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In this paper we study the question of existence of a basis consisting only of 
cycles for the lattice il:'( .I!) generated by the cycles of a binary matroid .JI. We show 
that if jf has no Fano dual minor, then any set of fundamental circuits can be 
completed to a cycle basis of il:'(Jf); moreover, for any one-element extension jf' 

of such a matroid ..It, any cycle basis for il:'(. II) can be completed to a cycle basis 
for il:'( •. /!'). © 1999 Acad<-mjc Press 

I. INTRODUCTION 

Let,//= (E, '15) be a binary matroid on a (finite) set E with cycle space 
<e; that is, <t; is a family of subsets of E which is closed under taking sym­
metric differences, whose members are called the cycles of ,II. The minimal 
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nonempty cycles are called circuits; then every nonempty cycle is a disjoint 
union of circuits. In this paper we consider the set 

E(J't) :={ L AcXclAcEEVCE~}· 
Ce'{! 

The set Z'.(Jt) is clearly a lattice (that is, a discrete subgroup of IRE), called 
the cycle lattice of JI; a basis of Z(ui't) consisting only of cycles of J! is 
called a cycle basis. Recall that a basis of a lattice L is a set B of linearly 
independent vectors of L that generates L, i.e., such that every vector x EL 
can be expressed as x = LbeB A. 6 b for some integers A.6 . As is well known, 
a lattice generated by integral vectors admits a basis consisting only of 
integral vectors ( cf [ 15, Chap. 4.1] ). However, a generating set of a lattice 
does not necessarily contain a basis of the lattice in general. 

Hochstattler and Loebl [7] conjectured that every cycle lattice admits a 
cycle basis. This conjecture is, in fact, a special case of a more general 
problem posed by Deza, Grishukhin and Laurent [2, 3] in the setting of 
Delaunay polytopes (see below for details). Gallucio and Loeb! showed the 
validity of this conjecture for graphic matroids [ 4] and, more generally, for 
binary matroids with no Ff minor [5]. The proof given in [5] relies on 
Seymour's decomposition results for matroids with no Ff minor [16]. 

In this paper we give a short and elementary proof for the fact that the 
cycle lattice of a binary matroid with no Ff minor has a cycle basis and 
we show that the cycle lattice of a one-element extension of such matroid 
also has a cycle basis. More precisely, we show that, if J! is a binary 
matroid with no Ff minor, then a cycle basis of Z(vtlt) can be obtained 
from any set of fundamental circuits (thus a basis over GF(2)) by adding 
some circuits that are the symmetric difference of two fundamental ones. 
The main ingredient for this result is the fact that there exist two fundamen­
tal circuits of Jt intersecting in exactly one element (cf. Theorem 2.2). If 
JI' is a one-element extension of Jt, then one can extend any cycle basis 
of Z'.(,.1!) by an appropriate set of circuits of .,,ft' in order to obtain a cycle 
basis of the cycle lattice of .J!'. Moreover, in both cases we can construct 
efficiently the above-mentioned cycle bases. 

Although cycle bases can be constructed for some other specific instances 
of matroids, e.g., for projective spaces and their duals, the question of exist­
ence of a cycle basis remains open for general binary matroids, even for the 
binary matroids having the so-called lattice of circuits property (see below 
for the definition). We will make some further observations concerning 
these matroids in Remark 2.6. 

The question of existence of a basis of a special kind has been considered 
for other lattices generated by combinatorial objects, for instance, for the 
lattice generated by the incidence vectors of the perfect matchings of a 



CYCLE BASES OF BINARY MATROIDS 27 

graph. This lattice has been studied extensively by Lovasz [ 8]; Carvalho 
et al. [ 13] have shown that this lattice has a basis consisting only of perfect 
matchings, answering a question posed by Murty [ 12]. 

In what follows, we introduce some definitions and preliminaries that are 
needed in the paper. Our notation and terminology are fairly standard and 
can be found, e.g., in the textbooks by Oxley [14] and Welsh [18]. We 
will use the following notation: For a set A s;;; E, we let xA E { 0, 1} E denote 
its incidence vector, i.e? x: : = I if and only if e EA. Moreover, for a finite 
subset X s;;; IRE we set 

Z(X) := { I A.xx I Ax E z 'v'x Ex}. 
xeX 

Definitions and Facts about Matroids. Let jf = (E, <6) be a binary 
matroid. Setting 

J1* := (E, <6*) is also a binary matroid, called the dual of JI!; the members 
of <e"* are called the cocycles of .ii. The minimal nonempty cocycles are 
called the cocircuits of , If. 

A set Is;;; E is independent in j/ if it contains no circuit; the maximum 
cardinality of an independent set is the rank of JI!. Let T be a maximal 
independent set in .It. For e E E\T, let ce E <6 denote the fundamental 
circuit of e with respect to T; that is, Ce is the unique circuit such that 
eE ce s;;; Tu {e}. 

An element e E E is a co loop of cl! if { e} is a cocircuit and two distinct 
elements e, f EE are said to be co parallel if { e, f} is a cocircuit. A 
coparallel class P is a maximal subset of E whose elements are pairwise 
coparallel and are not coloops. The matroid Jf is said to be cosimple if 
every cocircuit has cardinality ~ 3. 

The cycle space of a binary matroid Jf! on E can be realized as the set 
of solutions x E { 0, 1} E of a linear equation of the form: Mx = 0 
(modulo 2), for some binary matrix M whose columns are indexed by E; 
such matrix M is called a representation matrix of Ji. 

The Fano matroid F7 is the matroid on E := { 1, ... , 7} represented by the 
matrix 

2 3 4 5 6 7 

(~l 0 0 I 1 

I 0 1 0 

0 0 
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and the Fano dual matroid is the dual F1 of F7 • For r~2, the projective 
space &:. is the binary matroid represented by the r x (2' - 1) matrix whose 
columns are all nonzero 0, 1-vectors of length r; hence, &:. has rank r and 
&) = F1. 

Let Jt = (E, <&) be a binary matroid and let e EE. Setting 

<&\e := { CE<& I erf= C}, lef/e:={C\{e} ICE<&}, 

then jf\e := (E\{ e}, <&\e) and jf/e := (E\{ e}, !ef/e) are binary matroids 
obtained from j/ by, respectively, deleting and contracting e. A minor of .It 
is any binary matroid • t. that can be obtained from jf by a sequence of 
deletions and/or contractions. 

The Lattice of Circuits Property. Let .it= (E, <&) be a binary matroid. 
Then, the following holds obviously for all x E Z(A): 

2:: X;is even for all cocircuits DE<ef*, 
eeD 

if f and g are coparallel in .it, 

if e is a coloop of .it. 

( 1.1) 

( 1.2) 

( 1.3) 

Following Goddyn [ 6], we say that .II has the lattice of circuits property 1 

if the above conditions ( 1.1)-(1.3) characterize Z( .It); that is, if any x e Z E 

satisfying (1.1)-(1.3) belongs to Z(.Jt). As can easily be verified, A has the 
lattice of circuits property if and only if 2xP e £:'.(./!) for every coparallel 
class P of j/. Recall that the dual lattice of £'.(JI!) is given by 

Then, assuming ,,,f}t cosimple, .it has the lattice of circuits property if and 
only if(l(jt))* is contained in !ZE. Note that F! does not have the lattice 
of circuits property since frEe (Z(F!))*. 

Cunningham [ 1] has proved that, if A has no F1 minor then, for every 
element e, there exist two circuits C, C' such that C n C' = { e} if and only 
if every cocircuit containing e has cardinality ~ 3. This implies that every 
binary matroid with no F1 minor has the lattice of circuits property. Note 
that Theorem 2.2 and Corollary 2.3 below can be seen as a variation of 
Cunningham's result. Lovasz and Seress [ 10, 11] studied the lattice of 

1 This terminology reflects the analogy with the sums of circuits property considered by 
Seymour [ 17], a binary matroid having the latter property if the cone generated by its cycles 
is completely described by some "obvious necessary" linear conditions. Lovasz and Seress 
[10] call a binary matroid At Eulerian if its dual At* has the lattice of circuits property. 
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circuits property in detail. In particular, they have given several equivalent 
characterizations for the binary matroids having the lattice of circuits 
property and they have shown that, if oll is cosimple with no &:+ 1 minor, 
then 2r- l £'.Es;;; l(.ft'). 

The dimension of the cycle lattice Z(Jt) is dim vii:= dim IR(vll), the 
dimension of the linear subspace spanned by l(vlt). In view of relations 
( 1.2) and ( 1.3) it is not more than the number of co parallel classes of JI!. 
Moreover, an easy induction on the size of the groundset shows that for 
every coparallel class KcE there is a O<kel such that k·xE'\Kel(v/1), 
where E' c Eis the union of the coparallel classes of JI!. This implies that 
a certain positive multiple of xK belongs to l(Jlt) and, therefore, dim JI! is 
in fact equal to the number of coparallel classes of JI!. Furthermore, again 
using relations (1.2) and ( 1.3 ), we may assume without loss of generality 
that .It is cosimple, in which case l(.lt) is full-dimensional. We will often 
use the observation that if f!i is a set of cycles of.$! which generates the 
lattice Z(J/) and has cardinality lr!il =dim vi!, then f!i is a basis of Z(.H). 

The Basis Question for Delaunay Polytopes. Let P s;;; IRk be a full-dimen­
sional polytope with set of vertices VP admitting the origin as a vertex. 
Then, P is said to be a Delaunay polytope if it satisfies the following condi­
tions: (i) the set L := Z( Vp) is a lattice; (ii) P is inscribed on a sphere; that 
is, llx - ell = r for all x E V p, for some r > 0 and e E IRk with lltll = r; (iii) 
llx- ell~ r for all x EL, with equality if and only if x E Vp. (Here, llxll 
denotes the Euclidean norm of x E !Rk.) Deza et al. [ 2, 3] posed the follow­
ing question: 

Given a Delaunay polytope P, is it always possible to find a basis 
of the lattice L = Z( VP) consisting only of vertices of P? 

No example of a Delaunay polytope is known for which this question has 
a negative answer. On the other hand, a basis consisting only of vertices 
has been constructed for several concrete instances of Delaunay polytopes 
in [ 2]. In fact, the question of existence of a cycle basis for a cycle lattice 
arises as a special instance of the above problem. Indeed, for a binary 
matroid JI= (E, ~), let conv('t) denote the polytope in IRE defined as the 
convex hull of the incidence vectors of the cycles of .,1f!. Then, as we see 
below, conv(<6') is a Delaunay polytope in the lattice Z(.lt). 

LEMMA 1.4. Let X be a finite full-dimensional subset of { 0, 1} k and set 
Y: = l( X) n { 0, I} k. Then, the polytope conv( Y) is a Delaunay polytope. 

Proof The polytope P := conv( Y) is full-dimensional in IRk since X is 
full-dimensional. Assertion (i) holds obviously since Y consists of integer 
vectors. Let S denote the sphere in IRk with center e := (~, ... , ~) and radius 
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r : = ~ JTET Then all points of Y lie on the sphere S. i.e .. (ii) holds. We 
have that :X-C!' 2 -r2 =2:H 11-.\·,(x,--· 1);?;0 for all xel(X). Moreover. 
equality holds if and only if x e { 0, I}*, i.e .. if x e }': thus. (iii) holds. This 
shows that P is a Delaunay polytope. I 

Note that, with the notation of Lemma 1.4. it may happen that X is a 
proper subset of Y. For such an example. let X consist of the unit vectors 
in Rk in which case Y = l O. l} k. On the other hand, if X consists of the 
incidence vectors of the cycles of a binary matroid . II. then equality X = Y 
holds. Indeed, the only ( 0, I )-vectors in the cycle lattice ZC II) are the 
incidence vectors of cycles (which follows essentially from the fact that 
(.If*)*= ,II). (Note that the equality, l(X) n IO, I }k = Xfor a finite subset 
X s; I 0, I } k, does not imply that X is dosed under taking symmetric dif­
ferences. i.e., X is not necessarily the cycle space of a binary matroid. For 
a counterexample, consider the set X £:: 10. l } 4 consisting of the vectors 
(0,0,0,0). (I, 1.1.0). (l, l,0.1). (1,0, I, l) and (0, l, I, I).) 

COROLLARY 1.5. Li!t H = ( £, <(,) he a cosimple binary matroid. Thl!n. 
the pozrtope conv( r{, ) which is defined as thl! conrex hull of the incidence 
vectors 4 thl! cycles of II. is a Delaunay polytope. 

2. CYCLE BASIS FOR MATROIDS WITH NO Fi MINOR 

We indicate here a very simple method for constructing a cycle basis of 
the cycle lattice of any binary matroid with no Fi minor. It consists of 
extending a set of fundamental circuits (thus a basis over GF(2)) to a basis 
of the cycle lattil."e by adding some circuits obtained as symmetric difference 
of two fundamental circuits. This method can also be applied to some other 
binary matroids, for instance. to projective spaces. 

Let .II=(£. '6) be a binary matroid, let T be a maximal independent set 
in JI, set f' := E\T and, fore e f. let C denote its fundamental circuit. So, 
I TI = r if ,,/I has rank r and r ~ 1£1 - 2 if,// is cosimple. We start with an 
easy observation. 

LEMMA 2.1. Let sJ he a set ofi·ectors in zE. If .cJ generates (over .l) the 
fundammtal circuits of a gfren maximal independent set T of . II and the 
vectors 2x' (jor e E Tl. thm .cJ genermes all l.'!ements in .l( JI) and in 2l. E. 

Proof Let C be a cycle in M. Then, C is the symmetric diflerence of 
the fundamental circuits c. for eeCnf'. Hence. x:=xc-LeecnTXc, is 
an even vector (i.e., xe2ZE) which is zero on f. Hence. xe.l(d) by 
the assumption which implies that xc e l( sl) too. Finally, for e e f, 
,r:f generates 2x• since ix·= 2xc, - 2xc," r. I 
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The following result will be the main tool for constructing a cycle basis. 

THEOREM 2.2. Let .ii be a cosimple binary matroid with no F!f minor. 
Let T be a maximal independent set in jf and assume that I TI ;;::: 1. Then 
there exist two fundamental circuits e and C' such that I en C' I = 1. 

Proof We begin with observing that, as J!! is cosimple and the 
fundamental circuits generate over GF(2) all cycles, then for any distinct 
elements e, fE E there exists a fundamental circuit e such that I en { e, f} I 
= I. From this follows that there exist two distinct nondisjoint fundamen­
tal circuits. Let ex and Cy (where x, y ET) be two fundamental circuits for 

which ex n CY :f:-0 and lex n C\I is minimum. If lex n CYI =I we are 
done. Else, let e, fE ex n CY, e :f:- j; and let ez be a fundamental circuit 
such that I ez n { e, f} I = I; say, e E Cz, f ~ Cz. Then, there exists an 
element g EC n (ex \Cy) since, by our minimality assumption, Cz n ex~ 
ex n Cy \ {f}. Similarly, there exists an element h E ez n ( ey \ex). Set 
X := 1\{x, y, z} and Y:= T\{ e, j; g, h} and consider the matroid jl' := 
.J!\X/Y. Then, the circuits C, eY, ez have the form 

e f g h y x y z x 

et 1 0 * I 0 0 0 0) 
ey l 1 0 * 0 l () 0 .. ·O . 

ez l 0 * 0 0 o ... () 

Thus, { e, f, g, h} is a maximal independent set of j/' with fundamental 
circuits the sets { e, j; g, x}, { e, f, h, y}, and { e, g, h, z}. Therefore, j/' 
coincides with the Fano dual matroid Fi, which contradicts our assump­
tion that .JI has no F!f minor. I 

COROLLARY 2.3. Let JI be a cosimple binary matroid with no F!f minor. 
Let T be a maximal independent set in JI and assume that r := I TI ;;::: 1. 
Then, the elements of T can be ordered as e 1 , ... , er in such a way that, for 
every i = I, .. ., r, there exist two fundamental circuits e;, c; such that 
ei EC; n e; s; {e1, ... , e;}. 

Proof We show the result by induction on the size of the groundset. By 
Theorem 2.2, there exists an element e1 ET and two fundamental circuits 
C\, C'1 (with respect to JI, T) such that C1 n C'1 = { ei}. We are done if 
I TI = 1. Otherwise, we consider .!!' : = c.!i / e 1 . Then, T\ { e 1} is a maximal 
independent set in ,//'. Applying the induction assumption to . !I' which is 
cosimple with no F!f minor, we obtain that the elements ofT\{ei} can be 
ordered as e2 , .. ., er in such a way that, for every i = 2, .. ., r, there exist two 
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fundamental circuits D;, D; (with respect to Jt', T\{ ei}) such that e; ED; 
11D;s;;{e2 , •.. ,e;}. Then, D;=C;\{e1}, D;=c;\{ei} where C;, c; are 
circuits of J/t. In fact, C;, c; are also fundamental circuits with respect to 
Tin J/t as each of them contains a unique element of f. Moreover, e; E C; 
11C;s::;{e1>e2 , .•• ,e;}. I 

An immediate application of Corollary 2.3 is that u_E s;; Z( JI!) for any 
cosimple binary matroid .l'l with no F1 minor; in other words, matroids 
with no F1 minor have the lattice of circuits property. We formulate below 
further consequences. 

COROLLARY 2.4. Let Jt be a binary matroid with no F1 minor, let P be 
a coparallel class of .it, and let r denote the rank of JI. 

(i) The lattice Z(.H) has a basis consisting only of circuits of .it. Such 
a basis can be obtained by extending the set of fundamental circuits of an 
arbitrary maximal independent set by r circuits, each of them being the 
symmetric difference of two fundamental circuits. 

(ii) There exist a circuit C P and a set d of circuits of Jt such that the 
set si u { Cp} is a basis of the lattice 1("'1) and the set { C\P I C Ed} is 
a basis of the lattice Z(Jt/P). 

Proof We can assume without loss of generality that JI is cosimple. 
We first verify (i).Let Tbe a maximal independent set in.,,// (ITI =r) and 
let Ce ( e E 'f) denote the associated fundamental circuits. If r = 0, then the 
result is obvious as the fundamental circuits Ce= {e} (eEE) constitute a 
cycle basis. We now assume that r ~ l. Let T= { el> ... , e,} and let C;, c; be 
the fundamental circuits provided by Corollary 2.3. Then we consider the 
set 24 consisting of the fundamental circuits Ce ( e E 'f) together with the 
circuits ce, := C;LIC; (for e; ET). It follows from Corollary 2.3 that ~ 
generates 2xe for e E T. According to Lemma 2.1, this implies that ~ 
generates all elements in Z(J/t). Hence, ~ is a basis of Z(J/1) since l~I = 
IEI and, thus, (i) holds. We now verify (ii). As Jt is cosimple, we have that 
P : = { p} . If { p} is a circuit, then Jt / p = Jlt\p and, thus, (ii) holds if we set 
Cp := CP and d := ~\{ Cp}, where ~ is the cycle basis of Z(.A'f) con­
structed above. Otherwise, we set again Cp := CP and d :=~\{ Cp}, 
where iB is the basis constructed above after choosing for T a maximal 
independent set of JI containing p. Observe moreover that the above 
construction applied to matroid .,,g / p and its maximal independent set 
T\{p} shows that the set { C\P ICE d} is a basis of Z(.it/p). Hence, (ii) 
holds. I 

We close this section with some remarks on possible further applications 
of the above construction method, as well as its limits and open questions. 
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Remark L5. The R1."1.:all that the projective space t~ is 
the matroid defined on the set £:=GF(2 IOl whose are the 
linearly dependent \over GF( 2) l subsets of E. As we now see, the construc­
tion method presented earlier in this section applies very easily for findmg 
a cyde basis of the lattil:e 1~). Indeed. let T := Iei .... , e,: be a maximal 
independent set in . We can suppose that r ~ 3 ! else there is obviously a 
basi:; of cydes). Then. every element 1!1 ET is the inter:;ection of two funda­
mental cin:uits. For instance. the two fundamental cirrnits { e 1 • 1:'2 • e1 Eth'2 } 

and le 1• e i. e 1 Ef:; e, l meet in e 1 • Therefore. the conclusion of Theorem 2.2 
holds and, thus. the cycle lattice of.~ has a basis consisting of cycles. 

Note that the above constrm:tiL•n method does not apply to the Fario 
dual matroid =Fi. Indeed. the result from Theorem 2.2 does not hold 
for Fi since all pairwise intersections of its circuits have cardinality 2. 
However. the technique from the next section will apply to the matroid F1 
since F!( is obviously a one-element extension of a matroid with no Ff 
minor. In fact. the cyde lattice of F; and. more generally, of the dual * 
L)f the projective space has obviously a cyde basis, since the nonempty 
cycles of * are linearly independent over lh£. 

Remark 2.6. J!atroids with the Lattin' Circuits Property. Let us note 
again that the question of existence of a cycle basis for the cyde lattice 
remains open for general binary matroids with the lattice of circuits 
property. We mention here a possible way of attacking this question. Let 
il = (£. 'f) be a cosimple binary matroid. let T be a maximal independent 

subset of £, let C,. ( e E f) be the corresponding fundamental circuits, and 
let W denote ihe matrix whose rows are the incident vectors of the sets 
Ce n c:r (for e. /E f). Lovasz and Seress [ l 0] have shown that Ii has the 
lattice of circuits property if and only if the matrix iv has full column 
rank 1£1 over GF( 2 J. H we could find a set I of pairs (e, .n (e i:-fE f) for 
which the submatrix W1 with rows C,. (eE TJ and C, n C1 ((e,f)EJ) has 
its determinant equal tL~ l, then the set {Ce(l>Ef),C,L1(~((e,/)E/)~ 
would be a cyde basis of Z( I/). What we have shown in Corollary 2.3 is 
that this goal of finding a subrnatrix H'1 with detem1inant I can be 
achieved in the special case when II has no Fi minor. Note that for 
general matroids with the lattice of circuits property, by the above 
mentioned result of Lovasz and Seress. there exists an index set I for which 
the submatrix lf/1 has its determinant equal to I modulo 2! 

3. ONE-ELEMENT EXTENSIONS OF MA TROlDS WITH 
NO FANO Dl!AL MINOR 

Given a binary matroid lr on a set £, a one-element extension of.// is 
any binary matroid .. I on E u { t} (where 1 is an additional element not 
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belonging to E) such that .Y\t = Jt. We show in this section that, if .. ft is 
a matroid with no F!j minor, then the cycle lattice of any one-element 
extension of ..,;/t also admits a cycle basis, obtained by extending any cycle 
basis of the cycle lattice of Jt. 

One-element extensions can be described in the following manner. Let vii 
be a binary matroid on E and let I be a subset of E. Call a set A s;; E 
I-even (resp. I-odd) if IA 11L'I is even (resp. odd). Let ME denote the 
binary matroid on E u { t} (t is an additional element not belonging to E) 
whose cycles are the cycles of .It and the sets ( C !.:':.. I) u { t}, where C is 
a cycle of .II. Hence, the cocycles of J/!E are the I-even cocycles of .It and 
the sets Du { t} where Dis a L'-odd cocycle of J/t. Obviously, J/!E= J/tc t::.. :r 
for any cycle C of .. #t. Clearly, J/14 \t = Jt and any one-element extension 
of vlt is of the form .HE for an appropriate Is;; E. 

It is useful to observe how the contraction operation applies to the one­
element extension matroid AE; namely, .HEif =(A/f):r\{f} for any f eE. 

When .ft is a graphic matroid, the matroid .l!E is also known under the 
name of graft matroid (cf. [9, 16]); Goddyn [6] has posed the question 
of describing the cycle lattice of graft matroids. Note that the Fano dual 
matroid F!/ is, in fact, a graft matroid. Indeed, Fl' can be seen as a one­
element extension of the graphic matroid of the complete bipartite graph 
K2, 3 , taking for I the set of edges adjacent to a given node of degree 3. 
Hence, the results of this section apply for constructing a cycle basis of 
"ll..(F-1). Moreover, this example shows that the one-element extension of a 
matroid with the lattice of circuits property does not need to have this 
property. We will give in Corollary 3.2 a characterization of the one­
element extensions of matroids with no F!/ minor having the lattice of 
circuits property. 

THEOREM 3.1. Let .it be a binary matroid on E with no F!j minor, let 
Is;; E and let v'ftE be the corresponding one-element extension of .it. Then 
every cycle basis f!J.# of "ll..( .,ft) can be extended to a cycle basis f!J of "ll..(.HE); 
moreover, if all members of f!J.A are circuits then the same can be assumed 
about f!J. 

Proof We begin with noting that it suffices to show the result for one 
specific basis of "ll..(A); indeed, if f!J.# and .~',,u are two bases of "ll..(A) and 
if f!JE is a set of cycles of .#!E for which B.u u PJE is a basis of Z(J/tE), then 
Pl',,u u f!JE too is a basis of "ll..(.l!E). Moreover, we can assume that f!J:r 
consists only of circuits, as for each cycle C e f!J E there is a unique circuit 
C' c C such that t e C' and BB'x := { C': C E &BE} has the same property as 
&BE. Thus we fix a basis Pl.u of "ll..(J't) consisting only of circuits (it exists 
by Corollary 2.4 ). We show that we can find a set of circuits of .,fti: which 
together with .~.# forms a basis of "ll..( .. lti;). The proof is by induction on 
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IEI. As observed earlier, we may assume without loss of generality that the 
matroid .llJ: is cosimple. Hence, ./I has no coloop, but vii may contain 
some cocircuits of size 2, all of them being .E-odd. Therefore, every 
coparallel class P of JI satisfies IP n .El :::::; I and IP\.EI:::::; 1. We distinguish 
the following two cases. 

Case 1. All coparallel classes of .ii have cardinality 2. Then, the set 

,@ : = 84 .H u { ( c .6. .E) u { t} I c E g§ .H } u { .E u { t} } 

is a cycle basis of .l(.l!i;). Indeed, as~ has the right cardinality, it suffices 
to verify that it generates all cycles of .Iii;. For this, let C be a cycle of Jlt; 
then 

where the A.B's are integers. Therefore, 

x<Cb.I')u{1}= L A.Bx<Bb.I')u{tl+(l- L As)XJ:u{t} 
BE3~ Bea~ 

belongs to .l(J§). 

Case 2. .II has a co parallel class P : = { p} of cardinality 1. By 
Corollary 2.4, there exist a circuit C P and a set d of circuits of JI/ such 
that B.u :=du { Cp} is a basis of Z(.lt) and d' := { A\P I A Ed} is a 
basis of .l(.lt/p). By the induction assumption applied to matroid Jll/p, 
there exists a set f!}J' of circuits of (Jl/Ph\{p} = .lti:/P such that d' u f!};' is 
a basis of .l( .JiJ: / p ). For each D' e f!};', let D be a circuit of Ati: such that 
D\{p} =D' and set q; :={DID' ef!};'}. We claim that the set (lJ := 
du f2 u { Cp} is a basis of the lattice "ll..(.lii;). As ~ has the right car­
dinality, it suffices to verify that 84 generates all cycles of .,,ifx. Let C be a 
cycle of .,fix. Then, the set C\ { p} is a cycle of .ltx/ p and thus is generated 
by d' u f!};'. From this follows that xc + A.xP is generated by du f!2 for 
some integer A.. If A. is even, then A.xP is generated by du { Cp} since JI! 
has the lattice of circuits property; otherwise, {p} is a circuit and Cp= {p}. 
Hence, xc is generated by :1' in both cases. I 

It follows from a result of Lovasz and Seress [ 11] that 4zEu {•} s;;: .l(.,lfx) 
if vllx is a (cosimple) one-element extension of a matroid .,,If with no F; 
minor. The next result characterizes when .,,iti: has the lattice of circuits 
property. 

COROLLARY 3.2. Let Jt be a matroid on E with no FJ minor and let .Ai: 
be a one-element extension of .Jt. Then, .llx does not have the lattice of 
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circuits property if and only if there exist elements ei. ... , ek> f" ... , fk EE 
(k ~ 3) such that the set { e1, ••. , ek} is a cocircuit of JI while the sets { e;, J;} 
(i = 1, ... , k) are E-odd cocircuits of ..;/f. 

Proof Suppose first that such cocircuits exist; we show that .AIE does 
not have the lattice of circuits property by constructing a vector 
xE!zEu{rl\fa".Eu{r} belonging to the dual lattice (l(u!IE))*. For this, set 
x(e;) =x(f;) := ! (i= 1, ... , k), x(t) :=0, ~'!-,!if k is congruent to 0, I, 2, 3 
modulo 4, respectively, and x(e) := 0 for all remaining elements e EE. We 
show the converse implication by induction on the size of E. Assume that 
vl'tE does not have the lattice of circuits property. We can suppose without 
loss of generality that .l!E is cosimple. We distinguish again the two cases 
considered in the proof of Theorem 3.1. 

Consider first Casel; that is, E={e1,f1 , ••• ,em,fm}, E={ei. ... ,em} 
and { e;, /;} is a E-odd cocircuit of JI for every i = 1, ... , m. Then, m ~ 3 for, 
if not, then ..;/fE is a matroid on ::;:; 5 elements and thus has the lattice of 
circuits property. We claim that the set E contains a cocircuit of JI. 
Indeed, if E contains no cocircuit of ull, then Eis independent in the dual 
JI* of vft. Moreover, E is maximal independent in JI* since E v {f1} 

contains a cocircuit for all i =::;.; m. Therefore, E\E is maximal independent 
in .JI with associated fundamental circuits the sets {e;,f;} (i=l, ... ,m). 
Then, one can easily verify that 2zEu {i} £ l(.itE) and thus vii has the 
lattice of circuits property. Therefore, E contains a cocircuit. Such cocircuit 
has cardinality ~ 3 since .ltE is cosimple and, thus, we are done. 

Consider now Case 2; that is, ..;ff has a coparallel class { p} of cardinality 
1. We claim that JIEIP does not have the lattice of circuits property. For, 
suppose that .ltEIP has the lattice of circuits property; then we show that 
.J!E too has the lattice of circuits property. Indeed, 2xP E l(JI) £ l(JIE); 
for eEE\{p}, 2xeEZ(.ftE/P) which implies that 2xe+A.XPEl(vf!E) for 
some integer A. and, thus, 2xe E Z(..,f/E); finally, 2x' = 2xEu {r} -2xE E Z(,,,ftE)· 
Using the induction assumption applied to Jlf/p, there exist elements e1 , 

f 1 , ... , ek, fk EE\ { p} (k ~ 3) such that { e1, ••• , ek} is a cocircuit of JI Ip and 
every { e;, f;}i a .E-odd cocircuit of Jlf / p. Hence, we have found the desired 
cocircuits of .II and we are done. I 

We conclude this section with an observation on the limits of local 
constructions. It has been observed in [7] that, given a cycle basis of the 
cycle lattice of a contraction minor Jl/e of a binary matroid Jtl, it is in 
general not possible to extend it to a cycle basis of the cycle lattice of v#t. 
We now give an example showing that the same holds if we are given a 
cycle basis of a deletion minor .1!\e of .it. 

LEMMA 3.3. Let JI be a cosimple binary matroid on E and let e EE. 
Assume that .JI has the lattice of circuits property and that Jl\e does not 
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have the lattice of circuits property. Then any cycle basis for Z(<l!) must 
have at least two cycles containing e. Therefore, if Ji\e is cosimple, then no 
cycle basis of£'.(.,!!) exists that contains a cycle basis of Z("l!\e). 

Proof By the assumption, there exists a coparallel class P in jf\e such 
that 2xP E Z(J!)\Z(.l!\e). This implies that any cycle basis of Z(.l!) must 
contain at least two cycles containing the element e. I 

As an example of a matroid satisfying the conditions of Lemma 3.3, 
consider the matroid S8 on the set { e1 , ••• , e8 } represented by the matrix 

(~ 
0 

0 

0 

0 
0 

1 
0 

0 
0 

0 

I 

0 

0 

0 

I 

0 

0 

0 

Then, S8 \e 1 ~ Fj", both Fj" and S 8 are cosimple, and S8 has the lattice of 
circuits property while Ff does not have it. To see that S 8 has the lattice 
of circuits property, one can note that S8 is, in fact, a graft matroid and use 
Corollary 3.2. Indeed, S 8 is the graft matroid of the graph from Fig. 1 
taking X := { e1' e2 , e3 , e4 } labeling the edges 15, 25, 35, 45, 12, 13, 14 as 
e1 , •• ., e7 , respectively, and the additional element t as e8). Therefore, S8 

admits a cycle basis by Theorem 3.1. (Alternatively, one can note that the 
set T' := {eh e2, e3, e4 } is a maximal independent set in S8 and that the 
pairwise intersections of fundamental circuits are the sets { ei} and { e1> e;} 
for i = 2, 3, 4. This argument shows that S8 has the lattice of circuits 
property and that a cycle basis for Z(S8 ) can be constructed by applying 
the technique from Section 2.) 

FIG. 1. The matroid S8 is a graft. 
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