r)
SYNC (l , r) = Rl | Rr | SYNC ′(l , r)
SYNC ′(l , r) = l(x).r(λ).(l〈λ〉 | r〈x 〉);SYNC ′(l , r)

We abbreviate the name of the channel process SYNCHRONOUS into SYNC
for space saving reasons. Since the SYNC process consists of two resources and a
process SYNC ′ in parallel, we can re-write above specification into a more convenient
form:

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r) | Rl | Rr)
P(l) = new d (l ↓ .l !〈d〉.l ↑);P(l)
Q(r) = r ↓ .r?(x).r ↑ .Q(r)
SYNC ′(l , r) = l(x).r(λ).(l〈λ〉 | r〈x 〉);SYNC ′(l , r)

We now start the data transfer where we denote each step by using a numbered
arrow. The action or rule corresponding to a particular step is given on top of the
arrow. We begin by letting the producer connect to the channel-end l :

l↓−→1

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r) | Rr)
P(l) = new d (l [l !〈d〉.l ↑);P(l)]
Q(r) = r ↓ .r?(x).r ↑ .Q(r)
SYNC ′(l , r) = l(x).r(λ).(l〈λ〉 | r〈x 〉);SYNC ′(l , r)

We see indeed that, after the connect action, the resource Rl is not available
anymore, because it is removed from the specification. We can also see that, the
connect scope is not limited by the new scope. In fact they don’t affect each other.
Now that we are connected, our next action is a write:

l!〈d〉−→2

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r) | Rr)
P(l) = new d (l [l〈d〉.l(λ).l ↑);P(l)]
Q(r) = r ↓ .r?(x).r ↑ .Q(r)
SYNC ′(l , r) = l(x).r(λ).(l〈λ〉 | r〈x 〉);SYNC ′(l , r)

The write action of P is transformed into a pattern of traditional π-calculus
actions since it is connected to the source-end of the channel. Process P is now
ready to interact with process SYNCHRONOUS in order to execute the MoCha-π
high-level write action.
We use the reaction rule to start the high-level write action:

56 Chapter 4. Semantics with Mobility

Reaction(l〈d〉,l(x))−→3

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r) | Rr)
P(l) = new d (l [l(λ).l ↑);P(l)]
Q(r) = r ↓ .r?(x).r ↑ .Q(r)
SYNC ′(l , r) = r(λ).(l〈λ〉 | r〈d〉);SYNC ′(l , r)

At this point P has to wait for an acknowledgment that will only come if Q
performs a take interface action.
We now let the consumer connect to the channel-end r :

r↓−→4

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r))
P(l) = new d (l [l(λ).l ↑);P(l)]
Q(r) = r [r?(x).r ↑ .Q(r)]
SYNC ′(l , r) = r(λ).(l〈λ〉 | r〈d〉);SYNC ′(l , r)

At this point, because we removed them from the specification, both of the
resources are not available anymore for other processes.
Now that the consumer is connected to channel-end r , we execute the take action:

r?(x)−→5

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r))
P(l) = new d (l [l(λ).l ↑);P(l)]
Q(r) = r [r〈λ〉.r(x).r ↑ .Q(r)]
SYNC ′(l , r) = r(λ).(l〈λ〉 | r〈d〉);SYNC ′(l , r)

The take action of Q is transformed into a pattern of traditional π-calculus
actions since it is connected to the sink-end of the channel. Just like process P ,
process Q is now also ready to interact with process SYNCHRONOUS .
We use the reaction rule to start the high-level take action:

Reaction:(r〈λ〉,r(λ))−→6

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r))
P(l) = new d (l [l(λ).l) ↑ ;P(l)]
Q(r) = r [r(x).r ↑ .Q(r)]
SYNC ′(l , r) = (l〈λ〉 | r〈d〉);SYNC ′(l , r)

At this point both of the high-level actions, write and take, have started their
low-level interaction with the channel process. The channel is now ready to end
both actions at the same time.
We now perform two obvious steps, we let the remaining π-calculus send and receive
actions to be executed:

Reaction:(l〈λ〉,l(λ)) ; (r〈d〉,r(x))−→7,8

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r))
P(l) = l [l ↑ ;P(l)]
Q(r) = r [r ↑ .Q(r)]
SYNC ′(l , r) = SYNC ′(l , r)

4.5. Examples 57

The value is now finally transmitted from the producer to the consumer process.
We now let the producer and consumer process disconnect from their ends:

l↑;r↑−→9,10

S = new(l , r) (P(l) | Q(r) | SYNC ′(l , r) | Rl | Rr)
P(l) = P(l)
Q(r) = Q(r)
SYNC ′(l , r) = SYNC ′(l , r)

The disconnect actions results in the return of the channel-end resources Rl and
Rr . At this point, we are back at the specification which we started with.

Producer/Producer and Consumer/Consumer

Instead of the typical producer/consumer scenario, We can use two source- and two
sink-end channel types to coordinate two producers or two consumers.

If we use a channel with two source-ends we can compose two producer processes
together. For example, using the synchronous drain channel type we get:

S
def
= new(l , r) (P(l) | P(r) | SYNCDRAIN (l , r))

P(e)
def
= new d (e ↓ .e!〈d〉.e ↑);P(e)

On the other hand, if we use a two sink-end channel type we can compose two
consumer processes together. For example, using the asynchronous spout channel
type we get:

S
def
= new(l , r) (Q(l) | Q(r) | ASYNCSPOUT (l , r))

Q(e)
def
= e ↓ .e?(x).e ↑ .Q(e)

Competing Producers and Consumers

Without having to change the specification of either the producer, the consumer, or
the synchronous channel, we can add more producer and consumer processes to our
initial example. The producers then automatically compete against each other to
obtain the resource of the source channel-end, and the consumers compete for the
resource of the sink-end. An example:

S
def
= new(l , r) (P(l) | P(l) | P(l) | Q(r) | Q(r) | SYNC (l , r))

P(e)
def
= new d (e ↓ .e!〈d〉.e ↑);P(e)

Q(e)
def
= e ↓ .e?(x).e ↑ .Q(e)

We initialize the system and re-write its specification in the same way we have
done previously. This time we concentrate at the producer processes and, therefore,
we omit the body of the consumers and the synchronous channel. We index the
identity of the processes for convenience:

58 Chapter 4. Semantics with Mobility

S = new(l , r) (P1(l) | P2(l) | P3(l) | Q1(r) | Q2(r) |
SYNC ′(l , r) | Rl | Rr)

P1(l) = new d (l ↓ .l !〈d〉.l ↑);P1(l)
P2(l) = new d (l ↓ .l !〈d〉.l ↑);P2(l)
P3(l) = new d (l ↓ .l !〈d〉.l ↑);P3(l)

At this point resourceRl is available and any of the three producers can take it by
performing a connect operation (l ↓). If all three try to execute the connect operation
at the same time they automatically compete among each other and only one non-
nondeterministically succeeds to perform the operation. Suppose that process P3

“wins”:

S = new(l , r) (P1(l) | P2(l) | P3(l) | Q1(r) | Q2(r) | SYNC ′(l , r) | Rr)
P1(l) = new d (l ↓ .l !〈d〉.l ↑);P1(l)
P2(l) = new d (l ↓ .l !〈d〉.l ↑);P2(l)
P3(l) = new d (l [l !〈d〉.l ↑);P3(l)]

Producer P3 succeeds to connect to channel-end l and therefore the resource
Rl is removed from the specification, so that no other producer can connect to the
same channel-end anymore. P3 can now transfer data with a consumer as described
before. After which it disconnects from the source-end:

S = new(l , r) (P1(l) | P2(l) | P3(l) | Q1(r) | Q2(r) |
SYNC ′(l , r) | Rl | Rr)

P1(l) = new d (l ↓ .l !〈d〉.l ↑);P1(l)
P2(l) = new d (l ↓ .l !〈d〉.l ↑);P2(l)
P3(l) = P3(l)

After disconnecting, the resource Rl becomes available so that the producers
can compete among each others again trying to connect and get exclusive access to
channel-end l .

4.5.2 Mobile Phones

The mobile phones example is presented in [Mil99] to show how well the π-calculus
deals with mobility. This is a representative example for the kind of systems that
are easy to implement with the MoCha middleware. Therefore, in this section we
present the same example but now using the MoCha-π calculus.

In this example cars are moving around while their passengers make calls using
on-board mobile phones at arbitrary times. For this purpose each car is connected
to a nearby transmitter. However, if a car gets too far from this transmitter it is
switched to another more nearby transmitter. The coordination of all transmitters
is done by a control unit.

For simplicity, just like in[Mil99], we consider only one car and two transmitters.
In Figure 4.2 we show how the car switches from one transmitter to the other. The
car is linked to the transmitters by two channels, an outgoing channel talk and an
incoming channel listen (from the point of view of the car). In this example, we use
a handy notation where we denote the source-end of a channel as ˙channel and the

4.5. Examples 59

sink-end of the same channel as ¨channel . The car is connected to the source-end
˙talk of channel talk and to the sink-end ¨listen of channel listen. The transmitter is

connected to the other ends ¨talk and ˙listen. The specification of the car is:

Car(˙talk , ¨listen)
def
= new d1 (˙talk ↓ . ˙talk !〈d1〉. ˙talk ↑

+ ¨listen ↓ . ¨listen?(d2). ¨listen ↑);Car(˙talk , ¨listen)

The car can either talk or listen when connected to the appropriate channel-end.
In contrast with the π-calculus example, our car does not (need to) receive any
new channel-ends for communication from the transmitter after a switch. Our car
does not even know that a switch is taking place nor with which transmitter it is
communicating.

So
ur

ce

Si
nk

Si
nk

So
ur

ce

So
ur

ce

Si
nk

So
ur

ce

Si
nk

So
ur

ce

Si
nk

Si
nk

So
ur

ce
Trans1

So
ur

ce

Si
nk

Sink

Source

So
ur

ce

Si
nk

Si
nk

So
ur

ce

So
ur

ce

Si
nk

Source

Sink

(b)

Control

Trans2IdleTrans1

(a)

Control

IdleTrans2

gain2gain1

lose1
lose2

listen talktalk listen

gain2gain1
lose2

lose1

Figure 4.2: Example, Calling Mobile from a Car

The transmitters have two incoming channels gain and lose. They are connected
to their sink channel-ends ¨gain and ¨lose. Initially a transmitter is idle, but it be-
comes active when it receives the ends ¨talk and ˙listen through the channel gain.
After activation the transmitter starts the communication with the car. If an active
transmitter receives the same two channel-ends through the channel lose, it termi-
nates the communication and becomes idle. Observe, that we don’t really need the
two channels gain and lose, only one channel is sufficient. However, we want to stay
close to the original example. Therefore, we model the two channels instead of just

60 Chapter 4. Semantics with Mobility

one. Here is the specification of the transmitter, where i = 1, 2:

IdleTransi(¨gaini , ¨losei)
def
= ¨gaini ↓ . ¨losei ↓ . ¨gaini?(¨talk)

. ¨gaini?(˙listen). ¨talk ↓ . ˙listen ↓

.Transi(¨gaini , ¨losei , ¨talk , ˙listen)

Transi(¨gaini , ¨losei , ¨talk , ˙listen)
def
=

new d2 (¨talk?(d1) + ˙listen!〈d2〉)
;Transi(¨gaini , ¨losei , ¨talk , ˙listen)
+ ¨losei?(¨talk). ¨losei?(˙listen). ¨talk ↑ . ˙listen ↑
.IdleTransi(¨gaini , ¨losei)

The control unit receives at its initialization the source-ends of each gain and lose
channel. The control process then connects to these channel-ends. Besides these
ends, control also receives as parameters the channel-ends ¨talk and ˙listen. It first
writes these ends to the ˙gain1 channel-end, so that transmitter 1 can start interacting
with the car. This is the situation in figure 4.2(a). At some point in time, it writes
the ends to ˙lose1, making transmitter 1 idle again. Fortunately, afterward, it writes
the ends to the ˙gain2 channel-end. Now transmitter 2 becomes active and takes
over the interaction with the car. This is the situation in Figure 4.2(b). After
completing the switch, the control unit disconnects from all connected channel-ends
and terminates. We give the specification:

Control(˙gaini , ˙losei , ¨talk , ˙listen)
def
= ˙gaini ↓ . ˙losei ↓

. ˙gain1!〈 ¨talk〉. ˙gain1!〈 ˙listen〉

. ˙lose1!〈 ¨talk〉. ˙lose1!〈 ˙listen〉. ˙gain2!〈 ¨talk〉

. ˙gain2!〈 ˙listen〉. ˙gaini ↑ . ˙losei ↑ (where i = 1, 2)

Finally, we now must set up the system. The system process creates all others includ-
ing the channel processes. It is this process that initially distributes all channel-ends.

Sys
def
= new(˙talk , ¨talk , ˙listen, ¨listen, ˙losei , ¨losei , ˙gaini , ¨gaini)

(SYNCHRONOUS (˙gaini , ¨gaini) |
SYNCHRONOUS (˙losei , ¨losei) | FIFO(˙talk , ¨talk) |
SYNCHRONOUS (˙listen, ¨listen) |
Control(˙gaini , ˙losei , ¨talk , ˙listen) |
IdleTrans1(¨gain1, ¨lose1) | IdleTrans2(¨gain2, ¨lose2) |
Car(˙talk , ¨listen)) (where i = 1, 2)

Observe that, in contrast with the π-calculus example, we can change the behavior
of the system by simply choosing other types of channels between the processes.
To make the example more realistic we could introduce more cars than just one.
In the original π-calculus example this leads to changing the specification of all
processes and introducing new links. In MoCha-π adding more cars is very easy.
We just add more Car processes with parameters ˙talk and ¨listen. These processes
then automatically compete among themselves to gain access to the channel-end
pair. No other changes are required.

4.5. Examples 61

4.5.3 Mobile Agent

In Section 2.3, we illustrated the usage and benefits of mobile channels by giving an
example that involves mobile Internet components. We discussed a scenario where
a mobile agent queries several XML information sources in search for MoCha-bean
prices, and sends these results to an interested component U. In particular, we
discussed the movement of the agent from the location of XML component A to the
one of component B.

request_B

Source

Information
Source

U

Process Process

A
Process

XML
Information

Source

B

fromU

toU

info

Process

request_A

Sink

SourceSink

So
ur

ce

Si
nk

Si
nk

So
ur

ce

Source Sink

Agent

XML

Figure 4.3: Mobile Agent Example with MoCha-π

We now give a possible implementation using our MoCha-π calculus. Figure
4.3 shows our particular implementation approach of the mobile agent example (the
original example is given in Figures 2.4 and 2.5). All the components (XML infor-
mation sources, U, and the mobile agent) are now MoCha-π processes. We took the
locations from the original figures away, since in MoCha-π the locations of processes
are implicitly determined by the channel connections that they have with other pro-
cesses. Furthermore, we gave names to the channels that we use (which we will
gradually introduce).

We start by giving the MoCha-π specification of the XML processes. Just like
in the mobile phones example, we use a convenient notation where we denote the
source-end of a channel as ˙channel and the sink-end of the same channel as ¨channel .

XML A(¨request A)
def
= new data A (¨request A ↓

. ¨request A?(source).source ↓ .source!〈data A〉.source ↑

. ¨request A ↑);XML A(¨request A)

The XML process A has an incoming channel request A. The sink-end of this
channel is given to it as a process parameter. Our process A connects to this channel-
end and waits for a request to arrive (by taking a value from the sink-end). A
request comes together with a source-end where to write the requested information
to. Process A connects to this source-end, writes the requested information to it,
and then disconnects from it. Then, it finishes its execution by disconnecting from
the ¨request A sink-end. Afterward, it invokes itself and the cycle is repeated. The

62 Chapter 4. Semantics with Mobility

specification of XML information source B is equal to process XML A, except that
we replace all “ A” by “ B”.

The process U has an incoming channel toU and a outgoing channel fromU. In this
particular implementation, process U knows the source channel-ends of the request
channels (which are given as parameters). It sends these channel-end references to
the agent each time it wants to acquire MoCha-beans price information from these
particular information sources. We give its specification:

U (˙fromU , ¨toU , ˙request A, ˙request B)
def
= ˙fromU ↓ . ¨toU ↓

. ˙fromU !〈 ˙request A〉. ¨toU ?(data)

. ˙fromU !〈 ˙request B〉. ¨toU ?(data)

. ˙fromU ↑ . ¨toU ↑
Initially, process U connects to the given channel-ends. After which, it starts

a request for information by writing the ˙fromU channel-end to the source-end of
the request A channel. It then waits for the result by trying to take from the ¨toU
sink channel-end. Afterward, it repeats this scheme for getting information from
XML information source B. Finally, process U terminates by disconnecting from the

˙fromU and the ¨toU channel-ends.
The agent is linked with process U by two channels (toU and fromU). It receives

the source-end of the first (˙toU) and the sink-end of the second (¨fromU) as process
parameters. We give its specification:

Agent(˙toU , ¨fromU)
def
= new(˙info, ¨info)(˙toU ↓ . ¨fromU ↓

. ¨fromU ?(source).source ↓ .source!〈 ˙info〉.source ↑

. ¨info ↓ . ¨info?(data). ˙toU !〈data〉. ¨info ↑

. ˙toU ↑ . ¨fromU ↑ | FIFO(˙info, ¨info));Agent(˙toU , ¨fromU)

At initialization, the agent connects to the given channel-ends. It then acquires
a source channel-end by taking it from the ¨fromU sink channel-end. This source is
either the ˙request A or ˙request B channel-end send by process U. The agent connects
to this source and writes the source-end of a FIFO channel that the agent created
itself. After disconnecting from this source-end, it connects to the sink-end of the
FIFO channel to await the requested data. After receiving the data via channel-end
¨info, it writes it to channel-end ˙toU . The agent terminates by disconnecting from

all connected channel-ends. Afterward, it invokes itself and the cycle is repeated.
Finally, we set up the system. The system process creates all other processes

including the channels (with exception of the channel created by the agent process).
We give its specification:

Sys
def
= new(˙request A, ¨request A, ˙request B , ¨request B ,
˙toU , ¨toU , ˙fromU , ¨fromU)

(FIFO(˙request A, ¨request A) | FIFO(˙request B , ¨request B) |
FIFO(˙toU , ¨toU) | FIFO(˙fromU , ¨fromU |
XML A(¨request A) | XML B(¨request B) |
U (˙fromU , ¨toU , ˙request A, ˙request B) | Agent(˙toU , ¨fromU))

4.6. Conclusions and Related Work 63

Observe that, just like in the previous examples, we can change the behavior of
the system by simply choosing other types of channels between the processes.

4.6 Conclusions and Related Work

In this chapter we presented MoCha-π, an exogenous coordination calculus based
on mobile channels. A novelty of our calculus is in the fact that channels are not
just links but special kinds of processes. This allows us to have user defined channel
types without having to change the rules of the calculus itself. Our calculus pro-
vides anonymous communication; the communicating processes do not know each
other. This combined with the fact that we can specify our own channel types, gives
MoCha-π the property of placing any type of channel between processes without
them knowing how different channel types affect their behavior; yielding exoge-
nous coordination. Another novelty is the fact that our calculus treats channels
as resources. Processes must compete with each other in order to gain access to a
particular channel. This makes MoCha-π a more realistic model of existing systems.

The channels of MoCha-π are very general in the sense that we can specify
channels with a user defined number of ends and corresponding user defined number
of resources. Furthermore, the ends of a channel can be input, output, or both. All
of this is specified in the definition of a particular channel type. For the MoCha
framework, however, the channels are too general. That is why, in Section 4.4, we
introduced a design pattern for specifying channels that are compatible with those
of the framework. These are channels as specified in Chapter 2. They have exactly
two ends, exactly two resources, and an end is either input or output to the channel
but not both.

Besides MoCha-π there are other calculi that model distributed systems; see
[FPT00] for an overview. Two well-known calculi are the Distributed π-calculus
[HR98] and the Ambient [CG00] calculus. The Distributed π-calculus is an extension
of the π-calculus with an explicit notion of location. Channel communication is
synchronous and local; the processes involved in the communication must reside at
the same location. In the Ambient calculus there is a message-driven communication
that always takes place locally within a single ambient. An ambient is a bounded
environment where processes cooperate. Both these calculi are good candidates to
follow for extending the MoCha-π calculus if an explicit notion of location is desired.

MoCha-π is based on the mobile channel coordination primitive. The KLAIM
kernel [NFP98] calculus is an asynchronous high-order process calculus that is based
on the Linda [CG90] coordination paradigm. In KLAIM processes anonymously
communicate via a shared multi-set of tuples. It is certainly possible to model all
different MoCha channel types with this calculus. However, this cannot be done in
an exogenous way; meaning that, the communicating processes of KLAIM do not
have the option of leaving the desired coordination behavior up to the internals of
a user-defined channel. Instead, they must implement such behavior themselves.
Another modeling language for distributed systems based on channels is presented
in [WS99].

In MoCha-π we don’t explicitly model process mobility. Since we focus on coor-
dination, we model only channel-end mobility. However, it would be nice to extend
the calculus with the possibility of sending processes though channels, and therefore

64 Chapter 4. Semantics with Mobility

explicitly model process mobility. One interesting approach that we can use is given
in the work of Barnes and Welch about a model for mobile processes in OCCAM-
π [BW04]. OCCAM-π is a small language that models processes that communicate
through channels. It has many features of CSP [Hoa85] and the π-calculus, however,
it is not really a calculus but more a programming language. It even has its own
compiler, see [WMBW00]. In [BW04] the semantics for process mobility is:

• c?x , mobile process x arrives

• x (...), process x (...) runs from somewhere to somewhere

• d !x , mobile process x departs

where somewhere is either a process start, a suspension-point, or termination. We
are interested in extending MoCha-π with these semantics. We are also interested
whether it is possible to implement our calculus in the OCCAM-π language.

Chapter 5

Channel-based Semantics for
Component Based Software

In the two previous chapters we defined semantics from the point of view of mobile
channels. In this chapter, we give a semantics from the point of view of the compo-
nents that use them. We do this by presenting a coordination model for component-
based software systems based on the notion of mobile channels and define it in terms
of a compositional trace-based semantics. This model supports dynamic distributed
systems where components can be mobile. It provides an efficient way of interaction
among components. Furthermore, our model provides a clear separation between
the computational part and the coordination part of a system, allowing the devel-
opment and description of the coordination structure of a system to be done in a
transparent, independent and exogenous manner.

5.1 Introduction

In the last decades, structured software development has emerged as the means to
control the complexity of systems. However, concepts like modularity and encap-
sulation alone have shown to be insufficient to support easy development of large
software systems. Ideally, large software systems should be built through a planned
integration of perhaps pre-existing components. This means not only that com-
ponents must be pluggable, but also that there must be a suitable composition
mechanism enabling their integration.

Component-based software describes a system in terms of components and their
connections. Components are black boxes, whose internal implementation is hid-
den from the outside world. Instead, the composition of components is defined in
terms of their (logical) interfaces which describe their externally observable behav-
ior. By hiding all of its computation in components, a system can be described in
terms of the observable behavior of its components and their interactions. As such,
component-based software provides a high-level abstract description of a system that
allows a clear separation of concerns for its coordination and its computational as-
pects. The importance of such high level logical descriptions of systems is growing

65

66 Chapter 5. Channel-based Semantics for Component Based Software

in the Software Engineering community. For example, in the standard OO modeling
language UML [BRJ99] extensions are now emerging to support logical entities as
components, their interfaces, and connectors, which allow a logical decomposition
and description of a system. An example of such an extension is UML-RT[RSRS99],
which is an integration of the architectural description language ROOM[SGW94]
into UML.

In this chapter we present and advocate a coordination model for component-
based software that is based on mobile channels and describe it in terms of a transi-
tion system. From a software development point of view, mobile channels provide a
highly expressive data-flow architecture for the construction of complex coordination
schemes, independent of the computation parts of components. This enhances the
re-usability of systems: components developed for one system can easily be reused
in other systems with different (or the same) coordination schemes. Also, a system
becomes easier to update: we can replace a component with another version without
having to change any other component or the coordination scheme in the system.
Moreover, a coordination scheme that is independent of the computation parts of
components can also be updated without the necessity to change the components in
the system.

This chapter is organized as follows. In Section 5.2 we discuss components, their
interface, several coordination mechanisms for their composition, and present our
rationale for a model based on channels. In Section 5.3, we give a compositional
trace-based semantics for our model. Finally, in Section 5.4, we end with a discus-
sion. We leave the conclusions and related work for after the introduction of the
Java implementation in Chapter 8 (see Section 8.3).

5.2 Components and their Composition

In this section we briefly discuss the general notion of a component and the coordi-
nation mechanisms for composing them.

5.2.1 Component-Based Software

In Component-Based Software systems are built out of components and connec-
tions among them. In Figure 5.1 an example of such a system is given. It consists of
four components and six (one-way) connections among them (arrows). This simple
system allows users to obtain data from a database. Component A collects user-
requests, and sent them to the control-component, which, in turn, checks whether
the user can have access to it. If access is denied, the component sends an error
message to the user interface-component, otherwise it sends the request to the
database-component. This last component sends its data to the user interface-
component. If necessary, the data is sent first through the translation-component.
Component D must then somehow know which connection to use. A nice solution
here is to use a mobile channel. Another solution is letting component C tell the
database-component which connection to use.

Why use component-based software? There are several advantages, all due to
the fact that the implementation of a component is not relevant for the functionality
of the system; only its interface is. The most important advantages are:

5.2. Components and their Composition 67

• Easy building. To build a system, it is enough to specify the interfaces of the
components and the connections among them. Then, the components can be
implemented, and/or reused from other systems, and/or bought from vendors.

– Reuse. Components created for other systems can be reused, without
trouble, for a new system when they have the same required interface.
There is no need to implement them again.

– Buying components. Components can be bought from vendors to save
time. Many standard components can be bought these days. Also buying
tailor made components can be a good idea when creating them is more
costly.

• Adaptability. Components with new features can easily replace existing ones,
making the system easy to adapt. For example, in the system of Figure 5.1,
component A could be replaced by a new component E that provides a better
user interface with new features, without having to change major parts of the
system.

• Fast time-to-market. Because of the advantages above, systems (and im-
proved versions of the system) can be developed more rapidly. This is perhaps,
the most important reason for companies to use components.

5.2.2 Components and their Interfaces

We define a component as a black-box entity that can be used (composed) by means
of its interface only. Such an interface describes the input, output, and the observable
behavior of the component. For example, the interface of a component may tell us
that, given a specific input, a window with a message will appear on the screen.

Interface

Component

Control Database

TranslationUser

Component Component

Component

DC

A B

Figure 5.1: A Component-Based System.

68 Chapter 5. Channel-based Semantics for Component Based Software

However, how this is implemented in the component is hidden from the outside
world, i.e., a component is viewed as a black box. An interface of a component,
therefore, provides an abstraction of the component which encapsulates its internal
implementation details that are not relevant for its use.

In our channel-based coordination model a component interface consists of a
set of mobile channel-ends through which a component sends and receives values.
This set can be static or dynamic. The observable behavior can be expressed by
using, for example, predicates, comments, or some graphical notation, e.g., protocol
state machines as defined in UML. In Section 5.3 we express the external observable
behavior of a component in terms of a compositional trace-based semantics.

5.2.3 Coordination Among Components

Besides components, a system also needs connections among them. There are several
coordination mechanisms for composing components. Because components must be
pluggable, it is important that these mechanisms do not require a component to
know anything about the structure of the system they are plugged into. We discuss
four important types of coordination mechanisms: messaging, events, shared data
spaces, and channels [And91].

Messaging. With this type of connection, components send messages to each
other. These messages need not be explicitly targeted; a component can send a mes-
sage meant for any component having some kind of specific service (publish-and-
subscribe model), instead of sending it to a particular component (point-to-point
model). However, messaging is not really suitable for component-based software
because it requires the components to know something about the structure of the
system: even if they do not directly know their service providers, they must know
the services provided in the system. An implementation example of this type of
connection is the Java Message Queue (JMQ) [JMQ], a package based on the Java
Message Service (JMS) [JMS] open standard. The Microsoft Message Queuing Ser-
vices [Hay99] for COM+ [COM+], is another example.

Events. With the event mechanism a component, called the producer or event
source, can create and fire events, the events are then received by other components,
called consumers or event listeners, that listen to this particular kind of events.
JavaBeans [JB], which are seen as the components in Java, use the event mechanism.

Shared data spaces. In a shared data space, all components read and write values,
usually tuples like in Linda [CG90], from and to a shared space. The tuples contain
data, together with some conditions. Any component satisfying these conditions can
read a tuple; tuples are not explicitly targeted. The JavaSpaces technology [FHA99],
a powerful Jini service from Sun, is an example of a shared data space that is being
used for components. Lime [MPR03] (Linda in a Mobile Environment), is a Linda
middleware that can also be used for components, especially if these are mobile.

Channels. A channel, see Figure 2.1, is a one-to-one connection that offers exactly
two ends to components: usually 〈source, sink〉 for most common channel-types, but
also 〈source, source〉 and 〈sink, sink〉 for special types (see Section 2.4). A component
can write by inserting values to the source-end, and take by removing values from
the sink-end of a channel; the data-flow is locally one way: from a component into
a channel or from a channel into a component. The communication is anonymous:

5.2. Components and their Composition 69

the components do not know each other, only the channel-ends they have access
to. Channels can be synchronous or asynchronous, mobile, with conditions, etc.
Examples of systems based on channels include: Communicating Threads for Java
[HBB00], CSP for Java [Wel01], both based on the CSP model [Hoa85], and Pict
[PT97], a concurrent programming language based on the π-calculus. However,
these systems either do not support distributed environments, or their channels
are not mobile. MoCha [ABBG02] (see Chapter 6), JCSP.net [VW02, AFW02] (see
Section 6.5.1) and Nomadic Pict [WS99], a distributed version of Pict, do implement
distributed mobile channels. However, the channels of Nomadic Pict do not have
two distinct ends as defined above and are only synchronous.

We base our coordination model on (mobile) channels. The last three coordina-
tion mechanisms support true separation of coordination and computation concerns
in a system. However, channels share many of the architectural strengths of events
and shared data spaces while offering some additional benefits. Four of these bene-
fits are: efficiency, security, architectural expressiveness, and transparent exogenous
coordination.

First, although shared data spaces are useful in network architectures like black-
board systems, for most networks, like messaging, point-to-point channels can be
implemented more efficiently in distributed systems. In shared data space models,
the coordination middleware itself cannot generally know the potential receiver(s) of
a message at the time that it is produced; any present or future entity with access to
the shared data space can be the consumer of this message. In contrast, a channel-
based coordination middleware always knows the connection at the opposite end
of a channel, even if it changes dynamically. This additional piece of information
allows the middleware to more efficiently implement the appropriate data transfer
protocols.

Second, like messaging and events, point-to-point channels support a more pri-
vate means of communication that prevents third parties from accidentally or in-
tentionally interfering with the private communication between two components. In
contrast, shared data spaces are in principle “public forums” that allow any compo-
nent to read any data they contain. Accommodating private communications within
the public forum of a shared data space places an extra burden on many applications
that require it.

Third is architectural expressiveness. Like messaging, using channels to express
the communication carried out within a system is architecturally much more expres-
sive than using shared data spaces. With a shared data space, it is more difficult
to see which components exchange data with each other, and thus depend on or are
related to each other, because in principle, any component connected to the data
space can exchange data with any or all other components in the system. Using
channels, it is easy to see which components exchange data with each other, making
it easier to apply tools for analysis of the dependencies and data-flow.

Finally, in contrast to events, channels allow several different types of connections
among components, e.g., synchronous, FIFO, etc., without the components knowing
which channel types they are dealing with. This makes it possible to coordinate
components from ’outside’ (exogenous).

70 Chapter 5. Channel-based Semantics for Component Based Software

5.3 A Semantic Approach

In this section, we give a more precise and formal description of our coordination
model, by presenting a compositional trace-based semantics of component-based
systems. The semantics forms the formal basis of the notion of ‘contracts’ and
provides a formal basis of the Java implementation in Chapter 8.

We summarize the following from the previous sections. A component is a black-
box entity that communicates through mobile channels. A channel has two ends
each of which can either be a source or a sink end; a component writes values to the
source and reads/takes values from the sink. The identity of channel-ends can also be
communicated through channels, allowing dynamic reconfiguration of channel-end
connections in a system. The data-flow is locally one way. Channels can be syn-
chronous or asynchronous. Because in a distributed system a channel is a resource
which must be shared among several component instances, a component instance
must successfully connect to a channel-end before being able to use it; therefore, it
must also disconnect from it when the channel-end is not needed anymore. In our
model, at most one component instance can be connected to a particular channel-
end at any given time, making the communication one-to-one. This ensures the
soundness and completeness properties that are the prerequisites for composition-
ality [ABB00a]. Our one-to-one channels can still be composed into many-to-many
connectors, while preserving these prerequisites for compositionality [Arb04, Arb02].

Physical movement of channel-ends, see Section 2.2.2, is present in our model for
reasons of efficiency; to minimize the amount of non-local transfers in distributed
systems. Therefore, both in the semantics and in the implementation given in Section
8.2 components do not directly perform any kind of move operation on channel-ends.
A physical channel-end move is indirectly performed when a component instance
either successfully connects to the specific channel-end or moves itself to a new
(physical) location, where all of its connected channel-ends move with it. This
means that the physical layout of the system, whether it is distributed or not, is of
no concern for the semantics that rightfully abstract from it.

Below, we first describe the observable behavior of the interface of a compo-
nent, that is, its external observable behavior, in terms of a transition system that
abstracts away its internal behavior. Next, we introduce a global transition sys-
tem which describes the behavior of a component-based system in terms of the
interactions of its components and show how this behavior can be obtained in a
compositional manner.

5.3.1 Component Transition System

Definition 5.3.1 Given a set Astate of abstract states ranged over by a and (mu-
tually disjoint) sets Source and Sink of all source and sink channel-ends, we spec-
ify a component by a transition system Comp = 〈Conf ,−→, co〉, where Conf =
AState × P(Source ∪ Sink) is the set of configurations with its typical element c.
The configuration of a component instance thus consists of a pair 〈a,K 〉, where K
is the set of channel-ends known in this particular configuration. The initial config-
uration c0 is defined as 〈a0, ∅〉, where a0 denotes the initial abstract state. We define
the transition relation as −→⊆ Conf × Act × Conf ; as usual, we use c act−→ c′ to

5.3. A Semantic Approach 71

indicate that (c, act , c′) ∈−→.
The set of actions Act consists of the following operations:

- e ↓ connect the executing component instance to the channel-end e.

- e ↑ disconnect the executing component instance from the channel-end e.

- s!v write the value v to the source channel-end s.

- t?v take the value v from the sink channel-end t.

- t¿v read the value v from the sink channel-end t (read is the non-destructive
version of take).

- ν〈s, t〉 create a new channel with source- and sink-ends s and t.

- ν〈Comp,K 〉 create a new component instance with the initial set of known
channel-ends K .

- τ is the invisible operation we use to denote all other component operations
that are not related to channels.

Here v ranges over the set of values which includes Source ∪ Sink. Furthermore, we
have s ∈ Source, t ∈ Sink, and e ∈ Source ∪ Sink.

5.3.2 Local Conditions

We assume that the transition relation of component satisfies the following condi-
tions:

1. If 〈a,K 〉 e↓−→ 〈a ′,K ′〉 then e ∈ K and K ′ = K .
A component instance can connect only to a channel-end it knows, and this
operation does not affect its set of known channel-ends.

2. If 〈a,K 〉 e↑−→ 〈a ′,K ′〉 then e ∈ K and K ′ = K .
The same is true for disconnect.

3. If 〈a,K 〉 s!v−→ 〈a ′,K ′〉 then s ∈ K and K ′ = K .
A component instance can write only to a channel-end it knows, and its set of
known channel-ends is not affected.

4. If 〈a,K 〉 t?v−→ 〈a ′,K ′〉 and v ∈ Source ∪ Sink then t ∈ K and K ′ = K ∪ {v}.
A component instance can take only from a channel-end it knows. If the value
obtained is a channel-end, it becomes known to the component instance.

5. If 〈a,K 〉 t?v−→ 〈a ′,K ′〉 and v 6∈ Source ∪ Sink then t ∈ K and K ′ = K .
A component instance can take only from a channel-end it knows. If the value
obtained is not a channel-end, its set of known channel-ends is not affected.

6. All conditions for take also apply to the operation read.

7. If 〈a,K 〉 ν〈s,t〉−→ 〈a ′,K ′〉 then s 6∈ K and t 6∈ K and K ′ = K ∪ {s, t}.
When a new channel is created, the two new channel-ends must be added to
the set of known channel-ends of the component instance.

72 Chapter 5. Channel-based Semantics for Component Based Software

5.3.3 Global Transition System

We consider a component based system π = {Comp1, ...,Compn}, where Compi =
〈Confi ,−→i , ci

0〉, for i = 1, . . . ,n. To identify component instances we use the infi-
nite set CId of component id’s, with its typical element id . A system configuration
is a tuple 〈σ, γ,Chan〉, where σ and γ are two partial functions defined as:

σ: CId ⇀ ∪iConfi and γ: (Source ∪ Sink) ⇀ CId ,

and
Chan ⊆ Source × Sink .

A function σ maps every existing (i.e., element of its domain) component instance
of Compi to its current configuration c ∈ Confi . On the other hand, a function
γ: Source∪Sink ⇀ CId maps every channel-end to the id of the component instance
it is connected to. A channel-end e is disconnected if γ(e) is undefined. The set
Chan ⊆ Source × Sink indicates which channel-end pairs constitute a channel.

We now proceed by presenting a labelled transition system which describes the
observable interaction of components and channels at the system level. We have the
following global actions: e ↓ id , which indicates that the component id connects
to e; e ↑ id , which indicates that the component id disconnects from e; 〈s, t , v , ?〉,
which indicates that the value v has been taken from the sink t via a synchronous
communication along channel 〈s, t〉; similarly, 〈s, t , v , ¿〉 indicates that the value v
has been read from the sink t via a synchronous communication along channel 〈s, t〉;
〈id , s, t〉, which indicates that the component instance id has created the channel
〈s, t〉; finally, 〈id , id ′,K 〉, which indicates the creation by id of a new component
instance id ′ with the initial set of channel-ends K .

The channels in our transition system are all synchronous, since this is the most
basic type of channel. Other channels can be viewed as special types of compo-
nents whose communication with the rest of the system can be described using the
synchronous channels only. Therefore, our transition system generalizes to systems
with any type of mobile channels.

connect
σ(id)

e↓−→ c and γ(e) =⊥ id

〈σ, γ,Chan〉 e↓id−→−→ 〈σ′, γ′,Chan〉
where γ(e) =⊥ id holds if γ(e) is either undefined or is equal to id , σ′ = σ[c/id],

and γ′ = γ[id/e].
A component instance can connect to a channel-end if either the channel-end is

disconnected or it is already connected to the same component instance.

disconnect
σ(id)

e↑−→ c

〈σ, γ,Chan〉 e↑id−→−→ 〈σ′, γ′,Chan〉
where σ′ = σ[c/id] and

γ′ =
{

γ[⊥/e] if γ(e) = id (i.e., γ′(e) = ⊥ indicates that γ′(e) is undefined).
γ′ = γ if γ(e) 6= id .

A component instance can disconnect from a channel-end if it is currently con-
nected to it.

5.3. A Semantic Approach 73

The disconnect operation also succeeds if the component instance was not connected
to the channel-end in the first place.

take and write
σ(γ(s)) s!v−→ c and σ(γ(t)) t?v−→ c′ and 〈s, t〉 ∈ Chan and γ(s) 6= γ(t)

〈σ, γ,Chan〉 〈s,t,v ,?〉−→−→ 〈σ′, γ,Chan〉
where σ′ = σ[c/γ(s)][c′/γ(t)]. The operations take and write must be performed

at the same time on the ends of the same channel. The channel-ends must be con-
nected to the component instances, however, we do not have to check this since the
function γ returns only a connected component instance. Since self-communication
is a non-global internal issue of the component we must insist that γ(s) 6= γ(t).

read and write
σ(γ(s)) s!v−→ c and σ(γ(t))

t¿v−→ c′ and 〈s, t〉 ∈ Chan and γ(s) 6= γ(t)

〈σ, γ,Chan〉 〈s,t,v ,¿〉−→−→ 〈σ′, γ,Chan〉
where σ′ = σ[c′/γ(t)]. The case of the operations read and write is analogous

to the case of take and write, with the exception that the operation write does not
succeed yet. Only in combination with a take operation can a write operation suc-
ceed, and before then many reads can happen on the same channel. The component
instance performing the write operation can be seen as an unbounded source of the
same value v , until a take operation is performed.

new channel

σ(id)
ν〈s,t〉−→ c

〈σ, γ,Chan〉 〈id,s,t〉−→−→ 〈σ′, γ′,Chan ′〉
where σ′ = σ[c/id], γ′ = γ[⊥/s][⊥/t] and 〈s, t〉 6∈ Chan and Chan ′ = Chan ∪

{〈s, t〉}. Upon creation of a new channel, the channel-ends pair must not already
exist. The new pair is added to Chan. They are initially disconnected in γ.
new Component instance

σ(id)
ν〈Compi ,K 〉−→ c

〈σ, γ,Chan〉 〈id,id′,K 〉−→−→ 〈σ′, γ,Chan〉
where id ′ does not occur in the domain of σ, σ′ = σ[c/id][c′/id ′], and c′ =

〈c0,K 〉, with c0 the initial configuration of Compi .
The creation of a new component instance consists of the selection of a new

component identifier and initializing its configuration.

5.3.4 Trace Semantics

Given an initial set K of channel-ends, we define formally the interface Int(Comp,K)
of a component Comp as the set of component traces

{θ | 〈a0,K 〉 θ−→−→},

where a0 denotes the initial (abstract) state of Comp and θ−→−→ is the transitive closure
of the transitive relation −→ of Comp collecting additionally the action-labels into
the sequence θ.

74 Chapter 5. Channel-based Semantics for Component Based Software

In order to obtain the global traces generated by the global transition system
in a compositional manner from the interfaces of its components, we introduce a
projection operator P(θ, id ,K) that extracts from the global trace θ the local trace
of component id assuming that it is (initially) connected to the channel-ends in K .

- connect :

P(e ↓ id .θ, id ,K) = e ↓ .P(θ, id ,K ∪ {e})
P(e ↓ id ′.θ, id ,K) = P(θ, id ,K) id 6= id ′

- disconnect :

P(e ↑ id .θ, id ,K) = e ↑ .P(θ, id ,K \ {e})
P(e ↑ id ′.θ, id ,K) = P(θ, id ,K) id 6= id ′

- take and write :

P(〈s, t , v , ?〉.θ, id ,K) =





s!v .P(θ, id ,K) s ∈ K
t?v .P(θ, id ,K) t ∈ K
P(θ, id ,K) s, t 6∈ K

- read and write :

P(〈s, t , v , ¿〉.θ, id ,K) =





s!v .P(θ, id ,K) s ∈ K
t¿v .P(θ, id ,K) t ∈ K
P(θ, id ,K) s, t 6∈ K

- new channel :

P(〈id ′, s, t〉.θ, id ,K) =
{ 〈s, t〉.P(θ, id ,K) id = id ′

P(θ, id ,K) id 6= id ′

- new component :

P(〈id ′, id ′′,K ′〉.θ, id ,K) =
{ 〈id ′′,K ′〉.P(θ, id ,K) id = id ′

P(θ, id ,K) id 6= id ′

We define P(θ, id) as P(θ, id , ∅).
We have the following compositionality result.

Theorem 5.3.1 The set of global traces of a system of components
{Comp1, ...,Compn} generated by the global transition system equals the set

{θ | Ok(θ) and ∀id ∈ comp(θ). P(θ, id) ∈ Int(Comp,K)},
where comp(θ) denotes the set of component instances occurring in θ. The predicate
Ok(θ) rules out occurrences in θ of communications involving channel-ends that are
disconnected.

The proof of this theorem proceeds by a straightforward induction on the length
of the computation.

It would be interesting to investigate if the above trace semantics is fully abstract
with respect to an appropriate testing equivalence [Hen88].

5.4. Discussion 75

5.4 Discussion

In this chapter we used a simple labelled transition system to model the observable
interaction between the components and the channels of a system. The difference
with the MoCha-π calculus of Chapter 4 is that we take a higher level of abstrac-
tion concerning the mobile channels. In MoCha-π we focus on mobile channels
by explicitly describing their internal behavior as π-calculus processes. In the se-
mantics presented in this chapter we abstract away from this internal behavior and
focus more on components and the actions they perform on channel-ends. From the
point of view of a component any interaction with a channel is always synchronous,
therefore, it was sufficient for us to introduce only the synchronous channel type in
our semantics. Other types can be constructed by using the synchronous type in
combination with components that implement certain desired channel behavior. In
MoCha-π, we also use the synchronous (π-calculus) channel type to construct other
types. The difference is that instead of hiding the extra behavior in a component,
MoCha-π explicitly describes this behavior as a process.

Our component based software model provides a clear separation of concerns
between the coordination and the computational aspects of a system. We force a
component to have an interface for its interaction with the outside world, but we do
not make any assumptions about its internal implementation. We define the interface
of a component as a dynamic set of channel-ends. Channels provide an anonymous
means of communication, where the communicating components need not know each
other, or the structure of the system. The architectural expressiveness of channels
allows our model to easily describe a system in terms of the interfaces of its com-
ponents and its channel connections, abstracting away their computational aspects.
Coordination is expressed merely as operations performed on such channels. The
mobility of channels allows dynamic reconfiguration of channel connections within
a system.

In Chapter 8, we continue with our component coordination model by discussing
its implementation in the Java language. At the end of that chapter we also discuss
other work related to our approach.

76 Chapter 5. Channel-based Semantics for Component Based Software

Part III

Implementation

77

Chapter 6

The MoCha Middleware:
API and Applications

In this chapter we present the MoCha middleware: a middleware for distributed
communication and coordination of components. With this middleware we imple-
ment the mobile channels of the MoCha framework and their MoCha-π semantics.
We have divided the explanation of the middleware in two chapters. In this first
chapter, we take the point of view of a distributed system developer who wants to
use the middleware but does not want to know anything about its internal imple-
mentation details. We leave these technical details for Chapter 7. Therefore, in this
chapter, we discuss the main features of the Application Programming Interface of
the MoCha middleware. We provide examples of how to use the middleware by
giving simple producer/consumer components that are coordinated in various ways.
We discuss several applications of the middleware: Component Based Software (like
In-Home networks), Web Services, and Peer-to-Peer networks (like P2P file-transfer
applications). Finally, we conclude with a survey on middleware software related to
MoCha.

6.1 Introduction

A distributed system is a collection of autonomous computers linked by a network
and equipped with distributed system software [CDK94]. The distributed system
software enables the comprising computers to coordinate their activities and to share
system resources. A well-developed distributed system software provides the illu-
sion of a single and integrated environment although it is actually implemented by
multiple computers at different locations [TB00].

Middleware is a class of software technologies designed to help manage the com-
plexity and heterogeneity inherent in distributed systems. It is defined as a layer of
software above the operating system but below the application program that pro-
vides a common programming abstraction across a distributed system. In doing so,
it provides a higher-level building block for programmers than, for example, low-level
sockets that are provided by the operating system [Bak05].

79

80 Chapter 6. The MoCha Middleware: API and Applications

We implemented the mobile channels of the MoCha framework by developing
such a middleware. We call this distributed software package MoCha: a middle-
ware for distributed communication and coordination of components. The MoCha
middleware comes in three different flavors: MoCha, easyMoCha, and chocoMoCha.
Distributed applications can use any of the three MoCha middleware versions. We
can see in Figure 6.1 that these three versions are build on top of a MoCha core
layer. This core layer itself is build on top of Java RMI [RMI]. We leave the details
of the two lower layers for our implementation topic in Chapter 7.

Distributed Application

MoCha easyMoCha chocoMoCha

Java Remote Method Invocation

MoCha Core

Figure 6.1: MoCha and its Three Different Flavors

The “plain” MoCha version is the most basic one of all three. Except for the
connect and disconnect operations (see Section 2.2.1) it provides all the features
needed to properly work with mobile channels. The MoCha user interface is small
but powerful. However, it is meant for expert programmers since it is so compact
and, one could say, low-level for object-oriented standards. In this version there
is no automatic internal update of channel-end references. This means that, when
a component physically moves a channel-end from one location to another in the
network, it gets a new reference that points to the moved channel-end. However, all
“old” references that other components may posses become invalid, or dangling. We
don’t update the “old” references for two reasons. The first reason is security, we
can assume that the component moving the channel-end may want to have exclusive
knowledge of it. Otherwise, it can spread the new reference around to the other com-
ponents. The second reason is that, updating the references that components may
have is a costly operation. Furthermore, MoCha does not know anything about the
components that uses a particular reference. Therefore, the components themselves
are responsible for implementing an efficient protocol that updates these dangling
references, if desired.

The easyMoCha version offers all the functionality of the “plain” MoCha version
plus a richer and easier to use interface. Furthermore, this version has a build-in
protocol for taking care of invalid dangling channel-end references; this means that
components don’t have to worry about a channel-end reference becoming invalid,
once a component gains a reference to a channel-end it will always remain valid.
This version is especially made for those that either find it difficult to work with
the “plain” MoCha version, want a more object-oriented friendly interface, or don’t
want to be concerned with dangling references.

The chocoMoCha version, which stands for channel connection, has the same
functionality as the previous version with the addition that it implements the connect

6.2. The Application Programming Interface (API) 81

and disconnect operations as well. Components have to successfully connect to a
channel-end first before being able to use it. We chose to give it the same rich user
interface as the easyMoCha version, plus the automatic internal reference update
protocol. We think that this brings the middleware at the right level of programming
abstraction. Furthermore, with the first two versions the communication is many-
to-many, while with chocoMoCha we can have one-to-one communication due to the
fact that components have exclusive access to channel-ends. Naturally, in the “plain”
MoCha version there one-to-one communication is also possible by moving a channel-
end and keeping its identity secret to other components. However, this exclusive
communication is not guaranteed like in chocoMoCha. A malicious component may
secretly obtain the reference to a channel-end and start using it at any time.

The chocoMoCha version is the one that adheres more to the theory of mobile
channels that is introduced in this thesis. We shall, therefore, concentrate on and
mainly present this version.

Next, in Section 6.2, we discuss the Application Programming Interface of the
chocoMoCha middleware. In Section 6.3, we give some examples of how to use the
middleware. In Section 6.4, we discuss some applications of chocoMoCha. And
finally, in Section 6.5, we conclude with related work.

6.2 The Application Programming Interface (API)

We present and discuss the Application Programming Internal (API) of choco-
MoCha; i.e. its user interface. Our aim is to give an overview of the main features
and explain the choices that we made, rather than presenting the full technical de-
tails of the API. Therefore, we concentrate on the important features and abstract
away from the less relevant ones. For full details and more information about the
API, we refer to the MoCha middleware manual [Gui05].

6.2.1 Location and Keys for Components

The MoCha middleware doesn’t know anything about its environment. It does not
know anything about the notion of location that is used in the distributed system
it is running. It does not know anything about the security or priority policies the
network may have on using channel-ends. It does not even know what kind of entities
are using the channel-ends; whether they are components, threads, processes, active
objects, etc. Therefore, the middleware provides certain constructs for everything
it needs to know itself. The chocoMoCha version needs to know what a location
is, and some way of identifying the owner of a channel-end. For this purpose, the
middleware offers two classes: MoChaLocation and ComponentKey .

MoChaLocation

The MoCha middleware provides the class MoChaLocation to the user in order
to identify specific logical execution spaces. A reference to an instance of this class
is, thus, a location reference that the MoCha middleware understands and can work
with. Such a reference can be passed on to others through channels, if desired.

82 Chapter 6. The MoCha Middleware: API and Applications

method parameters return

Class: MoChaLocation

constructor () new instance
equals (MoChaLocation loc) boolean
createChannel (String type) ChannelEnd[]

Class: ComponentKey

constructor () new instance
equals (ComponentKey key) boolean

Table 6.1: Locations and Keys

The user is free in defining what a location means in his distributed system. He
can either: (1) create one instance of MoChaLocation per Java Virtual Machine
(JVM) [Java]. (2) He can create many instances of MoChaLocation per JVM.
Or (3), he can create and share one instance of MoChaLocation among many
JVM’s. The first is the standard way of using the MoChaLocation instances in
a distributed system. The second way is useful, for example, for testing a system
in one single JVM. The third is useful when dealing with unstable locations that
often suddenly disconnect from the network. The middleware puts critical internal
objects only at the JVM’s where a location has actually been created. By sharing
a MoChaLocation with an unstable location we make sure that the middleware is
not affected by a suddenly disconnect (or crash) by this location.

As shown in Table 6.1, the MoChaLocation class has one constructor and two
public methods: createChannel and equals . To create an instance of this class
we use the constructor:

MoChaLocation loc = new MoChaLocation();

We can check whether two locations are equal by using the equals method:

boolean result;
MoChaLocation loc = new MoChaLocation();
MoChaLocation loc2 = new MoChaLocation();
result = loc.equals(loc);
result = loc.equals(loc2);

The first comparison evaluates to true and the second to false . Usually, a
component uses this method to check if a given location is equal to one it already
has.

It is possible to create a new channel by using the createChannel method.
In Section 6.2.2, we show a much nicer way of creating channels. We also list there
the different channel types that the middleware implements. We give an example of
how to create a new channel using an instance of MoChaLocation :

MoChaLocation loc = new MoChaLocation();
ChannelEnd[] channel = loc.createChannel("Synchronous");

6.2. The Application Programming Interface (API) 83

The method returns an array of ChannelEnd , a class we define in Section 6.2.4.
The length of this array is two, with chan[0] being the first channel-end and
chan[1] the second one.

ComponentKey

The MoCha middleware provides the class ComponentKey to the user in order to
identify components. With an instance of the class ComponentKey the components
can identify themselves to channel-ends in order to get access to their I/O operations,
move operation, and for the connect and disconnect operations (operations which
we discuss further on).

The user is free in defining what a component is; e.g. a thread, a group of
threads, active objects in a package, etc. Once he defines what a component is,
he is also free in giving more than one key to one component, or share one key
among many components. The first case, for example, is useful when a component
has multiple interfaces. Each interface represents another aspect that we want to
separate from the rest by giving another access-key to its channel-ends. The second
case, for example, is useful when we have a group of collaborating components that
all require simultaneous access to the shared channel-ends. However, in most of
the cases, the standard thing to do is to give each component exactly one key. This
way we also guarantee the one-to-one communication property between components.
Nevertheless, with this second technique we can also have a one-to-many, many-to-
one, or a many-to-many communication, if desired. An example of this is given in
Section 6.3.3.

As shown in Table 6.1, the ComponentKey class has one constructor and one
public method: equals . To create an instance of this class we use the constructor:

ComponentKey key = new ComponentKey();

We can check whether two keys are identical by using the equals method:

boolean result;
ComponentKey key = new ComponentKey();
ComponentKey key2 = new ComponentKey();
result = key.equals(key);
result = key.equals(key2);

The first comparison evaluates to true and the second to false . Usually, a
component uses this method to check if a given key is equal to one it already has.

6.2.2 Mobile Channels: Creation and Types

In Section 6.2.1 we explained how to create a new channel using an instance of the
class MoChaLocation . However, the easiest and more convenient way of creating a
new channel in chocoMoCha is by using an instance of the class MobileChannel .
Before explaining all the details of this class, we first list all the eleven channel types
that the middleware offers to its users. All MoCha versions implement these types.

84 Chapter 6. The MoCha Middleware: API and Applications

We already explained their behavior in Section 2.4. Therefore, we just list the types
and their names in the MoCha middleware (which is a string):

• Synchronous channel. “Synchronous”.

• Lossy synchronous channel. “LossySynchronous”.

• Filter (synchronous) channel. “Filter [pattern]”.
Example: “Filter java.lang.Integer java.lang.Double mypackage.myclass”.

• Synchronous drain channel. “SynchronousDrain”.

• Synchronous spout channel. “SynchronousSpout”.

• Asynchronous unbounded FIFO channel. “FIFO”.

• Asynchronous bounded FIFO (FIFO n) channel. “FIFOn [number]”.
Examples: “FIFOn 1”, “FIFOn 10”, and “FIFOn 11031974”.

• Asynchronous drain channel. “AsynchronousDrain”.

• Asynchronous spout channel. “AsynchronousSpout”.

• Drain channel. “Drain”.

• Spout Channel. “Spout”.

Interesting to notice are the string names of the Filter and the FIFO n channel
types. The first channel type allows the user to specify a filter pattern. This can be
any Java class including non-standard ones made by users. If at a given location,
one of the classes specified in the pattern does not exist, the channel simply discards
this class from the filter for that particular location. The second channel type allows
the user to specify a capacity. This capacity is a non-zero positive integer with a
maximum specified by the Java Integer class constant MAXVALUE. Currently this
value is 231−1. We chose to include both the pattern and the capacity as part of the
string name of the channel type. We did this for uniformity with the other channel
types. Since almost everything is easily convertible to a string in the Java language,
this does not impose any problems for the user. The middleware then parses the
string and automatically extracts the pattern or capacity out of it.

Class: MobileChannel
Attributes: ChannelEnd ce1, ChannelEnd ce2

method parameters return

constructor (MoChaLocation loc, String type) new instance

constructor () new instance

equalsChannel () boolean

Table 6.2: Mobile Channels

The MobileChannel class has two constructors and one method equalsChannel
(see Table 6.2). The first constructor is meant for creating new channels. The type of

6.2. The Application Programming Interface (API) 85

the channel is given as a string. As mentioned above, patterns and capacities are also
specified in this string. After creation, the public attributes of type ChannelEnd
refer to the two ends of the new created channel. We discuss the abstract class
ChannelEnd in Section 6.2.4. We give an example of channel creation:

MoChaLocation my computer = new MoChaLocation();
MobileChannel channel = new MobileChannel(my computer, "FIFOn 1");

Afterward, the attribute chan.ce1 refers to the source-end of the channel and
chan.ce2 to its sink-end. Unlike with the MoChaLocation class, where we get an
array of ChannelEnd back after creating a new channel, with the MobileChannel
class there is no need to work with arrays and we immediately get a nice place holder
for the ends of the channel we just created.

The second constructor is meant for creating only a place holder for channel-
ends. This constructor creates an instance of MobileChannel , but does not create
a new channel. Instead, the attributes are initially null . The user, then, can assign
received channel-end references to them.

Therefore, it makes sense to provide a method that checks whether the ends
represented by the attributes belong to the same channel. This is the purpose of the
equalsChannel method. For example:

boolean result;
MobileChannel channel = new MobileChannel();
channel.ce1 = received Source;
channel.ce2 = received Sink;
result = channel.equalsChannel();

In this case the ends are received from the outside, via channels, so there is
no a priori way of knowing what the result is after the execution of the method
equalsChannel .

6.2.3 Source & Sink Channel-End

The SourceEnd and the SinkEnd are the most important classes of the MoCha
middleware. They implement all the conceptual operations we discussed in Section
2.2.1. These operations are divided in three groups: the topology operations, the I/O
operations , and the inquiry operations.

Notice that, neither of the two classes have a constructor. This is done on
purpose. From our point of view, an end always belongs to a channel. Therefore,
we cannot allow users to create single loose channel-ends that are not conceptually,
and internally, related to a channel. The only way to create a new channel-end
is by creating a complete new channel using either the class MoChaLocation or
MobileChannel .

The methods that implement the topology and the I/O operations have time-
outs1. This means that a component can define a certain length of time it is willing
to wait until an operation succeeds. If an operation does not succeed within this

1except the method that implements the disconnect operation.

86 Chapter 6. The MoCha Middleware: API and Applications

given time, it gets canceled. In Chapter 8 we explicitly use these time-outs in our
channel-based component model. However, in this chapter, we do not consider them.
This omission simplifies all the explanations and examples of the MoCha middleware.
We implicitly assume that all the topology and I/O operations have a time-out that
is set to infinity; i.e. components wait until an operation succeeds, not matter how
long this takes.

The Topology Operations

Class: SourceEnd, SinkEnd

method parameters return

connect (ComponentKey key) void

disconnect (ComponentKey key) void

move (MoChaLocation loc, ComponentKey key) void

Table 6.3: SourceEnd & SinkEnd, the Topology Operations

Table 6.3 gives an overview of the topological operations. Before being able to
“use” a channel-end, a component must first successfully connect to this particular
channel-end. The method terminates if no other component is currently connected
to this channel-end, or this component is already connected to this end. In all
other cases the component must wait until this channel-end becomes available and,
therefore, the method suspends until this is the case. For identifying a component
chocoMoCha uses a special key as explained in Section 6.2.1. Once connected, a
component can perform I/O operations and the topological move operation. For
query operations a component needs not be connected to a channel-end. We decided
not to require a component to be connected to a particular channel-end, because a
component may need to perform a query operation on a channel-end before wanting
to connect to it. Also, not connected parties may need actual information about a
particular channel-end.
A typical example of connect /disconnect usage:

source.connect(my ID);
source.operation1();
source.operation2();
...
source.disconnect(my ID);

The move operation physically moves a channel-end from one location to the
given MoChaLocation in the network. Conceptually, this operation is not needed
since a reference to a channel-end never becomes invalid in chocoMoCha, even if the
target channel-end is in another MoChaLocation than the component performing
an operation on it. However, it makes sense to move the channel-end for efficiency
reasons. For example, for trying to keep the channel-end at the location it currently
is most intensively used, or preventing a channel-end to execute in a location with
low resource capacity.
An example of moving a channel-end is:

6.2. The Application Programming Interface (API) 87

sink.connect(my ID);
sink.move(my Computer, my ID);
sink.operation();
...
sink.disconnect(my ID);

The I/O Operations

Table 6.4 gives an overview of the I/O operations. The most important I/O methods
are write , take and read , where read is the non-destructive version of take .
Besides writing, reading and taking data objects, components can also send MoCha
channel-ends and locations to each other through channels themselves. To ensure
the strong encapsulation of components (as explained in Section 8.1), no object from
outside should be able to refer to an object inside a component. Therefore, no object
that is transmitted through MoCha channels refers to objects inside components.
To accomplish the MoCha middleware makes a so called deep copy [Eck98] of every
object written to a source-end. This deep copy ensures that not only the written
object is copied, but also every other object it may refer to is also copied. Therefore,
a whole tree of objects is copied if necessary. The middleware takes care of possible
cycles in these trees. For this purpose, we require every written object to be of the
special Java type Serializable ; this means that, the object can be transformed
into a string for communication through networks. Naturally, the MoCha channel-
ends and locations are the only objects that are not (deep) copied. Otherwise, we
would have implicit channel(-end) and location creation as a side effect.

Class: SourceEnd

method parameters return

write (Serializable object, ComponentKey key) void

writeBoolean (Boolean ob, ComponentKey key) void

writeByte (Byte ob, ComponentKey key) void

writeChannelEnd (ChannelEnd ce, ComponentKey key) void

writeCharacter (Character ob, ComponentKey key) void

writeDouble (Double ob, ComponentKey key) void

writeFloat (Float ob, ComponentKey key) void

writeInteger (Integer ob, ComponentKey key) void

writeLong (Long ob, ComponentKey key) void

writeMoChaLocation (MoChaLocation ob, ComponentKey key) void

writeShort (Short ob, ComponentKey key) void

writeString (String ob, ComponentKey key) void

Table 6.4: SourceEnd, the I/O Operations

The write , take , and read methods can be seen as untyped, because in the
Java language every object is an instance of the basic class Object . This means
that, the MoCha middleware does not care about the type of the data it trans-
ports. The components themselves are responsible for passing on the right types of
data, and to figure out what data types they receive. We chose to do this because
most distributed systems work with dynamic data types; these are types that are

88 Chapter 6. The MoCha Middleware: API and Applications

dynamically created during the runtime of the system and are not fixed a priori.
For example, it is often the case that, when a computer joins a specific truly dis-
tributed network it receives class definitions for specifying the type of the data it
needs to communicate with others in the network. In Java RMI [RMI], they have
an automatic feature for this called dynamic class loading.
An example of untyped write and take operations is:

Writer:
source.connect(writer ID);
source.write(new Integer(777), writer ID);
source.disconnect(writer ID);
Taker:
Object result;
Integer int;
sink.connect(taker ID);
result = sink.take(taker ID);
if (result instanceof Integer) { int = (Integer) result }
sink.disconnect(taker ID);

In this simple example, the taker is responsible for checking whether the object
result is of type Integer , before it can safely use it.

Class: SinkEnd

method parameters return

take (ComponentKey key) Object

read (ComponentKey key) Object

takeBoolean (ComponentKey key) Boolean

takeByte (ComponentKey key) Byte

takeChannelEnd (ComponentKey key) ChannelEnd

takeCharacter (ComponentKey key) Character

takeDouble (ComponentKey key) Double

takeFloat (ComponentKey key) Float

takeInteger (ComponentKey key) Integer

takeLong (ComponentKey key) Long

takeMoChaLocation (ComponentKey key) MoChaLocation

takeShort (ComponentKey key) Short

takeString (ComponentKey key) String

Table 6.5: SinkEnd, the I/O Operations

However, for some distributed systems it makes sense to work with typed data
objects for static verification purposes. Therefore, chocoMoCha also provides typed
write and take methods. These methods internally call the basic ones. The
user can always make his own typed methods by wrapping the basic ones as well.
The behavior of the typed take method is that, if the taken data from the sink
channel-end is not of the right type, it loses the data and waits for the next available
one.
An example of typed write and take operations follows:

6.2. The Application Programming Interface (API) 89

Writer:
source.connect(writer ID);
source.writeInteger(new Integer(333), writer ID);
source.disconnect(writer ID);
Taker:
Integer int;
sink.connect(taker ID);
int = sink.takeInteger(taker ID);
sink.disconnect(taker ID);

In this simple example, the taker is sure to always get an instance of the class
Integer from the sink channel-end.

The Inquiry Operations

Table 6.6 lists the inquiry operations of both the SourceEnd and the SinkEnd
classes. As mentioned above, components need not be connected to a particular
channel-end to perform an inquiry operation.

Class: SourceEnd, SinkEnd

method parameters return

empty () boolean

equals (ChannelEnd ce) boolean

equalsChannel (ChannelEnd ce) boolean

full () boolean

getStatus () Boolean[]

isSinkEnd () boolean

isSourceEnd () boolean

Table 6.6: SourceEnd & SinkEnd, the Inquiry Operations

The result of the empty or full method depends on the type of the channel
and the end that it belongs to. For example, with a synchronous channel type a
source-end always returns true on the empty method; when we are able to query
the source-end there is no writer pending on a write operation. The sink-end returns
true on the full method if there is a write operation pending on the source-end of
the same channel; i.e. there is a value available from this channel. Another example,
with the FIFO n channel type a source-end returns true on the full method if the
channel has reached its capacity. The sink-end returns true on the empty method
when there are no elements stored in the channel. The details regarding the other
types are given in the manual [Gui05].

The getStatus method provides an atomic way of inquiring a channel-end. For
example, if we want to know the full and empty status of a particular channel-end
we can either call the two methods separately or call the getStatus method. The
difference is that, with the first the status of the channel-end may change between the
two method calls, while with the second the inquiry operations are performed at the
same time preventing the channel-end from changing its status in the meanwhile.
This atomicity is useful, for example, in those cases where many components are

90 Chapter 6. The MoCha Middleware: API and Applications

querying (or using) the same channel-end at a given time. These components can
cause such big delays between the separate queries of one particular component, that
the status of the channel-end is more likely to have changed when the component
finally succeeds in executing all of its query operations.

The equals method checks if a given channel-end is equal to this channel-end.
Naturally, if we compare a sink with a source channel-end we get false as result.
The equalsChannel method checks if the given end belongs to the same channel
as this end.

We discuss the methods isSinkEnd and isSourceEnd in Section 6.2.4.

6.2.4 Channel-End

Sometimes it is convenient not to directly refer to a source or sink channel-end but
to a more general class that does not specify the type of the end. Therefore, we
provide an abstract class called ChannelEnd . An abstract class is a base
class that presents only an interface for its derived classes. No abstract class
can be instantiated. However, unlike the Java interface class, it can implement
methods. For more information about abstract classes we refer to [Eck98]. The
ChannelEnd class offers all the methods of the source and sink channel-ends (see
Tables 6.4, 6.5, 6.3, and 6.6).

Our MobileChannel class (see Section 6.2.2) conveniently uses two attributes,
ce1 and ce2 , of type ChannelEnd . Since the type of the channel determines
whether we get two distinct or two equal channel-end types upon creation of a
channel instance, it is not possible to make ce1 of type SourceEnd and ce2 of
type SinkEnd , or vice versa. However, now with the ChannelEnd class we don’t
have this problem anymore. The attributes can both be of type SourceEnd or
SinkEnd .

Using the ChannelEnd class is useful for cases when we are not interested in the
precise type of the end, because the operations that we want to perform on them are
implemented by both the sink and the source channel-ends. For example, imagine
that our job is just to receive channel-ends and move them to Amsterdam.

while (true) {
received end = input end.takeChannelEnd(my ID);
received end.connect(my ID);
received end.move(Amsterdam, my ID);
received end.disconnect(my ID); }

In this example, we don’t care about the type of the channel-end.
In the cases that we use specific methods of either SourceEnd or SinkEnd ,

like write and take , we can use the isSourceEnd and isSinkEnd method to
determine the right channel-end type:

received end = input end.takeChannelEnd(my ID);
received end.connect(my ID);

if (received end.isSourceEnd()) {received end.write("Source", my ID) }
if (received end.isSinkEnd()) {result = received end.take(my ID) }

received end.disconnect(my ID);

6.3. Examples 91

It is also possible to cast the channel-end to the right type:

received end = input end.takeChannelEnd(my ID);
if (received end.isSourceEnd()) {

received end.connect(my ID);
source = (SourceEnd) received end;
source.write("Hello", my ID);
source.disconnect(my ID); }

The difference is that once casted, we don’t have to check the type anymore. The
user is free in selecting his favorite way of working with instances of ChannelEnd .

6.3 Examples

After introducing the API in the previous section, we now give some small examples
of how to use the MoCha middleware. Each example highlights a certain feature of
the middleware. We show some Java code for almost every example. However, we
omit most of the technical details, for we are only interested in showing the usage
of the chocoMoCha middleware. For the working implementation of these examples
and the technical details, we refer to the electronic manual [Gui05].

6.3.1 Producer/Consumer

Writes
Channel

Takes

ConsumerProducer SinkSource

Figure 6.2: Producer/Consumer Example

We start with a simple system consisting of a producer and consumer linked
together by a channel. We give the architecture of this system in Figure 6.2. The
producer creates integer values and writes them to the source channel-end, while the
consumer takes integers from the sink-end of the same channel. Our purpose with
this first example is to show the exogenous coordination property of the middleware.

We implement the producer as a simple Java thread (see Figure 6.3). Upon
initialization, the producer needs the following parameters: a source channel-end
(ChannelEnd so), the number of writes to this source-end (int writes), and
the length of time in between writes (int wait). The producer checks whether
the given channel-end is a source-end, if not it terminates the execution by giving
an error. For identification purposes, the constructor creates an instance of the
chocoMoCha ComponentKey class . During execution, the producer connects
to the given source-end, writes an integer to it as many times as specified by the
writes parameter, and ends by disconnecting from the channel-end.

The consumer is also implemented as a Java thread (see Figure 6.4). Upon
initialization, the consumer needs the following parameters: a sink channel-end

92 Chapter 6. The MoCha Middleware: API and Applications

import cwi.sen3.chocoMoCha.*;
/** Producer, produces an Integer
* @author Juan Vicente Guillen-Scholten
*/
public class Producer extends Thread {

ChannelEnd source;
ComponentKey key;
int times;
int waittime;
/** Constructor.
* @param so the source-end to write to.
* @param writes times that the producer writes a value.
* @param wait time to wait in between writes (1000 = 1 second).
*/
Producer (ChannelEnd so, int writes, int wait) {

if (so. isSourceEnd())
{source = so; } else {throw new ErrorException(); }
times = writes;
waittime = wait;
key = new ComponentKey();

}// constructor
public void run() {

source.connect(key);
for (int i = 0; i < times; i++) {

sleep(waittime);// sleep between writes
source.writeInteger(new Integer(i), key);

}// done
source.disconnect(key);

}//run
} // end Producer

Figure 6.3: A Basic Producer

(ChannelEnd si), the number of takes from this sink-end (int takes), and the
length of time in between takes (int wait). The consumer, also, checks whether
the given channel-end is a sink-end, if not it terminates the execution by giving an
error. For identification purposes, the constructor creates an instance of the choco-
MoCha ComponentKey class . During execution, the consumer connects to the
given sink-end, takes an integer from it as many times as specified by the takes
parameter, and ends by disconnecting from the end.

We implemented this example in such a way that the channel type is given as
a parameter while starting the system in the command-line. This is done to show
that we can change the behavior of our system by simply choosing another type of
channel in between the threads, without having to re-compile them or any other
part of the application.

In Figure 6.5 we show the result of executing our example using three different
types of channels in between the producer and the consumer. We delay the execution
of the producer for one second after every successful write, and we delay the execution
of the consumer for three seconds after every successful take. In the first run, we use
a synchronous channel type. We see that both writes and takes are synchronized and
happen atomically. In this case, the network is so fast that the times also coincide.

6.3. Examples 93

import cwi.sen3.chocoMoCha.*;
/** Consumer, takes an Integer.
* @author Juan Vicente Guillen-Scholten
*/
public class Consumer extends Thread {

ChannelEnd sink;
ComponentKey key;
int times;
int waittime;
/** Constructor.
* @param si the sink-end to take from.
* @param takes times that the consumer takes a value.
* @param wait time to wait in between takes (1000 = 1 second).
*/
Consumer (ChannelEnd si, int takes, int wait) {

if (si. isSinkEnd())
sink = si; else {throw new ErrorException(); }
times = takes;
waittime = wait;
key = new ComponentKey();

}// constructor
public void run() {

Integer res;
sink.connect(key);
for (int i = 0; i < times; i++) {

sleep(waittime); // sleep between takes.
res = sink.takeInteger(key);

}// done
sink.disconnect(key);

}//run
} // end Consumer

Figure 6.4: A Basic Consumer

This is not always the case, because there is a delay possible between the write
and the take operations due to the distance between the different machines in the
network. However, this is fine as long as the operations succeed atomically; i.e. in
this case, no write or take operation can succeed after its previous write/take pair
finishes.

In the second run, we use an unbounded FIFO channel type. We see indeed
that the write and take operations happen asynchronously from each other. This
is not entirely the case in the third run. There we choose a FIFO channel type
with a buffer capacity of three values. Since the producer is three times faster than
the consumer, we see that the first three integers are asynchronously written every
second into the channel. However, after this, the buffer is full and the next writes
must wait for a take to happen. We see that the next writes coincide with the first
three takes.

6.3.2 Producer/Producer and Consumer/Consumer

Sometimes, we are not interested in transferring data between components but only
in coordinating them. For example, when we cannot change the components them-

94 Chapter 6. The MoCha Middleware: API and Applications

Output listing.
Producer writes every second,
Consumer takes every 3 seconds.

With a Synchronous channel.
Producer:
Producer p1 writes Integer 0 to the channel [time 17:26:12].
Producer p1 writes Integer 1 to the channel [time 17:26:15].
Producer p1 writes Integer 2 to the channel [time 17:26:18].
Producer p1 writes Integer 3 to the channel [time 17:26:21].
Producer p1 writes Integer 4 to the channel [time 17:26:24].
Consumer:
Consumer c1 takes Integer 0 from the channel [time 17:26:12].
Consumer c1 takes Integer 1 from the channel [time 17:26:15].
Consumer c1 takes Integer 2 from the channel [time 17:26:18].
Consumer c1 takes Integer 3 from the channel [time 17:26:21].
Consumer c1 takes Integer 4 from the channel [time 17:26:24].

With an unbounded FIFO channel.
Producer:
Producer p1 writes Integer 0 to the channel [time 17:56:32].
Producer p1 writes Integer 1 to the channel [time 17:56:33].
Producer p1 writes Integer 2 to the channel [time 17:56:34].
Producer p1 writes Integer 3 to the channel [time 17:56:35].
Producer p1 writes Integer 4 to the channel [time 17:56:36].
Consumer:
Consumer c1 takes Integer 0 from the channel [time 17:56:34].
Consumer c1 takes Integer 1 from the channel [time 17:56:37].
Consumer c1 takes Integer 2 from the channel [time 17:56:40].
Consumer c1 takes Integer 3 from the channel [time 17:56:43].
Consumer c1 takes Integer 4 from the channel [time 17:56:46].

With a FIFO-2 channel.
Producer:
Producer p1 writes Integer 0 to the channel [time 18:15:53].
Producer p1 writes Integer 1 to the channel [time 18:15:54].
Producer p1 writes Integer 2 to the channel [time 18:15:55].
Producer p1 writes Integer 3 to the channel [time 18:15:58].
Producer p1 writes Integer 4 to the channel [time 18:16:1].
Consumer:
Consumer c1 takes Integer 0 from the channel [time 18:15:55].
Consumer c1 takes Integer 1 from the channel [time 18:15:58].
Consumer c1 takes Integer 2 from the channel [time 18:16:1].
Consumer c1 takes Integer 3 from the channel [time 18:16:4].
Consumer c1 takes Integer 4 from the channel [time 18:16:7].

Figure 6.5: Exogenous Coordination.

selves but still want to exogenously coordinate them. For this purpose we have the
coordination only channel types (which we introduced in Section 2.4.2).

Analogous to our producer/consumer example, we can use these two source- and
two sink-end channel types to coordinate two producers or two consumers, as shown
in Figure 6.6. The Java implementation of both threads remains the same (as given
in figures 6.3 and 6.4).

We run two experiments: one with two producers and one with two consumers.
Each time one of the two threads acts every second, and the other one every three
seconds. We show the results of the executions in Figure 6.7. Between the two
producers we place an instance of a synchronous drain channel type. Therefore, both
producers write every three seconds; the slowest producer determines the frequency
in this case. Between the two consumers we place an instance of a spout channel

6.3. Examples 95

Consumer Consumer

Writes
Channel

Producer Producer
Writes

Source Source

SinkSink

Takes
Channel

Takes

Figure 6.6: Producer/Producer and Consumer/Consumer Example

Output listing.
With a Synchronous Drain channel.
Producer p1 [writes every second]:
Producer p1 writes Integer 0 to the channel [time 21:55:39].
Producer p1 writes Integer 1 to the channel [time 21:55:42].
Producer p1 writes Integer 2 to the channel [time 21:55:45].
Producer p1 writes Integer 3 to the channel [time 21:55:48].
Producer p1 writes Integer 4 to the channel [time 21:55:51].
Producer p2 [writes every three seconds]:
Producer p2 writes Integer 0 to the channel [time 21:55:39].
Producer p2 writes Integer 1 to the channel [time 21:55:42].
Producer p2 writes Integer 2 to the channel [time 21:55:45].
Producer p2 writes Integer 3 to the channel [time 21:55:48].
Producer p2 writes Integer 4 to the channel [time 21:55:51].

With a Spout channel.
Consumer c1 [takes every second]:
Consumer c1 takes Integer 1251778893 from the channel [time 21:59:47].
Consumer c1 takes Integer 1498255357 from the channel [time 21:59:48].
Consumer c1 takes Integer 659978419 from the channel [time 21:59:49].
Consumer c1 takes Integer 695311685 from the channel [time 21:59:50].
Consumer c1 takes Integer 1839671779 from the channel [time 21:59:51].
Consumer c2 [takes every three seconds]:
Consumer c2 takes Integer 839736381 from the channel [time 21:59:49].
Consumer c2 takes Integer 1640308734 from the channel [time 21:59:52].
Consumer c2 takes Integer 1243628531 from the channel [time 21:59:55].
Consumer c2 takes Integer 1207696563 from the channel [time 21:59:58].
Consumer c2 takes Integer 307909386 from the channel [time 22:0:1].

Figure 6.7: Exogenous Coordination with Coordination-only Channel Types.

type. We see that indeed the writes are independent of each other. Observe that
this channel type produces random integers that are different for each end. This
causes the strange integer output listed in the figure.

6.3.3 Competing Producers and Consumers

In a distributed system several components may have a reference to a particular
channel-end. This means that they are all allowed to use this end. However, usu-
ally, we like to have a one-to-one channel communication between the components,
where no other component can interfere with the communication between the two
components currently using a particular channel. Thankfully, in chocoMoCha we
require components to first successfully connect to a channel-end before being able

96 Chapter 6. The MoCha Middleware: API and Applications

Channel

Sink
Producer

P2

Producer

P1

Source

Consumer

C1

Consumer

C2

Producer

P3

Figure 6.8: Competing Producers and Consumers Example.

to use it (see Section 6.2.3). This way, a component gains exclusive access to a par-
ticular channel-end until it disconnects from it. Therefore, taking the producer and
consumer of the previous examples and creating several instances of them, like in
Figure 6.8, is not a problem. At any particular point in time, at most one producer
gets to perform its write operations, and at most one consumer gets to perform its
take operations.

Naturally, in some cases a one-to-many, many-to-one, or a many-to-many com-
munication is desired. This is also possible in chocoMoCha by letting the components
share their component key (as explained in Section 6.2.1). For this purpose, we need
to change the code of the producer and the consumer (see figures 6.3 and 6.4) so
that they are able to share their instance of ComponentKey .

6.3.4 Untyped Producer/Consumer

In the previous examples, the producers and the consumers use the typed methods
writeInteger and takeInteger . However, as we discussed in Section 6.2.3,
most distributed systems work with dynamic data types. In this example, we show
the usage of the generic untyped chocoMoCha write and take methods.

For the producer (see Figure 6.3) the only thing that changes is the replacement
of the source.writeInteger(new Integer(i), key) statement for the un-
typed statement source.write(new Integer(i), key) . For the consumer
(see Figure 6.4) we need to determine the type of the data that it takes. Suppose
that the consumer can deal with instances of the Double , Integer , and String
classes. Then, we change the implementation code of the for -loop into:

for (int i = 0; i < times; i++) {
sleep(waittime); // sleep between takes.
res = sink.take(key);
if (res instanceof Double) { }
if (res instanceof Integer) { }
if (res instanceof String) { }
}// done

6.3. Examples 97

Naturally, in this way we can make a consumer that deals with many data types.
It is even possible to dynamically add new types to the consumer by using the
isInstance method of the special system Java class Class [Eck98]. However,
since each type needs to be dealt with in a different manner it is better to either
replace the consumer for an updated version, or delegate the data to some other
consumer that can deal with it. In our next example we discuss this last scenario.

6.3.5 Crazy Producer and Cooperating Consumers

In this more elaborated example we show how components distribute the knowledge
of channel-ends through channels themselves, as well as movement of the channel-
ends to other locations in the system, and the difference between the read and take
operations.

So
ur

ce

Source
Sink

Consumer

DS

Source

Sink

Si
nk

Si
nk

So
ur

ce

Source
Sink

Consumer

DS

Source Sink Consumer

IS
Producer

Si
nk

So
ur

ce

Source Sink

Consumer

DS
Source

Sink

Source

SinkProducer Consumer

IS

Consumer

BF

Producer Consumer

IS
C

om
1

Com2

Com3

Loc_Malaga

(c)

Transfer

Loc_Malaga

Loc_CWI

Transfer

C
om

2C
om

1

Loc_LIACS

Loc_Malaga

Loc_CWI Loc_LIACS

Transfer

C
om

1

(a)

Loc_CWI Loc_LIACS

(b)

Loc_Namur

C
om

2

Figure 6.9: Crazy Producer and Cooperating Consumers Example.

Our example consists of one crazy producer and two consumers. We give the
architecture of this example in Figure 6.9(a). The dashed lines denote a specific lo-
cation in the network. The crazy producer randomly writes values of type Integer ,
Double , or String to the source-end of the transfer channel. The consumers read
and take these values from the sink-end of this channel. However, each separate
consumer is not able to deal with all the data types. Consumer IS handles data

98 Chapter 6. The MoCha Middleware: API and Applications

of types Integer and String , while consumer DS handles data of types Double
and String . Therefore, the consumers need to cooperate with each other to deal
with all the data types that the crazy producer is writing to the transfer channel.
For this purpose, the two consumers are linked to each other by the channels com1
and com2. The idea is that if a consumer reads data of a known type it takes it out
of the channel, otherwise it delegates the task to the other consumer.

The implementation of the producer is the same as that of Figure 6.3, except
that we substitute the single write statement of the for -loop with a random choice
out of three writing possibilities:

for (int i = 0; i < times; i++) {
sleep(waittime); // sleep between writes.
choice = (int) ((Math.random () * 3) + 1);
if (choice == 1) { source.write(new Integer(i), key); }
if (choice == 2) { source.write(new Double(i), key); }
if (choice == 3) { source.write(new String(String.valueOf(i)), key); }
}// done

Notice that instead of one crazy producer we could also take three producers
where each of them writes a different data type. These producers, then, would
automatically compete among themselves to write to the source-end of the transfer
channel (as explained in the last example). However, for entertainment purposes we
chose to use a crazy producer instead in this example.

The implementation of the two consumers is identical from the point of view of
the chocoMoCha middleware. The differences are in the way the consumers deal
with the data they know the type of. In Figure 6.10 we give the implementation of
consumer IS. The implementation of consumer DS is the same except for replacing
the Integer data type check with a Double data type check.

Upon initialization, the consumer needs the following parameters: the sink-end
(SinkEnd si) of the transfer channel, the source-end (SourceEnd communica-
tionSource) of the com1 channel, the sink-end (SinkEnd communicationSink)
of the com2 channel, and the length of time in between takes (int wait). For
identification purposes, the constructor creates an instance of the chocoMoCha
ComponentKey class . We also let the consumer create its own chocoMoCha
location, but as an alternative it could also be a parameter, if desired.

When starting the execution, the first thing that the consumer does is to connect
to the ends of the com1 and com2 channels. At its termination the consumer discon-
nects from these ends. For simplicity, we omit the details of a termination protocol
for the consumers by letting the consumer go on forever in a while(true) -loop.
Therefore, the disconnect statements are not reachable in this example. Naturally,
an easy way for termination is to let the producer send a special termination token
when it finishes writing. Then all consumers can read this token and terminate.
However, we don’t want to unnecessarily complicate the example.

In the while(true) -loop, the consumer checks whether it has a valid reference
to the sink-end of the transfer channel; this is the case when transSink is not
null . In Figure 6.10(a), the consumer IS has a valid reference to the sink-end,
which is given at initialization. If the reference is valid, the consumer reads a value
from the channel. This means, that it gets a copy of the next value that the channel
is going to output. However, the original value remains in the channel until removed

6.3. Examples 99

import cwi.sen3.chocoMoCha.*;
/** Consumer, takes Integer and String.
* @author Juan Vicente Guillen-Scholten
*/
public class ConsumerIS extends Thread {

ChannelEnd transSink;
SourceEnd comOutSource;
SinkEnd comInSink;
ComponentKey key;
MoChaLocation loc LIACS;
int waittime;
/** Constructor.
* @param si the sink-end of the transfer-channel.
* @param communicationSource the source-end of the com1-channel.
* @param communicationSink the sink-end of the com2-channel.
* @param wait time to wait in between takes (1000 = 1 second).
*/
Consumer (SinkEnd si, SourceEnd communicationSource,
SinkEnd communicationSink, int wait) {

waittime = wait;
transSink = si;
comOutSource = communicationSource;
comInSink = communicationSink;
key = new ComponentKey();
MoChaLocation loc LIACS = new MoChaLocation();
if (transSink != null) { transSink.connect(key); }

}// constructor
public void run() {

Object value;
comOutSource.connect(key);
comOutSink.connect(key);
while(true) {

sleep(waittime); // sleep between takes.
if (transSink == null) {

transSink = (sinkEnd) comInSink.take(key);
transSink.connect(key);
transSink.move(loc LIACS);

}// fi
value = transSink.read(key);
if (value == instanceof Integer || value == instanceof String) {

value = transSink.take(key);
} else {

comOutSource.write(transSink, key);
transSink.disconnect(key);
transSink = null;

}// fi
}// done
comOutSource.disconnect(key);
comOutSink.disconnect(key);

}//run
} // end ConsumerIS

Figure 6.10: The Consumer IS

by a take operation. After reading the value, the consumer checks if it is a known
type. If it is, the consumer takes the value out of the channel, does something with it,
and the cycle repeats. If the value is of an unknown type, the consumer delegates the
value to some other consumer. It does this by writing the transSink reference to
the source-end of the outgoing communication channel (comOutSource). Then, it
disconnects from the transSink channel-end so that other consumers can connect
to it, and sets the reference to null so that it knows that it cannot use this end
anymore.

100 Chapter 6. The MoCha Middleware: API and Applications

If the reference transSink is null , as with the consumer DS of Figure 6.10(a),
then the consumer performs a take operation on the sink-end of the incoming commu-
nication channel (comInSink). Only the sink-end of the transfer channel is passed
through the communication channels, therefore, when the operation succeeds the
consumer acquires a reference to this sink-end. It then connects to it, and moves
the channel-end to its location for efficiency reasons. Now it is ready to use it as de-
scribed above. This is the case in Figure 6.10(b), where the sink-end of the transfer
channel moves from the IS to the DS consumer.

Observe that, with this protocol it is easy to add new consumers without having
to change the code of the producer and other consumers. For example, in Figure
6.10(c) we added a new consumer BF that handles data of type Boolean and
Float . For this purpose, we created a new communication channel com3 and linked
the new consumer to the first one. We also linked the DS consumer to the new one.
Thus we create a chain of cooperating consumers. Other new consumers are added
to this chain in the same way.

6.4 Applications

There are many applications that benefit from using the MoCha middleware. In this
section, we discuss three application areas: Component Based Software, Web Ser-
vices, and Peer-to-Peer networks. Notice that, these areas are not disjoint. Web Ser-
vices are an instance of Component Based Software, and Component Based Systems
can have a Peer-to-Peer architecture. However, for example, not all Peer-to-Peer
networks are Component Based.

6.4.1 Component Based Systems

The MoCha middleware is especially suitable for Component Based Systems. These
are distributed systems consisting of components and connections among them. In
Chapter 5, we already discussed a channel-based model for component based soft-
ware. Basically, a component is a black-box, whose internal implementation is hidden
from the outside world. Components offer an interface that describes their exter-
nally observable behavior. We defined such an interface in Section 5.2.2 as a set of
channel-ends plus semantics describing this observable behavior. With this model
we are able to use the MoCha middleware for communication and coordination of
components. There are many benefits for doing this, we discuss five:

First, the channels of the middleware respect the black-box encapsulation prop-
erty of components by prohibiting objects that are transmitted through channels to
refer to any internal objects of these components (see Section 6.2.3).

Second, the anonymous aspect of communication through channels provides a
decoupling that makes it possible to dynamically plug in and remove components
from the system. The components have no references to each other and perform I/O
network operations only on channels. This means that a component can be updated
or replaced during runtime by another one without the component at the other end
of the channel having any knowledge of any of this happening.

Third, the basic exogenous coordination that channels provide makes it possi-
ble to change the behavior of component based systems without having to change

6.4. Applications 101

the components themselves (as we showed in the examples of Section 6.3). More-
over, with mobile channels we can make a clear separation of concerns between the
computational and the coordination part of these systems.

Fourth, the mobile property of channel-ends allows dynamic reconfiguration of
channel connections among the components in a system. An example of how this
is done with the middleware is given in Section 6.3.5. This property is very useful
when components themselves are mobile (laptops, mobile phones, mobile Internet
agents, etc.). For when such a component moves it can take the channel-ends it is
currently connected to with him to the new location. In Section 8.2.5, we give an
example of a mobile agent.

Fifth, and last, the MoCha middleware is easy to use in combination with, and to
incorporate into, several other Java technologies that are being used for component
based systems. Examples are: JavaBeans [JB], RMI [RMI], Corba [TB00] (for Java),
JavaSpaces [FHA99], Jini [Jini, ASSWW99], and Enterprise JavaBeans [EJB].

A representative example of Component Based Systems and Java technology are
In-Home Networks [Sto02]. These are small networks at people’s houses, that aim
at connecting each device with each other device. We can think of devices such
as televisions, video-recorders, coffee machines, microwaves, lamps, etc. Besides
these static devices, there are also mobile ones like laptops, mobile phones, cleaning
robots, remote controls, etc. The Jini technology, among others, is being used for
these networks. Since Jini uses RMI as its underlying communication protocol, it is
easy to incorporate the MoCha middleware so that In-Home Networks benefit from
all the advantages described above.

6.4.2 Web Services

Web Services [BHMNCFO04] are actually an instance of Component Based Sys-
tems. They consist of a set of components which are invoked, and whose interface
descriptions are published and discovered. These components are called Web Ser-
vices, which can consist of many sub-services. The main requirement is that these
services have well-defined interfaces and are accessible to humans, other services,
and software components in general. In terms of e-business and business processes,
we can see a Web Service as a reusable piece of business logic that an organization
exposes to other organizations through the World Wide Web.

UDDI

: WSDL

XML messaging layer: SOAP

Transport layer: HTTP, SMTP, etc

:
composition :

Service

BPEL4WS,
WSCI, etc.

Service
publication /
discovery

Service description layer

Figure 6.11: Layered Overview of Web Services

102 Chapter 6. The MoCha Middleware: API and Applications

Figure 6.11 gives an overview of the main ingredients of the Web Services stan-
dard in a layered fashion. The transport layer has the responsibility of transporting
messages between a service provider and a requester. The XML messaging layer has
the responsibility of encoding the communication messages using a common XML
format such as the SOAP protocol [XPG03], so that both sides have a common lan-
guage for communication. The service description layer describes the public interface
of a Web Service using the Web Services Description Language (WSDL) [CCMW01].
The service publication and discovery allows publishing and searching for Web Ser-
vices using the Universal Description, Discovery and Integration (UDDI) [OAS04].
The SOAP, WSDL, and UDDI specifications constitute the core of the WS standard.
These specifications have reached a mature state wherein many major software ven-
dors have committed to incorporating Web Services into the basic infrastructure of
their products. The Web Services composition layer facilitates the construction of
new Web Services that are constituted out of simpler ones. At present, the indus-
try has not agreed upon a common specification for service composition. Business
Process Execution Language for Web Services (BPEL4WS) [CGKLRTW03] and the
Web Service Choreography Interface (WSCI) [W3C02] constitute two examples of
candidates for a service composition specification standard.

The most common and standard Web Services example is the travel agent sce-
nario [HHO04]. In this scenario a travel agent books vacations for its customers.
The agent makes use of several Web Services provided by airlines, hotels, bus com-
panies and car rental companies, for booking respectively a plane, hotel, bus tickets,
or a car. These Web Services themselves make use of other Web Services provided
by credit card companies to guarantee payments made by the customers. The main
purpose of this example is to show the need for coordination of the different services.
For example, a customer buys a vacation only if he can get a seat on the plane, a
room in a hotel, and a car at his destination. If any of these three bookings fail,
the customer does not want this particular vacation. Booking each constituent sep-
arately is not a good idea for we need to cancel everything each time one part fails.
Therefore, we need to synchronously coordinate these Web Services so that they are
handled at the same time to ensure the vacation for the customer.

This need for Web Services “orchestration” has inspired the coordination com-
munity to produce several models for this purpose. For example, in the work of
Bocchi [Boc04] the asynchronous π-calculus is used for Web Service composition
based on the notion of long running transactions. As another example, in the work
of Diakov and Arbab [DF04] a model for coordinating Web Services using the Reo
coordination paradigm [Arb04] is presented. In this last work, the MoCha middle-
ware is used for implementation of the coordination model. Therefore, we briefly
discuss this implementation as an example of how to use our middleware for Web
Services coordination.

In Reo, complex coordinators, called connectors, are defined and constructed
out of simpler ones, where the most simple connector is a mobile channel. The
idea of Diakov and Arbab is to provide a specification for service composition (see
Figure 6.11) that is based on Reo. Besides giving a composition specification they
also want to really coordinate Web Services using a coordination middleware that is
based on mobile channels. One of their approaches for doing this is to define a Reo
transport layer for Web Services technology. This way, both new Reo Web Services

6.4. Applications 103

Application layer

Transport layer: Java RMI

MoCha Transport 4WS (MoCha4WS)

chocoMoCha

MoCha core

MoCha4WS Binding

Reo Component layer: Web Services

Figure 6.12: MoCha for Web Services

and existing non-Reo Web Services are all coordinated by the middleware through
this transport layer.

In Figure 6.12, we give an overview of the implementation scheme. The transport
layer is now Java RMI, which makes it possible to use the MoCha middleware. The
Web Services standard separates the definition of messages exchanged with a Web
Service from the way the distributed environment communicates to and from a Web
Service. Therefore, Diakov and Arbab defined a MoCha transport for Web Services
layer on top of the chocoMoCha middleware layer. On top of this transport layer,
there is a MoCha for Web Services Binding layer. Bindings define how a service
provider sends messages with a particular transport, which in this case is the MoCha
middleware. Since MoCha has no notion of channel composition nor components,
an extra Reo Web Services layer (Reo component layer in the figure) is added that
provides these extra features to the applications.

Thanks to the added Web Services layers we are able to coordinate Web Ser-
vices using the MoCha middleware. No changes to the middleware are needed since
the Web Services standard allows the use of Java RMI as a lower transport layer.
Non-trivial exogenous coordination is provided by the Reo Web Services layer. Al-
ternatively, we could define a Web Services layer for the MoCha channel composition
model of Chapter 9 (which implements a subset of Reo).

6.4.3 Hybrid and Pure P2P Networks

Today, a big percentage of the Internet traffic is generated by file-sharing applica-
tions. Most applications of this kind are based on a so called peer-to-peer (P2P)
network. P2P networking refers to a class of systems, applications and architectures
that employ distributed resources to perform any kind of task in a decentralized and
self organizing way [Sch01]. The popularity of P2P networks originates from the
introduction of the Napster [Shi01] application in the year 2000 and it is continued
by many other P2P file-sharing applications like Kazaa [Sha03], BitTorrent [Coh03],
and many clients of the Gnutella network [Rip01].

104 Chapter 6. The MoCha Middleware: API and Applications

P2P networks are often put in contrast with client/server networks. That is be-
cause in many network architectures each process on the network is either a client
or a server: servers are processes dedicated to specific tasks like managing of disk
drives, printers, or network traffic, whereas clients are processes that rely on servers
for resources. The clients themselves do not share any resources. In a peer-to-peer
architecture each node is both a client and a server at the same time. Therefore,
the nodes are said to be equal. They have equivalent responsibilities, enabling appli-
cations that focus on collaboration and communication in a decentralized and self
organizing way. Features of a peer-to-peer architecture include a better distributed
network control, high availability through the existence of multiple peers in a group,
and the possibility of dynamic exchange of information about the network topology.

The flexibility of P2P network architectures is increased by infrastructures that
(1) allow making connections between distributed nodes across several heteroge-
neous platforms and operating systems, (2) enable nodes to establish anonymous
connections among them, (3) provide some kind of mechanism for easy dynamic
reconfiguration of the network topology, (4) provide exogenous coordination by let-
ting the creator of the connection choose between a synchronous or an asynchronous
type, and (5) offer a clear and easy high-level API for P2P applications.

The MoCha middleware offers such an infrastructure. Next, we discuss the two
current architecture types for P2P networks. These are the hybrid and the pure
P2P network architectures as defined in [Sch01]. We explain how to implement both
P2P architectures using mobile channels by giving an example for each of them.
Our purpose is to show the advantages of using the MoCha middleware for P2P
applications.

In a hybrid P2P network there is always a central entity necessary that provides
parts of the offered network services. Such a central entity is often regarded as a
server in the traditional way. However, the definition of a hybrid P2P architecture
is not the same as the one of the client/server architecture; All the nodes of the first
potentially share (their local) resources, while the clients of the second do not.

Figure 6.13 shows a hybrid P2P network that uses mobile channels for connec-
tions between its nodes. This network example is similar to the one of the Napster
application[Shi01]. Each application node has a set of resources to share among the
other nodes of the network. However, an application node does not know any other
nodes, nor the resources these other nodes are sharing. Instead, an application node
connects to a central index server that contains a list of all the resources available
from all the nodes connected to it. Once a node receives a list of resources from the
server and requests a particular resource, the server arranges a connection between
the requesting- and the providing-node.

Implementing this example in chocoMoCha is fairly easy. In Figure 6.14 we
show the most important methods of a possible implementation. Figure 6.13 shows
a snap-shot of our example network. The server has several request channels. The
sink-ends of these channels are kept private by the server and are meant for reading
requests. However, the source-end references are known to all the application nodes
in order for them to write requests to these channels. Since, in our example, the
server is always on-line the nodes get a source-end reference at their creation; see
their constructor method. Each application node has a connection channel meant
for receiving data from the outside world, it does so by reading from the sink-end of

6.4. Applications 105

So
ur

ce
Si

nk

Source Sink

So
ur

ce
Si

nk

Sink

Source

Source
Sink

So
ur

ce

Sink

SourceSink

Source Sink
Central

Application

A
Node

Application
Node

C

Application
Node

D

Application
Node

B

Server
Index

R
equest C

hannel

Request Channel

R
equest C

hannel

Connection Channel D
Connection Channel B

Request Channel

Connection Channel C

Connection Channel A

Figure 6.13: A Hybrid P2P Network.

this channel. The nodes spread the reference of the source-end to the server when
connecting to it, as specified in the method connect . Suppose that node A is in the
process of connecting to the server, then node B represents the resulting state. The
server moved the source-end to its location and wrote an acknowledgment message
back.

At some point in time node B requests a resource; see the getResource method.
The server, in response, reads the request but it does not take it out of the channel;
see the performGetResource method. Instead, the server looks randomly for a
node that has the requested resource and moves the connection source channel-end
to the found application node. This is the state represented by the nodes D and C.
Node C receives a resource request from the server that was written by node D. The
request remained in the channel unaffected by the channel-end move and without
node D begin aware of it. Since the request also contains the target source-end,
node C writes the data to it. However, it does not know that node D is receiving
the data, nor does node D know that it is getting the requested data from node C.
Therefore, the connection is completely anonymous.

To illustrate the advantage of exogenous coordination: we chose the types of the
request channels and the connection channels to be respectively asynchronous FIFO
and synchronous. However, we could choose other channel types as well, if desired.
For example, we can make the request channels to be of type synchronous. This way,
we get a different system behavior with the big advantage of not having to change,
nor re-compile, the code of the application nodes. Moreover, the nodes don’t even
know what channel types they deal with.

A pure P2P network has no central entity, it is completely decentralized. Figure
6.15 shows a pure P2P network that uses mobile channels for connections between its
nodes. This network example is similar to, but not entirely the same as the Kazaa
network[Sha03]. Actually, the implementation of this example is also similar to the

106 Chapter 6. The MoCha Middleware: API and Applications

class P2PApplicationNode
P2PApplicationNode (SourceEnd ce)

requestSource = ce;
location = new MoChaLocation();
connection = new MobileChannel(location,"Synchronous");
key = new ComponentKey();
connection.ce2.connect(key);

connect()
// connection.ce1 = source-end
// sharelist = list of resources we share.
if (!connection.ce1.full()) {

Message msg = new Message("Joining network", connection.ce1, shareList);
requestSource.connect(key);
requestSource.write(msg, key); }
requestSource.disconnect(key);

else { // find another server or try later. }
getResource(String resource)

// connection.ce2 = sink-end
Message msg = new Message("Request", resource, connection.ce1);
requestSource.connect(key);
requestSource.write(msg, key);

requestSource.disconnect(key);
while(!finished) {

msg = connection.ce2.take(key);
result.add(msg); } //done

class centralizedIndexServer
centralizedIndexServer()

location = new MoChaLocation();
request = new MobileChannel(location, "FIFO 100");
key = new ComponentKey();
request.ce2.connect(key);

void performConnect()
msg = request.ce2.take(key); // request.ce2 = sink-end
shareList.add(msg.shareList, msg.source);
msg.source.connect(key);
msg.source.move(location, key); // move conn. chan. source-end to us.
msg.source.write(new Message("Connected to server"), key);
msg.source.disconnect(key);

void performGetResource()
msg = request.ce2.read(key); // request.ce2 = sink-end
Node tmp = shareList.getRandomNodeWith(Resource);
msg.source.connect(key);
msg.source.move(node.location, key); // move conn. chan.

// source-end to resource node.
tmp.source.write(msg, key); // msg already contains target SourceEnd.
msg.source.disconnect(key);

Figure 6.14: Partial Abstract Java Code of a Hybrid P2P Network.

one of the hybrid network example. That is why we do not present any code for this
example. Most of the functionality is already given in Figure 6.14.

Instead of having a fixed central server, we now have supernodes. A supernode is
a normal application node, but at the same time it performs some of the tasks of the
server in the hybrid example; it keeps a resource-list of the connected clients, and
it arranges connections between the different connected nodes in the same manner
as the server did. For legal reasons, the nodes cannot share any resources of the
supernode they are connected too, and vice-versa.

A supernode itself is a normal node connected to another supernode. Any node
can become a supernode and back to normal depending on the network state and
heuristics. This means that nodes need a dynamic list of supernode source-ends,

6.5. Related Work 107

Sink

Source

Source

Sink

Source Si
nk

Sink

Source

Si
nk

So
ur

ce
Source

Source

Sink

Source

Sink

Si
nk

Sink

SourceSink

Source Sink

Source Sink

Source

Si
nk

So
ur

ce

Si
nk

So
ur

ce

Source
Sink

Application
Supernode

DApplication
Supernode

F

Node
Application

I

Channel I
Connection

Node
A

Node
B

Node
E

Node
H

Node
G

Supernode
C

Application

Application Application

Application

ApplicationApplication

Connection Channel B

Request Channel F

Figure 6.15: A Pure P2P Network.

for when the supernode they are connected to becomes unavailable. To keep its
list up to date a node can request source-end references of neighbor nodes from its
supernode. However, to keep network traffic down, a node can connect to only one
supernode at a time.

In Figure 6.15 nodes E and I are connected to supernode D, nodes C, D, G and
H are connected to supernode F, node A is connected to supernode C, and node B
is not connected to any supernode. In this snap-shot nodes E and I are the only
ones involved in resource transfer; node E is writing data to the connection channel
of node I. The anonymous connection between the two nodes is made by supernode
D in the same way as the index server in the hybrid network example.

In this pure P2P network the topology changes more than that of the previous
example. This more dynamically changing network example clearly shows the ben-
efits of the mobility feature of MoCha’s channels. Instead of creating and deleting
channels every time a topological change occurs, we just simply move channel-ends
to other nodes. When moving one end, the node using the other end of the channel
is not even aware of the channel-end movement.

Just like in the previous example, we can change the network’s behavior by
choosing different types for the channels between the nodes. All of this is done in
an exogenous way.

6.5 Related Work

In this section we discuss and compare related middleware systems with our MoCha
middleware. For convenience, we divide the section in three parts: channel-based
middleware, coordination middleware, and P2P middleware.

108 Chapter 6. The MoCha Middleware: API and Applications

6.5.1 Channel-Based Middleware

We discuss four middleware systems that are based on the notion of channels.

CTJ, CTC, CTC++

Communicating Threads for Java (CTJ) [HBB00] is based on the CSP paradigm
[Hoa85]. In CSP (Communicating Sequential Processes) a system is described as a
number of processes and channel connections among them. These processes oper-
ate independently (in parallel) and communicate with each other using channels.
The CTJ package is an implementation of processes and channels in the Java lan-
guage. There is also a C (CTC) and a C++ (CTC++) version available. The
packages/libraries are developed to make parallel programming easier in these pro-
gramming languages.

The channels of CTJ, (CTC, and CTC++), provide anonymous communication
(between processes) and can be used in distributed environments. These are the
similarities with the MoCha middleware. However, there are quite some differences.
We discuss four of them. First, CTJ works with channels as a whole and no channel-
ends. Second, the CTJ channels are exclusively synchronous. Even if the work in
[HBB00] suggests that there are buffered channels available, we found no trace of
asynchronous channels in the package itself. Third, the channels are not mobile. No
dynamic reconfiguration of channel-connections in the system is possible. Fourth the
channels of CTJ are not primarily developed to work in distributed environments.
Therefore, distribution is indirectly supported through a plug-in structure that must
be provided by the user.

JCSP

CSP for Java (JCSP) [Wel01] is also based on the CSP paradigm [Hoa85]. The
authors of JCSP argue that the monitor-threads model provided by Java, while easy
to understand, proves very difficult to apply safely in any system above a modest
level of complexity. This makes parallel programming in Java very hard. However,
parallel composition of CSP processes is easier to apply, is mathematically clean,
yields no engineering surprises and scales well with system complexity. This is the
reason they developed JCSP.

JCSP is a Java class library providing a base range of CSP primitives plus a rich
set of extensions. It provides processes and channels in Java. Like the MoCha mid-
dleware, JCSP provides anonymous communication. The differences are almost the
same has for CTJ (see above): no channel-ends, exclusively synchronous channels,
and no mobility.

JCSP Network Edition

The JCSP network edition (JCSP.net for short) extends the JCSP middleware (see
above) with distributed channels. JCSP.net seems closely related to MoCha since
it shares many of its features. We now extensively discuss this middleware and the
main commonalities and differences with our middleware. Unlike JCSP, JCSP.net
is a commercial product. Unfortunately, we were not able to get a version of the
middleware for testing purposes. Therefore, we are limited in our comparison on the

6.5. Related Work 109

work presented in [VW02, AFW02] and the free (short) documentation available
on line at [JCSP.net].

JCSP.net views a system consisting of processes that run on nodes. Several
processes can run on a single node. A node is associated with a Java virtual machine
(JVM) [Java] and represents a particular location in the network. Thus, all processes
running on the same node have the same location. This is different in MoCha, where
a location is a logical notion that is decoupled from the underlying JVM. In fact, a
JVM can have many MoCha locations, and a location can involve many JVM’s (see
Section 6.2.1).

JCSP.net provides two kinds of channels. Local JCSP channels for processes on
the same node, and network channels for communication between processes on dif-
ferent nodes. The local channels pass objects by reference, and the network channels
pass the objects by copying (using Java serialization). The MoCha channels pass ob-
jects exclusively by copying and are used for both local and remote communication.
This is all done internally, the fact whether the communication is local or remote is
hidden from the processes that use MoCha channels.

Channels that are created between nodes are virtual in JCSP.net. Internally,
between two nodes a bi-directional link is created that multiplexes the data from the
various virtual channels. This is different in MoCha, where for each channel that
is created by processes, a physical implementation independent of other channels is
created internally.

We concentrate on the network channels since these types provide the distributed
communication. Network channels are either to-the-net or from-the-net. Actually,
we can regard these channels as implicit channel-ends. In MoCha a to-the-net chan-
nel corresponds to a source channel-end, and a from-the-net channel corresponds to a
sink channel-end. Network channels may have one or any number of application pro-
cesses attached to them. This gives us the set {One2NetChannel, Any2NetChannel,
Net2OneChannel, Net2AnyChannel }. Thus, the choice of whether the communi-
cation is one-to-one, many-to-many, etc., is statically determined. In MoCha, this
choice is made dynamically and can change during the life time of the channel.
We accomplish this through the ComponentKey identification class and the con-
nect/disconnect operations (see Sections 6.2.1 and 6.2.3).

There are two ways of setting up channels between processes in JCSP.net, either
through a Channel Name Server (CNS) or Anonymously. The first is the standard
way, the second is an alternative that is more related to MoCha but has some
restrictions. We discuss both schemes.

With the first approach, a writing process creates a channel-end and registers a
particular unique name with the CNS. For example:

Net2OneChannel source = new Net2OneChannel ("cwi.channel");

At the other side, a taking process creates a channel-end and registers it to the
same CNS. For example:

One2NetChannel sink = new One2NetChannel ("cwi.channel");

The CNS, then, relates the two channel-ends and creates a link between them
so that the processes can start using them. We see that the processes create the

110 Chapter 6. The MoCha Middleware: API and Applications

channel-ends separately and explicitly relate them by using the same name, which
they somehow must know beforehand. In MoCha, instead, a channel as a whole
is created, where the channel-ends are internally related and given to the creator.
Such a channel creator can be a third party.

With the second approach, the networked channels do not get registered to
the CNS, instead they are constructed anonymously. The input-end (source-end
in MoCha) is then send to other processes via some other existing channel. An
example of the taker side:

Net2OneChannel sinkCom = new Net2OneChannel ();
NetChannelLocation sinkComLocation = sinkCom.getLocation ();
SourceExisting.write (sinkComLocation);

The writer, then, receives the location of the created sink-end and is able to
create a matching source-end. For example:

NetChannelLocation sinkComLocation =
(NetChannelLocation) SinkExisting.read ();
One2NetChannel sourceCom =
new One2NetChannel (sinkComLocation);

Unlike in MoCha, channel-ends are not directly sent through channels themselves.
Instead, the locations of these ends are send. We could not find out whether these
locations are unique for each end or not. In the second case, the question “what
happens if two channel-ends are at the same location?” arises. Furthermore, it
is only possible to send from-the-net channels (sink channel-ends) through other
channels.

Regarding the exclusive access to particular channel-ends, in MoCha we have the
connect/disconnect operations for this purpose. However, in JCSP.net there is no
such mechanism. If we want to have a private channel communication between two
processes we must either: (a) make sure that they are the only ones that know the
CSN name, or (b) with the anonymous creation approach, make sure that we pass
the sink-end to the right process, and make sure that this process does pass this end
to its friends.

A last comparison involves the different channel types. Next to the primary
synchronous channel, there are also buffered channels available in JCSP.net. We
were unable to determine how these types are selected at creation. However, this
implies some sort of coordination like in the MoCha middleware. Most probably,
this coordination is not exogenous since it seems that the processes involved in the
communication themselves need to agree on the type of the channel they want to
use.

Pict and Nomadic Pict

Pict [PT97] is a concurrent programming language based on the π-calculus. The
π-calculus is a model for describing concurrent computation as systems of commu-
nicating processes. In the computational world modeled by the π-calculus there are
two entities: processes and mobile channels. Processes, are the active components of

6.5. Related Work 111

a system; they interact by synchronous rendezvous on mobile channels, also called
names or ports. Pict includes a Pict-to-C compiler, reference manual, language
tutorial, numerous libraries, and example programs.

Similar to the MoCha middleware, Pict supports logical mobility as defined in
Section 2.2.2, i.e. the spreading of channel knowledge through the system by allowing
to send channel identities through channels. However, since pict does not support
distributed environments, it also does not support physical mobility (as defined in the
same section), i.e. physically moving a channel(-end) from one location to another
in the network. Furthermore, all channels in Pict are synchronous. Some form
of asynchronous output is allowed, but the receiver must always send an explicit
acknowledgment back to the sender.

Nomadic Pict [WS99] is the distributed version of Pict that supports both types
of mobility as described above. The difference with the MoCha middleware, then, is
the fact that there are no explicit channel-ends present, and there is no exogenous
coordination since there is only one channel type (synchronous).

6.5.2 Coordination Middleware

We discuss and relate three middleware systems that are, like MoCha, explicitly
made for coordination purposes.

JavaSpaces

The JavaSpaces [FHA99] technology is a Jini [Jini, ASSWW99] service from Sun
Microsystems that is based on the notion of shared data spaces. In a shared data
space, all components read and write values, usually tuples like in Linda [CG90], from
and to a shared space. The tuples contain data, together with some conditions. Any
component satisfying these conditions can read a tuple; tuples are not explicitly
targeted.

A space is a shared, network-accessible repository for objects. Processes use
the repository as a persistent object storage and exchange mechanism; instead of
communicating directly, they coordinate by exchanging objects through spaces. Pro-
cesses perform simple operations to write new objects into a space, take objects from
a space, or read (make a copy of) objects in a space. The persistent property of the
space means that a collection of data remains intact even if its source is no longer
attached to (or temporarily disconnected from) the network. The processes use the
RMI technology to access the spaces. These space repositories are not distributed
themselves but are centralized in one network location (one machine, one computer,
etc.), making all operations on spaces remote (except if the process performing the
operation happens to be at the same location).

The JavaSpaces coordination model is quite different than the one of MoCha.
In Section 5.2.3, we already discussed the main differences. We summarize: shared
data spaces are easy to use and even useful for network architectures like blackboard
systems. In contrast, mobile channels are more efficient to implement for most
distributed systems, provide more security, are more architecturally expressive, and
provide transparent exogenous coordination.

112 Chapter 6. The MoCha Middleware: API and Applications

Lime

The Linda in a Mobile environment (Lime) [MPR03] is a Java-based middleware
that is also based on the notion of shared data spaces. In Linda, processes commu-
nicate by writing, reading, and removing data from a tuple space that is assumed
to be persistent and globally shared among all processes. Lime adapts this notion
to a mobile environment by breaking up the notion of a global tuple space, and dis-
tributing its contents across multiple mobile components. These components share
the content of their local tuple spaces when either they are on the same host, or
communication is available between mobile hosts that contain components. This
way, they form a federated tuple space. The content accessible through such virtual
tuple space changes from time to time according to the current connectivity pat-
tern. Lime also introduces the notions of tuple location, for querying a partition of
the federated tuple space, and of reactive programming, for allowing actions to be
performed with varying degrees of atomicity upon insertion of a tuple.

The Lime middleware implementation is kept independent from both the un-
derlying support for mobile agents and the underlying tuple space implementation.
In the first case, an adaptation layer is provided in Lime that allows the integra-
tion of the mobile agent system. For this purpose, the current release provides an
adapter for the µCode mobile code system [Pic98]. In the second case, Lime uses
the LighTS package [Pic05], a tuple space implementation that offers an adaptation
layer allowing one to use a different tuple space implementation without changing
the interface.

MANIFOLD

Manifold [Arb96a] is a coordination language for writing program modules (coordi-
nator processes) to manage complex, dynamically changing interconnections among
sets of independent, concurrent, cooperating processes that comprise a single appli-
cation. The conceptual model behind Manifold is based on IWIM (Idealized Worker
Idealized Manager) [Arb96b]. The basic concepts in the IWIM model (and thus also
in MANIFOLD) are processes, events, ports, and channels (in MANIFOLD called
streams). A process is a black box that exchanges units of information with the
other processes in its environment through its input and output ports, by means of
standard I/O primitives analogous to read and write. The interconnections between
the ports of processes are made through directed channels. Independent of channels,
there is an event mechanism for information exchange in IWIM. Events are broad-
cast by their sources, yielding event occurrences. Processes can tune in to specific
event sources, and react to event occurrences.

In IWIM, a process can be regarded as a worker process or a manager (or co-
ordinator) process. An application is built as a (dynamic) hierarchy of worker and
manager processes. Lowest in the hierarchy are pure worker processes that do not
do any coordinating activities. Highest in the hierarchy are pure coordinators. A
process between the lowest and highest level may consider itself a worker doing a
task for a manager higher in the hierarchy, or a manager coordinating processes
lower in the hierarchy.

A Manifold application consists of a (potentially very large) number of processes
running on a network of heterogeneous hosts, some of which may be parallel systems.

6.5. Related Work 113

Processes in the same application may be written in different programming languages
and some of them may not know anything about Manifold, nor the fact that they
are cooperating with other processes through Manifold in a concurrent application.

Both MoCha and MANIFOLD aim at a separation of concerns between the
coordination and the computational aspects of systems by providing exogenous co-
ordination. In MoCha, this is done by selecting different types of channels between
two communicating components. In MANIFOLD, this is done by always letting a
third party arrange a channel between two communicating processes. The big dif-
ferences between the two middleware systems is that: (1) MoCha does not have
a manager/worker architecture as MANIFOLD does; in MoCha all the compo-
nents/processes are equal. (2) MoCha works with channel-ends, not channels as
a whole. (3), and last, the channels of MoCha have different types for exogenous
coordination of the components involved in the communication.

6.5.3 P2P Middleware

In the P2P examples of Section 6.4.3 we showed how P2P systems benefit from the
MoCha middleware. Especially P2P systems where coordinated anonymous exoge-
nous connections are desired. However, our middleware provides only a coordination
mechanism (mobile channels) and does not provide certain P2P services like search-
ing for particular data, load balancing, and indexing. The second generation of P2P
middleware offers a complete package for such systems. Well-known P2P middle-
ware systems are Chord [SMKKB01], Pastry [RD01], Tapestry [ZKJ01], and CAN
[RFHKS01]. They all provide means for locating nodes and data in the network, as
well as efficient and scalable routing protocols for messages. However, they do not
provide explicit (exogenous) coordination between the nodes. Therefore, designers
using these middleware systems can still profit from MoCha by making prototypes
of their systems using mobile channels to explicitly show the coordination aspects of
these systems. Later they can implement MoCha’s mobile channels in these second
generation P2P middleware systems, if desired.

JXTA

The project JXTA [Gon01] provides a set of protocols that have been designed for
ad hoc, pervasive, and multi-hop peer-to-peer network computing. These protocols
establish a virtual network overlay on top of the Internet and non-IP networks,
allowing peers to directly interact and self-organize independently of their network
connectivity. Multiple ad hoc virtual networks can be created and dynamically
mapped into one physical network unleashing a richer multi-dimensional virtual
network world. The JXTA technology runs on any device, including cell phones,
PDAs, two-way pagers, electronic sensors, desktop computers, and servers.

The JXTA protocol most closely related to MoCha is the Pipe Binding Protocol.
In contrast to MoCha channels, pipes provide the illusion of a virtual in and out
mailbox that is independent of any single peer location, and network topology (multi-
hops route). MoCha does not provide middleware services as JXTA does, only
communication mechanisms. Services like searching, indexing, and authentication
have to be built on top of MoCha, if desired.

114 Chapter 6. The MoCha Middleware: API and Applications

Chapter 7

The MoCha Middleware:
Implementation Details

In this chapter we discuss the implementation details of the MoCha middleware. We
discuss these details at an appropriate level of abstraction, where we give an overview
of the main concepts of our implementation. In particular, we focus on the Java RMI
layer, the P2P mobile architecture we build upon it, and the implementation of the
mobile channels. We also introduce many experiments to determine the performance
of the MoCha middleware, and discuss their various results.

7.1 Introduction

In the last chapter, we took the point of view of a distributed system’s developer
to explain the MoCha middleware. Therefore, we presented its Application Pro-
gramming Interface (API), showed some examples of usage, discussed applications,
and related our middleware with others. There are three versions of the MoCha
middleware available. These versions are: “plain” MoCha, easyMoCha, and choco-
MoCha. For the developer, each version is a separate package, or library, where he
is free in choosing any of the three for his distributed application. These packages
are implemented above a MoCha core layer, that itself is built on top of Java RMI
(see Figure 6.1).

From the point of view of the middleware itself, the easyMoCha, and choco-
MoCha packages are built upon the “plain” MoCha package, as illustrated in Figure
7.1. The MoCha package is built upon Java RMI, and consists of a MoCha core
and an API layer. The MoCha core layer coincides with the one presented in Figure
6.1. Internally, it is divided into a Channels and a P2P Mobile Architecture layer.
The first, contains the implementations of the eleven channel types that the mid-
dleware currently supports. The second layer, extends the Java RMI architecture in
such a way that we obtain a peer-to-peer mobile architecture for the channels to be
implemented in.

In this chapter, we discuss the implementation details of the MoCha middleware.
In particular, we focus on the Channels, P2P Mobile Architecture, and Java RMI

115

116 Chapter 7. The MoCha Middleware: Implementation Details

easyMoCha

API

Channels

P2P Mobile Architecture

Java Remote Method Invocation

MoCha

MoCha Core

chocoMoCha

Figure 7.1: The Internal Overview of MoCha

layers.
We begin, in the next section, by motivating our choice for the Java RMI in-

frastructure. In Section 7.3, we explain the basics of Java RMI. In Section 7.4, we
discuss the mobile P2P architecture layer. In Section 7.5, we discuss the implemen-
tation of MoCha’s channels. Finally, in Section 7.6 , we run several experiments and
present the measurements to show the performance of the middleware.

7.1.1 Figure Legend

Object

Location

Action (read/write/...)

Reference

Interface Ref.

NULL (Ref)

Object
Name

Attribute1
Attribute2

Figure 7.2: Figure Legend

To explain the implementation details we use many figures. In Figure 7.2 we give
the legend for the symbols in these figures. The references either point to local or
to remote entities, denoted by thin arrows within a location or crossing its border,
respectively. An interface reference is a reference from a component to a channel-
end, restricting the access of the component to only pre-defined operations on the
channel. A reference to NULL, is an attribute that is set to null . By location
we mean a logical address space where processes, threads, objects, or components

7.2. Choosing the Right Infrastructure 117

execute. Actions are performed by either components or objects. We represent an
object by giving its class name and its attributes (which are references to other
objects).

7.2 Choosing the Right Infrastructure

One of the first choices we had to make, in order to find a good infrastructure to
implement MoCha, was choosing the right programming language. Coming from
a C++ [Str91] background, this language seemed to be a good choice. However,
we decided to implement the middleware in the, back then strong upcoming, Java
[Java] language. Java has several benefits, Gosling and McGilton describe its ben-
efits by using the following buzzwords: Architecture neutral, distributed, dynamic,
interpreted, high performance, multi-threaded, portable, robust, secure, and simple.
For an extensive explanation of these buzzwords, the interested reader is referred to
their work in [GM96]. We just briefly discuss those that influenced our choice.

Simplicity is in the eye of the beholder. However, if you are from a C++ back-
ground then you will find Java simple to use, for it offers a cleaned-up version of the
syntax of C++ and is certainly more programmer friendly. Java is an interpreted
language, the compiler generates architectural neutral code that can run on several
machines with different operating systems (OS). Especially this feature is appealing
to us, since it means that we just have to compile the middleware once instead of
having to produce several versions for different platforms. Java has a nice integrated
multi-threading system that, in contrast with other programming languages, is easy
to use. Interesting for us are the extensive libraries that Java provides for distributed
environments. Especially for the Internet (which is the biggest distributed system
on earth). The Java platform is heavily network oriented. A Java Virtual Ma-
chine (JVM), used to execute Java object code, can download classes located on
remote hosts and execute them. For example, this feature is used in web browsers
to download and execute small pieces of Java code, called applets.

Another appealing feature of the Java language is that it is freely, and fully,
available at Sun’s Java website [Java]. Sun frequently updates Java by creating
new libraries, and updating existing ones, in order to support new standards and
technologies. Furthermore, most of the applications for which MoCha can be used,
are using Java technology. We gave examples of these applications in Section 6.4.
Probably, this is also the main reason for other recent coordination middleware
systems, like LIME [MPR03], to use Java.

The most primitive and basic distributed communication framework in Java are
sockets [Bre01]. Virtually any other distributed high-level computing paradigm
eventually invokes the socket API to perform the actual distributed communica-
tion. Java sockets are directly implemented on top of the socket primitives pro-
vided by the underlying OS, and therefore, provide the fastest form of distributed
communication in Java. Furthermore, Java sockets support the frequently used
TCP/IP [Ste95] communication semantics. For example, the HyperText Transfer
Protocol (HTTP) [FGMFB96] is based on the TCP/IP protocol and is usually im-
plemented using sockets.

Java sockets seemed to be a good choice for implementing MoCha. However,
there are many drawbacks for doing this. Java sockets are needed if we want to have

118 Chapter 7. The MoCha Middleware: Implementation Details

full control over the protocol used between the communicating processes. In any
other case having to deal with sockets is too cumbersome [Bre01]. The services they
provide are aimed solely at transferring and receiving data successfully. Any other
service or protocol, like marshalling [Eck98] or remote references, must be build
from scratch. Due to their low-level aspect, it is also easy to make mistakes when
implementing protocols using sockets. Therefore, developing the MoCha middleware
directly on top of sockets would make it an extensive time consuming activity, which
is not feasible within the duration of a PhD.

Instead, we looked at distribution middleware systems [SS01]. These middleware
systems define higher-level distributed programming models whose reusable APIs
and components automate and extend the native OS network programming capabil-
ities encapsulated by host infrastructure middleware. Distribution middleware en-
ables clients to program distributed applications much like stand-alone applications,
i.e., by invoking operations on target objects without hard-coding dependencies on
their location, programming language, OS platform, communication protocols and
interconnects, and hardware. We considered three such middleware systems: Corba,
JMQ, and Java RMI.

The OMG’s Common Object Request Broker Architecture (CORBA) [TB00], is an
architecture and specification for creating, distributing, and managing distributed
application objects in a network. CORBA provides platform and location trans-
parency for sharing well-defined objects across a distributed computing platform.
The middleware uses an interface definition language (IDL) to specify the interfaces
that objects present to the world. CORBA, then, specifies a “mapping” from IDL
to a specific implementation language like C++ or Java. In the implementation,
CORBA uses an Object Requested Broker (ORB), which functions as a broker be-
tween clients and servers. ORB provides services as object registration, location,
activation, parameter marshalling and un-marshalling, discovery, dynamic invoca-
tions, persistent naming, etc.

Java Message Queue (JMQ) [JMQ] enables the transmission of messages between
application processes in a distributed environment. With JMQ, processes running
in different architectures and operating systems simply connect to the same virtual
network to send and receive information. JMQ also handles all data translation be-
tween application processes. The middleware supports two communication models:
the point-to-point model, and the publish-and-subscribe model. In the first model,
a sending process addresses the message to the queue that holds the messages for
the intended receiving process. In the second model, a sending process addresses
(publishes) the message to a topic to which multiple processes can be subscribed.

The Remote Method Invocation (RMI) [RMI, HC00] middleware implements the
remote procedural calls protocol [RPC] for Java objects. The caller must first acquire
a reference to the remote object, for example, by looking it up in the RMI bootstrap
naming service or by receiving a reference as an argument or a method return value.
Using the object reference, a call can be made on the remote server object. The
server can in turn be a client of other remote objects. RMI technology uses object
serialization to marshal and unmarshal parameters between method calls.

JMQ does not fully adhere to the definition of a distribution middleware, for
it does not provide invoking operations on remote objects. On the other hand, it
does offer a high-level model that abstracts away from the underlying distributed

7.3. Remote Method Invocation 119

platform. However, we didn’t choose this middleware for two reasons. First, if we
work at the level of messages we might as well work at the level of sockets. With
JMQ we need to implement protocols like remote synchronous method calls from
scratch. Second, we have no control over the way the middleware sends messages
around; if this is done in an inefficient way it would slow down our own middleware.

Both CORBA and RMI are good candidates to implement our coordination
middleware with. We chose RMI for several reasons. First, since we already decided
to implement our middleware in the Java programming language, we don’t need
the separation that CORBA offers between the specification layer (IDL) and the
implementation layer. Second, we are interested in a simple distribution middleware
that remains close to the sockets level but yet offers a higher-level interface. The
RPC feature of RMI is sufficient for our purposes, and it seems to be closer to the
TCP/IP level than CORBA’s ORB. CORBA includes many other mechanisms in its
standard (such as a standard for Transaction Processing monitors) none of which is
part of Java RMI. There is also no notion of an “object request broker” in Java RMI.
Finally, RMI integrates well with other frequently used Java middleware software,
for example the Jini technology [Jini].

7.3 Remote Method Invocation

The basic idea of Java’s Remote Method Invocation (RMI) is quite simple. It makes
remote objects appear as if they were local. From the point of view of the user,
all method calls on objects are local regardless of whether these objects are on his
machine or elsewhere in the network. Naturally, if the method call is on a remote
object, somehow the method parameters must be shipped to the other machine, the
remote object must be informed to execute the method, and the return value must
be shipped back. RMI automatically handles all these details. In this section, we
discuss Java’s Remote Method Invocation middleware. We give a general overview
without going too much into the technical details. The interested reader can find
more in depth details about RMI in the tutorials given in [Bre01, HC00, RMI].

In Figure 7.3, we give an overview of the main entities of RMI and how they
communicate with each other. RMI is based on a Client/Server architecture [Sch01]
(see Sections 2.2.2 and 6.4.3). The straight lines denote the local method calls and
the dashed lines denote the actual remote network calls. The object making the
method call is the client object in RMI terminology. The object executing the re-
quested method is the server object. The computer executing the client object is
called the client, and the computer executing the server object is called the server.
When the client object wants to invoke a method on a remote object, internally it
actually calls a local method of a surrogate object called a stub. The stub object acts
as a replacement for the actual remote object, for it implements the same interface.
Its main functionality is to: (1) initiating a connection with the remote machine
containing the remote object. (2) marshalling and transmitting the parameters to
the remote machine; parameter marshalling is converting the given parameters into
a format suitable for transport through a network. (3) waiting for the result of the
method invocation. (4) unmarshalling the return value or exception; unmarshalling
is the reverse action of marschalling. Finally, (5), returning the value to the client
object. The stub hides the serialization of parameters and the network-level com-

120 Chapter 7. The MoCha Middleware: Implementation Details

Server

return result

Object
Client

Stub Skeleton Object
Server

method locally
Call stub

method locally
Call server

return result

Send marshalled
parameters

Send marshalled
result

Client

Figure 7.3: Remote Method Invocation Overview

munication in order to present a simple invocation mechanism to the caller. On
the remote machine, each remote object has a corresponding skeleton object. This
skeleton is responsible for dispatching the call to the actual remote object imple-
mentation. When a skeleton receives an incoming method invocation it does the
following: (1) it unmarshals the parameters for the remote method; (2), it invokes
the method on the actual remote object implementation and waits for the result;
and (3), marshals and transmits the result back to the stub object.

This stub/skeleton model is valid for all Java RMI versions. However, from Java
version v.1.2 (Java 2 SDK, Standard Edition) and up no more actual stubs and
skeletons are created. Instead a generic object is produced that when executing on
the client side it behaves as a stub, and when executing on the server side behaves
like a skeleton. To make things confusing Java calls this generic object also a stub.

7.4 MoCha’s Mobile P2P Architecture

In this section, we describe MoCha’s P2P mobile architecture. We do this in two
steps, first we present the P2P architecture and then we extend this architecture
with support for mobility.

7.4.1 Using RMI for P2P Networking

As described in the previous section (Section 7.3), RMI implements a Client/Server
architecture. The JVM containing client objects is the client, and the JVM con-
taining server objects is the server. As illustrated in Figure 7.4(a), a server can
have many clients, whose client objects perform remote method calls on the avail-
able server objects. Servers are processes dedicated to specific tasks like managing
of disk drives, printers, or network traffic, whereas clients are processes that rely
on servers for resources. The clients themselves do not share any resources. For

7.4. MoCha’s Mobile P2P Architecture 121

example, we can think of the lightweight Java applets client objects that run on web
browsers and access remote database server objects. Regarding the MoCha middle-
ware, the problem with this architecture is that all the resources are centralized on
the servers. Implementing our point-to-point mobile channels in such an architecture
makes the middleware inefficient. Instead, we need a P2P framework to implement
MoCha’s mobile channels. In a P2P (peer-to-peer) architecture each node is both a
client and a server at the same time (for more details about P2P architectures see
Section 6.4.3).

Server
RMI

RMI
Server

RMI
Server

Server
RMI

(b)

MoCha Node

MoCha Node

MoCha Node

(a)

RMI
RMI

Client
RMI

RMI

Client
RMI

RMI
Client

Client

Client

Client

Figure 7.4: Constructing a Peer-to-Peer Architecture

In RMI it is possible to define objects that are both a client and a server object
at the same time (although when designing RMI it was not meant to in the first
place). We call such objects node objects. We extend the RMI architecture by
converting all remote objects into standard node objects. As illustrated in Figure
7.4(b), all the JVMs that use the MoCha middleware are considered to be MoCha
nodes. The node objects of these MoCha nodes may have references to other remote
objects on other nodes and call their methods. Naturally, not all node objects need
to have references to each other. Also, in this P2P architecture the node objects
may pass third party remote references to each other in order to dynamically change
the remote reference connections within the network, i.e. spreading the knowledge
of remote references. By passing a remote reference we mean that we copy and
pass stub objects that themselves refer to remote objects. However, this passing of
remote references causes a problem in some cases. Next, we discuss this problem
and how we extended the architecture in order to fix this.

The Distributed Garbage Collector Problem

In the Java language there are no methods for explicit memory management like,
for example, in C++. There is no need for allocating memory to objects, freeing
memory by explicitly destroying objects, and keeping track of what memory can be
freed when needed. Instead Java has a garbage collector that does this automatically
and implicitly in the background. Once an object is created the run-time system
keeps track of the object’s status and automatically reclaims memory when it is no
longer in use (and the memory space is needed). To determine whether an object
is no longer in use, the garbage collector keeps track of all the references to each

122 Chapter 7. The MoCha Middleware: Implementation Details

object in the system. When an object has no more references pointing to it by other
objects it is no longer in use and, therefore, candidate for garbage collection.

The distributed RMI garbage collector is the union of all the local garbage col-
lectors of each JVM plus a mechanism to determine whether a remote reference is
still valid. A remote object is garbage collected when there are no local nor remote
references pointing to it. For each server object there is a counting mechanism to
detect whether there are still client objects referring to it. When a client object
obtains a remote reference, RMI sends a dirty() message to the remote server ob-
ject, which gives the client a lease for this object. The lease expires after a specific
time, so the client JVM has to automatically renew the lease by periodically sending
dirty() messages to the server object. If the client object drops the reference,
the client JVM sends a clean() message to indicate this loss. If the server object
receives a clean() message or if a dirty() message does not arrive (on time)
due to network problems, its reference count is decreased by one. If the reference
count reaches zero, then RMI indicates to the local garbage collector that the server
object is ready for garbage collection.

Remote MoCha
Node Object

Local
Object

reference

Remote MoCha
Node Object

Local
Object

Loc_Bologna

Node Object
Remote MoCha

reference

Loc_Namur

Remote MoCha
Node Object

reference
Location

Loc_Bologna

Remote MoCha
Node Object

Loc_Santa_Fe

Loc_Namur

Node Object
Remote MoCha

reference

Loc_Santa_Fe

Remote MoCha
Node Object

Local
Object

Loc_Bologna

Node Object
Remote MoCha

reference

Loc_Namur

Node Object
Remote MoCha

reference

Loc_Santa_Fe

reference

reference

Node Object
Remote MoCha

Node Object
MoCha Location

reference

reference

Remote MoCha
Node Object

reference

(a)

(c) (d)

(b)

Figure 7.5: The Distributed GC Problem

The lease time mechanism of RMI works well in Client/Server architectures.
Since the server objects have all the resources, they usually have local references
pointing to them and are, therefore, never illegitimately garbage collected. In our
MoCha P2P framework extension we can have node objects at a certain JVM that
are referred to only by remote references. If the dirty() messages do not arrive
on time due to network problems, these objects are illegitimate garbage collected,
causing an internal MoCha error when trying to access their methods afterward.

7.4. MoCha’s Mobile P2P Architecture 123

Network problems are not the only possibility for the late arrival of these messages.
In our P2P architecture it is possible to pass on third party references, i.e. passing
stub objects to other node objects in the network. If while we are passing a particular
stub no other stubs exists that send dirty() messages, then the remote node object
may also get illegitimately garbage collected. We illustrate this situation in Figure
7.5(a). The dashed square denotes a location, the lines denote a remote reference,
i.e. the object holding the remote reference has a local reference to a stub that
refers to the remote object. In this particular example we have three locations. We
focus on the remote MoCha node object in Bologna. This object is referred to by
two other objects: a local object, and a node object at the Santa Fe location. This
last object also has a remote reference to a node object at the Namur location.
Now, suppose that at some point in time the local object drops its reference to our
node object. Then, we must hope that the distance between Bologna and Santa
Fe is not too long for the dirty() messages to arrive on time to our node object.
Suppose that this goes well and that now the node object in Santa Fe sends the stub
pointing to our object to the node object in Namur. Furthermore, after doing this,
the Santa Fe node object also drops its reference to our object. Then, there are two
possible outcomes. If we are lucky, we get the situation of Figure 7.5(b), where the
Namur node object has a remote reference to our still existing Bologna node object.
However, we can also get the situation of figure 7.5(c), where due to the distance or
traffic between Santa Fe and Namur, before the stub gets to Namur and the JVM
there is able to send a dirty() message, our Bologna object got garbage collected.

To solve the problem of illegitimate garbage collection of MoCha node objects,
we need an object that locally refers to these node objects all the time. Thankfully,
at each JVM there is always at least one internal MoCha node object present: the
location object. This object is explicitly created by the components of a particular
JVM and is used for channel creation and movement of channel-ends (see Section
6.2.1). We extend our architecture by letting location objects to locally refer to the
internal MoCha node objects (see Figure 7.5(d)). At the same time, all MoCha node
objects have a reference to their current location (object). At channel creation time,
the channel-ends and other created internal objects (if present) report themselves to
the (local to them) location object so that it can refer to them. We want these ref-
erences to always be local, therefore, when a channel-end moves, it and all necessary
internal objects check themselves out of current local location object and reports
themselves to the location object at the new destination (we discuss object move-
ment in Section 7.4.2). In this way, using the location objects we prevent illegitimate
garbage collection.

7.4.2 Mobility on top of RMI

The channels of the MoCha middleware are mobile (see Sections 2.2.2 and 2.3). This
means, (1) spreading the knowledge of channel-end references in the system through
channels themselves, and (2) physically moving a channel-end from one location to
another location in a distributed system. The first property is handled by channels
themselves and is already supported by our RMI MoCha P2P platform. However,
mobility of objects is not a feature of RMI, therefore, we extend our architecture to
support object mobility.

124 Chapter 7. The MoCha Middleware: Implementation Details

Loc_Leiden

Node Object
MoCha Location

Node Object
MoCha Location

reference

Loc_Amsterdam

Node Object
MoCha Location

Loc_AmsterdamLoc_Amsterdam
reference

Node Object

reference

Mobile MoCha

reference

Node Object

reference

Mobile MoCha

Loc_Leiden

Node Object
MoCha Location

reference
Node Object

reference

Mobile MoCha

Loc_Leiden

Node Object
MoCha Location

Node Object
Mobile MoCha

Node Object
Mobile MoCha

Node Object
MoCha Location

reference

state information

(a’) (b)(a)

Creates

Copy and transfer
node object

Figure 7.6: Moving a MoCha Node Object

Not only channel-ends can move in MoCha, but depending on the type of the
channel, internal data structures associated with particular channel-ends may also
move when necessary. Thus, the extension we make is not only meant for channel-
ends but for any MoCha node object in general. We specify a moving protocol
where we use the location node object. It makes sense to use this object, since a
channel-end always has a reference to a local instance of such an object, and since
the move operation requires the target location as a parameter (see Section 6.2.3),
we have a reference to the new location available during the movement process.

We illustrate our protocol in Figure 7.6. Suppose we have a mobile node object
that wants to move from Amsterdam to Leiden. Naturally, in Amsterdam it has
a reference to a local location object, that in turn refers back to our mobile node
object (as explained in Section 7.4.1 and illustrated in Figure 7.6(a)). Due to the
move operation, our mobile object acquires a reference to the target remote location
object. This enables our object to ask this location to create a new object of the
same type as his. After creation, the target location passes on the reference of the
“new” node object to the “old” one. Our Amsterdam object, then, invokes a special
method that copies its current object state and transfers it to the Leiden object. The
result is an identical copy of the original mobile node object (see Figure 7.6(a’)).
To complete the process, both the location object and the “old” node object at
Amsterdam drop their mutual references (see Figure 7.6(b)). To facilitate garbage
collection of other objects, our “old” mobile object drops all references it has to
any object in the system. Our Amsterdam mobile node object is now ready to get
garbage collected. After this, finally, the “new” mobile node object in Leiden reports
itself to the new location so that both objects refer to each other as was the case
with the old object at the (initial) Amsterdam location but now at Leiden.

Coping with Dangling and Invalid References

Channel-end movement leads to dangling and invalid references. For example, sup-
pose that the Amsterdam mobile MoCha node object in Figure 7.6(b) is a channel-
end, and that there are still components that have references pointing to it. Then,
these references are either invalid if the channel-end is still not garbage collected, or

7.5. MoCha’s Channels 125

dangling if this channel-end was garbage collected. In both cases, the components
get an exception error from the “plain” MoCha middleware.

However, the easyMoCha and chocoMoCha middleware versions internally update
their channel-end references so that when a component acquires a reference to a
particular channel-end it always remains valid (see Chapter 6). To accomplish this,
we make a small change in the protocol. If the mobile node object is a channel-end,
then, we don’t entirely leave it behind for garbage collection. Instead we make it
drop all references it may have to any object, except to the new copied object (see
Figure 7.6a’). At the same time, we give it a tag to denote that this particular
channel-end is invalid. Components do not directly refer to a channel-end but to a
local MoCha proxy, that in turn refers to the “real” channel-end (see Section 7.5.1).
Therefore, when a component tries to access an invalid channel-end, the local proxy
notices that the channel-end is invalid, asks and gets the reference to the “new”
channel-end, updates its own reference, and continues with the operation that the
component wants to perform. Only when all local proxies update their references to
the “new” channel-end, the “old” one is ready to get garbage collected.

Naturally, if a channel-end moves a lot, a large chain of invalid channel-ends may
emerge if components have references to the “old” instances of this end but never use
them. However, the invalid channel-ends are lightweight objects that don’t consume
much local resources. So even if we get big chains of invalid channel-ends, this
won’t affect the performance of the JVMs that much. Nevertheless, we encourage
components to drop their channel-end references if they don’t need them anymore.

7.5 MoCha’s Channels

Now that we constructed a P2P mobile architecture on top of Java RMI, we are ready
to implement our mobile channels on top of it. In this section, we first describe the
general internal overview of a channel. We then give the implementation of the
FIFO channel type as an example. Finally, we discuss several small but interesting
implementation issues regarding channels.

7.5.1 General Mobile Channel Implementation Overview

In Figure 7.7 we show how a mobile channel is realized in the MoCha middleware. A
channel consists of exactly two distinct ends, which are either of type source or sink.
There is no channel object that relates the two ends. Introducing such an object
gives problems such as: at which location do we put this object? It also makes the
internal communication less efficient since the ends need to indirectly communicate
with each other through this channel object (which can be at a different location
as the two ends). Instead, in MoCha the two ends directly refer to each other (the
other e rf reference). In this more efficient way, the channel as a whole is just a
concept, while internally the channel-ends are two separate objects that are related
to each other. Depending on the type of the channel, the channel-ends may refer to
a (distributed or local) buffer. For example, this is the case for the asynchronous
FIFO channel types, but not for the synchronous types. That is why in the figure
these references are dashed. Naturally, channel-ends may refer to other internal
(MoCha) objects depending on their channel type.

126 Chapter 7. The MoCha Middleware: Implementation Details

B

Channel End

other_ce_rf

Channel End

other_ce_rf

MoCha
Location

MoCha
Location

ComponentComponent

A
chan_e_ref

Local Proxy

chan_e_ref

Local Proxy

Buffer

Figure 7.7: A Channel in MoCha

Channel-ends and other internal objects, like buffers, are (mobile) MoCha node
objects. Therefore, they are all referred to by a MoCha location object, and they all
refer back to such an object (as explained in the previous section). Components also
work and know MoCha location objects (as explained in Section 6.2.1). They have at
least one interface reference to such an object. Obviously, components also know and
work with channel-ends. However, they do not directly refer to “real” channel-ends.
Instead, they have interface references to local proxies, which internally refer to the
channel-ends. As shown in Figure 7.8, a channel-end can have many local proxies,
but a proxy refers to exactly one channel-end. Many components at the same or
different locations can have references to the local proxies of a particular channel-end.
These components don’t know that they are referring to such proxies; as far as they
are concerned they refer to local channel-end objects. The fact that the channel-end
operations that these components perform may involve remote communication is
internally taken care of by the MoCha middleware.

Our motivation for introducing local proxies for channel-ends is to reduce the
internal network communication. For example, there are some inquiry operations
(see Section 6.2.3) that are locally handled by the proxy without needing to access
the (remote) channel-end. Such operations include, for example, isSourceEnd() ,
equals(ChannelEnd ce) , and equalsChannel(ChannelEnd ce) . Also, lo-
cal proxies provide load balancing of connect operations. If we allow components
to directly perform these operations on channel-ends, then eventually the channel-
ends need to keep a big queue of component identities (and references) waiting to get
access to them. The bigger this waiting queue is, the more internal network commu-
nication we get (for example, due to RMI internal update messages). To reduce this
communication, the local proxies implement their own local waiting queues. All the
components at a particular location performing connect operations on the same
channel-end wait on this local proxy queue. The proxy, then, selects one component
at the time that goes through to the waiting queue of the channel-end. The proxy
selects another component to go through only when the previous component gets
channel-end access and (after a while) releases it by performing a disconnect op-

7.5. MoCha’s Channels 127

C

A

chan_e_ref

Local ProxyComponent

Channel Endchan_e_ref

Local Proxy

Component

B

Component

Figure 7.8: Local Proxies for Channel-ends

eration. This protocol considerably reduces internal network communication due to
smaller waiting queues on channel-ends.

7.5.2 Example: FIFO Channel Implementation

In Figure 7.7 we gave the general overview of how channels are implemented in
the MoCha middleware. We now present a more detailed example of one of these
channels: the unbounded FIFO channel type (see Section 2.4). With this channel
type, the I/O operations performed on the two channel-ends succeed asynchronously.
Values written into the source channel-end are stored in the channel in a FIFO (First
In, First Out) distributed buffer until taken from the sink-end.

source_rfsink_rfA

Channel End
Source Component

B

Channel End
SinkComponent

Buffer

Figure 7.9: FIFO Channel Type Overview

To simplify our explanation, we abstract away from MoCha location and local
proxy objects, in order to focus on the details of the FIFO channel implementation
algorithms. We give a simplified overview in Figure 7.9, where we pretend that
components have a direct interface reference to channel-ends. With this channel
type, there is a sink and a source channel-end present that refer to each other (the
sink rf- and source rf-fields in the figure). There is also a distributed buffer present,
whose implementation consists of a chain of local FIFO buffers that are distributed

128 Chapter 7. The MoCha Middleware: Implementation Details

over the system. These local buffers, and other fields, are gradually introduced in
our explanation.

Our approach is to describe the abstract operations: create channel, write, take,
and move. We divide our explanation of the I/O operations into two parts: with
and without mobility. Afterward, we discuss details like heuristics and clean-up of
buffers. We do not explain other operations like connect, read, empty, etc., because
the operations that we selected are representative enough to give a good intuition
of how this channel type is implemented.

The interested reader can find more about the implementation details of this
channel type, as well as about other channel types, in the abstract algorithms of
Appendix A.

Towards an Efficient Implementation

In a distributed environment, data-transfer between different locations is more costly
with respect to time than data-transfer within a location. Therefore, an efficient im-
plementation must reduce the amount of non-local data-transfer. Trivial implemen-
tations of FIFO mobile channel types in distributed environments, such as a central-
ized buffer for which (virtually) every take and write operation is non-local, clearly
do not meet this demand. Our implementation reduces non-local data-transfers
by allowing the distribution of data all over the system, and avoiding any kind of
centralized control. The movement of data is minimized by making sure that:

• Every write is always a local operation.

• A take is mostly a local operation. We try to reduce the number of non-local
take operations by using heuristics.

• Moving the channel-ends does not involve any transfer of data elements at all.

Create Channel

sink_rf

Component

A

Channel End
Source Component

B

Channel End
Sink

source_rf
buffer_rfbuffer_rf

Figure 7.10: FIFO Channel Creation

Upon creation of a new channel, its channel-ends (its sink and its source) are
created at two given locations, which need not be distinct. A reference to each
channel-end is then returned. We sometimes say “a component holds a channel-
end” when it has access to this channel-end.

An example of creation is shown in Figure 7.10. In this figure, components A
and B need not be distinct, because the same component can hold both channel-
ends. At creation, the channel-end fields sink rf and source rf are set in the proper

7.5. MoCha’s Channels 129

way (pointing to each other), and the buffer rf-fields are set to NULL. The reason
for doing this is that there is no guarantee that the component that initially holds
a channel-end, actually takes or writes any data before the channel-end is moved
to another location. Therefore, creating a buffer is done only when really needed,
which is more efficient (examples follow).

Write (Without Mobility)

link_rf

Writes

Component

A

Source Component

B

Channel End
Sink

Channel End

source_rf
buffer_rf

Buffer

buffer_rf
sink_rf

Figure 7.11: First Write Action

In Figure 7.11, component A starts to write for the first time. Because its
buffer rf-field is NULL the source creates a local unbounded FIFO buffer. The buffer
has a field called link rf, which is a reference to another buffer. Because there is just
one buffer now, this field is set to NULL.

For its internal consistency, MoCha requires an invariant to hold on the buffer rf-
fields of the two ends of a channel: they must be either both NULLor both non-NULL .
In Figure 7.10 the channel is just created and the buffer rf-fields are, initially, NULL.
Therefore, after the creation of the first buffer of the channel, they must be both
non-NULL . The source notifies the sink about the new buffer, and the sink updates
its buffer rf-field to point to this new buffer in order to satisfy the invariant.

The first buffer of a channel is always created by its source-end. After the first
write action, there is always a local buffer at the same location as the source.

Take (Without Mobility)

In Figure 7.10 both buffer rf-fields are NULL. If component B wants to take, the sink-
end will notice its buffer rf-field is NULL and conclude that there are no elements in
the channel. It then waits for a first write.

In Figure 7.11 the buffer rf-field of the sink is not NULLanymore, but it points to
a non-local buffer. If B attempts to take now the sink creates a new local buffer. The
link rf-field of this buffer is set to point to the old buffer (where the buffer rf-field
of the sink points to), and the buffer rf-field is updated to point to the new local
buffer. The result is shown in Figure 7.12. If A and B are at the same location, then
no new local buffer is created, because the buffer rf-field of the sink already points
to a local one. After the first take action, there is always a local buffer at the same
location as the sink.

130 Chapter 7. The MoCha Middleware: Implementation Details

link_rf

Component

A

Channel End
Source Component

B

Channel End
Sink

Reads

Buffer

source_rf
buffer_rf

Buffer

buffer_rf
sink_rf

link_rf

Figure 7.12: First Take Action

Move

We already discussed how a channel-end moves from one location to another in
Section 7.4.2. For the FIFO channel type this involves additional considerations.
When a channel-end moves to a component in a different location, its buffer rf-field
reference changes from local to non-local. Because a channel-end can move among
several components before one of them actually uses it, no buffers are moved or
created in MoCha by move operations. A buffer is created in MoCha only when
necessary: when a component actually starts to read or write. After a move, a
channel-end notifies the other end of the channel of its new location. Examples of
move follow.

Write (with mobility)

When writing, a local buffer is created at the location of the source if its buffer rf-
field is either NULL or pointing to a non-local buffer. If the buffer rf-field is NULL,
the source notifies the sink about its newly created local buffer (as explained before).

Figure 7.13 is an example of writing after the source end of a channel is moved to
a new location. At some point in time component A has the source channel-end and
writes some elements into the channel. Then the channel-end moves to component
B in another location, at which time no buffer is created or moved. Then component
B starts to write (Figure 7.13a). The buffer rf-reference of the source is non-local,
therefore a new local buffer is created. Both the buffer rf-field, and the link rf-field
of the old buffer (the buffer where the buffer rf-field points to) are changed to point
to the new buffer. The result is Figure 7.13b. The data written by component B
can now be inserted into this new local buffer.

Take (with mobility)

When taking, a local buffer is created at the location of the sink if its buffer rf-field
points to a non-local buffer. If the buffer rf-field points to a local buffer, then taking
can proceed. If it is NULL, then no elements exist in the channel and the sink waits.

Figure 7.14 shows an example of taking after the sink end of a channel is moved
to a new location. Component C holds the sink channel-end right after the move, the
sink moved. In Figure 7.14 a component C starts to take. The buffer rf-reference of
the sink is non-local, therefore a new local buffer is created. The link rf-field of the

7.5. MoCha’s Channels 131

link_rf

Writes

Component

A

Component

A

Writes

Component

B

Channel End
Source

(a)

Component

B

Channel End
Source

(b)

Buffer Buffer

Buffer

link_rf

buffer_rf
sink_rf

Buffer

link_rf

buffer_rf
sink_rf

link_rf

Figure 7.13: Writing after Movement of Source-end

new buffer is changed to point to the old buffer (the buffer where the buffer rf-field
points to), and the buffer rf-field is changed to point to the new buffer. The result
is shown Figure 7.14b. The taking can now begin. More details on take follow.

Chain of local buffers

The mobility of channel-ends in combination with the actions write and take can lead
to a chain of buffers that is distributed over many locations. Figure 7.15 shows the
general case. The components need not be distinct and the buffer rf-field references
need not be local. The first buffer of the chain is the one where the buffer rf-field
of the sink points to, it contains the oldest elements inserted in the channel. The
last buffer is the one where the buffer rf-field of the source points to, it contains the
most recent elements inserted in the channel. In this way the FIFO structure of the
channel is preserved.

In Figure 7.16 a particular instance of the general case (Figure 7.15) is given.
There are two buffers at the location of component B, because the source-end moved
twice between the locations of component B and A. Component B has no access or
knowledge of the buffers (only channel-ends can access the buffers). At the location
of component F there are also two buffers. This situation can exist only if a buffer,
between the two now present, has been garbage collected (we explain buffer garbage
collection shortly).

How data elements move

We showed how local buffers are created as a consequence of taking and writing. For
writing this is sufficient because this action just creates a local buffer, sets ups the
references, and fills it with elements. For taking, however, we still need to explain

132 Chapter 7. The MoCha Middleware: Implementation Details

link_rf

Component

C

Component

A

Reads

Component

C

Component

A

Reads

(a) (b)

BufferBuffer

Buffer Buffer

Channel End
Sink

Channel End
Sink

source_rf
buffer_rf

source_rf
buffer_rf

link_rf

link_rf link_rf

Figure 7.14: Taking after Movement of Sink-end

how elements are moved through the chain of buffers.
The buffers in MoCha support additional functionality beyond the typical FIFO

buffers. A buffer is either a sink-buffer, or a normal MoCha buffer. A sink-buffer
is one that is local to the sink-end of a channel. A channel can have at most one
sink-buffer at any given time, but any buffer in its chain can become its sink-buffer
at some point in time.

When reading, the sink asks the sink-buffer for an element. If the sink-buffer
contains at least one element, it gives an element to the sink. If it is empty, it
asks the next buffer in the chain (if any) for a certain number of elements. This
number is determined by the take heuristics (which we explain next). The sink-
buffer receives from this next buffer either (1) the requested number of, (2) fewer
or, (3) no elements. The sink-buffer also receives a reference that is either:

• NULL, which indicates that the buffer is either not empty after it provided
these elements, or it is the last buffer of the chain. When receiving a NULL
reference, the sink-buffer does not modify its link rf-field.

• non-NULL , which indicates that the buffer is now (or was) empty. The
reference points to the next buffer in the chain, the sink-buffer receiving a
non-NULL reference changes its link rf-field to point to this new value.

Take Heuristics

For efficiency, sink-buffers use certain heuristics to determine the number of elements
they request from their next buffers in their chains. For this purpose, the sink
channel-end has an extra field called consumed, that keeps track of how many data

7.5. MoCha’s Channels 133

link_rf

Component

C2’

Component

Cm’

���
�

���
�

���
�

���
�

��	
	

�
�

Component

Component

C2

Cn

Component
Channel End

Source Component
Channel End

Sink

C1 C1’
buffer_rf

sink_rf source_rf
buffer_rf

Buffer

Buffer

Buffer

Buffer

Buffer

Bufferlink_rf

link_rf

link_rf

link_rf

link_rf

Figure 7.15: Chain of Buffers

elements the current component holding the sink has already consumed. Initially,
and every time the channel-end moves, this variable is set to zero.

Knowing nothing of the behavior of the system it is reasonable to assume that
the component performing a take is going to consume (in total) twice the amount
it has already consumed. This is similar to a good heuristic rule used in dynamic
memory management. By this heuristic, the number of elements to be requested is
consumed + 1.

Figure 7.17 shows an example. Component C holds the sink channel-end and has
already consumed 3 elements. It now asks for another element. The sink-buffer is
empty, therefore it requests elements from the next buffer in the chain. We assume
that the component is going to consume a total of 7 elements (2∗3 + 1), therefore the
sink-buffer requests 4 elements (consumed + 1). In Figure 7.17b the 4 elements
of the non-local buffer are transfered to the sink-buffer. An element is then given to
the component by the sink, which is not shown in the figure.

The rationale for asking for more data elements than needed (just 1) is the fact
that the cost of communication in a distributed system is not really dependent on the
amount of transfered data, but rather, on the number of exchanged messages. Con-
sequently, within reasonable bounds, it costs the same to exchange a short message
as to exchange a long one. Furthermore, the majority of the exchanged messages
in a system are well below those “reasonable bounds” and leave some considerable
amount of free bandwidth that can be used to transfer additional data at no extra
cost.

Asking for more data items than it needs, the sink-buffer informs the remote

134 Chapter 7. The MoCha Middleware: Implementation Details

link_rf

Component

Component

Component
Channel End

Source Component
Channel End

Sink

C

B

A D

Component

F

source_rf
buffer_rfbuffer_rf

sink_rf

Buffer

Buffer

BufferBuffer

Buffer

Buffer

Buffer

Buffer

link_rf link_rf

link_rf

link_rf

link_rf
link_rf

link_rf

Figure 7.16: An instance of the General Case

buffer of the likelihood that it will consume those additional elements in the near
future. The remote buffer, then, determines the maximum number of data items,
up to the requested amount, that fit in the free bandwidth of one message and packs
and sends at most that many, if it indeed has that many.

Observe that it makes no sense for the remote buffer to try to send more data
elements that it actually contains, by obtaining them from its next buffer in the
chain. Also, it is not necessarily a good idea for the remote buffer to ignore the
(heuristically determined) number of requested data items and always “flush” itself
sending its entire contents to the sink-buffer, because the sink-end may move to the
same location as the remote buffer before all those elements are consumed.

Garbage Collection of Buffers

A buffer can become empty when elements are taken out of it. An empty buffer is
no longer of use, unless it is the first or the last buffer of the chain. Therefore, an
empty buffer prepares itself for garbage collection when it gives its link rf-reference
(the reference to the next buffer in the chain) to the sink-buffer, unless it is the last
buffer of the chain (in which case its link rf-reference is NULL). We already described
the behavior of the buffers above.

In Figure 7.18, a buffer has become empty due to a take operation. The buffer
detects this and gives the sink-buffer not only the requested data elements but also
a reference to its next buffer in the chain. The sink-buffer updates its link rf-field
to this next buffer. The empty buffer, having passed its next-buffer reference to the

7.5. MoCha’s Channels 135

link_rf

Reads Reads

Channel End
Sink Component

CConsumed

Channel End
Sink Component

CConsumed
3 3

source_rf
buffer_rf

source_rf
buffer_rf

Buffer

(a)

Component

B

Component

A

Buffer

Buffer

Component

B

Component

A

(b)

Buffer

Buffer

Buffer

link_rf

link_rf

link_rf link_rf

link_rf

Figure 7.17: Heuristic of the Sink Buffer

sink-buffer, concludes that it can safely destroy itself because it is no longer part of
the chain. It sets all its references to NULL and knowing that no other object refers
to it, it can safely wait for garbage collection by the local JVM.

7.5.3 Channel Implementation Issues

While implementing the mobile channels of the MoCha framework in Java, we en-
countered several small interesting problems and issues. In this section, we describe
three such problems and explain how we solved them. Our intention is to give the
reader an idea of what kind of difficulties, other than the ones described in the previ-
ous sections, we had to face. Furthermore, the reader can benefit from the solutions
we describe here for his own implementation purposes.

Forcing Local Deep Copy of Objects

Our main philosophy towards components is that no object from outside should
be able to refer to an object inside a component. Therefore, every object that is
transmitted through MoCha channels is deep copied [Eck98]. This deep copy ensures
that not only the written object, but also every other object that it refers to, is
copied. Therefore, a whole tree of objects is copied if necessary. The MoCha channel-
ends and locations are the only objects that are not (deep) copied. Otherwise, we
would have implicit channel(-end) and location creation as a side effect.

RMI automatically makes a deep copy of every object that is mashalled and sent
to a remote object somewhere in the network. However, if the communication is
not through the network, RMI does not copy the transmitted object. This gives

136 Chapter 7. The MoCha Middleware: Implementation Details

link_rf

Reads Reads

Channel End
Sink Component

CConsumed

Channel End
Sink Component

CConsumed

(a)

Component

B

Component

A

Component

B

Component

A

(b)

7 7
source_rf
buffer_rf

source_rf
buffer_rf

Buffer Buffer

Buffer

Buffer

Buffer

link_rf

link_rf

link_rf link_rf

Figure 7.18: Garbage Collection of Buffers

problems in certain situations. For example, when two components and a channel
between them are at the same location. If in this situation an object is sent, then it
is by reference. Thus, we end up with a component that unintentionally refers to an
internal object of another component. Another example is the implementation of the
FIFO channel type (see the previous section). The source channel-end always writes
its data to an internal local buffer. An object written into this buffer may refer to
objects inside a component, until it is transmitted through the network to another
buffer or the sink channel-end. To solve this problem, the MoCha middleware checks
for situations where RMI does not deep copy the transmitted objects. If this is the
case, MoCha enforces the deep copy by marshalling the objects itself. This way, we
guarantee to always get a deep copy of the original object.

Recognizing Object Types

The Filter channel behaves like a synchronous type (see Section 2.4). However, val-
ues that do not match the channel’s pattern are filtered out (lost). This pattern
is given to the middleware as a string (see Section 6.2.2). For example, "Filter
java.lang.Integer java.lang.Double mypackage.myclass" . The mid-
dleware, then, parses the string and automatically extracts the pattern out of it. In
this case, the channel accepts objects of type Integer , Double , and myclass
(which is a user-defined class). Thus, the pattern can be any Java class including
non-standard ones made by users.

The filter channel type must dynamically convert the string into a valid class
definition, and dynamically check if a given object matches the pattern. In a non-

7.5. MoCha’s Channels 137

interpreted programming language like C++ this is very difficult to do, because
there is no static solution possible. Therefore, we need to (somehow) build an
infrastructure to have type information available during runtime, and the possibility
of comparing this information with class instances. The fact that we can specify user-
defined classes in the pattern, makes it even more difficult for such programming
languages.

Thankfully, the Java language is interpreted (see Section 7.1). The Java Virtual
Machine (JVM) contains all the dynamic information that we need. Therefore, we
implemented above pattern matching by using the special Java system class Class
[Eck98] whose methods query the JVM for certain dynamic system information. In
particular, the instances of this class represent classes and interfaces in a running
Java application. We use the static method forName that takes a string as param-
eter and returns an instance of Class that is associated with the class or interface
with the given string name. Then, we use the isInstance method, that takes
an object and determines if this object is assignment-compatible with the object
represented by a particular instance of Class . Naturally, MoCha takes care of situ-
ations where (a subset of) the classes given in the pattern do not exist at the current
location. In this case, the filter channel type simply discards these classes from the
filter for this particular location.

Adding Semaphores to Java

For the abstract channel algorithms (given in Appendix A) we use semaphores
[Dijk68] as our synchronization primitive. For our Java implementation we also
used such primitives to make the algorithms more straightforward to implement and
relate with the Java code. However, Java does not provide semaphores. Instead, the
language provides monitors [BG94]. Therefore, we had to make our own semaphores
in Java. Afterward, several colleagues were interested in this result for use in their
own projects. This motivates us to briefly explain how we implemented semaphores
in Java by using monitors.

A semaphore is a non-negative shared integer variable with two operations, V
and P. For a semaphore s, V(s) increments the variable with one, and P(s) tries
to decrement the variable by one; if the variable is zero, however, it blocks until
the variable becomes non-zero first. The two operations are indivisible, so if several
processes (threads) simultaneously try to execute any of these two operations on the
same semaphore, the operations are still executed one at a time.

A monitor is similar to an abstract type. It encapsulates shared data and oper-
ations on these data. The distinguishing feature of a monitor is the guarantee that
at any given time only one process can be executing any of the operations in the
monitor; when a process is inside a monitor, it can be certain it is the only one
active there. It is not always possible for a process to leave a monitor on time so
that other processes can get access to it. For example, it may wait for some data to
arrive. Therefore, the monitor has a condition variable with two operations defined
on it, wait and signal. Wait blocks the invoking process, and signal reactivates one
process blocked in a wait. If the current active process in the monitor is blocked by
a wait, then some other process is allowed to enter the monitor. Upon reactivation,
by signal, of a process it has to wait until it gets exclusive access to the monitor

138 Chapter 7. The MoCha Middleware: Implementation Details

again before continuing its execution.

/** Semaphore
* @author Juan Vicente Guillen-Scholten */
class Semaphore
{

/** The internal shared integer variable.*/
private int locked;
/** default constructor!
Semaphore starts unlocked.*/
Semaphore () {

locked = 1;
}//contructor

synchronized void lock() {
if (locked == 0) {wait(); }
locked--;

}// lock

synchronized void unLock() {
if (locked == 0) {

locked++;
notify();

}//fi
}// unLock

}//Semaphore

Figure 7.19: A Binary Semaphore in Java

In Java, a monitor is a normal class whose methods have the syntactic keyword
“synchronized” written in front of their statement. In Figure 7.19, we give our
semaphore implementation (where we abstract away from details like exceptions).
The constructor method sets the private variable locked to one, this indicates
that the semaphore is initially free. Our semaphore has two methods, lock and
unLock , that correspond to the semaphore operations described above, respectively
with P and V. The fact that these methods are synchronized guarantees the atomicity
of their execution. When a thread executes the lock method two things can happen.
(1) The semaphore is free (the locked variable is one), so the thread locks the
semaphore for others (by setting the locked variable to zero), and successfully
terminates the method. (2) the semaphore is already taken by another thread (the
locked variable is zero), then our thread performs a wait operation and places itself
in the waiting queue of the monitor.

When a thread executes the unLock method two things can happen. (1) If the
semaphore is currently taken (the locked variable is zero), it frees the semaphore
(by setting the locked variable to one), and releases one thread from the waiting
queue by performing a signal operation (in Java it executes the notify method). (2)
The semaphore is currently free (the locked variable is one), then nothing happens,
the thread must have made a mistake. Although the programmer is responsible for

7.6. Performance Measurements 139

making proper lock and unlock pairs, we prefer this behavior than returning an
error.

7.6 Performance Measurements

To determine the performance of the MoCha middleware we run several experiments
on a computer cluster within the CWI institute. MoCha is meant for running on the
Internet and on Intranet networks. However, it is really difficult to run experiments
on these networks in such a way that we get consistent results. Therefore, we use
a computer cluster instead. The difference is that, because the computers of a
cluster are all physically at the same location the communication between them is
much faster than in a Internet/Intranet network. Nevertheless, the results from our
experiments give a good indication of MoCha’s performance because we can scale
them to the target networks (in which the communication is much slower).

Our hardware configuration consists of 11 equally equipped computers with the
following specifications: A 32/64bit Athlon 2.2Ghz processor, 1 Gigabyte of memory,
48 Gigabyte of scratch disk, a 64-bit communication port, and one GigabitEthernet
card. Each computer runs the Suse Linux operation system version 9.3, and the
Java language platform version “1.4.2 08” Standard Edition.

For all our experiments we use instances of the Java class Integer (not to be
confused with the Java integer primitive) as the elements that we send between
the several computers. We use graphs for showing the various experimental results,
where the x-axis represents the total number of Integer elements that are ex-
changed during the experiment, and the y-axis the communication time, i.e. the
time that it takes to exchange these elements (from the point of view of a global
clock).

7.6.1 RMI and MoCha

MoCha is implemented on top of Java RMI (see Section 7.3). Therefore, we created
an experiment where we show the overhead of MoCha with respect to RMI. A
producer and a consumer residing on two different computers send elements to each
other starting from 10000 and up to 100000 incrementing the amount in each
run by 1000 elements. We perform two series of tests, one using RMI and one
using MoCha’s synchronous channel. This is the most suitable channel type for the
comparison since it, as RMI, provides synchronous communication.

Figure 7.20 shows the results of our experiment. As expected, RMI is faster
due to the added coordination layer of the synchronous channel. We can see that
the overhead for 10000 , or fewer, elements is smaller than for 100000 elements.
For the more elements we send, the more overhead we get. However, the difference
between the two lines is acceptable: proportionally, they more or less stay close to
each other.

7.6.2 Comparing Channel Types

We compare the performance of MoCha’s mobile channels with each other. We
divide the experiment in two groups. The first group consists of the communication

140 Chapter 7. The MoCha Middleware: Implementation Details

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 1 2 3 4 5 6 7 8 9 10

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 10000)

Comparing RMI with MoCha

RMI
Synchronous Channel

Figure 7.20: Comparing RMI and MoCha

and coordination channel types. The second group consists of the coordination only
channel types.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 512 256 128 64 32 16 8 4 2 1

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 100)

Comparing MoCha Communication and Coordination channels

Synchronous & Filter
LossySynch

FIFO
FIFO n

Figure 7.21: Communication and Coordination Channel Types (I)

For the first group, we set up a producer component on one computer, a consumer
component on another one and put a channel in between the two. Initially, the
producer and consumer exchange 100 elements. We double the number of elements
with each test, until we finally arrive at 51200 elements. We do this, to see how well
the MoCha channels scale with respect to the number of elements that they transmit.
The channel types in the first group are: synchronous, filter, lossy synchronous, FIFO
(unbounded), and FIFO n. Figure 7.21 shows the result of our experiment. Since,
the first part of the graph is difficult to read, we give a separate graph of this region
in Figure 7.22 (100 - 3200 elements).

We can see that the results from 10000 elements and up are quite stable and
that the lines increment proportionally. For smaller number of elements, we are

7.6. Performance Measurements 141

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 32 16 8 4 2 1

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 100)

Comparing MoCha Communication and Coordination channels

Synchronous & Filter
LossySynch

FIFO
FIFO n

Figure 7.22: Communication and Coordination Channel Types (II)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 6 7 8 9 10 11 12 13 14 15 16

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (log 2)

Comparing MoCha Communication and Coordination channels

Synchronous & Filter
LossySynch

FIFO
FIFO n

Figure 7.23: Communication and Coordination Channel Types (III)

dealing with Java virtual machine issues such as initialization procedures and initial
internal optimizations that affect our results. For bigger numbers, we can ignore the
influence of these issues. In this experiment we are not testing mobility, therefore,
unbuffered communication is expected to be faster than buffered. This is the case
in our graph, where the synchronous channels are faster than the asynchronous
ones. The fastest channel type is the lossy synchronous. However, this is due to its
lossiness property (see Section 2.4); elements get lost when the producer writes them
while the consumer is not simultaneously taking them. Otherwise, with no elements
getting lost, the performance of this channel type should be more or less equal to the
one of the normal synchronous channel type. The slowest channel type is the FIFO
n one. Although we give it a capacity higher than the number of elements that we
send, this capacity check seems to slow down the communication with respect to the
normal (unbounded) FIFO channel. In some cases, the asynchronous channels are

142 Chapter 7. The MoCha Middleware: Implementation Details

slightly faster than the synchronous ones. We expect this to be due to the internal
heuristics as described in Section 7.5.2. However, the more elements we send, the
less these heuristics seem to work; which makes sense since the heuristics are based
on channel-end mobility, and without it there is not much to optimize after a certain
number of elements. The Filter channel performs as well as a synchronous type one.
This is no surprise, since checking whether data matches the channel’s pattern is
done locally and does not affect the communication at all (if all data elements match
the pattern as is the case here). In Figure 7.23, we compute the logarithm (log2) of
the number of elements to show that the MoCha channels scale quite nicely.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 512 256 128 64 32

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 100)

Comparing MoCha Coordination Only channels

Synchronous Drain
Synchronous Spout
Asynchronous Drain
Asynchronous Spout

Figure 7.24: Coordination Only Channel Types

For the second group, we set up either two consumer or two producer components,
depending whether the channel type has two source or two sink channel-ends. We
then measure the time by taking the start time of the first starting component and
the end time of the last ending component. With this kind of measuring procedure
it is not possible to get accurate results for small numbers of elements. Therefore,
we begin with 3200 and double this number each round until 51200 . The channel
types in these experiment are: synchronous drain, synchronous spout, asynchronous
drain, and asynchronous spout. Since the ends of the drain and spout channel types
are independent of each other, we don’t consider these types because we couldn’t
get any reliable results. Figure 7.24 shows the result of this experiment. To our
surprise, the spout channels are faster than the drain ones. Considering that the
internal synchronization structure between channel-ends for all types is more or less
equivalent, we can only conclude that the channel take operation must be (somehow)
faster than the write.

7.6.3 (Static) MoCha vs. LighTS

We compare the peer-to-peer architecture of MoCha against the shared data spaces
architecture of the LighTS package (see Section 6.5.2). We add to LighTS an efficient
RMI interface to make it a distributed application. Just like with the previous
experiment, we use a producer and a consumer component that, in this case, either

7.6. Performance Measurements 143

use a MoCha channel or the distributed LighTS application for communication (and
coordination). These components initially exchange 100 elements but double this
number in each run until they reach 51200 elements. The communication between
the components and the shared data space is asynchronous. Therefore, we compare
LighTS with the FIFO channel type. To show that a peer-to-peer architecture is
faster than a centralized one, we also tested a synchronous channel type as well.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 512 256 128 64 32 16 8 4 2 1

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 100)

Comparing MoCha with distributed LighTS, (no mobility)

LighTS
FIFO Channel

Synchronous Channel

Figure 7.25: MoCha vs. LighTS (No Mobility) (I)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 32 16 8 4 2 1

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 100)

Comparing MoCha with distributed LighTS, (no mobility)

LighTS
FIFO Channel

Synchronous Channel

Figure 7.26: MoCha vs. LighTS (No Mobility) (II)

In Figure 7.25 we present the results of this experiment. In Figure 7.26 we
enlarge the first region of the graph. As expected, the MoCha channels are much
faster in all cases. Just like with the previous experiment, we see that the FIFO
channel is more efficient than the synchronous ones in the beginning. However,
beyond a certain number of elements, the heuristics don’t work anymore and the
synchronous channel becomes faster. In Figure 7.27, we compute the logarithm
(log2) of the number of elements. Here we can clearly see that the more elements

144 Chapter 7. The MoCha Middleware: Implementation Details

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

 6 7 8 9 10 11 12 13 14 15 16

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (log 2)

Comparing MoCha with distributed LighTS, (no mobility)

LighTS
FIFO Channel

Synchronous Channel

Figure 7.27: MoCha vs. LighTS (No Mobility) (III)

the components exchange, the bigger the difference between the two middleware
systems becomes, and the faster this difference grows.

7.6.4 Movement of Channel-ends

In the previous experiments we did not consider (channel-end) mobility. In the mo-
bility experiments we first measure the overhead of channel-end movement without
considering data transfer or coordination. To measure the movement of channel-
ends we created an experiment where we let a particular channel-end move 100
times between several computers. We then take the total amount of time and divide
this by 100 . We tested all ends of each channel type, and calculated an average
time for channel-end movement. We make a distinction between a source and a
sink channel-end: the average time for source-end movement is 173.5 milliseconds
(0.1735 seconds), and the average time for sink-end movement is 173 milliseconds
(0.173 seconds). Thus, there is not much difference between how long it takes to
move a source or a sink channel-end from one computer to another one.

7.6.5 Mobile Components (Moderated Mobility)

One of the major features of MoCha, besides the exogenous coordination of com-
ponents, is that channel-end mobility allows dynamic reconfiguration of channel
connections among the components in a (distributed) system. In Section 2.3, we
show how useful this feature is in combination with mobile components. Therefore,
we created an experiment where we use two mobile components: a producer and a
consumer component. To make the movement of these components possible we de-
veloped a mobility framework based on Java RMI. This framework is independent of
the MoCha middleware, no channels (nor any other MoCha entity) are used for the
actual movement of components. Naturally, the producer and consumer are linked
to each other by a mobile channel, and when they move to a new location (computer
in this case) they take their corresponding channel-end with them. They do this by

7.6. Performance Measurements 145

performing a move operation on the end after they themselves moved to the new
location first (to ensure independence).

We ran several tests using a synchronous and a FIFO channel type. In a previous
experiment we compared (static) MoCha with LighTS. Therefore, we also perform
tests using our distributed extension of this shared data space application (see Sec-
tion 7.6.3). Naturally, we use the same mobile framework with LighTS for a fair
comparison. We let the components initially exchange 20000 elements and double
this number in each run until we get to 320000 elements. We let each component to
move exactly 5 times from one computer to another (each time a different one). The
number of write or take operations per location, is the total number of elements
that have to be transmitted in a run divided by 5. So, initially the producer or
consumer writes or takes 5000 elements at each location and then moves to a new
computer. In the last run (320000 elements) the components write/take 64000
elements before moving to a new computer each time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 32 16 8 4 2

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 10000)

Mobile Components (Moderated mobility)

LighTS
FIFO Channel

Synchronous Channel

Figure 7.28: Mobile Components, Moderated Mobility (I)

In Figure 7.28, we present the results of this experiment. In Figure 7.29, we
compute the logarithm (log2) of the x-axis to show how the middleware scales with
respect to the number of elements. In contrast with the results of our internal
experiment (see Section 7.6.2), the buffered communication of the FIFO channel
is always much faster than the unbuffered one of the synchronous channel. To our
surprise, there is not a substantial difference between the performance of LighTS and
the synchronous channel. Moreover, in the beginning LighTS is faster. Afterward the
synchronous channel slowly becomes faster. We expected the synchronous channel
(due to its peer-to-peer architecture) to be much faster than LighTS. However, the
communication in the computer cluster that we use goes so fast that only for big
number of elements there is a significant difference. On the Internet, we expect the
communication with the shared data space to be much slower and, thus, for LighTS
to perform less well.

146 Chapter 7. The MoCha Middleware: Implementation Details

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (log 2)

Mobile Components (Moderated mobility)

LighTS
FIFO Channel

Synchronous Channel

Figure 7.29: Mobile Components, Moderated Mobility (II)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 32 16 8 4 2

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (x 10000)

Mobile Components (High mobility)

LighTS
FIFO Channel

Figure 7.30: Mobile Components, High Mobility (I)

7.6.6 Mobile Components (High Mobility)

In the previous experiment, the producer and consumer components move modestly
(5 times). We now repeat the same experiment where we considerably increase
the mobility of these components. We also give the source and sink channel-ends
a different moving frequency. We let the producer to write 4000 elements at each
location before moving, and the consumer to take 1000 elements at each location.
Thus, with 20000 elements the source-end moves 5 times and the sink-end 20 times.
At the end, with 320000 elements, the source-end moves 80 times and the sink-end
320 times.

In Figures 7.30 and 7.31 we give the results of this experiment where we test
the FIFO channel type and the LighTS shared data space. From our experiment in
Section 7.6.4, we know that channel-end movement costs about 173 milliseconds.
Thus, the more channel-ends we move the slower we expect our results to be. Indeed,

7.6. Performance Measurements 147

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5

T
im

e
in

 m
ill

is
ec

on
ds

 (
x

10
00

)

Number of elements (log 2)

Mobile Components (High mobility)

LighTS
FIFO Channel

Figure 7.31: Mobile Components, High Mobility (II)

if we compare the results of the previous test (see Figure 7.28) with this one, we can
see that the performance of the FIFO channel in this test is now much slower. The
distributed LighTS is not that much affected by the increased component movement
since it involves no channel-end movement in the first place. Nevertheless, our FIFO
channel is still faster than LightTS. Only for small numbers of elements they perform
equally well (see the 20000 elements point). Therefore, we can conclude that we
have to be careful about the movement frequency. If we have a lot of channel-end
movement but few elements to actually transfer then we better use a shared data
space. In other cases (which are more common), MoCha performs better.

148 Chapter 7. The MoCha Middleware: Implementation Details

Chapter 8

An Implementation of the
Channel-Based Component
Model

In this chapter, we implement the coordination model for the component-based
software that we introduced in Chapter 5. The Java implementation of this co-
ordination model provides a general framework that integrates a highly expressive
data-flow architecture for the construction of coordination schemes with an object-
oriented architecture for the description of the internal data-processing aspects of
components. At the same time it demonstrates that it is self-contained enough for
developing component-based systems in object-oriented languages.

8.1 Integration of Components with Object-Oriented
Technology

Regarding the integration of components with object-oriented technology, compo-
nents adhere to the following object-oriented fundamental principles:

- system-wide unique identity;

- bundling of data and functions manipulating those data;

- encapsulation for hiding detailed information that is irrelevant to its environ-
ment and other components.

However, components extend these principles by adhering to a stronger notion
of encapsulation. Whereas the interface of an object involves only a one-way flow
of dependencies from the object providing a service to its clients, an interface of a
component involves a two-way reciprocal interaction between the component and its
environment. This stronger notion of encapsulation accommodates a more general
notion of re-usability because mutual dependencies are now more explicit through

149

150 Chapter 8. An Implementation of the Channel-Based Component Model

component interfaces. Furthermore, it allows components to be independently de-
veloped, without any knowledge of each other.

Components are self contained binary packages. Objects that are used to imple-
ment a component should not cross the component boundaries. No other restrictions
are imposed on a component implementation.

The Java implementation of our coordination model, presented in Section 8.2,
demonstrates that object-oriented languages are well-suited to implement compo-
nents and their composition. This implementation ensures the stronger notion of
encapsulation needed for components, allowing access to a component only through
its interface (which is a set of mobile channel-ends).

8.2 Implementation in Java

The coordination model we present in Chapter 5 can be implemented in any object-
oriented programming language that supports distributed environments, like Java
[Java], or C++ [Str91]. In this section we describe an implementation of our model
in the Java language.

The implementation consists of a framework that provides (a) a pre-compiler tool
for writing components, (b) mobile channels, and (c) operations on these channels.
All the component source files have the extension .cmp , and the pre-compiler trans-
forms them into normal Java files. We do not define a new language: the .cmp files
contain Java code and the pre-compiler just verifies certain restrictions we need to
impose to have components in Java. We explain these restrictions gradually while
describing the implementation.

8.2.1 Components in Java

Usually, JavaBeans [JB] are used to implement components in Java. However, they
do not comply with our definition of components (see Section 5.2.2) for two reasons.
First, a JavaBean consists of just one class, and this puts a serious restriction on
the internal implementation of components. Second, JavaBeans communicate with
each other through events, while we want to use channels (see Section 5.2.3).

Instead of using JavaBeans to implement components, we use the package
feature of Java. However, a package is too broad and does not provide the hard
boundaries we need for components (see Section 8.1). Therefore, we impose some
restrictions that must be verified by our pre-compiler. These restrictions are (1) a
component must have at least one class that represents the component’s interface,
through which all coordination and access to channels takes place; (2) these interface
classes are the only public classes in a package ; and (3) only interface classes
can have methods that are public . For simplicity, in the sequel we assume that
the interface of a component consists of just one class .

Implementing a component as a package plus the restrictions explained above
has two major advantages. One advantage is that access to a component is possible
only through its interface. This, combined with the fact that internal references
cannot be sent through a channel (see Section 8.2.4), makes it possible to protect
the internal implementation of a component.

8.2. Implementation in Java 151

The second advantage is that restrictions (1), (2) and (3) are so minimal that
they do not impose any real restrictions concerning the internal implementation of a
component. A component may consist of one or more objects, one or more threads,
its implementation may be distributed, or it may be a channel-based component
system itself, etc.

8.2.2 Implementation Overview

Uses Uses

BasicComponent MoChaComponent

Package Package Package

Mobile Channels

Interface
Component level

Mobile Channels

Middleware level

Figure 8.1: Implementation Overview

Figure 8.1 shows a general overview of the structure of our implementation. The
component package uses, with the import feature of Java, our BasicComponent
package . The BasicComponent package is an extra layer between the components
and the mobile channels of MoCha. This layer is needed to translate the coordination
operations of Section 8.2.4 to the middleware operations of Section 6.2. For example,
within a component we don’t need to specify a MoCha ComponentKey and pass it
on as a parameter with every coordination operation. This is taken care of by the
intermediate layer.

The BasicComponent package provides channel-end variables that only indi-
rectly refer to MoCha channel-ends. A component can have Sink and Source
channel-end variables. However, it can perform operations on these variables only
through the coordination methods of its interface. To accomplish this, the package
provides methods that are protected and which only the coordination methods
of the interface can use.

The BasicComponent package also provides a public class CmpLocation
for components. This class is used to identify both the location of the component
in the network (the IP-address) and the specific virtual machine where it is running.
The usage of this class is analogous to the MoChaLocation class of Section
6.2.1.

8.2.3 The Interface of a Component

The interface of a component has two parts, a package private part accessible
only to the internal entitie(s) of the component, and a public part accessible to
all the entities in the system. A component interface is a normal Java class and
should not be confused with the Interface feature of this language. Figure 8.2
shows the skeleton of a .cmp file for the interface. There is some syntactic sugar in
this file that the pre-compiler translates into legitimate Java code:

152 Chapter 8. An Implementation of the Channel-Based Component Model

• Component CompName;
must appear as the header of each .cmp file of a component. It is translated
into
package CompName;
import BasicComponent.*; .

• ComponentInterface IntName
is translated into
public class IntName extends BasicInterface .

The interface class inherits from BasicInterface , a class that contains basic
methods for both the public and the package private parts of the interface
(see Figure 8.3). The pre-compiler adds this class to the component’s package, which
precludes the possibility of change by the programmers.

Component CompName;
/* add import list here */

ComponentInterface [IntName] // default is CompNameInterface
{

public IntName (/*parameters.For example,an initial set of channel-ends*/)
{

super(loc); // call super class constructor
/* Create and initialize here all the entities of the component */

}
public void finalize()

{
/* Method is optional,
* perform cleanup actions before the object is garbage collected */

}
}

Figure 8.2: The .cmp Skeleton File for the Interface of a Component

The public part of the interface consists of three parts (see Figures 8.2 and 8.3):
one or more constructors, a getLocation method, and a finalize method. The
pre-compiler checks that these items are the only public ones in the interface.

The interface can have one or more public constructors. The class has a super
class (see Figure 8.3) that needs a Location as a parameter for its constructor.
This way we enforce that each constructor of the interface class must provide a
Location , which is either created in the constructor or passed through as a pa-
rameter. In the constructor(s) all internal entities of the component must be created
and initialized. Thus, in order to create a component, it is enough to import the
component’s package and make an instance of its interface class.

Optionally, a finalize method can be present to perform cleanup operations
before a component instance is garbage collected.

Channel-end references can be passed on through the constructor of the interface.
These channel-end references constitute the initial set of mobile channel-ends known
to the newly created component instance as defined in Section 8.1. Alternatively, a
channel-end set reference can be passed on to the component instance for it to return
a new set of channel-ends that it creates during the execution of the constructor.

8.2. Implementation in Java 153

In this implementation we do not describe, nor dictate, any particular way of
expressing the observable behavior of a component. For example, one can use the
compositional trace-based semantics given in Chapter 5.

The package private part of the interface includes the coordination methods
provided by the class BasicInterface (see Figure 8.3), channel-end variables, and
all the other methods and variables in the interface that are not public . We explain
the coordination methods in Section 8.2.4.

package CompName;
import MoCha.*;
import BasicComponent.*;

class BasicInterface
{

BasicInterface (CmpLocation loc)
public CmpLocation getLocation ()
Object[] CreateChannel (ChannelType type)
boolean Connect (ChannelEnd ce, int timeout) throws Exception
boolean Disconnect (ChannelEnd ce) throws Exception
boolean Write (Source ce, Object var, int timeout) throws Exception
Object Read(Sink ce, int timeout) throws Exception
Object Take (Sink ce, int timeout) throws Exception
boolean Wait (String conds, int timeout) throws Exception

}

Figure 8.3: The BasicInterface Class

For simplicity, we assumed that the interface of a component consists of just one
class . However, we do allow components to have more than one Component-
Interface class . Therefore, a component can provide several interfaces to its
users with different views and/or functionality.

8.2.4 The Coordination Operations

The interface of a component provides coordination methods for the active internal
objects (i.e., threads) in an instance of that component for operations on channels.
These coordination methods are equal to (a subset of) the methods that the ex-
ogenous coordination language Reo [Arb02] provides to components. The choice
for defining the same methods allows the possibility to easily extend our compo-
nent model to work with Reo instead of the MoCha middleware (for more complex
and non-trivial exogenous coordination of components than with “just” the simple
MoCha channels).

The coordination methods are listed in Figure 8.3. The threads cannot perform
any operation directly on channel-ends, because the channel-ends do not provide
any methods for them, not even a constructor. Therefore, the only way to perform
an operation on a channel is to use the coordination methods in the component
interface. The coordination operations are divided in three groups: the topological
operations, the input/output operations, and the inquiry operations.

These operations are basic operations and more complex operations can be cre-
ated by composition of these basic ones. It is also the responsibility of the component

154 Chapter 8. An Implementation of the Channel-Based Component Model

to ensure proper synchronization for its internal threads, if they refer to the same
channel-ends. Our basic coordination primitives can be wrapped in component de-
fined methods to enforce such internal protocols.

In Chapter 6 we mentioned the fact that the coordination operations have time-
outs, but we chose not to consider them for simplicity reasons. In this chapter, we
explicitly consider time-outs for they are an important concept in our component
model. For every method containing a timeout parameter in Figure 8.3, there is
also a version without the time-out (not listed in the figure). When no time-out is
given the thread performing the method suspends indefinitely until the operation
succeeds or the method throws an exception . For uniformity of explanation, we
assume that the time-out parameter can also have the special value of infinity. This
way we need not define two versions of each operation.

Topological Operations

CreateChannel creates a new channel of the specified type . The value of this
parameter can be synchronous or asynchronous channels like FIFO , bag , set ,
etc. The channel-ends, source and sink, are created at the same location as the com-
ponent and their references are returned as an array of type Object : Object [0] =
Source and Object [1] = Sink (if we create a 〈source, sink〉 channel type, other-
wise we get either two source or two sink ends).

Connect connects the specified channel-end ce to the component instance that
contains the thread that performs this operation. If the channel-end is currently
connected to another component instance, then the active entity suspends and waits
in a queue until the channel-end is connected to this component instance or, its time-
out expires. The method returns true to indicate success, or false to indicate
that it timed-out. When a connect operation is successful and other threads in the
same component instance are waiting to connect to the same channel-end, they all
succeed. If a thread tries to connect to a channel-end already connected to the
component instance, it also immediately succeeds.

When the Connect operation succeeds, the channel-end physically moves to the
location of the component instance in the network.
Disconnect disconnects the specified channel-end ce from the component instance
that contains the thread performing this operation. This method always succeeds on
a valid channel-end. It returns true if the channel-end was actually connected to
the component instance and false otherwise. If ce is invalid, e.g. null , then the
method throws an exception.

Input/Output Operations

Write suspends the thread that performs this operation until either the Object
var is written into the channel-end ce , or its specified time-out expires. Only
Serializable objects, channel-end identities, and component locations can be
written into a channel. The Serializable objects are copied before they are
inserted into the channel, therefore no references to the internal objects of a com-
ponent can be sent through channels. The method returns the value true if the
operation succeeds, and the value false if its time-out expires. The method throws

8.3. Related Work and Conclusions 155

an exception if either ce is invalid, the component instance is not connected to the
channel-end, the Object var is not Serializable , or it contains a reference to
a non-Serializable object.

Read suspends the thread that performs this operation until a value is read from the
sink channel-end ce , or its specified time-out expires. In the first case, the method
returns a Serializable Object , a channel-end identity, or a Location . In the
second case the method returns the value null . The value is not removed from the
channel. The method throws an exception if either ce is not valid, or the component
instance is not connected to the channel-end.

Take is the destructive variant of the Read operation. It behaves the same as a
Read except that the read value is also removed from the channel.

Inquiry Operations

Wait is the inquiry operation. It suspends the thread that performs it until either
the conditions specified in conds become true or its time-out expires. In the first
case the method returns true , and otherwise it returns false . The channel-ends
involved in conds need not be connected to the component instance in order to
perform this operation, but an invalid channel-end reference throws an exception.
The argument conds is a boolean combination of primitive channel conditions such
as connected(ce) , disconnected(ce) , empty(ce) , full(ce) , etc.

8.2.5 A Small Example

We use a simple implementation of the mobile agent component of the example
in Section 2.3, to show the utility of the coordination operations provided by our
model. Figure 8.4 shows the Java pseudo-code for this agent. AgentInterface is
the agent’s interface and consists of the basic interface plus a method Move. This
method moves the agent to the specified location, together with the channel-ends
it is connected to, (readChannelEnd , writeChannelEnd , and channel[1]).
The readChannelEnd and writeChannelEnd channel-ends are, respectively, the
sink and the source of the channels for interaction with the component U. The agent
has a list containing the locations of the information sources it is expected to visit,
together with their respective source channel-end references where it can issue its
requests.

8.3 Related Work and Conclusions

In this and in Chapter 5, we presented a coordination model for component-based
software based on mobile channels. The motivation of these chapters comes from
these works of Arbab et al.: [ABB00a] and [ABB00b]. The idea of using mobile
channels for components comes from Reo [Arb04, Arb02].

Our model provides a clear separation of concerns between the coordination and
the computational aspects of a system. We force a component to have an interface for

156 Chapter 8. An Implementation of the Channel-Based Component Model

void agentImplementation()
{

AgentInterface.Connect(readChannelEnd);
AgentInterface.Connect(writeChannelEnd);
Object[] channel = CreateChannel(FIFOchannel);
AgentInterface.Connect(channel[1]);
For each entry in informationSourceList do

AgentInterface.Move(List[InformationSource].location, channel[1]);
AgentInterface.Connect(List[InformationSource].sourceEnd);
AgentInterface.Write(List[InformationSource].sourceEnd,

REQUEST + channel[0]);
AgentInterface.Disconnect(List[InformationSource].sourceEnd);
information.add(AgentInterface.Read(channel[1]));
information.transformation();
AgentInterface.Write(writeChannelEnd, information);
String cond ="notEmpty(" + readChannelEnd + ")";
information.clear();
if (AgentInterface.Wait(cond, 0)) then

read an instruction from this channelEnd and process it.
fi

od
AgentInterface.Disconnect(readChannelEnd);
AgentInterface.Disconnect(writeChannelEnd);

}

Figure 8.4: Simple Implementation of The Mobile Agent

its interaction with the outside world, but we do not make any assumptions about its
internal implementation. We define the interface of a component as a dynamic set of
channel-ends. Channels provide an anonymous means of communication, where the
communicating components need not know each other, or the structure of the system.
The architectural expressiveness of channels allows our model to easily describe a
system in terms of the interfaces of its components and its channel connections,
abstracting away their computational aspects. Coordination is expressed merely as
operations performed on such channels. The mobility of channels allows dynamic
reconfiguration of channel connections within a system.

The PICCOLA project [ALSN01] is related to our work. PICCOLA is a language
for composing applications from software components. It has a small syntax and a
minimal set of features needed for specifying different styles of software composi-
tion, e.g. pipes and filters, streams, events, etc. At the bottom level of PICCOLA
there is an abstract machine that considers components as agents. These agents are
based on the π-calculus, but they communicate with each other by sending forms
through shared channels instead of tuples. Forms are a special notion of extensible,
immutable records. In comparison with PICCOLA, our coordination model can be
seen as a possible mobile channel style for component composition. Therefore, the
interfaces of our components are defined in such a way that they already fit within
this style. Because our model only focuses on the mobile channel style, it is much
simpler to use when this style is desired. However, our model is not just a style but
also, like PICCOLA, a composition language.

Certain aspects of and concerns in ROOM [SGW94] and Darwin [MDEK94], two
architectural description languages (ADL), are related to our work. In ROOM com-

8.3. Related Work and Conclusions 157

ponents are described by declaring their internal structures, their external interfaces,
and the behavior of their sub-components (if they are composite components). The
interface of a component is a set of ports. A port is the place where components
offer or require certain services. The communication through these ports is bidirec-
tional and in the form of asynchronous messaging. The components of Darwin are
similar to the ones of ROOM, but instead of ports, Darwin components have portals.
These portals specify the input and output of a component in terms of services, as
in ROOM. However, the binding of portals is not specified, leaving them open for all
kinds of possible bindings. Another difference between Darwin and ROOM, is that
Darwin can describe dynamically changing systems, while ROOM can describe only
static ones. This makes Darwin more suitable than ROOM for component-based sys-
tems that use our coordination model. Of course, to model mobile channels or the
dynamic set of interfaces of a component, for instance, some extensions to Darwin
would be necessary.

Other models for component-based software can benefit from the coordination
model presented in this chapter, because ours is a basic model that focuses only
on the coordination of components. Our model can extend other models that are
concerned with other aspects of components, for example, their internal implemen-
tation, their evolution, etc.

Finally, although it is not the main purpose of our work, the Java implementation
presented in Section 8.2 shows not only that components can be implemented using
object-oriented languages, but also how this can be done. This demonstrates that a
clear integration of our notion of components is possible in object oriented paradigms
such as UML.

158 Chapter 8. An Implementation of the Channel-Based Component Model

Part IV

Composition

159

Chapter 9

Composition of Mobile
Channels

In this chapter, we present a model for composition of mobile channels based on the
notion of coordination components. These are lightweight components that are meant
for linking channels together according to some transparent coordination behavior.
We introduce a basic set of such components, and give examples of compositions.
For each component we give semantics by providing a MoCha-π specification and a
Petri Net. We also discuss how to obtain the semantics of the compositions as well.

9.1 Introduction

Up to now, in this thesis, we exogenously coordinate components by using single
mobile channels in between them. In this chapter we take the next logical step
by composing mobile channels. Our motivation for doing the composition is that
it brings two immediate advantages: the easy specification of more (complex) ex-
ogenous coordination than just the ones specified by a pre-defined set of mobile
channels, and, the possibility of coordinating more than two components at the
same time. The idea of composing mobile channels is not new and originally comes
from Reo [Arb02, Arb04] (see Section 9.2).

Each of the mobile channel types we introduced in this thesis (see Section 2.4)
provides a different exogenous coordination pattern for the components using it.
Naturally, we hope that this particular set of mobile channels is enough to cover all
exogenous coordination possibilities. However, this is far from the truth. Therefore,
we need to introduce a new channel type for each new exogenous coordination pat-
tern that is not already provided by an existing mobile channel type. The problem
with this is that introducing a new channel type each time is a lot of work. We have
to describe its behavior (see Chapter 2), specify it using our MoCha-π calculus (see
Chapter 4), (alternatively) construct a Petri Net for it (see Chapter 3), and imple-
ment it in the MoCha middleware (see Chapters 6 and 7). Thankfully, with channel
composition we have a much easier alternative. By regarding the existing mobile
channel types provided by this thesis as basic blocks, we can build other (more com-

161

162 Chapter 9. Composition of Mobile Channels

plex) types by “simply” composing the basic ones. Naturally, composed types can
be composed again into a new type, and so on. This means that, both the MoCha-π
and the Petri Nets specification of the composed types is just the composition of the
ones of its constituents (as we shall see). The MoCha middleware implementation
is realized by linking all the channels together using coordination components (see
Section 9.4).

Single mobile channels coordinate only two components at the same time. How-
ever, in some situations it is desirable to relate and coordinate three or more com-
ponents. The Reo model defines the useful notion of a connector. A connector is an
exogenous coordination infrastructure that provides channel-ends to components. It
can have many channel-ends that are of type source or sink. A single mobile channel
is regarded to be a connector as well. A connector, whose internals is the composi-
tion of mobile channels (or/with other connectors), that consists of exactly two ends
is regarded to be a mobile channel as well. However, connectors with either one or
more than two channel-ends are not considered to be mobile channels. Connectors
are able to coordinate more than two components at a time.

In Section 9.2, we discuss the already existing model for mobile channel compo-
sition Reo. In Section 9.4, we introduce a composition model that takes some of the
ideas of Reo and realizes them by composing mobile channels using the notion of
coordination components. We shall see that our model offers connectors at a lower
level of abstraction that brings them closer to actual implementations in distributed
systems. Moreover, our model easily implements a subset of Reo. In Section 9.5,
we give an example of a component based system where the component instances
are coordinated by connectors. This is also an example of a Reo application that we
can we implement using our model. In Section 9.6, we end with a discussion and a
comparison between the two models.

9.2 Reo

In this section we discuss Reo, a model for mobile channel composition created (and
invented) by Arbab [Arb02, Arb04]. Reo is a channel-based exogenous coordination
model wherein complex coordinators, connectors, are compositionally built out of
simpler ones. The simplest connectors are mobile channels. The properties of these
channels are equal to the ones of this thesis (see Section 2.2.2 for the properties).

In Reo, a connector is a set of channel-ends organized in a graph of nodes and
edges such that:

• Zero or more channel-ends coincide on every node.

• Every channel-end coincides on exactly one node.

• There is an edge between two (not necessarily distinct) nodes if there is a
channel of which one end coincides on each of those nodes.

A node is an important concept in Reo. Not to be confused with a location or a
component, a node is a logical construct representing the fundamental topological
property of coincidence of a set of channel ends, which has specific implications on
the flow of data among and through those channel-ends.

9.2. Reo 163

a c d eb

Figure 9.1: Nodes in Reo

The set of channel-ends coincident on a node A is disjointly partitioned into
the sets Src(A) and Snk(A), denoting the sets of source and sink channel-ends that
coincide on A, respectively. A node A is called a source node if Src(A) 6= ∅∧Snk(A) =
∅ (the node consists of only source-ends). Analogously, A is called a sink node if
Src(A) = ∅ ∧ Snk(A) 6= ∅ (the node consists of only sink-ends). A node A is called
a mixed node if Src(A) 6= ∅ ∧ Snk(A) 6= ∅ (the node consists of both source- and
sink-ends). Figures 9.1(a) and 9.1(b) show sink nodes with, respectively, two and
three coincident channel-ends. Figures 9.1(c) and 9.1(d) show source nodes with,
respectively, two and three coincident channel-ends. Figure 9.1(e) shows a mixed
node where three sink and two source channel-ends coincide.

Reo enables components to connect to and perform I/O operations on source
and sink nodes only; components cannot connect to, read from, or write to mixed
nodes. At most one component can be connected to a particular (source or sink)
node at a time.

A component can write data items to a source node that it is connected to. The
write operation succeeds only if all (source) channel-ends coincident on the node
accept the data item, in which case the data item is transparently written to every
source end coincident on the node. A source node, thus, acts as a especial kind of
replicator. Especial, because it needs to know whether all source-ends can accept
the data before writing to them.

A component can obtain data items from a sink node that it is connected to
through destructive (take) and non-destructive (read) input operations. A take
operation succeeds only if at least one of the (sink) channel-ends coincident on the
node offers a suitable data item; if more than one coincident channel-end offers
suitable data items, one is selected nondeterministically. A sink node, thus, acts as
a nondeterministic merger.

A mixed node is a self-contained “pumping station” that combines the behavior
of a sink node (merger) and a source node (replicator) in an atomic iteration of an
endless loop: in every iteration a mixed node nondeterministically selects and takes
a suitable data item offered by one of its coincident sink channel-ends and replicates
it into all of its coincident source channel-ends. A data item is suitable for selection
in an iteration only if it can be accepted by all source channel-ends that coincide on
the mixed node.

9.2.1 Composition of Connectors

Every mobile channel represents a (simple) connector with two nodes. More com-
plex connectors are constructed in Reo out of simpler ones using its join operation.
Joining two nodes destroys both nodes and produces a new node on which all of

164 Chapter 9. Composition of Mobile Channels

their coincident channel-ends coincide. Reo also provides a split operation for de-
composition of connectors. Splitting a node produces a new node and divides the
set of channel-ends that coincide with the first node between the two. Both opera-
tions are performed by “external” components on Reo nodes and make it possible to
dynamically reconfigure connectors. More extensive details about these operations
are given in [Arb02].

(d)

A B

C

(a)

A2 B2

A1 B1

A3 B3

(c)

A2 B2

A1 B1

(b)

A

B C

(f)

α

β γ

δ

1 11
o

A B C

CA

B

1

(e)

Figure 9.2: Reo Connectors

We give some examples of frequently used connectors in the Reo papers, where
we add external taking and writing components for an easier explanation of their
behavior. The write-cue regulator (see Figure 9.2(a)) is composed out of two syn-
chronous and one synchronous drain channel. The mixed node of this particular
connector can take a value from component A only when B is ready to take a value
from the connector and C is ready to write one into it. Therefore, every write action
of component A has to simultaneously coincide with a take action of B and a write
action of C. In other words, with this connector component C regulates the flow of
data between A and B.

The barrier synchronizer (see Figure 9.2(b)) is a simple extension of the previous
connector. The synchronous drain channel ensures that a value passes from com-
ponents A1 to B1 simultaneously with the passing of a value between A2 and B2.
Therefore, all writes and takes on this connector are synchronized with each other.
The barrier synchronizer can easily be extended to any number of component pairs
A and B as shown in Figure 9.2(c).

The ordering connector (see Figure 9.2(d)) is composed out of one synchronous,
one synchronous drain, and one FIFO 1 channel. The synchronous channel ensures
that a write by component A simultaneously succeeds with a take by component C.
The synchronous drain ensures that the write actions of components A and B are

9.2. Reo 165

synchronized. Therefore, the first value that component C gets is always written by
A. The value of component B goes into the FIFO 1 channel. The next value that C
gets is the one written by B, due to the fact that the FIFO 1 channel must be empty
before components A and B can (synchronously) write again. The third value comes
from A again, the fourth from B, and so on.

The sequencer (see Figure 9.2(e)), consists of FIFO 1 channels in series and an
equal plus one number of synchronous channels (in the figure there are three FIFO
1 channels). The left most FIFO 1 channel is initialized with a “dummy” value in
its buffer, as indicated by the presence of the symbol “o”. This connector ensures
that the take operations of the components A, B, and C succeed only in the strict
left to right order. The sequencer is easily extensible to any number of taking
components, by just adding for each one an extra FIFO 1 and synchronous channel
to the connector.

The exclusive router (see Figure 9.2(d)) is composed out of five synchronous
channels, two lossy synchronous channels, and a synchronous drain. The behavior
of this connector is that the values that are written by component A are taken
by either components B or C. If both components want to simultaneously take a
value, one of the two is non-deterministically selected. The internals of this simple
connector are non-trivial. To simplify our explanation we marked some of the nodes
in Figure 9.2(d) with a Greek letter. In the case that component A writes a value
and only component B wants to take it, the written value of A flows through path
(α, β) and gets lost through path (α, γ). If only component C wants to take the value
written by A, then the value flows though path (α, γ) and gets lost through path
(α, β). If both components simultaneously want to take the value, node δ acts as a
merger and nondeterministically selects which path is lossy and which path is going
to let the value through. Observe that, the writes of component A are synchronized
with the takes of either component B or C; i.e. component A cannot write when
there is no component to take.

9.2.2 More about Reo

The reader that wants to know more about Reo is kindly referred to these works of
Arbab [Arb02, Arb04, Arb06]. More complex examples of Reo connectors in the
context of e-commerce are given in [DZP05]. Examples of Reo connectors modeling
biological processes are given in [CCA04].

There are also several kinds of semantics available for Reo. In [AR03], co-
inductive calculus semantics are given for connectors and their composition. In
[ABBR04], semantics for Reo are given using temporal logics. In [ABRS4], the se-
mantics of Reo are defined using constraint automata. For a good understanding
of the Reo connector semantics we refer to the work of Clarke and Costa about
connector coloring [CCA05].

166 Chapter 9. Composition of Mobile Channels

9.3 Issues Concerning the Distributed Implemen-
tation of Reo Connectors

In this section we discuss some of the main issues regarding the implementation
of Reo connectors in distributed systems. Addressing these issues is important for
understanding the differences between Reo and the MoCha model we will present in
Section 9.4.

Reo uses the concept of a node, which is not a component but a logical construct.
Therefore, the first step towards the implementation of a Reo connector is to identify
what are its components. A trivial step is to implement each node as a component.
However, from the point of view of efficiency, we may identify sub-parts of a connec-
tor as a component as well. For example, take a look at the sequencer connector of
Figure 9.2(c). If we posses the knowledge that this particular connector is going to
remain static during the lifetime of the system, it is a good idea to implement the
series of FIFO 1 channels (and their corresponding nodes) as one component.

Another implementation issue involves the dynamic reconfiguration of connec-
tors. Reo uses the join and split operations for this purpose. However, these are
logical operations that work on graphs. Reo does not specify how these operations
are actually (to be) implemented in distributed systems. Therefore, the components
that we use (which we identified above) must implement some protocol to allow
dynamic reconfiguration.

ε
A

C1 C2 C3

B

α β δγ

ζ η θ

Figure 9.3: Synchronization of Channel-end Operations

The most difficult implementation issue involves the propagation of synchrony.
With Reo we are able to create connectors where we can achieve atomic synchroniza-
tion of channel-end operations that involve more than one Reo node; for example,
the barrier synchronizer connector of Figure 9.2(c) where all (internal and external)
write and take operations are synchronized. However, the nodes of these kind of con-
nectors need to have global state connector information to make certain decisions.
We explain this by looking at the Reo connector given in Figure 9.3. This connector
consists of four synchronous channels and three synchronous drain channels. The
behavior of this connector is that component B successfully takes one value written
by component A each time that all components C write one “dummy” value to the
connector. Furthermore, all the write and take operations are synchronized; i.e.
atomically succeed. For this to be possible each node must know the state of the
entire connector (or parts of it) and its boundary. For example, node ε needs to
know if component B is ready to take a value before it is able to accept one itself.
Node δ needs to know if node ε accepts a value and if node θ has one to offer before
it can accept a value to replicate. Node γ needs to know if node δ accepts a value

9.4. MoCha’s Coordination Components Model 167

and if node η has one to offer. And so on, until we get to node α. For this node
to allow component A to successfully write to it, it must first (direct or indirectly)
check the status of all the other nodes. A process that must be repeated for each
value that flows from A to B.

The implementation of such a Reo connector is not an easy task. A truly dis-
tributed implementation prohibits the presence of a central point that contains the
current global connector state for the components (which implement the Reo nodes)
to query. Instead, all the information that is relevant for the local synchronization
of nodes must be propagated through the different synchronous sub-sections of the
connector. The challenge lies in finding an efficient implementation. For example, we
can propagate the global state to each component for every channel-end operation
that is performed on the connector. However, such a protocol is highly inefficient for
it generates far more control messages than the amount of data that actually flows
through the connector.

The work in [CCA05] discusses the requirements that a distributed implemen-
tation of Reo must fulfill. It also provides the first steps towards a non-trivial
algorithm for implementing the Reo propagation of synchrony. This algorithm is
still in an early phase to be able to determine whether its actual implementation
will be efficient.

9.4 MoCha’s Coordination Components Model

Inspired by Reo, we present a composition model that provides a lower level of
abstraction which is closer to the actual implementation of connectors in distributed
systems. We combine the results of the previous chapters of this thesis to create this
model, where we take and implement some of the main ideas of Reo while we avoid
or modify others. Thus, we can say that our model (easily) implements a subset
of Reo. We proceed by presenting the main features of our model while briefly
indicating the similarities and differences with Reo. In Section 9.6 we discuss the
differences between the two models in more detail.

As with Reo, the major requirement we impose on our model is compositionality:
one should be able to distinguish the individual components and channels in the
composed system, and it must be easy to decompose and rearrange the system; i.e.
to update and replace specific components and channels without having to change
the rest of the system.

The aim of our model is to be able to easily implement its connector specifica-
tions in distributed systems. Therefore, instead of composing channels using Reo
nodes we use a special kind of components, called coordination components, for this
purpose. These are lightweight components that are meant for linking channels (or
connectors) together according to some transparent coordination behavior. This
behavior can be much more complex than the one of the Reo nodes. The coordina-
tion components follow the specification given in Chapter 8, where we state that a
component’s interface consists of a dynamic set of channel-ends. Figures 9.4(a) and
9.4(b) give examples of such a component. For convenience, we draw the required
channel-ends on our components as ports. An input port is a required sink channel-
end where the component takes values from. An output port is a required source
channel-end, where the component writes values to.

168 Chapter 9. Composition of Mobile Channels

Alike Reo, the connectors of our model are dynamically reconfigurable. For
this purpose, Reo uses the logical operations split and join. We implement these
operations by providing our coordination components with a protocol for changing
their interface’s set of channel-ends (or ports) dynamically. On top of this, the mobile
channels that we use already provide dynamic reconfiguration of channel connections
among the components in a system (see Chapter 4 and Chapter 6). Therefore, we
are able to change the topology of our connectors dynamically; both the channel-end
connections and the amount of incoming and outgoing channels of the coordination
components can dynamically change during the runtime of a system.

In Section 9.3 we discussed the difficulties of implementing an efficient algorithm
for the Reo propagation of synchrony. The nodes involved in this synchrony need
to have global state connector information to make certain decisions. In contrast,
in our MoCha model the coordination components make decisions strictly based on
local state information. This makes it easier to implement the MoCha connectors in
distributed systems.

Next, we introduce a basic set of coordination components: the replicator, the
non-deterministic multiplexer, the ordered multiplexer, the non-deterministic demul-
tiplexer, the ordered demultiplexer, the write gate transistor, the take gate transistor,
the write switch, and the take switch. The choice for this particular set is based on
examination of Reo examples in the literature. Moreover, the behavior of some
of these components resemble the ones of existing basic Reo connectors. We shall
indicate which ones, and make comparisons. For simplicity, for each coordination
component we first introduce a static version, where the (amount of) channel-ends
of its interface is fixed and given at creation time. Afterward, we give the generic
dynamic version, where the (amount of) channel-ends of its interface change(s) dur-
ing the runtime of the system. For both versions, we give the MoCha-π specification
(see Chapter 4). For each of the static coordination component versions, we give a
Petri Net specification (see Chapter 3). For each coordination component we give
examples of simple connectors. We also show how to do the composition of the
MoCha-π and Petri Nets semantics. All the components have been implemented
and added to the MoCha middleware (see Chapter 6).

After the introduction of these coordination components, we give some further
examples of useful connectors: the sequencer, the ordered drain, the multi write
gate transistor, and the n-to-n write switch. Finally, we discuss the composition of
connectors themselves.

9.4.1 Replicator

The replicator has one input channel and many output channels (see Figure 9.4(a)).
This coordination component takes a value from the sink-end of the input channel
and replicates it by writing the same value to all the source-ends of the output
channels (in the figure the channel-ends are represented as ports). The replicator’s
behavior resembles to the one of the Reo source node (see Figures 9.1(c) and 9.1(d)),
the difference is that the replicator does not require to know whether all output
source-ends can accept the data before writing to them. Our replicator just writes
the data to all source-ends and waits until all these operations are completed. We
give its MoCha-π specification:

9.4. MoCha’s Coordination Components Model 169

(a)

1O 1

O 2

O n

I

Replicator
(Static)

B

D

CA

(c)

Replicator
2

(Dynamic)

Replicator

(b)

I
O

O n

Ci Co

O

Figure 9.4: Replicator

Rep(iSink , ~o)
def
= iSink ↓ .(o ↓ .){∀o∈~o};Rep′(iSink , ~o)

Rep′(iSink , ~o)
def
= iSink?(data).((o!〈data〉 |){∀o∈~o});Rep′(iSink , ~o)

The replicator process Rep receives at creation the sink-end iSink of the incoming
channel and a vector ~o with the source-ends of all the output channels. At initializa-
tion, the process connects to all channel-ends and it’s then ready to receive a value.
The actual replication is given by process Rep′. This process takes a value from the
given sink-end and writes it in parallel to all the source-ends of vector ~o. After all
writes are completed, and not earlier, the replication process repeats itself.

2

p
WA−1

p
WA−2

p
WA−n

p
1

t1

p
I

I

p
RTT

I

p

I
O−2

p
O−1

I

p

I
O−n

t

I

I

I

Figure 9.5: Replicator PN

In Figure 9.5 we give a Petri Net, from now on PN, that specifies the concurrent
behavior of our replicator coordination component. This PN follows the same proto-
col we specified for components as explained in Section 3.3.2. The replicator PN has
one input side (or taking side) that consists of the interface places {pI , pRTT }, and
n output sides (or writing sides) that consists of the interface places {p

O−k
, p

WA−k
}

where 1 ≤ k ≤ n. The initial configuration of our PN is {pRTT , p1}. Place pRTT

initially contains a token to indicate that the replicator component is ready to take
a value. From the initial configuration nothing can happen. However, when com-
posed with mobile channels, at some point in time the token of place pRTT enters

170 Chapter 9. Composition of Mobile Channels

the sink-end of a mobile channel. After which, sometime later, a token is placed
in pI to indicate that a value is available from this end. The replicator takes this
value and writes it to all output places p

O−k
. We give the sequential firing step:

{pI , p1}[t2〉{pRTT , pO−1 , ..., pO−n}. The source channel-ends take the token of their
corresponding output place, and sometime later acknowledge their write by inserting
a token in the corresponding p

WA
place. When all writes are acknowledge, transition

t1 can fire and place p1 is filled with a token again. We are then back at the initial
configuration from where the next replication can take place. Observe, that we need
not to always end in the initial configuration; before all writes are acknowledge, the
sink-end may already have taken the token from place pRTT . However, no next take
(by the replicator) can happen until place p1 contains a token again.

The generic version of the replicator, where the static version is a particular
instance of, is the dynamic replicator. With this version the (number of) channel-
ends change(s) dynamically. For this purpose, we add two extra incoming mobile
channels to the static version (as illustrated in Figure 9.4(b)) and specify a protocol
for adding and removing channel-ends. Through the channel Ci , the replicator
receives sink channel-ends to take the input values from. If the given sink-end
is distinct from the current input sink-end, the later is replaced by the new one.
Otherwise, if the given sink-end is equal to the current one, the later is removed
and the replicator ends with no sink-end to take from. The same protocol holds for
adding and removing output source channel-ends that the replicator receives through
channel Co . We give the MoCha-π specification of this dynamic replicator (where
we use if-statements to make the specification shorter):

Rep(ciSink , coSink)
def
= ciSink ↓ .coSink ↓ .Rep′(ciSink , coSink , 〈〉)

Rep′(ciSink , coSink , ~o)
def
=

(ciSink?(si).si ↓ .Rep′′(ciSink , coSink , si , ~o))
+ (coSink?(so)

.((so ↓ .Rep′(ciSink , coSink , 〈o1, ..., o|~o|, so〉)){if so /∈ ~o}
+ (so ↑ .Rep′(ciSink , coSink , ~o \ so)){if so ∈ ~o}))

Rep′′(ciSink , coSink , iSink , ~o)
def
=

(ciSink?(si)
.((iSink ↑ .si ↓ .Rep′′(ciSink , coSink , si , ~o)){if si 6= iSink}
+ (iSink ↑ .Rep′(ciSink , coSink , ~o)){if si = iSink}))

+ (coSink?(so)
.((so ↓ .Rep′(ciSink , coSink , iSink , 〈o1, ..., o|~o|, so〉)){if so /∈ ~o}
+ (so ↑ .Rep′(ciSink , coSink , iSink , ~o \ so)){if so ∈ ~o}))

+ (iSink?(data).((o!〈data〉 |){∀o∈~o})
;Rep′′(ciSink , coSink , iSink , ~o)){if |~o| ≥ 1}

At creation, the replicator process Rep receives the sink-ends of the Ci and Co

channels and connects to them. After this, it calls process Rep′. Within this process
either an output source-end is added or removed from/to the vector ~o, or an input
sink-end is received and process Rep′′ is called. Within this last process, there are
three possibilities: (1) An input sink-end is replaced or removed. Or (2), an output
source-end is added or removed. Or (3), a value is taken from the input sink-end and
written in parallel to all output source-ends (if there are any source-ends available).

9.4. MoCha’s Coordination Components Model 171

In Figure 9.4(c), we give an example connector that consists of one replicator,
two synchronous channels, one FIFO and one synchronous drain channel. We give
the MoCha-π specification of this connector using the static version of the replicator
(we give an example of a connector using a dynamic coordination component upon
the introduction of the next component in Section 9.4.2):

Connector(soa , sib , sic , sod)
def
= new(sia , sob , soc , sod2)

(SYNCHRONOUS (soa , sia) | SYNCHRONOUS (sob , sib) | FIFO(soc , sic)
| SYNCHDRAIN (sod , sod2 | Rep(sia , 〈sob , soc , sod2〉))

We can see that the composition of the MoCha-π semantics of the replicator and
each used channel type is just the process algebra parallel composition. For simplic-
ity, we used the static version of the replicator. Naturally, for the dynamic version
it is not a good idea to encapsulate the connector in a process for its configuration
may change.

To construct the PN connector, we use the composition function σ that mergers,
or concatenates, interface places (see Section 3.3.3). We take the replicator, the
channels PN and use σ to obtain the connector. To compose the FIFO channel with
the replicator we do: Result = σ(Replicator , {p

O−3 , pWA−3},FIFO , {p
Source

, p
WA
}). To

add the synchronous drain: Result2 = σ(Result , {pO−2 , pWA−2},SynchDrain,
{p

Source2 , pWA2}). To add the outgoing synchronous channel: Result3 = σ(Result2,
{pO−1 , pWA−1},Synchronous, {pSource , pWA}). Finally, we obtain the connector by adding
the incoming synchronous channel: Connector = σ(Result3, {pI , pRTT },Synchronous,
{p

Sink
, pRTT }).

Two writing components (A and D) and two taking components (B and C)
are using our example connector. Every time component A writes a value to the
connector, components B and C can take one from it and component D is allowed
to write a value (this value gets lost). Before being able to write a next value,
component A is forced to wait until component B takes the replicated value from
the connector and component D writes one “dummy” value to it first. There is no
need to wait for component C, since due to the FIFO mobile channel, it can take the
values out of the connector at its own convenience. Observe, that synchronization
is between the replicator and components A, B, and D. There is no “third party”
synchronization between, for example, components A and B.

For completeness, we end the description of the replicator by adding the compo-
nents to the MoCha-π specification as write and take processes:

Writer(source)
def
= source ↓ .Writer ′(source)

Writer ′(source)
def
= new data (source!〈data〉);Writer ′(source)

Taker(sink)
def
= sink ↓ .Taker ′(sink)

Taker ′(sink)
def
= sink?(data).Taker ′(sink)

System
def
= new(soa , sib , sic , sod)

(Writer(soa) | Writer(sod) | Taker(sib) | Taker(sic)
| Connector(soa , sib , sic , sod))

172 Chapter 9. Composition of Mobile Channels

9.4.2 Non-Deterministic Multiplexer

D

In

I2

I1

In

I2

I1 Multiplexer Multiplexer

B

C

A

Ci Co

(a) (b)

O

Multiplexer
(Dynamic)

(c)

O
(Static)

Figure 9.6: Multiplexer

The non-deterministic multiplexer has many input channels and one output chan-
nel (see Figure 9.6(a)). This coordination component non-deterministically takes a
value from one of the sink-ends of the input channels that have a value to offer, and
writes it to the source-end of the output channel. The behavior of our multiplexer
is equal to the one of the Reo sink node (see Figures 9.1(a) and 9.1(b)). We give
the MoCha-π specification of our multiplexer:

Mux (~i , oSource)
def
= (i ↓ .){∀i∈~i};oSource ↓ .Mux ′(~i , oSource)

Mux ′(~i , oSource)
def
= (i?(data) +){∀i∈~i};oSource !〈data〉.Mux ′(~i , oSource)

The multiplexer process receives at creation a vector~i with the sink-ends of all the
input channels, and the source-end oSource of the output channel. At initialization,
the process connects to all channel-ends. The multiplexing is done by process Mux ′.
This process non-deterministically chooses a sink-end and takes a value from it.
Afterward, it writes this value to the source-end. When this last write action is
completed, the process repeats the same pattern.

The MoCha-π specification is actually more general than the description of the
non-deterministic multiplexer. The Mux process chooses any sink-end that commits
to a take operation. However, it is not guaranteed that the channel of the chosen
sink has (or will have) a value to give through this end. This leads to the deadlock
of our multiplexer. To avoid this, we made all the MoCha-π mobile channels of
Section 4.4.1 “Reo compliant”1; i.e. the sink-end of such a channel commits to a
take operation only if it currently has a value to offer.

In Figure 9.7 we give the non-deterministic multiplexer PN. This PN has n
input sides (or taking sides) that consists of the interface places {p

I−k
, p

RTT−k
} where

1 ≤ k ≤ n, and one output side (or writing side) that consists of the interface places
{pO , pWA}. The initial configuration is {pRTT−1 , ..., pRTT−n , p1}. When composed with
mobile channels, each sink-end of the input channels can take the token of place
{p

RTT−k
} and put one back in the corresponding place {p

I−k
} to indicate that a

value is available from this end. However, the multiplexer takes only one token

1An exception is the not so frequently used synchronous spout channel type, where only one
of the two ends is able to commit when a value is available. Therefore, connecting two ends of
the same synchronous spout channel instance to two multiplexer instances may lead to a deadlock
situation.

9.4. MoCha’s Coordination Components Model 173

i−n

p
O

I

p
2

p

p
1

t
p

I
I−1

t

p
RTT−1

t

p

p
RTT−2

p
RTT−n

p

I
I−n

t

I
WA

o1

o2

I

i1

I
I−2

I

i2

I

t

Figure 9.7: Non-Deterministic Multiplexer PN

(value) since the capacity of place p2 is one and the token of place p1 can only go to
one input transition. For example, if the value of the first sink-end is selected the
sequential firing step is {pI−1 , p1}[ti1〉{p2, pRTT−1}. After this, the value is written
to the output place: {p2, pRTT−1}[to2〉{pO , pRTT−1}. The source-end of the output
channel takes the token of the output place, and sometime later acknowledges the
write by inserting a token in the pWA place. Then, transition to1 can fire and place
p1 is filled with a token again. We are then back at the starting configuration of
our example, from where the next multiplexing can take place. Observe, that the
function of place p1 is to prevent the multiplexer from taking a new value before the
write has properly succeeded.

For the dynamic non-deterministic multiplexer, we add two extra incoming mo-
bile channels to the static version (as illustrated in Figure 9.6(b)) and specify a
protocol for adding and removing channel-ends that is analogous to the one of the
replicator component. Through the channel Ci the multiplexer receives sink channel-
ends to take the input values from. Through the channel Co the multiplexer receives
source channel-ends to write the values to (only to one source-end at a time). We give
the MoCha-π specification of the dynamic multiplexer, where we use if-statements
to make the specification shorter (again):

Mux (ciSink , coSink)
def
= ciSink ↓ .coSink ↓ .Mux ′(ciSink , coSink , 〈〉)

Mux ′(ciSink , coSink ,~i)
def
=

(coSink?(so).so ↓ .Mux ′′(ciSink , coSink ,~i , so))
+ (ciSink?(si)

.((si ↓ .Mux ′(ciSink , coSink , 〈i1, ..., i|~i|, si〉)){if si /∈ ~i}
+ (si ↑ .Mux ′(ciSink , coSink ,~i \ si)){if si ∈ ~i}))

174 Chapter 9. Composition of Mobile Channels

Mux ′′(ciSink , coSink ,~i , oSource)
def
=

(coSink?(so)
.((oSource ↑ .so ↓ .Mux ′′(ciSink , coSink ,~i , so)){if so 6= oSource}
+ (oSource ↑ .Mux ′(ciSink , coSink ,~i)){if so = oSource}))

+ (ciSink?(si)
.((si ↓ .Mux ′(ciSink , coSink , 〈i1, ..., i|~i|, si〉)){if si /∈ ~i}
+ (si ↑ .Mux ′(ciSink , coSink ,~i \ si)){if si ∈ ~i}))

+ ((i?(data) +){∀i∈~i};oSource !〈data〉
.Mux ′′(ciSink , coSink ,~i , oSource)){if |~i | ≥ 1}

At creation, the multiplexer process Mux receives the sink-ends of the Ci and Co

channels and connects to them. After this, it calls process Mux ′. Within this
process either an input sink-end is added or removed from/to the vector ~i , or an
output source-end is received and process Mux ′′ is called. Within this last process,
there are three possibilities: (1) An output source-end is replaced or removed. Or,
(2) an input sink-end is added or removed. Or, (3) a value is non-deterministically
taken from one of the input sink-ends (if there is at least one available), and written
into the output source-end.

In Figure 9.6(c) we give an example connector that consists of one non-deterministic
multiplexer, one synchronous channel, one synchronous spout channel, and one lossy
synchronous channel. The PN connector is composed using the σ function and its
construction is analogous to the one of the replicator (see Section 9.4.1). We give
the MoCha-π specification of the connector using the dynamic version of the multi-
plexer (an example of a specification using a static coordination component is given
in Section 9.4.1):

System
def
= new(ciso , cisi , coso , cosi , soa , sia , sob , sib , si1c , si2c , sod , sid)

(SYNCH (ciso , cisi) | SYNCH (coso , cosi) | FIFO(soa , sia)
(SYNCH (sob , sib) | SYNCHSPOT (si1c , si2c) | LOSSYSYNCH (sod , sid)
| SYNCHDRAIN (sod , sod2) | Mux (cisi , cosi)
| ciso ↓ .coso ↓ .coso !〈sod〉.ciso !〈sia〉.ciso !〈sib〉.ciso !〈sic〉.ciso !〈si1c〉)

This time we don’t encapsulate the connector within a process so that we can easily
dynamically change its configuration any time we wish to do so. We let the System
process create all the entities and set them up. This process also configures the Mux
by not only creating it, but also passing all the needed channel-ends to obtain the
configuration of Figure 9.6(c). Naturally, this passing of channel-ends can also be
delegated to some component if desired. Adding write and take processes to above
specification is analogous to the way it is done in Section 9.4.1.

Two writing components (A and B) and two taking components (C and D) are
using our example connector. Components B and C have to wait until there are
selected by the multiplexer. If B is selected it writes a value that is multiplexed
to component D. If C is selected it can take a value from the synchronous spout
channel, another value coming from the other end of this channel is multiplexed to
D. Component A needs not to wait for writing values to the connector, all its written
values are stored in a FIFO channel until taken out by the multiplexer. Component

9.4. MoCha’s Coordination Components Model 175

D is composed to the multiplexer with a lossy synchronous channel, therefore, every
time that D does not perform a take operation a multiplexed value gets lost.

9.4.3 Ordered Multiplexer

The ordered multiplexer is a deterministic multiplexer that has many input channels
and one output channel (see Figure 9.6(a)). This coordination component selects a
value from the first sink-end of the input channels, then from the second one, from
the third one, and so on. When it covers all sink-ends, it starts again with the first
one. The behavior of this multiplexer resembles the one of the 2-input Reo ordering
connector (see Figure 9.2(d)). The difference is that our coordination component
can have many input channels. We give its MoCha-π specification:

Mux (~i , oSource)
def
= (i ↓ .){∀i∈~i};oSource ↓ .Mux ′(~i , oSource)

Mux ′(~i , oSource)
def
= (ik?(data).oSource !〈data〉.){∀ik∈~i,k=1to|~i|};Mux ′(iSink , ~o)

The difference with the non-deterministic version is that process Mux ′, rather than
choosing one sink-end non-deterministically each time, it sequentially takes a value
from each sink-end in vector ~i starting with the first one and ending with the last
one while writing the acquired values to the output source-end each time. When
this sequence is done, the process repeats itself.

b−2
t

p
O

I

p
2

p
RTT−1

t

p

p
RTT−2

t

p
RTT−n

p

I
I−n

p

I
I−1

t i1

t1

t

t

p

p

p

p

p

p
1

t

I
WA

o1

p

p

o2

I

I
I−2

I

i2

i−n

I

2

n

a−n

b−n

a−1

b−1

a−2

Figure 9.8: Ordered Multiplexer PN

In Figure 9.8 we give a PN that specifies the concurrent behavior of the ordered
multiplexer. The initial configuration of this PN is {pRTT−1 , p1, pb−1}. The cyclic se-
quence of n places pb−k (with 1 ≤ k ≤ n) ensures that the first value is taken for the

176 Chapter 9. Composition of Mobile Channels

first sink-end, then from the second one, from the third one, etc. For example, the fir-
ing sequence from the first multiplexed value is: {pI−1 , p1, pb−1}[ti1〉{pa−1, pb−1}[t1〉
{p

RTT−2 , pb−2, p2}[tto2{pRTT−2 , pb−2, pO
}. The source-end of the output channel takes

the token of the output place, and, sometime later, acknowledges the write by in-
serting a token in the p

WA
place. Then, transition to1 fires and place p1 is filled with

a token again. After this, the value of the next sink-end is ready to be multiplexed
as soon as there is a token in place pI−2 . When the value from the last sink-end is
multiplexed, the first sink-end is next again.

Analogous to the non-deterministic version, for the dynamic ordered multiplexer,
we add two extra incoming mobile channels to the static version. The MoCha-π
specification is the same except for the last line which we change into:

+ ((ik?(data).oSource !〈data〉.){∀ik∈~i,k=1to|~i|};Mux ′′(ciSink , coSink ,~i , oSource))

9.4.4 Non-Deterministic Demultiplexer

7

1O 1

A

C
F:<Integer>

B

2
(Dynamic)

(b)

I
O

O n

Ci Co

(a)

O 2

O n

I
(Static)

Demux Demux

(c)

DemuxO

Figure 9.9: Demultiplexer

The non-deterministic demultiplexer (see Figure 9.9(a)) has one input channel
and many output channels. This coordination component takes a value from the
sink-end of the input channel and non-deterministically writes it to (only) one of the
source-ends of the output channels. We give its MoCha-π specification:

Dmx (iSink , ~o)
def
= iSink ↓ .(o ↓ .){∀o∈~o};Dmx ′(iSink , ~o)

Dmx ′(iSink , ~o)
def
= iSink?(data).((o!〈data〉 +){∀o∈~o});Dmx ′(iSink , ~o)

The process Dmx receives at creation the sink-end iSink of the incoming channel
and a vector ~o with the source-ends of all the output channels. At initialization the
process connects to all channel-ends. The actual demultiplexing is given by process
Dmx ′. This process takes a value from the sink-end and non-deterministically writes
it to one of the source-ends. After the write action succeeds, the process repeats
itself.

In Figure 9.10 we give a PN that specifies the concurrent behavior of the non-
deterministic demultiplexer. This PN has one input side (or taking side) that consists
of the interface places {pI , pRTT }, and n output sides (or writing sides) that consists
of the interface places {p

O−k
, p

WA−k
} where 1 ≤ k ≤ n. The initial configuration

of our PN is {pRTT , p1}. When composed with mobile channels, the sink-end of
the input channels takes the token of place {pRTT } and puts one back in place pI

to indicate that a value is available from this end. The PN takes this value by

9.4. MoCha’s Coordination Components Model 177

ob−n

t

p

t

p

t

t

p

t

p
2

t

p
RTT

p
I

I

p

t

I

I

p

I

I

p

WA−2

O−2

WA−n

O−n

I
WA−1

I

p
O−1

I

1

i

oa−1

ob−1

oa−2

ob−2

oa−n

Figure 9.10: Non-Deterministic Demultiplexer PN

executing the sequential firing step: {pI , p1}[ti〉{p2, pRTT }. Once a token is in place
p2, the demultiplexer non-deterministically chooses one output transition for the
next step. For example, the second output transition: {p2, pRTT }[tob−2〉{pO−2 , pRTT }.
The source-end that is connected to this particular output takes the token of place
pO−2 , and sometime later acknowledges the write by inserting a token in the pWA−2

place. If this is the case, then transition toa−2 fires and fills place p1 with a token
again. In this new configuration, the demultiplexer is ready to take the next value.

Naturally, we also have a dynamic version of the non-deterministic demultiplexer
(see Figure 9.9(b)). As with the previous coordination components we add two
incoming channels Ci and Co . The MoCha-π specification of this version is the same
as the one for the dynamic replicator (see Section 9.4.1), except that we substitute
the name process Rep to Dmx and we change the last line into:

+ (iSink?(data).((o!〈data〉 +){∀o∈~o});Dmx ′′(ciSink , coSink , iSink , ~o))

In Figure 9.9(c) we give an example connector that consists of one non-deterministic
demultiplexer, one FIFO channel with a capacity of seven values, one lossy syn-
chronous channel, and one filter channel with an Integer as its pattern. While
introducing the previous components we already gave examples of how to construct
connectors by composing the semantics of the MoCha-π calculus and the Petri Nets
formalism (see Sections 9.4.1 and 9.4.2).

One writing component (A) and two taking components (B, and C) are using
our example connector. Component A can write up to seven values into the connec-
tor. After this, the FIFO channel is full and A must wait until the demultiplexer
takes out a value of the channel first. When this is the case, the value gets non-

178 Chapter 9. Composition of Mobile Channels

deterministically demultiplexed to one of the three taking components. However,
values can get lost with our connector. This is the case either, when component B
is selected but this component is not currently taking, or when C is selected but the
value is not of type Integer .

9.4.5 Ordered Demultiplexer

The ordered demultiplexer (see Figure 9.9(a)) is a deterministic demultiplexer that
has one input channel and many output channels. This coordination component
takes a value from the sink-end of the input channel and writes it to the first source-
end of the output channels, then to the second one, the third one, etc. When it covers
all source-ends, it starts again with the first one. We give its MoCha-π specification:

Dmx (iSink , ~o)
def
= iSink ↓ .(o ↓ .){∀o∈~o};Dmx ′(iSink , ~o)

Dmx ′(iSink , ~o)
def
= (iSink?(data).ok !〈data〉.){∀ok∈~o,k=1to|~o|});Dmx ′(iSink , ~o)

The difference with the previous version is that process Dmx ′, rather than choosing
one source-end non-deterministically each time, it sequentially writes a value to each
source-end in vector ~o starting with the first one and ending with the last one. When
this sequence is done, the process repeats itself.

c−n

1

t1

t

t

p

t

t

p

t

p
RTT

I

p
I

I

p

t
p
3

t

p

p

p

p

p

p

t

t

2

n

I

p
O−2

I
WA−2

I

I

p

WA−n

O−n

I
WA−1

i

b−1

b−2

b−n

oa−1

I

p
O−1

ob−1

oa−2

ob−2

oa−n

ob−n

c−1

c−2

p

Figure 9.11: Ordered Demultiplexer PN

In Figure 9.11 we give a PN that specifies the concurrent behavior of the ordered
demultiplexer. The initial configuration of this PN is {pRTT , pb−1, p3}. There are two
differences with the non-deterministic version. One is that place p3 is now the one
that ensures that the demultiplexer does not take a new value before the previous
write action succeeds. And two, a cyclic sequence of n places pb−k (where 1 ≤ k ≤ n)

9.4. MoCha’s Coordination Components Model 179

is added to ensure that the first value goes to the first source-end output, the second
to the second one, and so on. The demultiplexer takes a value by performing the
sequential firing step: {p

I
, pb−k , p3}[ti〉{p1, pb−k}. From this configuration, the value

leads to an output place p
O−k

depending on which place pb−k currently contains a
token.

Analogous to the non-deterministic version, for the dynamic ordered demul-
tiplexer, we add two extra incoming mobile channels to the static version. The
MoCha-π specification is the same except for the last line which we change into:

+ ((iSink?(data).ok !〈data〉.){∀ok∈~o,k=1to|~o|});Dmx ′′(ciSink , coSink , iSink , ~o))

9.4.6 Write Gate Transistor

(c)

(Static)

Switch
Transistor/

I O

G/S

A Switch
Transistor/

B

C

A Switch
Transistor/

B

C

(a) (b)

I Switch
Transistor/

G/S

O

(Dynamic)

Ci CoCg/s

(d)

Figure 9.12: Transistors and Switches

The write gate transistor (see Figure 9.12(a)) has one input channel I, one output
channel O, and one incoming gate channel G. Every time that this coordination
component successfully takes any value from the sink-end of the gate channel, it
takes one value from the sink-end of the input channel and writes it to the source-
end of the output channel. The behavior of this transistor is equal to the one of
the Reo write-cue regulator of Figure 9.2(d). We give MoCha-π specification of our
transistor:

WGT (iSink , gSink , oSource)
def
=

iSink ↓ .gSink ↓ .oSource ↓ .WGT ′(iSink , gSink , oSource)

WGT ′(iSink , gSink , oSource)
def
=

gSink?(dg).iSink?(data).oSource !〈data〉.WGT ′(iSink , gSink , oSource)

The transistor process initially connects to all the given channel-ends. After which,
it repeats the following cycle: it takes a value from the gate sink-end gSink (the value

180 Chapter 9. Composition of Mobile Channels

gets lost), it takes a value from the input sink-end iSink , and finally, it writes the
obtained value to the output source-end oSource .

g

I
I

t

p

t

p

I
WA

p
p
RTT

I

t
p

p
O

p

I

I

i/o

wa

1

2

RTT−G
I

G

p

Figure 9.13: Write Gate Transistor PN

In Figure 9.13 we give the PN of the write gate transistor. The PN has one input
side consisting of the (interface) places {pI , pRTT }, one output side consists of the
places {pO , pWA}, and one gate side (from which the transistor takes from) consisting
of the places {pG , pRTT−G}. The initial configuration is {p1, pRTT−G}, from which no
value can “pass through” the transistor due to the fact that place p2 is lacking a
token for this to happen. However, if a write succeeds on the gate side (by firing
transition tg) the new configuration {p1, p2, pRTT−G , pRTT } allows one value to pass
through. We give the sequential firing step: {pI , p1, p2, pRTT−G}[ti/o〉{pO , pRTT−G}.
When the output write action gets acknowledge, place p1 gets filled with a token
again. This allows the next value to go through when another write succeeds on the
gate side.

For the dynamic version of the write gate transistor (see Figure 9.12(b)) we add
three incoming channels meant for adding and removing channel-ends (as specified
by the protocol we previously described). Through channel Ci the transistor re-
ceives sink channel-ends to take the input values from. Through channel Co the
transistor receives source channel-ends to write values to. And, through channel Cg

the transistor receives sink channel-ends to take values from the gate channel. We
give the MoCha-π specification of the dynamic version. This specification follows
the same pattern as the ones of the previous dynamic coordination components.
The difference is that we have an extra incoming channel Cg . Therefore, we use the
if-statements again to make the specification shorter:

9.4. MoCha’s Coordination Components Model 181

WGT (ciSink , cgSink , coSource)
def
=

new ε (ciSink ↓ .cgSink ↓ .coSource ↓
.WGT ′(ciSink , cgSink , coSource , ε, ε, ε))

WGT ′(ciSink , cgSink , coSource , iSink , gSink , oSource)
def
=

(ciSink?(si)
.((iSink ↑ .si ↓ .WTG ′(..., si , gSink , coSource)){if si 6= iSink}
+ (iSink ↑ .WTG ′(..., ε, gSink , coSource)){if si = iSink}))

(cgSink?(si)
.((gSink ↑ .si ↓ .WTG ′(..., si , coSource)){if si 6= gSink}
+ (gSink ↑ .WTG ′(..., ε, coSource)){if si = gSink}))

(coSink?(so)
.((oSource ↑ .so ↓ .WGT ′(..., so)){if so 6= oSource}
+ (oSource ↑ .WGT ′(..., ε)){if so = oSource}))

+ (gSink?(dg).iSink?(data).oSource !〈data〉
.WGT ′(...)){if iSink 6= gSink 6= oSource 6= ε}

At creation, the transistor process WGT receives the sink-ends of the Ci , Co ,
and Cg channels and connects to them. After this, it calls process WGT ′. Within
this process there are four possibilities after which the process repeats itself again.
Either, (1) the input sink channel-end, (2) the gate sink channel-end, or (3) the
output source channel-end, is added or replaced or removed. Or (4), the transistor
takes a value from the gate sink-end, takes a value from the input sink-end, and
then writes the last acquired value to the source-end (if all the ends are available).

In Figure 9.12(c) we give an example connector that consists of one write gate
transistor, and three synchronous channels. Two writing components (A and C)
and one taking component (B) are using our connector. Component B takes the
values that A is writing to the connector. However, A is allowed to write only every
time C does as well. Therefore, with this connector, component C regulates the
communication between A and B.

9.4.7 Take Gate Transistor

The take gate transistor (see Figure 9.12(a)) has one input channel I, one output
channel O, and one outgoing gate channel G. Every time that this coordination
component successfully writes any value to the source-end of the gate channel, it
takes one value from the sink-end of the input channel and writes it to the source-end
of the output channel. The behavior of this transistor is based on the Reo take-cue
regulator as given in [Arb02]. We give the transistor’s MoCha-π specification:

TGT (iSink , gSource , oSource)
def
=

iSink ↓ .gSource ↓ .oSource ↓ .TGT ′(iSink , gSource , oSource)

TGT ′(iSink , gSource , oSource)
def
=

new dg (gSource !〈dg〉.iSink?(data).oSource !〈data〉)
;TGT ′(iSink , gSource , oSource)

The transistor process initially connects to all the given channel-ends. After which,
it repeats the following cycle: it writes a value to the gate source-end gSource , it

182 Chapter 9. Composition of Mobile Channels

takes a value from the input sink-end iSink , and finally, it writes the obtained value
to the output source-end oSource .

WA−G

I
I

t

p

I
WA

p
RTT

I

p

p

t

p
t

p

I

I

p
O

wa

1

2

i/o/g

wag

I
G

p

Figure 9.14: Take Gate Transistor PN

In Figure 9.14 we give the PN of the take gate transistor. The initial configuration
is {p1, pG

}, from which no value can “pass through” the transistor due to the fact
that place p2 is lacking a token for this to happen. However, if the source-end
of channel G takes the token from place pG , it eventually puts a token back in
place pWA−G . After which, places p2 and pRTT get filled with a token and one input
value is allowed to “go through” (due to the firing of transition twag). We give the
sequential firing step: {pI , p1, p2o}[ti/o/g〉{pO , pG}. When the output write action
gets acknowledge, place p1 gets filled with a token again. This brings the PN back
to the initial configuration. The next value can go through the take gate transistor
only when another take action succeeds on its gate side.

Analogous to the write gate transistor, for the generic dynamic take gate tran-
sistor, we add three extra mobile channels to the static version. The MoCha-π
specification is the same except for that we replace all instances of gSink for gSource ,
and the last line which we change into:

+ (new dg (gSource !(dg).iSink?(data).oSource !〈data〉);WGT ′(...)

In Figure 9.12(d) we give an example connector that consists of one take gate
transistor, and three synchronous channels. One writing component (A) and two
taking components (B and C) are using our connector. As with the write gate
transistor connector example, component C regulates the communication between
A and B. However, this time it does so by taking a value from the connector each
time instead of writing to it.

9.4.8 Write Switch

The write switch (see Figure 9.12(a)) has one input channel I, one output channel O,
and one incoming switch channel S. When the switch of the coordination component

9.4. MoCha’s Coordination Components Model 183

is on, values are taken from the sink-end of the input channel and written to the
source-end of the output channel. When the switch is off, nothing happens. The
switch alternates between the on and off mode in reaction to successful take opera-
tions from the sink-end of the switch channel; i.e. some component externally writes
a value to the switch channel. Initially, the switch is off. We give the MoCha-π
specification:

WS (iSink , sSink , oSource)
def
=

iSink ↓ .sSink ↓ .oSource ↓ .WS ′(iSink , sSink , oSource)

WS ′(iSink , sSink , oSource)
def
=

sSink?(switch).WS ′′(iSink , sSink , oSource)

WS ′′(iSink , sSink , oSource)
def
=

(iSink?(data).oSource !〈data〉.WS ′′(iSink , sSink , oSource))
+(sSink?(switch).WS ′(iSink , sSink , oSource))

The switch process WS initially connects to all the given channel-ends. After which
it operates in two modes, on and off, starting with the off mode. Process WS ′

specifies the off mode. This process takes a value from the sink-end of the switch
channel, when this action succeeds the write switch goes into the on mode. This
mode is specified by process WS ′′. In this process either a value is taken from the
input sink-end and written to the output source-end, or a value from the switch
sink-end is taken and the switch goes back into the off mode.

In Figure 9.15 we give the PN of the write switch. The initial configuration is
{p1, pRTT−S }, where the switch is off. No value can be taken by the write switch
since place p3 is lacking a token. To turn on the switch, the sink-end of the switch
channel writes a value by taking the token of place pRTT−S and putting one back
in place pS . Then, the only thing that can happen is that transition ts−1 fires:
{p1, pS }[ts−1〉{p1, p3, p4, pRTT , pRTT−S }. This step puts a token in the cyclic path
that is constituted by places p2 and p3 and by transitions ti/o and tc . This path
is meant for enabling series of continuous takes and writes. For example, if the
switch in on and there is an input available, we get the following firing sequence:
{p1, p3, p4, pI , pRTT−S }[ti/o〉{pO , p2, p4, pRTT−S }[tc〉{pO , p3, p4, pRTT , pRTT−S }. From this
last configuration, if the previous write gets acknowledge (place p1 contains a token
again) the next take/write series can take place. To turn the switch off, the sink-end
of the switch channel writes another value. Due to the token in place p4 the only
possibility is to fire transition ts−2. This transition takes the token out of the cyclic
path so that no more series of take/write actions are possible. Observe, that as long
as transition ts−2 does not fire, the write of the switch sink-end is still not finished.
Meanwhile, several series of write/take actions may still occur.

For the dynamic version of the write switch (see Figure 9.12b) we add three
incoming channels meant for adding and removing channel-ends. Through channel
Ci the transistor receives sink channel-ends to take the input values from. Through
channel Co the transistor receives source channel-ends to write values to. And,
through channel Cs the transistor receives sink channel-ends to take values from the
switch channel. We give the MoCha-π specification:

184 Chapter 9. Composition of Mobile Channels

WS (ciSink , csSink , coSource)
def
=

new ε (ciSink ↓ .csSink ↓ .coSource ↓
.WS ′(ciSink , csSink , coSource , ε, ε, ε))

WS ′(ciSink , csSink , coSource , iSink , sSink , oSource)
def
=

(ciSink?(si)
.((iSink ↑ .si ↓ .WTG ′(..., si , sSink , coSource)){if si 6= iSink}
+ (iSink ↑ .WTG ′(..., ε, sSink , coSource)){if si = iSink}))

(csSink?(si)
.((sSink ↑ .si ↓ .WTG ′(..., si , coSource)){if si 6= sSink}
+ (sSink ↑ .WTG ′(..., ε, coSource)){if si = sSink}))

(coSink?(so)
.((oSource ↑ .so ↓ .WS ′(..., so)){if so 6= oSource}
+ (oSource ↑ .WS ′(..., ε)){if so = oSource}))

+ (sSink?(switch).WS ′′(...)){if iSink 6= sSink 6= oSource 6= ε}
WS ′′((ciSink , csSink , coSource , iSink , sSink , oSource)

def
=

(iSink?(data).oSource !〈data〉.WS ′′(...))
+ (sSink?(switch).WS ′(...))

i/o

p
S

I

p

ts−1 ts−2

t

p

p

p

I
WA

p

p

p
I

I

t

p
RTT

I

t

I
RTT−S

1

I

p
O

2

3

4

c

wa

Figure 9.15: Write Switch PN

Just as with the static version, process WS ′ specifies the off mode. Within this
process there are four possibilities. Either, (1) the input sink channel-end, (2) the
switch sink channel-end, or (3) the output source channel-end, is added or replaced
or removed. Or, (4), the switch is turned on by taking a value from the switch
sink-end. The process WS ′′ specifies the on mode, where either a value is taken
from the input sink-end and written to the output source-end, or a value from the
switch sink-end is taken and the switch goes back into the off mode.

In Figure 9.12(c) we give an example connector that consists of one write switch,

9.4. MoCha’s Coordination Components Model 185

and three synchronous channels. Two writing components (A and C) and one taking
component (B) are using our connector. Component B takes the values that A writes
to the connector. However, component C controls this flow of values, for with every
successful write operation that is performs it it starts or stops the flow (initially
there is no flow).

9.4.9 Take Switch

The take switch (see Figure 9.12(a)) has one input channel I, one output channel O,
and one outgoing switch channel S. Analogous to the write switch, if the switch is on
values are taken from the sink-end of the input channel and written to the source-
end of the output channel. When the switch is off, nothing happens. The switch
goes on and off when the coordination component successfully writes a value to the
sink-end of the switch channel; i.e. some component externally takes a value from
the switch channel. Initially, the switch is off. We give the MoCha-π specification:

WS (iSink , sSource , oSource)
def
=

new switch (iSink ↓ .sSource ↓ .oSource ↓ .WS ′(iSink , sSource , oSource))

WS ′(iSink , sSource , oSource)
def
=

sSource !〈switch〉.WS ′′(iSink , sSource , oSource)

WS ′′(iSink , sSource , oSource)
def
=

(iSink?(data).oSource !〈data〉.WS ′′(iSink , sSource , oSource))
+(sSource !〈switch〉.WS ′(iSink , sSource , oSource))

The switch process initially connects to all the given channel-ends. After which it
operates in two modes, on and off, starting with the off mode. Just like with the
write switch, process WS ′ specifies the off mode and process WS ′′ the on mode. The
difference is that WS ′′ writes a value to the sink-end of the switch channel instead
of taking from it.

In Figure 9.16 we give the PN of the take switch. The initial configuration is
{p1, pS }, where the switch is off. No value can be taken by the take switch since
place p3 is lacking a token. Basically, we use the same strategy as with the write
switch. A cyclic path constituted by places p2 and p3 and by transitions ti/o and tc
ensures that once the switch is on, a token cycles around to allow series of take/write
actions until the switch is turned off. The switch is turned on, when the source-end
of the switch channel takes the token out of place pS , puts one back in place pWA−S

and transition ts−1 fires. Due to place p4 and transition ts−2, the next write by the
switch source channel-end turns the take switch off by taking the token out of the
cyclic path. After which, the next write turns the switch on again, and so on.

Analogous to the write gate transistor, for the dynamic take gate transistor, we
add three extra mobile channels to the static version. The MoCha-π specification is
the same except for the last line which we change into:

+ (new switch (sSource !〈switch〉.WS ′(...))

In Figure 9.12(d) we give an example connector that consists of one take switch,
and three synchronous channels. Two writing components (A and C) and one taking

186 Chapter 9. Composition of Mobile Channels

c

ts−2ts−1 ts−3

p
S

I

p
WA−S

p

p

I
WA

p
t

p
I

I

t

p
RTT

I

p

p

p

p
O

I

I

wa

i/o

1

2

3

4

5

t

Figure 9.16: Take Switch PN

component (B) are using our connector. This time, component C controls the flow
of values between A and B by taking from the connector (instead of writing as with
the write switch).

9.4.10 Useful Connectors

In this section we give some examples of useful connectors. This in addition to the
small connector examples we gave while introducing the coordination components.
We list the connectors of this section in Figure 9.17. We use dashed boxes to denote
the connectors, and add to each of them writing and taking components for an easier
explanation of their behavior.

The sequencer connector (see Figure 9.17(a)) has n output sink channel-ends.
This connector outputs values through each of its sink-ends. It does so in a sequential
manner starting with the first sink-end and ending with the last one, after which,
it starts the sequence again. No value is outputted before the previous one is taken
out of the connector. So, component A2 gets a value only after component A1 gets
one first and so on. To accomplish this behavior, the connector internally consists of
one demultiplexer that has one incoming spout channel and n synchronous outgoing
channels. The spout channel provides the coordination component with random
values, while the synchronous channels ensure that no component is able to take a
value before the previous one is finished taking his (by providing synchronization
between the demultiplexer and the external taking component). The reader may
recognize the similarity with the Reo sequencer connector (see Figure 9.2(e)).

The ordered drain connector (see Figure 9.17(b)) has n input source channel-ends.
This connectors takes values through each of its source-ends and deletes them. It
does so sequentially by taking from the first source-end, then the second one, then

9.4. MoCha’s Coordination Components Model 187

(c)

A1

A2

An An

MultiplexerA1

A2

C1

Transistor Transistor BA

Cn

Transistor

C2

A1 B1

A2 B2

An Bn

C

Replicator

Switch

Switch

(d)

Switch

Demux

(a) (b)

Figure 9.17: Useful Connectors

the third one, etc. When it reaches its last source-end, it starts the sequence again.
To accomplish this behavior, the connector internally consists of one multiplexer that
has n incoming synchronous channels and one lossy synchronous outgoing channel.
As with the previous connector, the synchronous channels ensure that no component
writes to the connector before the previous one finishes its write operation. Since
there is no entity taking values from the lossy synchronous channel, all values written
to it by the multiplexer get lost. Observe, that instead of a lossy synchronous channel
we can also use a drain channel instead.

The multi write gate transistor connector (see Figure 9.17(c)) has n + 1 source-
ends, and one sink channel-end. With this connector, component B is allowed to
take one value written by A, when all components C have successfully written some
value first. As one would expect, the internals of this connector consists of write
gate transistors that are all in series. Each individual transistor is associated with
one C component. So if there are n C components, then there are n transistors
needed for the internals of this connector.

The n-to-n write switch connector (see Figure 9.17(d)) has n + 1 source, and n
sink channel-ends. Every component Ak writes a value that is later on taken by
the corresponding component Bk , where 1 ≤ k ≤ n. However, they are not always
allowed to do this since component C has the power to stop or enable this communi-
cation by alternating writes to the connector. Initially, no communication is allowed
until C writes a value first. Upon the second written value the communication is
stopped. With the third enabled again, and so on. To accomplish this behavior, the
connector consists of write switch coordination components that are all lined up in
parallel, and where each of them connects a Ak component with its corresponding
Bk one. The values written by component C are replicated and given as input to all
the switches. Observe, that there is no other synchronization between the switches,
so when the communication is enabled the takes of the B components need not to
synchronize.

188 Chapter 9. Composition of Mobile Channels

The purpose of the MoCha model for composition is to build connectors that are
used in distributed systems. Therefore, we must be cautious that we don’t make
connectors that are so big and complex that they consume a lot of resources. One
strategy, is to use as much coordination components and as less mobile channels as
possible. To accomplish this, we can encapsulate frequently occurring connectors
(or sub-connectors) into coordination components. For example, it is a good idea to
define a coordination component that implements the behavior of the n-to-n write
switch connector. Unless, either we dynamically want to reconfigure the connector,
or we want to achieve some kind of load balancing strategy in our system.

9.4.11 Composition of Connectors

(c)

Connector

Connector

Connector

or
Demux

Replicator

(a)

Connector

Connector

Connector

(b)

Mux

Replicator

Replicator

Replicator

Switch

Switch

C

B1

Bn

Demux

(d)

Connector

Connector

or
Demux

Replicator

Connector

Connector

Mux

Figure 9.18: Composing Connectors

By using coordination components we can also compose already existing con-
nectors together into new ones. Typically, we use a replicator or a (de) multiplexer
for this purpose, however, other components may be used as well (if desired). In
Figure 9.18(a) we demonstrate how to obtain a one-to-many connector composi-
tion by using either a replicator or a (non-)deterministic demultiplexer coordination

9.5. Distributed Dining Philosophers 189

component. In Figure 9.18(b) we show how to obtain a many-to-one connector com-
position by using a (non-)deterministic multiplexer. In Figure 9.18(c) we combine
a (non-)deterministic multiplexer with either a replicator or a (non-)deterministic
demultiplexer to obtain a many-to-many connector composition. If we use a demul-
tiplexer then a value is selected from one of the input connectors and given to (only)
one of the output ones. If we use a replicator then the value gets replicated to all
output connectors. The behavior of this last combination resembles the one of the
Reo mixed node (see Figure 9.1(e)).

In Figure 9.18(d), we give an example of a composed connector. This connector
outputs values to the n B external components in a sequential manner starting
with the first component B and ending with the last one, after which, it starts the
sequence again. Component C either enables or disables this process by performing
alternating writes to the connector (initially the connector is disabled). We easily
implement this connector by using a sequencer and a n-to-n write switch connector.
We compose them together by using one-to-one replicators. Observe, that we can
also use both one-to-one demultiplexers and one-to-one multiplexers in this case.
However, due to the fact that the semantics of the replicator are simpler we use this
coordination component instead.

9.5 Distributed Dining Philosophers

We give a small example of a component based system where the component in-
stances are coordinated by connectors. For this example we look at the classical
dinning philosophers problem as specified by Dijkstra in [Dijk71]. In [Arb06] a solu-
tion to a four philosophers version of this problem is given using Reo. The purpose
of this solution is to show the significance of exogenous coordination in component
based composition. We give an implementation of this solution using our MoCha
coordination components model. This implementation is an example of the kind of
Reo connectors that we can implement using MoCha (see Section 9.6.1 for a more
detailed discussion about this). Furthermore, it also demonstrates that simple Reo
connectors don’t always have a trivial straightforward MoCha implementation.

In the dining philosophers problem there are four philosophers sitting around a
circular table. Each of them has a plate of spaghetti in front of him and a fork at
each side which they have to share with their neighbor (i.e. there are four forks in
total). The life of a philosopher consists of periods of thinking and eating. When
thinking a philosopher needs only it’s brain and nothing else. However, when eating
a philosopher requires to have a fork in each of his hands (we assume that our
philosophers have good table manners). Philosophers pick up the two forks one
at a time and all in the same manner: first the left fork and then the right one.
After eating the philosophers release both forks and go back to their main activity
(thinking) until they get hungry again. The problem consists of developing a solution
to avoid starvation and deadlock. Deadlock occurs when each of the four philosophers
has one fork and no one can get a second fork. Starvation occurs when a philosopher
is unable to acquire both forks (might occur independently from deadlock).

The Reo solution of this problem comes in two versions (see [Arb06]): one version
that avoids starvation but does not prevent deadlock, and one version that prevents
both starvation and deadlock. Figure 9.19(a) shows the first version, it contains

190 Chapter 9. Composition of Mobile Channels

f

Mux

Mux

Fork
1

t

f

M
ux

M
ux

Fork
4

tf

M
ux

M
ux

Fo
rk 2

t f

Philosopher

1

Philosopher

2

Philosopher

3

Philosopher

4

Philosopher

1

Philosopher

2

Philosopher

3

Philosopher

4

Fork
3

Mux

Mux

Fork
3

Fork
1

Fo
rk 2

Fork
4

Philosopher

1

Philosopher

2

Philosopher

3

Philosopher

4

Mux

Mux

Fork
1

t

f

t

f

M
ux

M
ux

Fo
rk 2t f

t f

Mux

Mux

Fork
3

t

f

t

f

M
ux

M
ux

Fork
4 tf

tf

ll

l

rr

r l r

(c)

Philosopher

1

Philosopher

2

Philosopher

3

Philosopher

4

Mux

Mux

Fork
1

t

f

t

f

M
ux

M
ux

Fo
rk 2t f

t f

Mux

Mux

Fork
3

t

f

t

f

M
ux

M
ux

Fork
4 tf

tf

ll

l

rr

r l r

(d)

ll

l

rr

r l r

(b)

ll

l

rr

r l r

(a)

f

t

f

t

t

f

t f

t

Figure 9.19: The Dining Philosophers

four instances of the philosopher component, four instances of the fork component,
twenty four synchronous channels, and eight instances of the Reo mixed node. The
behavior of the mobile channels and the mixed nodes are already previously defined
in this thesis. However, we must define the formal behavior of the philosopher and
the fork component. We start with the first one by giving it’s MoCha-π specification:

Phil(lt , lf , rt , rf)
def
= lt ↓ .lf ↓ .rt ↓ .rf ↓ .Thinking(lt , lf , rt , rf)

Thinking(lt , lf , rt , rf)
def
= τ.Eating(lt , lf , rt , rf)

Eating(lt , lf , rt , rf)
def
= new(token)(lt !〈token〉.rt !〈token〉.τ

.lf !〈token〉.rf !〈token〉.Thinking(lf , lt , rt , rf))

The philosopher process Phil receives at creation four source channel-ends, which
are lt ,lf ,rt , and rf . At initialization it connects to these ends and goes to the thinking

9.5. Distributed Dining Philosophers 191

mode by calling process Thinking . The process models the thinking of a philosopher
by performing a τ action (the unobservable state). After thinking a philosopher
is ready to eat and calls process Eating . A philosopher takes or drops a fork by
successfully writing a token to one of the following source-ends: it writes to source-
end lt to take the left fork, to rt to take the right fork, to lf to drop the left fork,
and to rf to drop the right fork. The eating itself is given as a τ action. Thus, as
specified by process Eating a philosopher picks up the left fork, the right fork, it
then eats for a while, drops the left fork, drops the right fork, and finally goes back
to the thinking mode again (by calling process Thinking).

A fork has two possible states: taken and free. Therefore, the behavior of the
fork component is quite simple and is given by the following MoCha-π specification:

Fork(t , f)
def
= t ↓ .f ↓ .Fork ′(t , f)

Fork ′(t , f)
def
= t?(token).f ?(token).Fork ′(t , f)

The process Fork receives two source-ends (t and f) at its creation. A successful
take from source-end t symbolizes that the fork is currently taken, a successful take
from source-end f symbolizes that the fork is currently free. A fork is initially free
(as we can see from process Fork ′), because the only action that can happen is a
take from t . After this action the fork is taken, because the only action that can
happen next is a take from f . After the “free” action the cycle repeats itself.

For convenience, we annotated the left (l) and right (r) sides of the philosophers
(they are facing the table) in the figure. We also indicate the channels that pro-
vide the t source-end (for taking the fork) to the forks with a t. We annotate the
channels that provide the f source-end (free the fork) with a f. The channels that
are connected to the philosophers at the outer-edge of the figure are used for taking
the fork; they provide the lt and rt source-ends depending on which side of the
philosopher the channels are. The channels closer to the center of the figure are
used by the philosophers for dropping (or freeing) the fork; they provide the lf and
rf source-ends.

Each fork can be taken and dropped by two philosophers, that is why the mixed
nodes are used. Consider what happens in the node that is in between the “take”
side of fork 1, philosopher 1, and philosopher 2. If the fork is free and ready to accept
a token, as it initially is, whichever one of the two philosophers happens to write a
token will succeed in taking the fork. Naturally, it is possible for both philosophers
to attempt to take the fork at the same time. In this case, the definition of the
mixed node (see Section 9.2) guarantees that only one of them non-deterministically
succeeds; the write operation of the other philosopher remains pending until fork 1
is free again. Because a philosophers frees a fork only after it has taken it, there is
never any contention at the node that is in between the same philosophers but at the
“free” side of fork 1. The composition of channels in this Reo application enables
philosophers to repeatedly go through their “eat” and “think” cycles at their leisure,
resolving their contentions for taking the same forks. The possibility of starvation is
ruled out because the nondeterminism of the mixed node is assumed to be fair (see
[Arb06]).

To implement this Reo application of the dinning philosophers in our MoCha
model, we must first identify the parts of the Reo connectors that we want to imple-
ment using coordination components. Usually these are the parts whose topology

192 Chapter 9. Composition of Mobile Channels

will remain unchanged during the lifetime of the system (static). In this case it is
easy, since all the connectors contain only one node each, we substitute each node
for such a component. Considering that the nodes choose a value (token) from two
inputs and pass it on to one output, then a logical choice is to use instances of the
non-deterministic multiplexer. Figure 9.19(b) shows the result. Indeed, just like the
Reo nodes, the multiplexers ensure that if one of the two philosophers adjacent to
it writes a token, then this philosopher will succeed in taking the fork (if the fork is
currently free). If both philosophers attempt to take the fork at the same time one of
their tokens is non-deterministically chosen. Nevertheless, despite of this behavior,
this particular MoCha implementation is wrong.

Consider what happens at the multiplexer on the “take side” of fork 1. Let’s
assume that the fork is currently taken by philosopher 1. If then philosopher 2
writes a token, the multiplexer takes this token and tries to write it to the fork
(all through the synchronous channels). This last write does not succeed (since
the fork is currently taken). However, the multiplexer has already taken the token
from the philosopher and, therefore, made him “believe” that he has acquired the
fork while this is not the case. The Reo node does not have this problem since it
posses the non-local connector state information whether or not the fork is currently
performing a take operation (it gains this information through the synchronous
channel that connects it to the fork). This makes it possible for the Reo node to
take a token only when the fork is currently free. In contrast, our multiplexer does
not automatically posses this information since the coordination components (and
the MoCha channels) don’t propagate global state connector information.

One of the options, in order to fix the MoCha implementation, is to extend our
connectors with a construction that explicitly propagates the fact that the fork is
currently able to take a token (just as Reo does). Fortunately, in this case, we don’t
need to. It is sufficient to slightly change the topology of our connectors as given in
Figure 9.19(c). We change all the outgoing synchronous channels of the multiplexers
so that: all the multiplexers on the edge of the table are now connected to the “free”
side of the fork, and all the multiplexers on the center of the table are connected to
the “take” side of it.

With this new implementation we prevent the case where two philosophers are
able to take the same fork at a same time. Suppose fork 1 is free, and either one
philosopher (1 or 2) or both philosophers attempt to take it, then the multiplexer
either takes the available token or non-deterministically selects the token of one of
the two philosophers (as before). Suppose it is philosopher 1 (again) who succeeds
in writing the token (as above), and thus acquiring the fork (from his point of view).
The multiplexer then tries to write the acquired token to the “free” side of fork
1. However, this write does not succeed because the fork is waiting for a token at
the “take” side (see its MoCha-π specification above). Therefore, the multiplexer
is not able to take a new token from philosopher 2. After a while, philosopher 1 is
done with eating and releases the fork by writing a “free” token. This token then
goes to the “take” side of fork 1 and is taken by it. The fork then expects a token
from its “free” side. Thus our multiplexer finally succeeds in writing the token he
acquired from philosopher 1. After this write, the multiplexer gets back to the initial
situation we began with. This behavior shows, that we correctly implemented the
Reo application in our MoCha coordination components model.

9.6. Comparisons and Conclusions 193

As mentioned before, this version of the dining philosophers deadlocks. Namely,
all the philosophers attempt to pick up their forks in the same order: left-first. If all
forks are free and all philosophers attempt to take their left fork at the same time
they will all succeed. This brings the system in a situation that there is no free fork
at the right side of any philosopher to take. At the same time, no philosopher will
relinquish its fork before it finishes its eating cycle. Therefore, the system deadlocks.

Reo is a exogenous coordination language. Therefore, it is easy to produce a
deadlock-free version without having to modify the components, nor installing a
central authority. It is sufficient to slightly change the topology of the connectors
so that one philosophers left and right connections to its adjacent forks are flipped.
Since MoCha also provides exogenous coordination, it is easy to implement this
modified Reo version. In Figure 9.19(d) we have flipped the connections of philoso-
pher 2. None of the components in the system are aware of this change (not even
philosopher 2), nor is any of them modified in any way to accommodate it. The
flipping of these connections is purely external to all components.

With this new version, if all philosophers attempt to take their left forks at a
same time, philosopher 2 will actually reach for the one on its right side. Naturally
he is not aware of the fact that he is aiming for the right fork instead of the left one as
he intends to. In this case he competes with philosopher 3, which is also attempting
to take its first fork. It makes no difference which one of the two actually acquires
the fork. The fact that one of them is not able to acquire any fork ensures that, at
all moments, there is always at least one philosopher that manages to acquire both
forks. This philosopher is able to complete its eating cycle and will return both forks
to the table. Therefore, deadlock never occurs.

More in depth details about the Reo applications we implemented can be read
in [Arb06].

9.6 Comparisons and Conclusions

In this chapter, we presented the MoCha model for composition of mobile chan-
nels into connectors. This model is based on coordination components. These are
lightweight components that are meant for linking channels (or connectors) together
according to some transparent coordination behavior. This behavior is provided as
a MoCha-π specification and a Petri Net (for the static version only). The actual
implementation of the coordination components is provided by the MoCha middle-
ware.

The MoCha model takes and implements some of the main ideas of Reo; the
first model for mobile channel composition. In Section 9.4, we discussed some of the
similarities and differences between the two models. In this section we continue this
discussion. Afterward, we characterize a subset of Reo that can be implemented by
MoCha.

The main difference between Reo and the MoCha composition model is that
they serve different purposes. Reo aims to be a powerful exogenous coordination
language based on a calculus of channels. It’s primary goal is expressiveness and the
easy specification of connectors. The purpose of our MoCha composition model is
to provide connectors that are easily and immediately implementable in distributed

194 Chapter 9. Composition of Mobile Channels

systems. Given this main difference it is easy to understand the motivation for all
the other ones we explain next.

Reo composes mobile channels by using the concept of a node, which is a logical
construct. We have seen in Section 9.3 that when implementing Reo connectors
this involves (somehow) mapping the nodes (or a group of nodes and their adjacent
channels) into components. In Section 9.5 we gave a simple example of such a
mapping. However, this may not always be so clear and easy to do. Especially
if we want to achieve an efficient implementation. In contrast, the MoCha model
already uses components for channel composition. Therefore, given a connector we
can immediately see all its components and distribute them among the locations
of a system according to some placement strategy. Also, since with MoCha we
are working at the level of components, we can already take efficiency into account
when creating our connectors. Due to the fact that the coordination components can
implement subparts of Reo connectors, their behavior can be much more complex
than the one of Reo nodes.

Reo uses the join and split operations for the dynamic reconfiguration of con-
nectors. However, these are logical operations that work on graphs. Reo does not
specify how these operations are actually (to be) implemented in distributed sys-
tems. The MoCha model offers one possible implementation of these operations by
making its coordination components dynamic; these components have a protocol for
adding and removing channel-ends to/from their interfaces (more details about this
protocol is given in Section 9.4).

In Section 9.3, we discussed the issue that Reo nodes need to have global state
connector information to make certain decisions due to the propagation of synchrony.
In Section 9.4, we showed and explained that the MoCha coordination components
base their decisions strictly on local state connector information. In concrete, this
difference means that MoCha components have no means of checking if their outgoing
write actions are going to succeed or not, while the Reo nodes do. Therefore, a Reo
(source or mixed) node is able to accept and take an incoming value only if all
source channel-ends coincident on the node accept the value. In contrast, a MoCha
replicator component initially always accepts and takes an incoming value. Then, it
writes this value to all outgoing source channel-ends (without knowing if the channels
are actually going to take the value). The replicator suspends until all the write
actions succeed before taking the next value. Another concrete difference involves
the non-deterministic taking of a value. A Reo (sink or mixed) node is able to know
which incoming paths of synchronous channels have a value to offer. Therefore, it
can safely non-deterministically choose the sink-end of such a path’s last channel,
even if this channel itself has no value to offer from its point of view. In contrast,
the MoCha components cannot look at incoming paths of channels. Therefore, the
MoCha multiplexer non-deterministically takes a value from the channels that, from
their point of view, currently have one to offer.

We give an example to illustrate the consequences of above difference between
Reo nodes and MoCha coordination components. In Figure 9.20(a) we show a Reo
connector that composes two synchronous channels together (upper connector). The
semantics of the Reo nodes are such that the external behavior of this connector is
equivalent with the one below of it; namely, the writes of component A and the takes
of component B are synchronized. In Figure 9.20(b) we show a MoCha connector

9.6. Comparisons and Conclusions 195

(b)

A B

A B

(a)

A B

1

A Rep B

Figure 9.20: The Difference Between a Reo Node and a MoCha Component

that also composes two synchronous channels together by using a replicator. The
semantics of the replicator are such that the external behavior of this connector is
equivalent with the one below of it; namely, that components A and B communicate
with each other using a FIFO 1 channel type. Comparing the two figures, we can see
that Reo nodes don’t buffer any values that pass through them (they don’t need to),
while MoCha components have a buffer of (at least) one value (they need to have
this buffer). Observe, that instead of using a replicator we can also use a multiplexer
for the MoCha connector of Figure 9.20(b).

γ

C2

Transistor Transistor

C1

BTransistor

C3

α β

A

Figure 9.21: Multi Write Gate Transistor

We give another more elaborated example. We used the Reo connector in Figure
9.3 to explain the need for the propagation of connector state information through
the Reo nodes. In Figure 9.21 we give a MoCha connector that resembles the
behavior of the Reo connector. The behavior of both connectors is that component
B successfully takes one value written by A each time that all components C write
one “dummy” value to the connector. In the Reo connector, all the write actions and
the take action are synchronized; i.e. atomically succeed. In the MoCha connector
they are not synchronized. Each transistor coordination component locally checks
if there is a value available at its input channel and writes it to its output channel
when a value is written to it by its corresponding component C. This leads to cases
where, for example, component A successfully writes a value to the connector but the
value is pending on the input channel of transistor β because component C2 didn’t
write a “dummy” value yet. Or to the case, where there is value pending on the
input channel of transistor γ while another write of component A succeeds because
component C1 meanwhile also wrote a next value to the connector. However, the
order in which component B receives the values is not altered. They arrive in the
same order as component A wrote them into the connector (which is also the case
with the Reo connector).

196 Chapter 9. Composition of Mobile Channels

We already have seen in Section 9.4 that the choice for not having the prop-
agation of synchrony makes MoCha connectors more easier to implement in truly
distributed systems. Furthermore, as one would expect, this choice also leads to
“simpler” and transparent compositional semantics; the compositional semantics of
the MoCha connectors are “just” the parallel composition of the MoCha-π seman-
tics of its constituents. In contrast, the need for global state connector information
(needed for the propagation of synchrony) makes any compositional semantics for
Reo far from trivial. For example, see the Reo constraint automata semantics in
[ABRS4] or the connector coloring semantics in [CCA05].

9.6.1 Implementing a Subset of Reo

We can implement a subset of Reo using MoCha. The MoCha components already
resemble the behavior of existing Reo nodes and connectors (on purpose). Table 9.1
gives an overview of the basic Reo nodes and connectors with their corresponding
MoCha implementation that appeared in this chapter.

Reo Figure MoCha Figure
Source node 9.1(c) Replicator 9.4(b)
Sink node 9.1(a) Non-determ. multiplexer 9.6(b)
Mixed node (one-to-many) 9.1(e) Replicator 9.4(b)
Mixed node (many-to-one) 9.1(e) Non-determ. multiplexer 9.6(b)
Mixed node (many-to-many) 9.1(e) Replicator + multiplexer 9.18(c)
Ordering connector 9.2(d) Ordered multiplexer 9.6(b)
Write-cue regulator 9.2(a) Write gate transistor 9.12(b)
Sequencer 9.2(e) Sequencer 9.17(a)

Table 9.1: Implementing Reo with MoCha

The subset that MoCha implements, as one would expect from the previous
discussions, is the so-called asynchronous Reo. This is the Reo subset where the
connectors don’t need the propagation of synchrony. Typically these connectors
consist of asynchronous channel types only. However, synchronous channel types
are allowed as long as they don’t produce any synchrony propagation. Due to the
many similarities between Reo and MoCha, the implementation of the asynchronous
Reo subset can be fully automated. Naturally, such an implementation may have
less components and less channels than the original Reo connector depending on the
implementation strategy and heuristics.

Some of the connectors that need the propagation of synchrony can still be
implemented in MoCha by applying clever changes to the connector’s topology; for
example, see the MoCha implementation of the dining philosophers in Section 9.5.
However, this probably only works for small connectors and can certainly not be
(easily) automated. For the general case, we need to implement a protocol that
takes care of the propagation. However, MoCha does not offer such a protocol yet.

Part V

Conclusion

197

Chapter 10

Conclusion

We conclude this thesis by giving a short summary of it, reflecting on its main
question, and discussing future work.

10.1 A Short Summary

In Chapter 2, we gave an intuitive explanation of mobile channels. A channel consists
of exactly two distinct ends that are either of type source or sink. Components may
know and refer to channel-ends only, there are no references to channels as a whole.
The ends of a channel are mobile, hence the name “mobile channels”. Channel-
end identities can be passed through channels to other components in the system.
As well as, channel-ends can physically move from one location to another loca-
tion in a distributed system. Another important feature of mobile channels is that
they provide basic exogenous coordination. Channels allow several different types of
connections among components without the components themselves knowing which
channel types they are dealing with. Examples of channel types are synchronous,
lossy synchronous, FIFO, asynchronous drain, etc.

In Chapter 3, we specified mobile channels using the Petri Nets formalism. We
described the interface that these channel Petri Nets have towards components (that
are also specified as Petri Nets), and showed how to compose them into one Petri
Net model. We briefly discussed the analysis and simulation possibilities of these
models.

In Chapter 4, we introduced an exogenous coordination calculus, called MoCha-
π. A novelty of this calculus is in the fact that channels are not just links but special
kinds of processes. This allows to have user defined channel types without having to
change the rules of the calculus itself. Another novelty is the fact that our calculus
treats channels as resources. Processes must compete with each other in order to
gain access to a particular channel.

In Chapters 5 and 8, we presented a coordination model for component-based
software systems based on the notion of mobile channels, defined it in terms of a
compositional trace-based semantics, and described its implementation in the Java
language. This model is self-contained enough for developing component-based sys-
tems in object-oriented languages. However, if desired, our model can be used as

199

200 Chapter 10. Conclusion

a basis to extend other models that focus on other aspects than coordination of
components.

In Chapter 6, we discussed the MoCha middleware, which implements the mobile
channels we describe in this thesis. In our discussion, we took the point of view of a
distributed system developer that wants to use the middleware but does not want to
know anything about the internal implementation details of it. We introduced the
main features of the middleware’s Application Programming Interface, we provided
examples of how to use the middleware, and looked at several applications of the
middleware; like, for example, peer-to-peer file-transfer applications.

In Chapter 7, we discussed the implementation details for the MoCha middle-
ware. We conceptually explained the many algorithms and the internal architecture
of the middleware. In particular, we focused on the Java RMI layer, the peer-to-
peer mobile architecture we build upon it, and the implementation of the mobile
channels. We also provided performance measurements, by introducing all kinds of
experiments and evaluating their results.

In Chapter 9, we investigated the composition of channels. We looked at Reo,
the first model for composition of mobile channels into connectors, and implemented
a subset of it. We did this by providing a model for composition of mobile channels
that is conceptually closer to the actual implementation in distributed systems.
Mobile channel composition in our model is done by coordination components. For
each such component we gave semantics by providing a MoCha-π specification and
a Petri Net. We implemented these components in the MoCha middleware.

10.2 Answering the Main Question of this Thesis

The main question of this thesis is, whether mobile channels are suitable as a com-
munication and coordination mechanism for distributed systems. To answer this
question, we throughly investigated different aspects of mobile channels. Next, we
briefly go through the main chapters of this thesis and highlight the conclusions of
our investigation.

The Petri Nets semantics of Chapter 3 clearly shows the benefits of the exogenous
coordination feature that mobile channels provide. All the channel Petri Nets have
the same interface towards components, making it for components impossible to
recognize the type of the channel that they are using. This allows us to conveniently
put any type of channel in between them. The Petri Net taker and writer compo-
nents that we use in the examples of this chapter are always the same. However,
by composing these components with different channel types each time we obtain
different Petri Nets with each a different behavior.

The MoCha-π calculus of Chapter 4 confirms the benefits of exogenous coordina-
tion that is demonstrated by the Petri Nets semantics; the calculus allows the place-
ment of any (user-defined) type of channel between processes without them knowing
how these different channel types affect their behavior. MoCha-π also demonstrates
that thanks to the mobility feature of channel-ends, we can easily reconfigure the
channel connections among the processes of a system in a dynamical and transparent
way; the MoCha-π mobile phones and mobile agent examples clearly show this.

The coordination model for component-based software systems of Chapters 5
and 8 shows that mobile channels promote and enhance the separation of concerns

10.2. Answering the Main Question of this Thesis 201

between the coordination and the computational aspect of (distributed) systems.
This makes it easy to develop, maintain and update the coordination part of a
system independently of the computational part. In the case of component-based
software systems, since components encapsulate computation, we can also develop,
maintain and update the computational part independently of the coordination one.
Mobile channels make this separation of concerns possible due to their anonymous
communication and exogenous coordination features.

The examples in the MoCha middleware chapter (Chapter 6) show that mobile
channels offer support for several architectural styles. This conclusion follows from
the fact that we can implement the communication/coordination aspects of both
centralized and decentralized architectures; in the examples, we compared and im-
plemented a centralized client/server architecture with a decentralized peer-to-peer
architecture. The examples also show how we can dynamically change the topology
of the system by using channel mobility. In this case, by using the move, connect
and disconnect middelware methods. Furthermore, the MoCha middleware il-
lustrates how easy it is to exogenously coordinate components by just replacing the
type of the channel that coordinates them with another one. The point to make
here is that this replacement happens without having to change or modify the code
of the components using this particular channel. The middleware also shows that
mobile channels are architecturally very expressive. In the examples it is easy to
see which components (potentially) exchange data with each other. This makes it
easier to apply tools for analysis of the dependencies and data-flow.

The conclusion we can derive from the implementation of the MoCha middleware
and its performance measurements (given in Chapter 7) is that mobile channels can
efficiently be implemented in distributed systems. The internal structure of this
implementation is such, that the MoCha middleware is able to efficiently implement
both centralized and decentralized architectures as described above.

The results of Chapters 6 and 7 are very important, for they show that mobile
channels are not just a theoretical concept, but that they can actually be imple-
mented.

By looking at the various examples of connectors in Chapter 9 we can conclude
that: the composition of channels is very important for obtaining exogenous coor-
dination behavior that simple basic mobile channels cannot provide. An immediate
example of this are connectors with more than two channel-ends. Moreover, a re-
markable conclusion that Reo shows is that by defining a model for the composition
of simple channels we get a powerful coordination language for the specification of
connectors.

After examining different aspects of mobile channels by defining semantics for
them, implementing them, and specifying composition of channels into connectors,
we can finally conclude that mobile channels are very suitable as a communication
and coordination mechanism for distributed systems. We summarize their major
features and benefits:

• Anonymous communication.

• Basic exogenous coordination.

• Mobility.

202 Chapter 10. Conclusion

• Support for several architectural styles.

• Efficient implementation in distributed systems.

• Architectural expressiveness.

• Separation of concerns between the coordination and the computational aspect
of distributed systems.

• Complex and non-trivial exogenous coordination due to composition.

10.3 Future Work

The investigation we carried out in this thesis suggests many possibilities for future
research. Next, we describe some projects that we want to carry out as future work.

We want to extend both the Petri Nets semantics and the MoCha-π calculus in
order for them to model Reo. In both cases, we need to introduce the concept of a
node and provide a protocol for propagating connector information that implements
the operational semantics that Arbab describes in [Arb02]. Such an extension of the
Petri Nets semantics can be used for making a theoretical comparison between Petri
Nets and Reo. Furthermore, it can also be used for translating Reo to Petri Nets 1.
The extension of the MoCha-π calculus will provide process algebra semantics for
Reo.

We also want to extend our model for composition of mobile channels so that it
fully implements Reo instead of the subset that it currently covers. For this purpose,
we need to add a protocol for the Reo propagation of synchrony in our model. We
also need to efficiently implement this protocol in the MoCha middleware.

There is theory available on the verification of Java programming code, as well as
enough tool support. For example, in [Abr05] and [BP02] the code of Java programs
is annotated with predicates which should hold during program execution when the
flow of control reaches the annotated point. A proof system takes these predicates
and transforms them in the so-called verification conditions. These conditions are
then verified by a theorem prover. Most of this process can be automated as shown
by the tool given in [BP02]. We want to use this tool, or one alike, to verify the
MoCha middleware. Due to the size of the middleware it is not feasible to verify all
of its code. Verification tools are able to annotate some code automatically but only
for standard methods and standard verifications. This means that for most of the
methods of our middleware we would need to annotate them “by hand”. Therefore,
we will primary focus on the Java code that implements the abstract algorithms
of the mobile channels. We are interested in verifying the coordination behavior of
each channel implementation and the occurrences of deadlock.

The component-based model that we give in this thesis is enough for compo-
nents to be able to use mobile channels. However, we want to enrich this model by
adding more higher programming structures than the basic operations that channels
provide. For example, we want to introduce the notion of a service. The internal
structure of a service consist of operations on channel-ends that are related to each
other according to the some service semantics. The components themselves don’t

1A translation from Petri Nets to Reo is already provided in [Arb06].

10.3. Future Work 203

see these channel-end operations anymore, they just call a service and wait until
they get their result. Internally, a service call and its parameters are translated into
mobile channel operations. The result of these operations (usually the result of the
take operations) are grouped together and returned to the calling component.

204 Chapter 10. Conclusion

Bibliography

[ADO99] W.M.P. van der Aalst, J. Desel, A. Oberweis (Eds.), Business Process
Management: Models, Techniques, and Empirical Studies, Lecture Notes in
Computer Science, vol. 1806, Springer-Verlag, 1999.

[Abr05] E. Abraham, An Assertional Proof System for Multithreaded Java - The-
ory and Tool Support, PhD thesis, University of Leiden, ISBN 90-9018908-4,
January 2005.

[ALSN01] F. Achermann, M. Lumpe, J. Schneider, and O. Nierstrasz. Piccola -
a Small Composition Language, Formal Methods for Distributed Processing -
A Survey of Object-Oriented Approaches, Howard Bowman and John Derrick
(Eds.), pp. 403-426, Cambridge University Press, 2001.

[AFW02] J. Aldous, J. Foster, and P. Welch, CSP Networking for Java (JCSP.net),
Slides for ICCS 2002 (Global and Collaborative Computing), April 2002.

[And91] G. Andrews, Paradigms for process interaction in distributed programs,
ACM Computing Surveys, Vol. 23, No. 1, pp. 49-90. March 1991.

[Arb96a] F. Arbab, Manifold version 2: Language reference manual. Technical re-
port, CWI, 1996. Available at http://www.cwi.nl/ftp/manifold/ref
man.ps.Z

[Arb96b] F. Arbab, The IWIM model for coordination of concurrent activities. In P.
Ciancarini and C. Hankin, editors, Coordination Languages and Models, volume
1061 of Lecture Notes in Computer Science, pages 34-56. Springer-Verlag, April
1996.

[Arb98] F. Arbab, What Do You Mean, Coordination?, Bulletin of the Dutch Asso-
ciation for Theoretical Computer Science, NVTI, pages 11-22, 1998.

[Arb02] F. Arbab, A Channel-based Coordination Model for Component Com-
position, Tech. Report, Centrum voor Wiskunde en Informatica, Am-
sterdam, 2002. Available at http://www.cwi.nl/ftp/CWIreports/
SEN/SEN-R0203.pdf

[AR03] F. Arbab, J. Rutten, A Coinductive Calculus of Component Connectors,
16th International Workshop on Algebraic Development Techniques (WADT
2002), M. Wirsing, D. Pattinson and R. Hennicker (eds.), Lecture Notes in
Computer Science, Springer-Verlag, Vol. 2755, pp. 35-56, 2003.

205

206 BIBLIOGRAPHY

[Arb04] F. Arbab, Reo: A channel-based coordination model for component composi-
tion, Mathematical Structures in Computer Science, Vol. 14, No. 3, pp. 329-366,
June 2004.

[ABBR04] F. Arbab, C. Baier, F. de Boer, and J. Rutten, Models and Temporal
Logics for Timed Component Connectors, Proceedings of the IEEE Interna-
tional Conference on Software Engineering and Formal Methods (SEFM ’04),
pp. 198-207, Beijing, China, 26-30 September 2004.

[ABRS4] F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani, Modeling Compo-
nent Connectors in Reo by Constraint Automata, Proceedings of International
Workshop on Foundations of Coordination Languages and Software Architec-
tures (FOCLASA 2003), CONCUR 2003, Marseille, France, September 2003,
Electronic Notes in Theoretical Computer Science, 97.22, Elsevier Science, July
2004.

[Arb06] F. Arbab, A Behavioral Model for Composition of Software Components,
L’Objet, Lavoisier, vol. 12, no. 1, pp. 33-76, 2006.

[ABB00a] F. Arbab, F. S. de Boer, and M. M. Bonsangue, A Logical Interface
Description Language for Components. , Proceedings of Coordination 2000,
Lecture Notes in Computer Science, Springer, 2000.

[ABB00b] F. Arbab, M. M. Bonsangue, and F. S. de Boer, A Coordination Language
for Mobile Components., Proceedings of the 2000 ACM Symposium on Applied
Computing (SAC 2000), pp 166-173, ACM, 2000.

[ABBG02] F. Arbab, F.S. de Boer, M.M. Bonsangue, and J.V. Guillen-Scholten,
MoCha: a Middleware Based on Mobile Channels, proceedings of 26th Int.
Computer Software and Application Conference (COMPSAC 02) IEEE Com-
puter Society Press, 2002.

[ASSWW99] K. Arnold, B. O Sullivan, R.W. Scheifler, J.Waldo, and A.Wollrath,
The JiniTM Specification, Addison-Wesley, 1999.

[Bak05] D. Bakken, Middleware, Chapter in Encyclopedia of Distributed Comput-
ing, J. Urban and P. Dasgupta, eds., Kluwer Academic Publishers, 2003.

[BG94] H.E. Bal, and D. Grune, Programming language essentials, Addison-Wesley,
Reading, MA, 1994.

[BW04] F.R.M. Barnes and P.H. Welch, Communicating Mobile Processes, in I.
East, J. Martin, P. Welch, D. Duce, and M. Green, editors, Communicating
Process Architectures 2004, volume 62 of Concurrent Systems Engineering Se-
ries, pages 201-218, Amsterdam, The Netherlands, September 2004. IOS Press.

[BCCGKT05] T. Barnwell, M. Camacho, M. Cook, M. Gready, P. Kyme, and M.
Tsouchlaris, Platform Independent Petri-Net Editor 2 (PIPE), electronic man-
ual, 2005. Available at http://pipe2.sourceforge.net/ (last visited:
September, 2006).

BIBLIOGRAPHY 207

[BBBKS00] R. Bastide, D. Buchs, M. Buffo, F. Kordon, and O.Sy, Questionnaire
for a Taxonomy of Petri Net Dialects, Online Report, May 2000. Available at
http://www-src.lip6.fr/homepages/Fabrice.Kordon/PNSTD WWW/
pdf result.pdf .

[Boc04] L. Bocchi, Compositional Nested Long Running Transactions. In Michel
Wermelinger and Tiziana Margaria, editors, Proceedings of the 7th Interna-
tional Con- ference on Fundamental Approaches to Software Engineering (FASE
2004), volume 2984 of Lecture Notes in Computer Science, pages 195-208.
Springer, 2004.

[BP02] F.S. de Boer, and C. Pierik, Computer-aided specification and verification
of annotated object-oriented programs, A. Rensink and B. Jacobs, editors, pro-
ceedings of FMOODS 2002, pages 163-177, Kluwer Academic Publishers, 2002.

[BHMNCFO04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C.
Ferris, and D. Orchard, Web Services Architecture, W3C Working Group Note
11, February 2004. Available at http://www.w3.org

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide , Addison-Wesley, Reading, Mass. USA, 1999.

[Bre01] F. Breg. Java for High Performance Computing. PhD thesis, University of
Leiden, November 2001.

[BS01] M. Broy, K. Stolen, Specification and development of interactive systems :
FOCUS on streams, interfaces, and refinement, Springer, ISBN 0-387-95073-7,
New York, 2001.

[CG00] L. Cardelli and A. D. Gordon. Mobile ambients, Theoretical Computer Sci-
ence, 240(1):177–213, June 2000.

[CG90] N. Carriero, D. Gelernter. How to Write Parallel Programs: a First Course,
MIT press, 1990.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web
Services Description Language (WSDL) 2.0, W3C, November 2001. Available
at www.w3.org/TR/wsdl20/

[CCA04] D. Clarke, D. Costa, and F. Arbab, Modeling Coordination in Biologi-
cal Systems, Proceedings of the International Symposium on Leveraging Ap-
plications of Formal Methods (ISoLA 2004), Paphos, Cyprus, 30 October - 2
November 2004.

[CCA05] D. Clarke, D. Costa, F. Arbab, Connector Coloring I: Synchronization
and Context Dependency, 4th International Workshop on the Foundations of
Coordination Languages and Software Architectures (FOCLASA 2005), August
2005, San Francisco, California, USA; satellite workshop of CONCUR 2005.

[Coh03] B. Cohen, Incentives Build Robustness in BitTorrent, Technical Re-
port, Bitconjurer.org, May 2003. Available at http://bitconjurer.org/
BitTorrent/documentation.html

208 BIBLIOGRAPHY

[CDK94] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Con-
cepts and Design. Addison-Wesley, Reading, MA, 1994.

[CGKLRTW03] F. Curbera, Y. Goland, J. Klein, F. Leyman, D. Roller, S.
Thatte, and S. Weerawarana, Business Process Execution Language for Web
Services (BPEL4WS) 1.1, May 2003. Available at http://www.ibm.com/
developerworks/library/ws-bpel/

[DR98] J. Desel, and W. Reisig, Place/Transition Petri Nets, Lecture Notes in Com-
puter Science, Vol. 1491: Lectures on Petri Nets I: Basic Models, pages 122-173.
Springer-Verlag, 1998.

[DF04] N.K. Diakov, and F. Arbab, Compositional Construction of Web Services
Using Reo, Proceedings of The Second International Workshop on Web Services
(WSMAI’2004), INSTICC Press, Porto, April 2004.

[DZP05] N.K. Diakov, Z. Zlatev, and S. Pokraev, Composition of Negotiation Pro-
tocols for E-Commerce Applications, In the proceedings of the 2005 IEEE In-
ternational Conference on e-Technology, e-Commerce and e-Service, William
Cheung, Jane Hsu, IEEE Computer Society, pp.418-423, March 2005.

[Dijk68] E. W. Dijkstra, Cooperating sequential processes, In F. Genuys, editor, Pro-
gramming Languages: NATO Advanced Study Institute, pages 43–112. Aca-
demic Press, 1968.

[Dijk71] E. W. Dijkstra, Hierarchical ordering of sequential processes, in Acta Infor-
matica 1(2), pages 115-138, October, 1971.

[Eck98] B. Eckel, Thinking in Java, Prentice Hall PTR, Upper Saddle River, 1998.

[Eng91] J. Engelfriet, Branching processes of Petri nets, Acta Informatica Volume
28, Issue 6, pages 575 - 591, Springer-Verlag, 1991.

[Eng04] J. Engelfriet, Private Correspondence, LIACS, 2004.

[FPT00] G.L. Ferrari, R. Pugliese and E. Tuosto, Foundational Calculi for Network
Aware Programming, Technical Report, Universita’ di Firenze, c/o Diparti-
mento di Sistemi ed Informatica, 2000.

[FGMFB96] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, Hy-
pertext Transfer Protocol, HTTP/1.1, Internet-Draft draft-ietf-http-v11-spec-
07, HTTP Working Group, August 1996.

[Fok99] W. Fokkink, Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer-Verlag, 1999

[FHA99] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces TM Principles, Pat-
terns, and Practice, Chapter 1 of book, Addison-Wesley, September 1999.

[Gen87] H. J. Genrich, Predicate/transition nets, Advances in Petri nets 1986, part
I on Petri nets: central models and their properties, pages: 207 - 247, Springer-
Verlag, 1987.

BIBLIOGRAPHY 209

[GV02] C. Girault and R. Valk, Petri Nets for Systems Engineering: A Guide to
Modeling, Verification, and Applications, Springer-Verlag, 2002.

[Gui05] J.V. Guillen-Scholten, MoCha, easyMoCha, chocoMoCha Electronic Manual
beta version 0.96b, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
May 2005.

[GABB02] J.V. Guillen-Scholten, F. Arbab, F.S. de Boer, and M.M. Bonsangue,
Mobile Channels, Implementation Within and Outside Components, A. Brogi
and E. Pimintel, editors, Proceedings of Formal Methods and Component In-
teraction, ENTCS 66.4, Elsevier Science, 2002.

[GABB05] J.V. Guillen-Scholten, F. Arbab, F.S. de Boer, and M.M. Bonsangue,
MoCha-pi, an Exogenous Coordination Calculus based on Mobile Channels Pro-
ceedings of the 2005 ACM Symposium on Applied Computing, Santa Fe, New
Mexico, USA, March 13-17 2005.

[Gon01] L. Gong, Project jxta: A technology overview. Technical report, Sun Mi-
crosystems Inc., 2001.

[GM96] J. Gosling, and H. McGilton. The Java Language Environment, white
Paper, Sun, 1996. Available at http://java.sun.com/docs/white/
langenv

[HB03] R. Hamadi, B. Benatallah, A Petri net-based model for web service com-
position, Proceedings of the Fourteenth Australasian database conference on
Database technologies 2003, Volume 17, pages: 191 - 200, Australia, 2003.

[Hay99] D. Hay, COM+ Technical Series: Queued Components, Microsoft Corpora-
tion, 1999.

[Hen88] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988

[HR98] M. Hennessy and J. Riely, Resource Access Control in Systems of Mobile
Agents, HLCL ’98: High-Level Concurrent Languages (Nice, France, September
12, 1998), U. Nestmann and B.C. Pierce, Eds. ENTCS 16.3, 1998.

[HHO04] H. He, H. Haas, and D. Orchard, Web Services Architecture Us-
age Scenarios, W3C Working Group Note 11, February 2004. Available at
http://www.w3.org

[HBB00] G. Hilderink, J. Broenink, and A. Bakkers. Communicating Threads
for Java, Technical report, The Netherlands, 2000. http://www.rt.
el.utwente.nl/javapp/information/CTJ/main.html

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, London,
UK, 1985.

[HC00] C.S. Horstmann, and G. Cornell, Core Java 2; Volume II - Advanced Fea-
tures, Sun Microsystems Inc., Palo Alto, California, USA, 2000.

210 BIBLIOGRAPHY

[Jen97a] K. Jensen, A Brief Introduction to Coloured Petri Nets, Tools and Al-
gorithms for the Construction and Analysis of Systems. Proceeding of the
TACAS’97 Workshop, Enschede, The Netherlands 1997, Lecture Notes in Com-
puter Science Vol. 1217, Springer-Verlag 1997.

[Jen97b] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer
Science, Springer-Verlag, 2nd corrected printing 1997. ISBN: 3-540-60943-1.

[Lak01] C.A. Lakos, Object-Oriented Modelling with Object Petri Nets, Lecture
Notes in Computer Science 2001, Springer-Verlag, 2001.

[LO03] K. Lenz, A. Oberweis, Inter-organizational Business Process Management
with XML Nets, Lecture Notes in Computer Science, Vol. 2472, Springer-Verlag,
2003.

[MDEK94] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying Distributed
Software Architectures. In Proceedings of 5th European Software Engineering
Conference, Spain, 1994.

[COM+] Microsoft Corporation. Home page of COM+, http://www.microsoft
.com/com/tech/complus.asp (last visited: September, 2006).

[Mil99] R. Milner, Communicating and Mobile Systems : The Pi-Calculus, Cam-
bridge University Press, May 20, 1999.

[Mil80] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Com-
puter Science, Vol 92, Springer-Verlag 1980.

[MPR03] A.L. Murphy, G.P. Picco, and G.-C. Roman, Lime: A coordination mid-
dleware supporting mobility of hosts and agents. Technical Report WUCSE-03-
21, Washington University, Department of Computer Science, St. Louis, MO
(USA), 2003.

[NFP98] R. De Nicola, G.L. Ferrari, and R. Pugliese, KLAIM: A kernel language for
agents interaction and mobility, IEEE Transactions on Software Engineering,
24(5), pages 315-330, 1998.

[OAS04] OASIS group, Universal Description, Discovery and Integration (UDDI)
protocol 3.0, November 2004. Available at http://www.uddi.org/

[Par01] J. Parrow, An Introduction to the pi-Calculus. In Handbook of Process Al-
gebra, ed. Bergstra, Ponse, Smolka, pages 479-543, Elsevier 2001.

[Pet96] C.A. Petri, Nets, Time and Space. Theoretical Computer Science, 153:348,
1996.

[PNW05] Petri Nets World, Petri Nets Tool Database, online Database. Available at
http://www.informatik.uni-hamburg.de/TGI/PetriNets/ (last visited: Septem-
ber, 2006).

[Pic98] G.P. Picco, µCODE: A Lightweight and Flexible Mobile Code Toolkit. In
Proc. of the 2ed Int.Workshop on Mobile Agents, LNCS 1477. Springer, 1998.

BIBLIOGRAPHY 211

[Pic05] G.P. Picco, LighTS Web page, 2005, http://lights.sourceforge.net
(last visited: September, 2006).

[PT97] B. C. Pierce, D. N. Turner, Pict: A Programming Language
Based on the Pi-calculus, Technical report, Computer Science Depart-
ment, Indiana University, 1997. Available at http://www.cis.upenn.
edu/ ∼bcpierce/papers/pict/Html/Pict.html

[JCSP.net] Quickstone Technologies, The JCSP Network Edition Web Page,
http://www.quickstone.com/ (last visited: September, 2006).

[RFHKS01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A Scalable
Content-Addressable Network, ACM SIGCOMM ’01, San Diego, 2001.

[Rei98] W. Reisig, Elements of Distributed Algorithms: Modeling and Analysis with
Petri nets, Springer-Verlag, 1998.

[RR98] W. Reisig. G. Rozenberg (Eds.), Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, Lecture Notes in Computer Science, vol. 1491, Springer-
Verlag, 1998.

[Rip01] M. Ripeanu, Peer-to-Peer Architecture Case Study: Gnutella Network,
Technical Report, University of Chicago, 2001.

[Roz86] G. Rozenberg, Behaviour of Elementary Net Systems, Lecture Notes In
Computer Science, Vol. 254, pages 60-94, Springer-Verlag, 1986

[RE98] G. Rozenberg and J. Engelfriet, Elementary Net Systems, Lecture Notes in
Computer Science, v. 1491, Springer-Verlag, 12-121, 1998.

[RD01] A. Rowstron, P. Druschel, Pastry: Scalable, Decentralized Object Location
and Routing for LargeScale Peer-to-Peer Systems, 18 Conference on Distributed
Systems Platforms, Heidelberg (D), 2001.

[RSRS99] B. Rumpe, M. Schoenmakers, A. Radermacher, and A. Schürr, UML
+ ROOM as a Standard ADL?, Proc. ICECCS’99 Fifth IEEE International
Conference on Engineering of Complex Computer Systems, 1999.

[SW01] D. Sangiorgi, and D. Walker, The π-calculus: a Theory of Mobile Processes,
Cambridge University Press, 2001.

[SS01] R. Schantz and D. Schmidt, Middleware for Distributed Systems: Evolving
the Common Structure for Networkcentric Applications, The Encyclopedia of
Software Engineering, J. Wiley & Sons, pp. 801-813, December 2001.

[Sch01] R. Schollmeier, A Definition of Peer-to-Peer Networking towards a Delimita-
tion Against Classical Client-Server Concepts, Proceedings of EUNICE-WATM,
pp. 131-138, Paris, France, September 3-5, 2001.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward, Real-Time Object-Oriented Mod-
elling, John Wiley and Sons, Inc., 1994.

212 BIBLIOGRAPHY

[Sha03] Sharman Networks, Kazaa, Detailed On-line Guide, Online Manual, 2003.
Available at http://www.kazaa.com/us/help/guide.htm (last visited:
September, 2006).

[Shi01] C. Shirky, Listening to Napster, in: Oram, A (ed.). Peer-to-Peer: Harnessing
the Power of Disruptive Technologies, Sebastopol, O’Reilly, 2001.

[Ste95] W. R. Stevens, TCP/IP Illustrated, Volume 1; The Protocols, Addison Wes-
ley, Boston, Massachusetts, 1995.

[SMKKB01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM
SIGCOMM 2001, San Diego, CA, August 2001, pp. 149-160.

[Sto02] P. van der Stok, In-home middleware standards and interoperability, Slides
from the IPA Spring Days on Middleware, Heeze, April 2002.

[Sto98] H. Störrle, An Evaluation of High-End Tools for Petri-Nets, Technical Re-
port No. 9802, University of Munich, June, 1998.

[Str91] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1991.

[Java] Sun Microsystems Inc., Home Page of Java, http://java.sun.com (last
visited: September, 2006).

[JB] Sun Microsystems Inc., Home Page of JavaBeans, http://java.sun.com/
products/javabeans (last visited: September, 2006).

[EJB] Sun Microsystems Inc., Home Page of Enterprise JavaBeans, http://
java.sun.com/products/ejb (last visited: September, 2006).

[Jini] Sun Microsystems Inc., Home Page of Jini, http://java.sun.com/
products/jini (last visited: September, 2006).

[RMI] Sun Microsystems Inc., Java Remote Method Invocation - Distributed Com-
puting for Java, white paper available at java.sun.com/rmi , 2004.

[RPC] Sun Microsystems Inc., RPC: Remote procedure call protocol specification.
Technical Report RFC-1057, Sun Microsystems, Inc., June 1988.

[JMQ] Sun Microsystems Inc., Java Message Queue, Quickstart Guide v1.1, Sun
Microsystems Inc., Palo Alto (USA), May 2000.

[JMS] Sun Microsystems Inc., Java Message Service, Specification Document ver-
sion 1.0.2 , Sun Microsystems Inc., Palo Alto (USA), November 1999.

[TS02] A.S. Tanenbaum, and M. van Steen, Distributed Systems — Principles and
Paradigms, Prentice-Hall, Englewood Cliffs, NJ, U.S.A., 2002.

[TB00] Z. Tari and O. Bukhres, Fundamentals of Distributed Object Systems: The
CORBA Perspective. John Wiley, 2000.

BIBLIOGRAPHY 213

[VM94] B. Victor, F. Moller, The Mobility Workbench - A Tool for the pi-Calculus,
Proceedings of the 6th International Conference on Computer Aided Verifica-
tion, Lecture Notes In Computer Science Vol. 818, pages 428 - 440, Springer-
Verlag, London, 1994.

[VW02] B.Vinter, and P.H.Welch, Cluster Computing and JCSP Networking, in
Communicating Process Architectures 2002, vol. 60 Concurrent Systems Engi-
neering, pp. 203-222, IOS Press, Amsterdam, September 2002.

[XML00] W3C, Extensible Markup Language (XML) 1.0 (Second Edition), W3C
recommendation, October 2000. Available at http://www.w3c.org/XML/

[W3C02] W3C, Web Service Choreography Interface (WSCI) 1.0, W3C Note, Au-
gust 2002. Available at http://www.w3.org/TR/wsci/

[Wel01] P. Welch, CSP for Java (What, Why, and How Much?), Slides
of Seminar, University of Kent at Canterbury, 2001. Home Page of
JCSP, http://www.cs.ukc.ac.uk/projects/ofa/jcsp/ (last visited:
September, 2006).

[WMBW00] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C. Wood, The
KRoC Home Page, 2000. Available at http://www.cs.ukc.ac.uk/
projects/ofa/kroc/ (last visited: September, 2006).

[WS99] P. Wojciechowski, and P. Sewell, Nomadic Pict: Language and Infrastruc-
ture Design for Mobile Agents, First International Symposium on Agent Sys-
tems and Applications (ASA’99)/(MA’99), Palm Springs, CA, USA, 1999.

[XPG03] XML Protocol Group, SOAP 1.2, W3C Recommendation, June 2003.
Available at http://www.w3c.org/2000/xp/Group/

[YK98] A.V. Yakovlev, A.M. Koelmans, Petri Nets and Digital Hardware Design,
Lecture Notes in Computer Science, Vol. 1492, Springer-Verlag, 1998.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, Tapestry: An infras-
tructure for fault-resilient wide-area location and routing. Technical Report
UCB//CSD-01-1141, U. C. Berkeley, April 2001.

214 BIBLIOGRAPHY

Appendix A

MoCha’s Abstract
Algorithms

In the MoCha middleware (see Chapters 6 and 7) we implemented eleven channel
types. Before actually implementing them in the Java programming language, we
first specified implementation language independent abstract algorithms for each
channel type. In this appendix, we list the abstract algorithms of five representa-
tive channel types: Synchronous, lossy synchronous, FIFO, synchronous drain, and
asynchronous spout. The abstract implementation of the remaining channels can
easily be derived from the ones we give.

For each channel type we first give the data-structures that its algorithms use.
We then give a set of abstract functions that describes the implementation. For each
channel type we give the following major functions: Create Channel, Write, Take,
Read, Move, and Destroy Channel. Naturally, channel types with two source-ends
do not implement the take and read functions, and channel-types with two sink-ends
do not implement the write function. Depending on the channel type, additional
internal functions may be needed.

Distribution, Variables, and References

The mobile channels of MoCha are meant to be implemented in distributed sys-
tems. For efficiency reasons, we want this implementation to have a decentralized
architecture (see Chapter 7). This means that, the algorithms are not allowed to
use shared data variables. The use of globally accessible variables either imposes a
centralized architecture, or the necessity for implementing an expensive protocol for
automatic global variable update. Instead, our algorithms work with local variables.
Therefore, all the necessary values have to be given as function parameters.

The references used by MoCha either point to a local or to a remote entity. A
reference has a structure given in Figure A.1. It is a pointer with a flag that indicates
whether it is local (L) or remote (R), so that the algorithms can test on this flag.
The address-part of a reference not only specifies the memory-address of the entity
but also its location. For the definition of location, it is sufficient to say that it is
a logical address space where components and other entities run. The mapping of

215

216 Appendix A. MoCha’s Abstract Algorithms

L/R

Flag Address

Figure A.1: A reference.

locations to physical implementations is irrelevant at this level of abstraction

Data-structures and References

The algorithms use a → notation to express that something is a reference to a
particular data-structure type. “→data-structure” is the set of all references to this
data-structure type. For example, in “Next rf ∈ →Buffer”, Next rf is a reference to
a Buffer data-structure type. The reference does not need to be valid, i.e. refer to
an existing instance of the data-structure.

We use another notation for expressing the operation that takes a reference and
gives the instance of the data-structure that it refers to. For this operation we
use the symbol ↑. For example, “Next rf↑.Vals := 〈 〉”, the Vals-field of the Buffer
structure that Next rf refers to, is set to empty. The algorithms have to make sure
that the reference is valid before executing this operation in the first place.

Synchronization

Synchronization between the various processes that are executing the functions of
a particular channel is achieved by using binary semaphores. These semaphores
have two operations Lock and Unlock. Initially the semaphores are unlocked, unless
otherwise specified. We assume that the waiting-queue where the blocked processes
are waiting is a FIFO-queue, this is not necessary for a correct execution but it is
assumed for fairness of the system.

A typical example of a semaphore we frequently use is the CE Lock. This is the
general channel-end lock that provides exclusive access to at most one process at a
time.

Mapping to a Specific Programming Language

The abstraction level of the algorithms we give for each channel type is such that
it is easy to implement them in the most common programming languages like C,
C++, and Java. However, while mapping the algorithms to a specific language,
some language dependent issues may arise. For example, when we implemented the
algorithms in the Java language we had to translate the abstract functions in an
object oriented setting. Also, we had to provide extra synchronization for accessing
some variables (synchronization which was not needed in the abstract algorithms).
Naturally, depending on the programming language other issues may arise.

A.1. Synchronous Channel 217

A.1 Synchronous Channel

Data-structures
Source Channel End = 〈Sink rf, CE Lock, Move Lock, Wait Lock, Write Lock, Wait Take,
Sink Wait Read, Sink Wait Take, Current Value〉

• Sink rf = A reference to the Sink Channel End of the same channel.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Wait Lock = A binary semaphore to wait when there is a write but the Sink is not ready to take
a value.

• Write Lock = A binary semaphore that is needed to give exclusive access to the booleans of the
Source.

• Wait Take = A boolean used to express that the Source is waiting until a take is performed by
the Sink.

• Sink Wait Read = A boolean used to express that the Sink Channel End is waiting for value to
read.

• Sink Wait Take = A boolean used to express that the Sink Channel End is waiting for a value to
take.

• Old Sink Wait Take = A boolean to remember the previous value of Sink Wait Take.

• Current Value = A value that is stored for situations when the Source is locked under the
Wait Lock and the Sink request a value to read instead of to take.

Sink Channel End = 〈Source rf, CE Lock, Move Lock, Wait Lock, Value Read, Current Value〉
• Source rf = A reference to the Source Channel End of the same channel.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Wait Lock = A binary semaphore used to lock when waiting for a value to be available at the
Source Channel End, initially locked.

• Value Read = A boolean used to express that the Sink already has read a value from the
Source Channel End.

• Current Value = A value that is stored for situations when it is acquired due to a read operation.
Gets empty when a take operation is performed.

Initially the semaphores are unlocked, except for Wait Lock and Value Lock.

Functions, an Overview
• Create Channel (Loc ∈ Location)

returns 〈Source rf ∈ →Source Channel End, Sink rf ∈ →Sink Channel End, Action Status ∈
{SUCCESS, FAILURE}〉

• Write (Source rf ∈ →Source Channel End, X ∈ Value)
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

• Take (Sink rf ∈ →Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Read (Sink rf ∈ →Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Move (Channel End rf ∈ {→Source Channel End, →Sink Channel End}, Target ∈ Location)
returns 〈New Channel End rf ∈ {→Source Channel End, →Sink Channel End}, Action Status
∈ {SUCCESS, FAILURE}〉

• Destroy Channel (Channel End rf ∈ {→Source Channel End, →Sink Channel End})
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

218 Appendix A. MoCha’s Abstract Algorithms

Algorithms
Create Channel (Loc)
//
// Loc = The location where to create the Source Channel End and the Sink Channel End.
//
// returns <Source rf ∈ →Source Channel End,
// Sink rf ∈ →Sink Channel End,
// Action Status ∈ {SUCCESS, FAILURE}>.
//
begin

Source rf := new Source Channel End @ Loc;
if (Source rf = ERROR) then

return <UNDEFINED, UNDEFINED, FAILURE>;
fi

Sink rf := new Sink Channel End @ Loc;
if (Sink rf = ERROR) then

Delete(Source rf);
return <UNDEFINED, UNDEFINED, FAILURE>;

fi

Source rf ↑.Wait Take := FALSE;
Source rf ↑.Sink Wait Read := FALSE;
Source rf ↑.Sink Wait Take := FALSE;
Sink rf ↑.Value Read := FALSE;
// Knowing each other.
//
Source rf ↑.Sink rf := Sink rf;
Sink rf ↑.Source rf := Source rf;

return <Source rf, Sink rf, SUCCESS>;
end

In case that the operation new does not succeed it will give an error and exit with or without
throwing an exception (depends whether the target programming language can handle exceptions). The
operation new returns a pointer with a local flag (reference).

Write (Source rf, X)
//
// Source rf ∈ →Source Channel End, X ∈ Value.
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
begin

ERROR := Lock(Source rf ↑.CE Lock);
if (ERROR) then return FAILURE;
Lock(Source rf ↑.Write Lock);

Source rf ↑.Old Sink Wait Take := Source rf ↑.Sink Wait Take;
if (Source rf ↑.Sink Wait Read ∨ Source rf ↑.Sink Wait Take) then

// Sink is waiting for a value due to a read or a take operation.
// No need to lock the Sink since it is waiting.
//
Source rf ↑.Sink rf ↑.Current Value := X;
if (Source rf ↑.Sink Wait Take) then {Source rf ↑.Sink Wait Take = FALSE; }
Unlock(Source rf ↑.Sink rf ↑.Wait Lock);

fi
if (¬Source rf ↑.Old Sink Wait Take) then

// There was no take operation performed on the Sink, Source must wait.
//
Source rf ↑.Current Value := X;
Source rf ↑.Wait Take := TRUE;
// Allow the Sink to enter the Source for reading/taking the value
Unlock(Source rf ↑.Write Lock);
// Wait Lock is initially locked!
Lock(Source rf ↑.Wait Lock);
Lock(Source rf ↑.Write Lock);

fi

// At this point Sink and Source have finished the write/take operation.

A.1. Synchronous Channel 219

Source rf ↑.Sink Wait Read := FALSE;

Unlock(Source rf ↑.Write Lock);
Unlock(Source rf ↑.CE Lock);
return SUCCESS;

end

Take (Sink rf)
//
// Sink rf ∈ →Sink Channel End.
//
// returns <X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}>
//
begin

ERROR := Lock(Sink rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;

if (Value Read) then
// Sink has read a value before, Current Value is the right value.
// unlock Source that is waiting.
//
Sink rf ↑.Source rf ↑.Wait Take := FALSE;
Unlock(Sink rf ↑.Source rf ↑.Wait Lock);
Sink rf ↑.Value Read := FALSE;

else
// We need to consult the Source.
// Prevent the Source from moving by locking own Move Lock.
Lock(Sink rf ↑.Move Lock);
// No need to check for Error, reference to Source should always be valid now.
Lock(Sink rf ↑.Source rf ↑.Write Lock);
if (Sink rf ↑.Source rf ↑.Wait Take) then

// The Source is already waiting for the Sink to take.
Sink rf ↑.Current Value := Sink rf ↑.Source rf ↑.Current Value;
Sink rf ↑.Source rf ↑.Wait Take := FALSE;
Unlock(Sink rf ↑.Source rf ↑.Wait Lock);
Unlock(Sink rf ↑.Source rf ↑.Write Lock);
Unlock(Sink rf ↑.Move Lock);

else
// Tell the Source to inform us when a value is available.
Sink rf ↑.Source rf ↑.Sink Wait Take := TRUE;
// now Sink must wait.
Unlock(Sink rf ↑.Source rf ↑.Write Lock);
Unlock(Sink rf ↑.Move Lock);
// Wait Lock is initially locked!
Lock(Sink rf ↑.Wait Lock);

fi
fi
Unlock(Sink rf ↑.CE Lock);
// At this point Current Value is always filled with the right value.
return <Sink rf ↑.Current Value, SUCCESS>;

end

Read (Sink rf)
//
// Sink rf ∈ →Sink Channel End.
//
// returns <X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}>
//
begin

ERROR := Lock(Sink rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;

if (¬Value Read) then
// If Sink has read a value before, Current Value is the right value.
// This is not the case now, so we need to consult the Source.
// Prevent the Source from moving by locking own Move Lock.
Lock(Sink rf ↑.Move Lock);
// No need to check for Error, reference to Source should always be valid now.
Lock(Sink rf ↑.Source rf ↑.Write Lock);
if (Sink rf ↑.Source rf ↑.Wait Take) then

220 Appendix A. MoCha’s Abstract Algorithms

// The Source is already waiting for the Sink to take.
// Copy the value but do not unlock the Source.
Sink rf ↑.Current Value := Sink rf ↑.Source rf ↑.Current Value;
Unlock(Sink rf ↑.Source rf ↑.Write Lock);
Unlock(Sink rf ↑.Move Lock);

else
// Tell the Source to inform us when a value is available.
Sink rf ↑.Source rf ↑.Sink Wait Read := TRUE;
// now Sink must wait.
Unlock(Sink rf ↑.Source rf ↑.Write Lock);
Unlock(Sink rf ↑.Move Lock);
// Wait Lock is initially locked!
Lock(Sink rf ↑.Wait Lock);

fi
Sink rf ↑.Value Read := TRUE;

fi
Unlock(Sink rf ↑.CE Lock);
// At this point Current Value is always filled with the right value.
return <Sink rf ↑.Current Value, SUCCESS>;

end

Move (Channel End rf, Target)
//
// Channel End rf ∈ {→Source Channel End, →Sink Channel End}
//
// Target = The location target.
//
// returns <New Channel End rf ∈ {→Source Channel End, →Sink Channel End},
// Action Status ∈ {SUCCESS, FAILURE}>.
//
begin

ERROR := Lock(Channel End rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;

if (Channel End rf ↑ ∈ Sink Channel End) then
// Lock Sink first, then Source.
// There is no Unlock for the following Lock.
//
Lock(Channel End rf ↑.Move Lock);
Lock(Channel End rf ↑.Source rf ↑.Move Lock);

New Channel End rf := new Sink Channel End @ Target;
if (New Channel End rf = ERROR) then

Unlock(Channel End rf ↑.Source rf ↑.Move Lock);
Unlock(Channel End rf ↑.Move Lock);
Unlock(Channel End rf ↑.CE Lock);
return <UNDEFINED, FAILURE>;

fi

Copy Information(Channel End rf, New Channel End rf);
Channel End rf ↑.Source rf ↑.Sink rf := New Channel End rf;
Delete(Channel End rf);

Unlock(New Channel End rf ↑.Source rf ↑.Move Lock);

else

// Lock Sink first, then Source.
//
do

ERROR := Lock(Channel End rf ↑.Sink rf ↑.Move Lock);
until (¬ERROR)

// There is no Unlock for the following Lock.
//
Lock(Channel End rf ↑.Move Lock) ;
New Channel End rf := new Source Channel End @ Target;
if (New Channel End rf = ERROR) then

Unlock(Channel End rf ↑.Move Lock);
Unlock(Channel End rf ↑.Sink rf ↑.Move Lock);
Unlock(Channel End rf ↑.CE Lock);

A.1. Synchronous Channel 221

return <UNDEFINED, FAILURE>;
fi
Copy Information(Channel End rf, New Channel End rf);
Channel End rf ↑.Sink rf ↑.Source := New Channel End rf;
Delete(Channel End rf);

Unlock(New Channel End rf ↑.Sink rf ↑.Move Lock);
fi
return <New Channel End rf, SUCCESS>;

end

We Always Lock the sink first. Locking the source first gives problems with the function Read while
setting the field Wait Read of the Source Channel End.

Destroy Channel (Channel End rf)
//
// Channel End rf ∈ {→Source Channel End, →Sink Channel End}
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
// There is no Unlock in this function
//
begin

if (Channel End rf ↑ ∈ Sink Channel End) then
Sink rf := Channel End rf;

else
// Check for dangling reference
//
ERROR := Lock(Channel End rf ↑.CE Lock);
if (ERROR) then return FAILURE;
Sink rf := Channel End rf ↑.Sink rf;
Unlock(Channel End rf ↑.CE Lock);

fi

// At this point Sink rf ∈ Sink Channel End,
// but needs not be valid anymore due to possible
// movement of sink channel-end.

// Lock Sink first, then Source.
//
ERROR := Lock(Sink rf ↑.CE Lock);
if (ERROR) then return FAILURE;

do
ERROR := Lock(Sink rf ↑.Source rf ↑.CE Lock);

until (¬ERROR)

Source rf := Sink rf ↑.Source rf;

Delete(Source rf);
Delete(Sink rf);
return SUCCESS;

end

222 Appendix A. MoCha’s Abstract Algorithms

A.2 Lossy Synchronous Channel

Data-structures

The lossy synchronous channel uses the same data-structures as the synchronous channel type.

Functions, an Overview
The lossy synchronous channel has the same functions as the synchronous channel type.

Algorithms
The algorithms of this channel type are exactly the same as the ones of the synchronous channel type,
except for the Write function which allows a write operation to succeed in cases when the sink channel-
end is not waiting to take.

Write (Source rf, X)
//
// Source rf ∈ →Source Channel End, X ∈ Value.
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
begin

ERROR := Lock(Source rf ↑.CE Lock);
if (ERROR) then return FAILURE;
Lock(Source rf ↑.Write Lock);

if (Source rf ↑.Sink Wait Read ∨ Source rf ↑.Sink Wait Take) then
// Sink is waiting for a value due to a read or a take operation.
// No need to lock the Sink since it is waiting.
//
Source rf ↑.Sink rf ↑.Current Value := X;
if (Source rf ↑.Sink Wait Take) then {Source rf ↑.Sink Wait Take = FALSE; }
Unlock(Source rf ↑.Sink rf ↑.Wait Lock);
if (Source rf ↑.Sink Wait Read) then

// There was a read operation performed on the Sink,
// Source must wait now for a Take.
//
Source rf ↑.Current Value := X;
Source rf ↑.Wait Take := TRUE;
// Allow the Sink to enter the Source for taking the value
Unlock(Source rf ↑.Write Lock);
// Wait Lock is initially locked!
Lock(Source rf ↑.Wait Lock);
Lock(Source rf ↑.Write Lock);

fi
fi

// At this point Sink and Source have either finished the write/take
// operation or there has been a single write only.
Source rf ↑.Sink Wait Read := FALSE;

Unlock(Source rf ↑.Write Lock);
Unlock(Source rf ↑.CE Lock);
return SUCCESS;

end

A.3. Asynchronous FIFO Channel 223

A.3 Asynchronous FIFO Channel

Data-structures
Source Channel End = 〈Buffer rf, Sink rf, CE Lock, Move Lock, Wait Read〉

• Buffer rf = A reference to a Buffer-structure.

• Sink rf = A reference to the Sink Channel End of the same channel.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Wait Read = A boolean used to express that the Sink Channel End is waiting for values.

Sink Channel End = 〈Buffer rf, Source rf, Consumed, CE Lock, Move Lock, Read Lock〉
• Buffer rf = A reference to a Buffer-structure.

• Source rf = A reference to the Source Channel End of the same channel.

• Consumed = An integer that keeps track of the number of values consumed by the component(s)
since the last move.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Read Lock = A binary semaphore used to lock when waiting for values to be written into the
channel (in case it was empty), initially locked.

Buffer = 〈Vals, Link rf, Buffer Lock〉
• Vals is a sequence of Value.

• Link rf = A reference to a Buffer-structure.

• Buffer Lock = A binary semaphore.

Initially all the semaphores are unlocked, except for the Read Lock.

Functions, an Overview
• Create Channel (Loc1 ∈ Location, Loc2 ∈ Location)

returns 〈Source rf ∈ →Source Channel End, Sink rf ∈ →Sink Channel End, Action Status ∈
{SUCCESS, FAILURE}〉

• Write (Source rf ∈ →Source Channel End, X ∈ Value)
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

• Take (Sink rf ∈ →Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Read (Sink rf ∈ →Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Move (Channel End rf ∈ {→Source Channel End, →Sink Channel End}, Target ∈ Location)
returns 〈New Channel End rf ∈ {→Source Channel End, →Sink Channel End}, Action Status
∈ {SUCCESS, FAILURE}〉

• Destroy Channel (Channel End rf ∈ {→Source Channel End, →Sink Channel End})
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

These five functions use the following functions that operate on the buffer data-structure:

• Write (Buffer rf ∈ →Buffer, X ∈ Value)

• Sink Read (Buffer rf ∈ →Buffer, ToBeAsked ∈ Integer, Destructive Read ∈ Boolean)
returns 〈X ∈ Value, Success ∈ {HAPPY , SAD}〉

• Buffer Read (Buffer rf ∈ →Buffer, Amount ∈ Integer)
returns 〈V ∈ Value∗, Next Buffer rf ∈ →Buffer〉

224 Appendix A. MoCha’s Abstract Algorithms

Algorithms
Create Channel (Loc1 , Loc2)
//
// Loc1 = The location where to create the Source Channel End.
// Loc2 = The location where to create the Sink Channel End.
//
// returns <Source rf ∈ →Source Channel End,
// Sink rf ∈ →Sink Channel End,
// Action Status ∈ {SUCCESS, FAILURE}>.
//
begin

Source rf := new Source Channel End @ Loc1;
if (Source rf = ERROR) then

return <UNDEFINED, UNDEFINED, FAILURE>;
fi

Sink rf := new Sink Channel End @ Loc2;
if (Sink rf = ERROR) then

Delete(Source rf);
return <UNDEFINED, UNDEFINED, FAILURE>;

fi

Source rf ↑.Buffer rf := NULL;
Source rf ↑.Wait Read := FALSE;
Sink rf ↑.Buffer rf := NULL;
Sink rf ↑.Consumed := 0;

// Knowing each other.
//
Source rf ↑.Sink rf := Sink rf;
Sink rf ↑.Source rf := Source rf;

return <Source rf, Sink rf, SUCCESS>;
end

Write (Source rf, X)
//
// Source rf ∈ →Source Channel End, X ∈ Value.
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
begin

ERROR := Lock(Source rf ↑.CE Lock);
if (ERROR) then return FAILURE;

if (Source rf ↑.Buffer rf = NULL) then
// Create first buffer of channel.
//
Source rf ↑.Buffer rf := new Buffer;
Source rf ↑.Buffer rf ↑.Link rf := NULL;

// Sink can not change its buffer field while it is NULL and
// by locking the move of the source the sink can not move either.
//
Lock(Source rf ↑.Move Lock);
// Tell the other side.
//
Source rf ↑.Sink rf ↑.Buffer rf := Source rf ↑.Buffer rf;
Unlock(Source rf ↑.Move Lock);

else
if (¬Local(Source rf ↑.Buffer rf)) then

// Create new local buffer
//
TempBuffer rf := new Buffer;
TempBuffer rf ↑.Link rf := NULL;
Source rf ↑.Buffer rf ↑.Link rf := TempBuffer rf;
Source rf ↑.Buffer rf := TempBuffer rf;

fi
fi

A.3. Asynchronous FIFO Channel 225

// At this point there is always a local buffer.
//
Write(Source rf ↑.Buffer rf, X);
if (Source rf ↑.Wait Read) then

// Sink is waiting for values
//
Unlock(Source rf ↑.Sink rf ↑.Read Lock);
Source rf ↑.Wait Read := FALSE;

fi

Unlock(Source rf ↑.CE Lock);
return SUCCESS;

end

Write (Buffer rf, X)
//
// Buffer rf ∈ →Buffer, X ∈ Value.
//
// This function operates on the Buffer data-structure.
//
begin

Lock(Buffer rf ↑.Buffer Lock);

Buffer rf ↑.Vals := Buffer rf ↑.Vals ◦ X;

Unlock(Buffer rf ↑.Buffer Lock);
end

Take (Sink rf)
//
// Sink rf ∈ →Sink Channel End.
//
// returns <X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}>
//
begin

ERROR := Lock(Sink rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;

Success ∈ {HAPPY , SAD} := SAD;

while (Success 6= HAPPY) do
if (Sink rf ↑.Buffer rf 6= NULL) then

if (¬Local(Sink rf ↑.Buffer rf)) then
// New local Buffer.
//
TempBuffer rf := new Buffer;
TempBuffer rf ↑.Link rf := Sink rf ↑.Buffer rf;
Sink rf ↑.Buffer rf := TempBuffer rf;

fi
// At this point there is always a local buffer.
//
// Success indicates whether there is an element to read in the channel.
//
<X, Success> := Sink Read(Sink rf ↑.Buffer rf, Sink rf ↑.Consumed + 1, TRUE);

fi

// In case that there is no element in the channel "consult" the source
//
if (Success 6= HAPPY) then

do
ERROR := Lock(Sink rf ↑.Source rf ↑.CE Lock);

until (¬ERROR)
if (Sink rf ↑.Source rf ↑.Buffer rf 6= NULL) ∧

|Sink rf ↑.Source rf ↑.Buffer rf ↑.Vals| 6= 0) then
Unlock(Sink rf ↑.Source rf ↑.CE Lock);

else
Sink rf ↑.Source rf ↑.Wait Read := TRUE;
Unlock(Sink rf ↑.Source rf ↑.CE Lock);
// Read Lock is initially locked!
//

226 Appendix A. MoCha’s Abstract Algorithms

Lock(Sink rf ↑.Read Lock);
fi

fi
done

Sink rf ↑.Consumed := Sink rf ↑.Consumed + 1;
Unlock(Sink rf ↑.CE Lock);
return <X, SUCCESS>;

end

The while -loop above executes no more than 2 times under the assumption that the values inserted
by the source-end never get deleted other than by taking elements from the buffers.

Read (Sink rf)
//
// Sink rf ∈ →Sink Channel End.
//
// returns <X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}>
//
begin
The code of this function is the same as the one for the take function with the
difference that the Sink Read function is now called with Destructive Read := FALSE.

<X, Success> := Sink Read(Sink rf ↑.Buffer rf, Sink rf ↑.Consumed + 1, FALSE);

end

Sink Read (Buffer rf, ToBeAsked, Destructive Read)
//
// Buffer rf ∈ →Buffer
//
// ToBeAsked ∈ Integer, number of values to be asked
// to the next buffer in case Buffer rf ↑ is empty.
//
// Destructive Read ∈ Boolean, is TRUE when this function is
// called due to a take operation. In that case the element to be
// returned has to be removed from the buffer.
//
// returns <X ∈ Value, Success ∈ {HAPPY , SAD} >
//
// This function operates on the Buffer data-structure.
//
begin

Lock(Buffer rf ↑.Buffer Lock);

V := < >; // a sequence of Value.
Reference := Buffer rf ↑.Link rf;

// Execute loop while buffer is empty and
// there is (still) a reference to another buffer.
//
while ((|Buffer rf ↑.Vals| = 0) ∧ (Reference 6= NULL)) do

// Buffer Read returns, besides V, a reference to a
// next buffer in the chain (if any exists) or NULL (if not).
//
<V, Reference> := Buffer Read(Buffer rf ↑.Link rf, ToBeAsked);
if (Reference 6= NULL) then

Buffer rf ↑.Link rf := Reference;
fi
Buffer rf ↑.Vals := V;

done

if (|Buffer rf ↑.Vals| 〉 0) then
X := Head(Buffer rf ↑.Vals);
if (Destructive Read) then

Buffer rf ↑.Vals := Tail(Buffer rf ↑.Vals);
fi
Success := HAPPY;

else

A.3. Asynchronous FIFO Channel 227

// No elements found in channel.
//
X := UNDEFINED;
Success := SAD;

fi

Unlock(Buffer rf ↑.Buffer Lock);

return <X, Success>;
end

The while -loop executes no more than 3 times under the assumption that the values inserted by the
source never get deleted other than by taking elements from the buffers.

Buffer Read (Buffer rf, Amount)
//
// Buffer rf ∈ →Buffer
//
// Amount ∈ Integer, number of values requested.
//
// returns <V ∈ Value∗, Next Buffer rf ∈ →Buffer>
//
// This function operates on the Buffer data-structure.
//
begin

Lock(Buffer rf ↑.Buffer Lock);

V := < >;
Destroy := FALSE;

if (|Buffer rf ↑.Vals| ≤ Amount) then
V := Buffer rf ↑.Vals;
Buffer rf ↑.Vals := < >;
Next Buffer rf := Buffer rf ↑.Link rf;
if (Buffer rf ↑.Link rf 6= NULL) then Destroy := TRUE; fi

else
for 1 to Amount do

V := V ◦ Head(Buffer rf ↑.Vals);
Buffer rf ↑.Vals := Tail(Buffer rf ↑.Vals);

od
Next Buffer rf := NULL;

fi

// Unlocking before destroying would make
// the algorithm unstable.
//
if (Destroy) then

Delete(Buffer rf);
else

Unlock(Buffer rf ↑.Buffer Lock);
fi

return <V, Next Buffer rf>;
end

Move (Channel End rf, Target)
//
// Channel End rf ∈ {→Source Channel End, →Sink Channel End}
//
// Target = The location target.
//
// returns <New Channel End rf ∈ {→Source Channel End, →Sink Channel End},
// Action Status ∈ {SUCCESS, FAILURE}>.
//
begin

ERROR := Lock(Channel End rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;

if (Channel End rf ↑ ∈ Sink Channel End) then
// Lock Sink first, then Source.

228 Appendix A. MoCha’s Abstract Algorithms

// There is no Unlock for the following Lock.
//
Lock(Channel End rf ↑.Move Lock);
Lock(Channel End rf ↑.Source rf ↑.Move Lock);

New Channel End rf := new Sink Channel End @ Target;
if (New Channel End rf = ERROR) then

Unlock(Channel End rf ↑.Source rf ↑.Move Lock);
Unlock(Channel End rf ↑.Move Lock);
Unlock(Channel End rf ↑.CE Lock);
return <UNDEFINED, FAILURE>;

fi

Copy Information(Channel End rf, New Channel End rf);
New Channel End rf ↑.Consumed := 0;
Channel End rf ↑.Source rf ↑.Sink rf := New Channel End rf;
Delete(Channel End rf);

Unlock(New Channel End rf ↑.Source rf ↑.Move Lock);

else

// Lock Sink first, then Source.
//
do

ERROR := Lock(Channel End rf ↑.Sink rf ↑.Move Lock);
until (¬ERROR)

// There is no Unlock for the following Lock.
//
Lock(Channel End rf ↑.Move Lock) ;
New Channel End rf := new Source Channel End @ Target;
if (New Channel End rf = ERROR) then

Unlock(Channel End rf ↑.Move Lock);
Unlock(Channel End rf ↑.Sink rf ↑.Move Lock);
Unlock(Channel End rf ↑.CE Lock);
return <UNDEFINED, FAILURE>;

fi
Copy Information(Channel End rf, New Channel End rf);
Channel End rf ↑.Sink rf ↑.Source := New Channel End rf;
Delete(Channel End rf);

Unlock(New Channel End rf ↑.Sink rf ↑.Move Lock);
fi
return <New Channel End rf, SUCCESS>;

end

Destroy Channel (Channel End rf)
//
// Channel End rf ∈ {→Source Channel End, →Sink Channel End}
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
// There is no Unlock in this function
//
begin

if (Channel End rf ↑ ∈ Sink Channel End) then
Sink rf := Channel End rf;

else
// Check for dangling reference
//
ERROR := Lock(Channel End rf ↑.CE Lock);
if (ERROR) then return FAILURE;
Sink rf := Channel End rf ↑.Sink rf;
Unlock(Channel End rf ↑.CE Lock);

fi

// At this point Sink rf ∈ Sink Channel End,
// but needs not be valid anymore due to possible

A.3. Asynchronous FIFO Channel 229

// movement of sink channel-end.

// Lock Sink first, then Source.
//
ERROR := Lock(Sink rf ↑.CE Lock);
if (ERROR) then return FAILURE;

do
ERROR := Lock(Sink rf ↑.Source rf ↑.CE Lock);

until (¬ERROR)

Source rf := Sink rf ↑.Source rf;

// Delete chain of buffers.
//
i := Sink rf ↑.Buffer rf;
While (i 6= NULL) do

j := i ↑.Link ref;
Delete(i);
i := j;

done

Delete(Source rf);
Delete(Sink rf);
return SUCCESS;

end

230 Appendix A. MoCha’s Abstract Algorithms

A.4 Synchronous Drain Channel

Data-structures

Passive Source Channel End = 〈Active rf, CE Lock, Move Lock, Wait Lock, Write Lock,
Passive Wait, Active Wait〉

• Active rf = A reference to the Active Source Channel End of the same channel.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Wait Lock = A binary semaphore to wait when there is a write but the Active Source is not ready
to write on its side.

• Write Lock = A binary semaphore that is needed to give exclusive access to the booleans of the
Passive Source.

• Passive Wait = A boolean used to express that the Passive Source is waiting until a write is
performed on the Active Source.

• Active Wait = A boolean used to express that the Active Source is waiting until a write is per-
formed on the Passive Source.

Active Source Channel End = 〈Passive rf, CE Lock, Move Lock, Wait Lock〉

• Passive rf = A reference to the Passive Source Channel End of the same channel.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Wait Lock = A binary semaphore used to lock when waiting for a write operation to be performed
at the Passive Source Channel End, initially locked.

Initially all the semaphores are unlocked, except for Wait Lock.

Functions, an Overview

• Create Channel (Loc ∈ Location)
returns 〈Passive rf ∈ →Passive Source Channel End, Active rf ∈ →Active Source Channel End,
Action Status ∈ {SUCCESS, FAILURE}〉

• Write (Passive rf ∈ →Passive Source Channel End, X ∈ Value)
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

• Write (Active rf ∈ →Active Source Channel End, X ∈ Value)
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

• Move (Channel End rf ∈ {→Passive Source Channel End, →Active Source Channel End}, Tar-
get ∈ Location)
returns 〈New Channel End rf ∈ {→Passive Source Channel End,→Active Source Channel End},
Action Status ∈ {SUCCESS, FAILURE}〉

• Destroy Channel (Channel End rf ∈ {→Passive Source Channel End,
→Active Source Channel End})
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

A.4. Synchronous Drain Channel 231

Algorithms
Create Channel (Loc)
//
// Loc = The location where to create the Passive Source Channel End
// and the Active Source Channel End.
//
// returns <Passive rf ∈ →Passive Source Channel End,
// Active rf ∈ →Active Source Channel End,
// Action Status ∈ {SUCCESS, FAILURE}>.
//
begin

Passive rf := new Passive Source Channel End @ Loc;
if (Passive rf = ERROR) then

return <UNDEFINED, UNDEFINED, FAILURE>;
fi

Active rf := new Active Source Channel End @ Loc;
if (Active rf = ERROR) then

Delete(Passive rf);
return <UNDEFINED, UNDEFINED, FAILURE>;

fi

Passive rf ↑.Passive Wait := FALSE;
Passive rf ↑.Active Wait := FALSE;
// Knowing each other.
//
Passive rf ↑.Active rf := Active rf;
Active rf ↑.Passive rf := Passive rf;

return <Passive rf, Active rf, SUCCESS>;
end

Write (Passive rf, X)
//
// Passive rf ∈ →Passive Source Channel End, X ∈ Value.
// Value X gets lost in this function...
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
begin

ERROR := Lock(Passive rf ↑.CE Lock);
if (ERROR) then return FAILURE;
Lock(Passive rf ↑.Write Lock);

if (Passive rf ↑.Active Wait) then
// Active end is waiting due to a write operation.
// No need to lock the Active end since it is waiting.
//
Passive rf ↑.Active Wait = FALSE;
Unlock(Passive rf ↑.Active rf ↑.Wait Lock);

else
// There was no take operation performed on the Active end,
// the Passive end must wait.
//
Passive rf ↑.Passive Wait := TRUE;
// Allow the Active end to enter the Passive end meanwhile
Unlock(Passive rf ↑.Write Lock);
// Wait Lock is initially locked!
Lock(Passive rf ↑.Wait Lock);
Lock(Passive rf ↑.Write Lock);

fi

// At this point the synchronous write operation is completed.

Unlock(Passive rf ↑.Write Lock);
Unlock(Passive rf ↑.CE Lock);
return SUCCESS;

end

232 Appendix A. MoCha’s Abstract Algorithms

Write (Active rf, X)
//
// Active rf ∈ →Active Source Channel End, X ∈ Value.
// Value X gets lost in this function...
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
begin

ERROR := Lock(Active rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;

// We need to consult the Source.
// Prevent the Source from moving by locking own Move Lock.
Lock(Active rf ↑.Move Lock);
// No need to check for Error, reference to Passive end should always be valid now.
Lock(Active rf ↑.Passive rf ↑.Write Lock);
if (Active rf ↑.Passive rf ↑.Passive Wait) then

// The Passive end is already waiting.
Active rf ↑.Passive rf ↑.Passive Wait = FALSE;
Unlock(Active rf ↑.Passive rf ↑.Wait Lock);
Unlock(Active rf ↑.Passive rf ↑.Write Lock);
Unlock(Active rf ↑.Move Lock);
else
// Tell the Passive end to inform us when Active end can write.
Active rf ↑.Passive rf ↑.Active Wait := TRUE;
// now the Active end must wait.
Unlock(Active rf ↑.Passive rf ↑.Write Lock);
Unlock(Active rf ↑.Move Lock);
// Wait Lock is initially locked!
Lock(Active rf ↑.Wait Lock);
fi

fi
Unlock(Active rf ↑.CE Lock);
return <SUCCESS>;

end

Move (Channel End rf, Target)
//
// Channel End rf ∈ {→Passive Source Channel End, →Active Source Channel End}
//
// Target = The location target.
//
// returns <New Channel End rf ∈
// {→Passive Source Channel End, →Active Source Channel End},
// Action Status ∈ {SUCCESS, FAILURE}>.
//
begin

ERROR := Lock(Channel End rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;

if (Channel End rf ↑ ∈ Active Source Channel End) then
// Lock Active-end first, then Passive-end.
// There is no Unlock for the following Lock.
//
Lock(Channel End rf ↑.Move Lock);
Lock(Channel End rf ↑.Passive rf ↑.Move Lock);

New Channel End rf := new Active Source Channel End @ Target;
if (New Channel End rf = ERROR) then

Unlock(Channel End rf ↑.Passive rf ↑.Move Lock);
Unlock(Channel End rf ↑.Move Lock);
Unlock(Channel End rf ↑.CE Lock);
return <UNDEFINED, FAILURE>;

fi

Copy Information(Channel End rf, New Channel End rf);
Channel End rf ↑.Passive rf ↑.Active rf := New Channel End rf;
Delete(Channel End rf);

Unlock(New Channel End rf ↑.Passive rf ↑.Move Lock);

A.4. Synchronous Drain Channel 233

else

// Lock Active-end first, then Passive-end.
//
do

ERROR := Lock(Channel End rf ↑.Active rf ↑.Move Lock);
until (¬ERROR)

// There is no Unlock for the following Lock.
//
Lock(Channel End rf ↑.Move Lock) ;
New Channel End rf := new Passive Source Channel End @ Target;
if (New Channel End rf = ERROR) then

Unlock(Channel End rf ↑.Move Lock);
Unlock(Channel End rf ↑.Active rf ↑.Move Lock);
Unlock(Channel End rf ↑.CE Lock);
return <UNDEFINED, FAILURE>;

fi
Copy Information(Channel End rf, New Channel End rf);
Channel End rf ↑.Active rf ↑.Source := New Channel End rf;
Delete(Channel End rf);

Unlock(New Channel End rf ↑.Active rf ↑.Move Lock);
fi
return <New Channel End rf, SUCCESS>;

end

Destroy Channel (Channel End rf)
//
// Channel End rf ∈ {→Passive Source Channel End, →Active Source Channel End}
//
// returns Action Status ∈ {SUCCESS, FAILURE}
//
// There is no Unlock in this function
//
begin

if (Channel End rf ↑ ∈ Active Source Channel End) then
Active rf := Channel End rf;

else
// Check for dangling reference
//
ERROR := Lock(Channel End rf ↑.CE Lock);
if (ERROR) then return FAILURE;
Active rf := Channel End rf ↑.Active rf;
Unlock(Channel End rf ↑.CE Lock);

fi

// At this point Active rf ∈ Active Source Channel End,
// but needs not be valid anymore due to possible
// movement of sink channel-end.

// Lock Active-end first, then Passive-end.
//
ERROR := Lock(Active rf ↑.CE Lock);
if (ERROR) then return FAILURE;

do
ERROR := Lock(Active rf ↑.Passive rf ↑.CE Lock);

until (¬ERROR)

Passive rf := Active rf ↑.Passive rf;

Delete(Passive rf);
Delete(Active rf);
return SUCCESS;

end

234 Appendix A. MoCha’s Abstract Algorithms

A.5 Asynchronous Spout Channel

Data-structures
Passive Sink Channel End = 〈Active rf, CE Lock, Move Lock, Current Value〉

• Active rf = A reference to the Active Source Channel End of the same channel.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Current Value = A value that is stored for situations when it is acquired due to a read operation.
Initially it is a random Value and the value changes after every take operation. is performed.

Active Sink Channel End = 〈Passive rf, CE Lock, Move Lock, Current Value〉

• Passive rf = A reference to the Passive Source Channel End of the same channel.

• CE Lock = A binary semaphore.

• Move Lock = A binary semaphore.

• Current Value = A value that is stored for situations when it is acquired due to a read operation.
Initially it is a random Value and the value changes after every take operation is performed.

Initially all the semaphores are unlocked, except for Wait Lock.

Functions, an Overview
• Create Channel (Loc ∈ Location)

returns 〈Passive rf ∈ →Source Channel End, Active rf ∈ →Sink Channel End, Action Status
∈ {SUCCESS, FAILURE}〉

• Take (Passive rf ∈ →Passive Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Take (Active rf ∈ →Active Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Read (Passive rf ∈ →Passive Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Read (Active rf ∈ →Active Sink Channel End)
returns 〈X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}〉

• Move (Channel End rf ∈ {→Source Channel End, →Sink Channel End}, Target ∈ Location)
returns 〈New Channel End rf ∈ {→Source Channel End, →Sink Channel End}, Action Status
∈ {SUCCESS, FAILURE}〉

• Destroy Channel (Channel End rf ∈ {→Source Channel End, →Sink Channel End})
returns 〈Action Status ∈ {SUCCESS, FAILURE}〉

Algorithms
Create Channel (Loc)
//
// Loc = The location where to create the Passive Sink Channel End
and the Active Sink Channel End.
//
// returns <Passive rf ∈ →Source Channel End,
// Active rf ∈ →Sink Channel End,
// Action Status ∈ {SUCCESS, FAILURE}>.
//
begin

Passive rf := new Passive Sink Channel End @ Loc;
if (Passive rf = ERROR) then

A.5. Asynchronous Spout Channel 235

return <UNDEFINED, UNDEFINED, FAILURE>;
fi

Active rf := new Active Sink Channel End @ Loc;
if (Active rf = ERROR) then

Delete(Passive rf);
return <UNDEFINED, UNDEFINED, FAILURE>;

fi

Passive rf ↑.Current Value := randomValue();
Active rf ↑.Current Value := randomValue();
// Knowing each other.
//
Passive rf ↑.Active rf := Active rf;
Active rf ↑.Passive rf := Passive rf;

return <Passive rf, Active rf, SUCCESS>;
end

Take (Passive rf)
//
// Passive rf ∈ →Passive Sink Channel End.
//
// returns <X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}>
//
begin

ERROR := Lock(Passive rf ↑.CE Lock);
if (ERROR) then return FAILURE;

Value X := Passive rf ↑.Current Value;
Passive rf ↑.Current Value := randomValue();

Unlock(Passive rf ↑.CE Lock);
return <X, SUCCESS>;

end

Take (Active rf)
//
// Active rf ∈ →Active Sink Channel End.
//
// returns <X ∈ Value, Action Status ∈ {SUCCESS, FAILURE}>
//
begin

ERROR := Lock(Active rf ↑.CE Lock);
if (ERROR) then return <UNDEFINED,FAILURE>;
// No simultaneous takes on both ends at the same time,
// therefore we lock the Passive-end until our take action is completed.
do

ERROR := Lock(Active rf ↑.Passive rf ↑.CE Lock);
until (¬ERROR)
Value X := Active rf ↑.Current Value;
Active rf ↑.Current Value := randomValue();

Unlock(Active rf ↑.CE Lock);
Unlock(Active rf ↑.Passive rf ↑.CE Lock);
return <X, SUCCESS>;

end

The functions Read (Active rf ∈ →Active Sink Channel End) and Read (Passive rf ∈
→Passive Sink Channel End), are exactly the same as their corresponding take functions with the ex-
ception that they not update the Current Value field. So the code line Active rf ↑.Current Value :=
randomValue(); and Passive rf ↑.Current Value := randomValue(); is omitted in these functions.

The functions Move (Channel End rf, Target) and Destroy Channel (Channel End rf) are
exactly the same as the ones for the synchronous drain channel type.

236 Appendix A. MoCha’s Abstract Algorithms

Summary

A distributed system is a collection of independent computers that appears to its
users as a single coherent system. An example of such a system is the Internet,
which is the biggest distributed system in the world. The independent comput-
ers of a distributed system are connected to each other through a network. On
each of these computers there is at least one (software) component that needs to
communicate with other components on remote computers to achieve some goal.
Components can consist of threads, processes, databases, applications, etc. These
components are not only distributed among the several computers of a network but
they also run in parallel; i.e. the threads and processes of a component run in paral-
lel. Therefore, besides communication, distributed systems need appropriate theory
and infrastructures for the coordination of its concurrently running components.

In this thesis we present MoCha, a novel coordination framework for distributed
systems that is based on the notion of mobile channels. A mobile channel is a co-
ordination primitive that consists of (exactly) two ends, and can be regarded as a
virtual path between components. This coordination primitive enables communi-
cation between and provides (basic) coordination among the components that use
it.

The ends of the channels in the MoCha framework are mobile, hence the name
“mobile channels”. Mobility allows dynamic reconfiguration of channel connections
among the components in a system, a property that is very useful and even crucial in
systems where the components themselves are mobile. A component is called mobile
when, in a distributed system, it can move from one location (usually associated with
a computer) to another. For example, a web service that migrates from one computer
to another.

Mobile channels provide basic exogenous coordination. Channels allow several
different types of connections among components without the components them-
selves knowing which channel types they are dealing with. Examples of channel types
are synchronous, lossy synchronous, FIFO, asynchronous drain, etc. This makes it
possible to coordinate components from the ’outside’ (exogenous), and thus, change
a distributed system’s behavior without having to change its components.

In the thesis, we divide the presentation of the MoCha framework in three main
parts: semantics, implementation and composition. Each of these parts offers differ-
ent contributions and a different perspective on the framework.

In the semantics part, we define three different kinds of semantics: a translation
of MoCha in Petri Nets, a description in process calculi thanks to an extension of the
π-calculus, and compositional trace-based semantics. The translation in Petri nets

237

238 Summary

focuses on the concurrency aspect of mobile channels and allows the use of tools of-
fered by the Petri net community. The description in MoCha-π, the process calculus,
focuses on process interaction and allows to reason on programs and on their com-
position. Finally, the compositional trace-based semantics provide an operational
perception of the framework that is more targeted at the notion of components that
is used in component-based software.

In the implementation part, we discuss the MoCha middleware, which imple-
ments the MoCha framework. The middleware is presented from two points of view:
the view of the user and the implementation level view. In the first view, we in-
troduce the main features of the middleware’s Application Programming Interface,
we provide examples of how to use the middleware, and look at several applications
of the middleware; like, for example, peer-to-peer file-transfer applications. In the
second view, we discuss the implementation details of the MoCha middleware. We
conceptually explain the many algorithms and the internal architecture of the mid-
dleware. In particular, we focus on the Java RMI layer, the peer-to-peer mobile
architecture we build upon it, and the implementation of the mobile channels. We
also provide performance measurements, by introducing all kinds of experiments and
evaluating their results.

Finally, in the composition part, we discuss how to build complex channel behav-
iors from basic channels. We take some ideas of Reo, the first model for composition
of mobile channels into connectors, and implement a subset of it. We do this by
providing a model for composition of mobile channels that is conceptually closer to
the actual implementation in distributed systems. Mobile channel composition in
our model is accomplished by using coordination components. For each such com-
ponent we give semantics by providing a MoCha-π specification and a Petri Net.
The implementation of these components is realized in the MoCha middleware.

Samenvatting

Mobiele kanalen voor exogene coördinatie van gedistribueerde systemen

Een gedistribueerd systeem is een verzameling van onafhankelijke computers die
naar de gebruikers toe één enkel coherent systeem lijkt te zijn. Een voorbeeld van
een dergelijk systeem is het Internet, dat het grootste gedistribueerde systeem in
de wereld is. De onafhankelijke computers van een gedistribueerd systeem zijn met
elkaar verbonden via een netwerk. Op elk van deze computers is er minstens één
(software) component die met andere componenten op andere computers in het
netwerk moet communiceren om zo één gezamenlijke doel te bereiken. Deze compo-
nenten kunnen uit threads, processen, databanken, toepassingen, enzovoort bestaan.
De componenten zijn niet alleen verdeeld over de verschillende computers van een
netwerk maar ze executeren ook nog parallel van elkaar; d.w.z. de threads en pro-
cessen waar een component uit bestaat executeren in parallel. Dit leidt tot de
behoefte naar geschikte theorieën en infrastructuren voor de coördinatie van de in
parallel executerende componenten van gedistribueerde systemen.

Dit proefschrift introduceert MoCha, een nieuwe coördinatie raamwerk voor
gedistribueerde systemen die op het begrip van mobiele kanalen is gebaseerd. Een
mobiele kanaal is een coördinatie primitieve die uit (precies) twee uiteinden bestaat,
en dat als een virtuele pad tussen componenten kan worden beschouwd. Deze
coördinatie primitieve regelt de (basis) coördinatie (en maakt de communicatie mo-
gelijk) tussen de componenten die het gebruiken.

De uiteinden van de kanalen in MoCha zijn mobiel, vandaar de naam “mobiele
kanalen”. Dit maakt het mogelijk om de kanaalverbindingen tussen de componenten
van een systeem dynamisch te veranderen, een eigenschap dat zeer nuttig is voor
gedistribueerde systemen en zelfs essentieel is voor systemen waar de componenten
zelf mobiel zijn. Een component wordt aangeduid als “mobiel” wanneer het in staat
is om van een locatie (in het netwerk) naar een andere te verhuizen. Een voorbeeld
hiervan zijn webdiensten die van computer kunnen migreren.

Mobiele kanalen verstrekken basis exogene coördinatie. De kanalen staan het toe
om verschillende soorten verbindingen tussen componenten tot stand te laten komen
zonder dat de componenten zelf weten met welke kanaaltype ze te maken hebben.
Voorbeelden van kanaaltypes zijn synchroon, verlieslijdende synchroon (lossy syn-
chronous), FIFO, asynchrone afvoerkanaal (asynchronous drain), enzovoort. Exo-
gene coördinatie maakt het mogelijk om componenten van “buitenaf” te coördineren
(exogeen), met als voordeel het in staat zijn om het gedrag van een systeem te ve-
randeren zonder zijn componenten zelf hiervoor te hoeven veranderen.

De presentatie van MoCha is in dit proefschrift in drie hoofddelen verdeeld:

239

240 Samenvatting

semantiek, implementatie en compositie. Elk van deze delen bevat verschillende
resultaten en bekijkt MoCha vanuit een ander perspectief.

In het semantiek gedeelte worden er drie soorten semantieken gedefinieerd: een
vertaling (van MoCha) in Petri Netten, een beschrijving in proces calculi dankzij
een extensie van de π-calculus, en een compositionele “trace-based” semantiek. De
vertaling in Petri Netten concentreert zich op de “concurrency” aspect van mo-
biele kanalen en maakt het mogelijk om de tools te gebruiken van de Petri Netten
gemeenschap. De beschrijving in MoCha-π, de proces calculus, concentreert zich
op procesinteractie en staat het toe om te redeneren over programma’s en over hun
(parallelle) compositie. Tot slot, verstrekt de “trace-based” semantiek een opera-
tionele waarneming van MoCha dat meer aansluit bij het begrip van componenten
zoals die in component-based software wordt gebruikt.

In het implementatie gedeelte wordt de MoCha middleware besproken. Deze
middleware is de implementatie van het MoCha raamwerk. De middleware wordt
vanuit twee oogpunten bekeken: die van de gebruiker en die van de ontwikkelaar
die meer wilt weten over details van de implementatie. Vanuit het eerste oogpunt
worden de belangrijkste features van de applicatie interface (Application Program-
ming Interface) besproken, worden er voorbeelden gegeven over het gebruik van de
middleware, en wordt er gekeken naar verschillende toepassingen van de middleware.
Zoals, bijvoorbeeld, peer-to-peer bestanden uitwissel applicaties. Vanuit het tweede
oogpunt worden de implementatie details van de MoCha middleware besproken. De
interne architectuur van de middleware en de verschillende algoritmes worden op een
conceptuele wijze weergegeven. In het bijzonder worden de volgende zaken bespro-
ken: de Java RMI laag, de peer-to-peer mobiele architectuur die boven de vorige
laag is gebouwd, en de implementatie van de mobiele kanalen. Er worden ook allerlei
experimenten en de resultaten die daar uit voortkomen besproken.

Ten slotte, in het compositie gedeelte, wordt er besproken hoe complexere vormen
van kanaalgedrag te verkrijgen zijn door het samenstellen van basiskanalen. Hier-
voor worden er sommige ideeën van Reo genomen, het eerste model voor compositie
van mobiele kanalen in connectoren, en wordt er een implementatie van een deel
van Reo gegeven. Dit wordt gedaan door een model voor compositie van mobiele
kanalen te introduceren die dichter bij het implementatie niveau van gedistribueerde
systemen ligt. De compositie van mobiele kanalen wordt in dit model verwezen-
lijkt door coördinatiecomponenten te gebruiken. Voor elk zo’n component wordt
er een MoCha-π en een Petri Net specificatie gegeven. De implementatie van deze
componenten wordt gerealiseerd in de MoCha middleware.

Curriculum Vitae

Juan Guillen Scholten werd geboren op 11 maart 1974 te Delft. Enkele jaren daarna,
toen hij vijf was, verhuisde hij mee met zijn ouders naar Malaga (Spanje) waar hij
het reguliere Spaanse basisonderwijs volgde. Bij zijn terugkomst naar Nederland, op
vijftienjarige leeftijd, volgde hij voortgezet onderwijs op het Hugo Grotius te Delft.
In 1994 behaalde hij daar met goed gevolg het VWO-diploma.

In het najaar van 1994 begon Juan met de studie Wijsbegeerte aan de Universiteit
Leiden. In 1995 volgde hij wat bijvakken bij de studie Informatica aan het Leiden
Institute for Advanced Computer Science (LIACS). Deze bijvakken vond hij zo leuk
dat hij besloot om de gehele propedeuse Informatica te volgen. Na het behalen
van beide propedeuses kwam hij echter tot de conclusie dat hij eigenlijk nog niet
genoeg levenservaring had om de vele problematieken in de filosofie goed te kunnen
doorgronden. Hierdoor besloot hij zich volledig te richten op de studie Informatica.
In 2001 studeerde hij af in deze studie. Naast studeren was hij ook nog betrokken
bij andere nevenactiviteiten. Zo is hij in 1996 voorzitter geweest van het Leids
Filosofisch Dispuut. Bij het LIACS is hij student-assistent geweest voor verschillende
vakken, is hij lid geweest van de instituutsraad, en heeft hij meegewerkt aan het
(destijds) vernieuwende Haagz! Project.

In 2000 begon Juan een stage bij het Centrum voor Wiskunde en Informatica
(CWI) te Amsterdam in het coördinatie talen thema-groep (SEN3) van prof. dr.
Jaco de Bakker (later opgevolgd door prof. dr. Jan Rutten). Vanwege de goede
resultaten van de stage besloot het CWI hem, na diens afstuderen in 2001, aan
te nemen als Onderzoeker in Opleiding. Zowel zijn stage als zijn promotieonder-
zoek werd uitgevoerd onder de supervisie van prof. dr. Farhad Arbab, dr. Frank
de Boer, en dr. Marcello Bonsangue. Tijdens zijn onderzoek werkte hij mee aan
drie grote projecten: het nationale project ArchiMate over bedrijfsarchitectuur, het
bilaterale NWO en DFG project Mobi-J over “assertional” methoden voor mobiele
asynchrone kanalen in Java, en het interne MoCha project over mobiele kanalen. Zijn
onderzoeksresultaten binnen deze projecten leidden tot verschillende publicaties in
internationale conferenties en workshops. Naast onderzoeken heeft hij studenten en
stagiaires begeleidt. In 2002 en 2003 heeft hij meegeholpen aan de lokale organisatie
van het “Formal Methods for Components and Objects” symposium (FMCO). Van
oktober 2003 tot oktober 2005 heeft hij de lokale administratie van het tweewekeli-
jkse “Amsterdam Coordination Group (ACG)” colloquium verzorgd. In 2002 nam
hij deel aan de zomerschool “Models, Algebras and Logic of Engineering Software”
in Marktoberdorf (Duitsland).

241

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process
Algebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-01

A.M. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science, KUN.
1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementation.
Faculty of Mathematics and Computer Science,
KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation
of Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchro-
nization, and Fault-Tolerance. Faculty of
Mathematics and Computer Science, UvA.
1996-07

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathemat-
ics and Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics
and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Mechani-
cal Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty
of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualities in
Semantics. Faculty of Mathematics and Com-
puter Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-
mations in Context. Faculty of Computer Sci-
ence, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory
in Logic and Mathematics. Faculty of Mathe-
matics and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for
Explicit Substitution. Faculty of Mathematics
and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Computing
Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Test-
ing. Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Fac-
ulty of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication
for Multiprocessor Computation. Faculty of
Mathematics and Computer Science, UU. 1998-
03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty of
Mathematics and Computing Science, TUE.
1998-04

A.A. Basten. In Terms of Nets: System De-
sign with Petri Nets and Process Algebra. Fac-
ulty of Mathematics and Computing Science,
TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping – A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation
of Surface Processes. Faculty of Mathematics
and Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathematics
and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty
of Mathematics and Natural Sciences, RUG.
1999-05

M.P. Bodlaender. Scheduler Optimization
in Real-Time Distributed Databases. Faculty
of Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Mathematics
and Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Pro-
tocols with Formal Methods. Faculty of Com-
puter Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty of
Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical Engi-
neering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neu-
ral Prediction System. Faculty of Mathematics
and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Math-
ematics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Program Construction. Faculty
of Mathematics and Computing Science, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic. Faculty of Mathe-
matics and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the De-
sign of Delay-Insensitive Communicating Pro-
cesses. Faculty of Mathematics and Natural
Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of Sci-
ence, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics and
Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging
Heterogeneous Applications. Faculty of Natu-
ral Sciences, Mathematics and Computer Sci-
ence, UvA. 2000-08

E. Saaman. Another Formal Specification
Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structure. Faculty of Mathematics and
Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics
and Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle.
Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Faculty
of Mathematics and Computing Science, TU/e.
2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Studies in Interactive Visual-
ization. Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and
Testing of Event Sequences. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology: A
Case-study into Acute Effects of Air Pollution
Episodes. Faculty of Mathematics and Natural
Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Check-
ing. Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-
currency control and recovery protocols. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk. Generation and presentation
of formal mathematical documents. Faculty of
Mathematics and Computing Science, TU/e.
2001-12

A.T. Hofkamp. Reactive machine control: A
simulation approach using χ. Faculty of Me-
chanical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduc-
tion techniques for model checking. Faculty of
Mathematics and Computing Science, TU/e.
2001-14

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and exper-
imental aspects. Faculty of Mathematics and
Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Science
and Faculty of Mechanical Engineering, TU/e.
2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2002-03

S.P. Luttik. Choice Quantification in Process
Algebra. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construc-
tion: Algorithms and Complexity. Faculty
of Mathematics and Computer Science, TU/e.
2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifica-
tion of Probabilistic, Real-time and Parametric
Systems. Faculty of Science, Mathematics and
Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Comput-
ing. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Checking
of Timed and Hybrid Systems. Faculty of
Science, Mathematics and Computer Science,
KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and Natural
Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering:
Concepts and Algorithms. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics
for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of
Semantical Models. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary
Computation to Constraint Satisfaction and
Data Mining. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Science,
TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty
of Mathematics and Computer Science, TU/e.
2002-16

J.J.D. Aerts. Random Redundant Storage for
Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused:
Techniques for component composition and
construction. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Faculty of
Natural Sciences, Mathematics, and Computer
Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Fac-
ulty of Mathematics and Natural Sciences, UL.
2003-04

T.A.C. Willemse. Semantics and Verifica-
tion in Process Algebras with Data and Timing.
Faculty of Mathematics and Computer Science,
TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of
Catalytic Reactions. Faculty of Mathematics
and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of
Tertiary Storage. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia Process An-
notation – CoMPAs. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2003-08

D. Distefano. On Modelchecking the Dynam-
ics of Object-based Software: a Foundational
Approach. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-
09

M.H. ter Beek. Team Automata – A Formal
Approach to the Modeling of Collaboration Be-
tween System Components. Faculty of Mathe-
matics and Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional
Approach to Software Components. Faculty of
Mathematics and Computer Science, UU. 2003-
11

W.P.A.J. Michiels. Performance Ratios for
the Differencing Method. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms
and Their Use in Interactive Theorem Proving.
Faculty of Mathematics and Computer Science,
TU/e. 2004-02

P. Frisco. Theory of Molecular Computing
– Splicing and Membrane systems. Faculty of
Mathematics and Natural Sciences, UL. 2004-
03

S. Maneth. Models of Tree Translation. Fac-
ulty of Mathematics and Natural Sciences, UL.
2004-04

Y. Qian. Data Synchronization and Brows-
ing for Home Environments. Faculty of Math-
ematics and Computer Science and Faculty of
Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduction and
Probabilistic Specification Formats. Faculty of
Sciences, Division of Mathematics and Com-
puter Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis:
a Type-Theoretical Formalization and Applica-
tions. Faculty of Science, Mathematics and
Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bar-
gaining Games: An Evolutionary Investigation
of Fundamentals, Strategies, and Business Ap-
plications. Faculty of Technology Management,
TU/e. 2004-08

N. Goga. Control and Selection Techniques
for the Automated Testing of Reactive Systems.
Faculty of Mathematics and Computer Science,
TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:
Representations, Algorithms and Proofs. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty of
Mathematics and Computer Science, UU. 2004-
11

I.C.M. Flinsenberg. Route Planning Algo-
rithms for Car Navigation. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Me-
dia Processing Using Conditionally Guaranteed
Budgets. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed
Systems. Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Manage-
ment, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Esti-
mation Using a Single Base Station. Faculty
of Mathematics and Computer Science, TU/e.
2004-16

S.M. Orzan. On Distributed Verification and
Verified Distribution. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents.
Faculty of Mathematics and Computer Science,
UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-
tative Prediction of Quality Attributes for
Component-Based Software Architectures.
Faculty of Mathematics and Computer Science,
TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Science,
TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervi-
sory Machine Control by Predictive-Reactive
Scheduling. Faculty of Mechanical Engineering,
TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and Tool
Support- . Faculty of Mathematics and Natural
Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling in
Bone Tissue. Faculty of Biomedical Engineer-
ing, TU/e. 2005-02

C.N. Chong. Experiments in Rights Control -
Expression and Enforcement. Faculty of Elec-
trical Engineering, Mathematics & Computer
Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free
Parallel Algorithms. Faculty of Mathematics
and Computing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analy-
sis of Internet Applications. Faculty of Math-
ematics and Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Archi-
tecting - A Systematic Approach to Developing
Future-Proof System Architectures. Faculty of
Mathematics and Computing Sciences, TU/e.
2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance. Fac-
ulty of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Transforma-
tions. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network Relia-
bility. Faculty of Science, UU. 2005-09

O. Tveretina. Decision Procedures for Equal-
ity Logic with Uninterpreted Functions. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Popu-
lations in Dynamic Environments. Faculty of
Biomedical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic
Programming: Classification and Symbolic Re-
gression. Faculty of Mathematics and Natural
Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-
sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of
Hybrid Systems using Simulation Relations.
Faculty of Science, Mathematics and Computer
Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Op-
erational Semantics. Faculty of Mathematics
and Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Proba-
bilistic Systems. Faculty of Mathematics and
Computer Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Struc-
ture of pi-Calculus Processes with Replication.

Faculty of Mathematics and Natural Sciences,
UL. 2005-17

P. Zoeteweij. Composing Constraint Solvers.
Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2005-18

J.J. Vinju. Analysis and Transformation of
Source Code by Parsing and Rewriting. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and
Replication of Processes with Data. Faculty
of Sciences, Division of Mathematics and Com-
puter Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell. Fac-
ulty of Science, UU. 2005-21

Y.W. Law. Key management and link-layer
security of wireless sensor networks: energy-
efficient attack and defense. Faculty of Elec-
trical Engineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional Software
Deployment Model. Faculty of Science, UU.
2006-01

R.J. Corin. Analysis Models for Security Pro-
tocols. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computational Com-
plexity of Evolving Systems. Faculty of Science,
UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal
Specification and Analysis of Hybrid Systems.
Faculty of Mathematics and Computer Science
and Faculty of Mechanical Engineering, TU/e.
2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Composition-
ality. Faculty of Mathematics and Natural Sci-
ences, UL. 2006-05

M. Hendriks. Model Checking Timed Au-
tomata - Techniques and Applications. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting.
Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-
assisted verification of JML programs. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular
Simulations. Faculty of Biomedical Engineer-
ing, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sciences,
UL. 2006-10

G. Russello. Separation and Adaptation of
Concerns in a Shared Data Space. Faculty
of Mathematics and Computer Science, TU/e.
2006-11

L. Cheung. Reconciling Nondeterministic
and Probabilistic Choices. Faculty of Science,
Mathematics and Computer Science, RU. 2006-
12

B. Badban. Verification techniques for Ex-
tensions of Equality Logic. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2006-13

A.J. Mooij. Constructive formal methods and
protocol standardization. Faculty of Mathemat-
ics and Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy-
brid Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT.
2006-15

M.E. Warnier. Language Based Security for
Java and JML. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2006-
17

B. Gebremichael. Expressivity of Timed Au-
tomata Models. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics and
Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Faculty of
Mathematics and Computer Science, TU/e.
2006-20

J.V. Guillen Scholten. Mobile Channels
for Exogenous Coordination of Distributed Sys-
tems: Semantics, Implementation and Com-
position. Faculty of Mathematics and Natural
Sciences, UL. 2006-21

