
Uniform Approximations of Bernoulli and Euler 
Polynomials in Terms of Hyperbolic Functions 

By Jose L. Lopez and Nico M. Temme 

Bernoulli and Euler polynomials are considered for large values of the or
der. Convergent expansions are obtained for Bn(nz + 1/2) and En(nz + 1/2) 
in powers of n-1, and coefficients are rational functions of z and hyper
bolic functions of argument l/(2z). These expansions are uniformly valid 
for lz ± i/27TI > l/27T and lz ± i/7TI > l/7T, respectively. For a real argu
ment, the accuracy of these approximations is restricted to the monotonic 
region. The range of validity of the uniformity parameter z is enlarged, re
spectively, to regions of the form lz ± i/2(m + 1)7TI > 1/2(m + l)?T and 
lz ± i/(2m + 1)7TI > 1/(2m + l)?T, m = 1, 2, 3, ... , by adding certain com
binations of incomplete gamma functions to these uniform expansions. In 
addition, the convergence of these improved expansions is stronger, and for 
a real argument, the accuracy of these improved approximations is also better 
in the oscillatory region. 

1. Introduction 

The Bernoulli and Euler polynomials of degree n and complex argument z, 
denoted by Bn(z) and En(z), respectively, are defined by ([1], Eq. 23.1.1.), 

lwl < 2?T, (1) 
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lwl < 'Tr. (2) 

Standard texts on the classical theory of Bernoulli and Euler polynomials and 
numbers are, for example, chapter VI in [2] and chapters V and VI in [3]. A 
very complete bibliography up to 1960 concerning tables and applications of 
the theory of Bernoulli and Euler polynomials can be found in [4]. Fore more 
recent works (after 1960), the reader is referred to [5-11] and references 
therein for a very complete survey of formulas involving these polynomials, 
zeros, asymptotic behavior, integral representations, and a number of other 
properties. Nevertheless, an extensive list of formulas involving Bernoulli and 
Euler polynomials can be found in ([1 ], pp. 803-806; [12], pp. 35-43; [13], 
pp. 25-32; [14], pp. 1076-1080; [15], Vol. 3, pp. 55-57; and [16], pp. 2-17). 

Here, we are interested in approximations of these polynomials for large 
order n. Convergent expansions in terms of trigonometric functions for real z 
and 0.::: z.::: 1 can be found in ([1], 23.1.16-23.1.18). A more detailed study 
about these expansions concerned with the type of convergence is investi
gated in [7], where similar expansions for generalized Bernoulli polynomials 
are also obtained. In [5], asymptotic expansions of (generalized) Bernoulli 
polynomials are obtained in terms of elementary functions and also in terms 
of gamma functions. These expansions happen to fail when the argument z 
is allowed to grow arbitrarily. Here, we are concerned with finding approx
imations of the Bernoulli and Euler polynomials for large order n that also 
remain valid for a large argument z. In particular, the purpose of this arti
cle is to obtain approximations of Bn(nz + 1/2) and En(nz + 1/2) for large 
n which are uniformly valid in some unbounded region of the complex vari
able z. 

I.I. Summary of results 

Our main results are summarized as follows: 
i I 1. For lz± 211"1>2"'n:::1, 

Bn( nz + ~) = 2 ::~:~) { 1 + [ 1+4( z - ~ coth( 2
1z)) coth(;z)] 

x 8:z2 + &(:2) }· 
2. For I z ± *I > ~, n '.:: 1, 
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3. For lz ± 4~ I > 4~, n::: 1, 

4. For lz ± -3; I > -31 n > 1 
7T 'TI'' - ' 

( 
1 ) [ e"'inz -winz 

En nz + -2 = 2i ( ')n+l f(n + 1, 7Tinz) - ( e . f(n + 1 -7Tinz)] 
1Tl _ '1Tl )n+ I ' 

+ ( t { [ 1 47Tz2 ] [47Tz2(3 - 7T2z2) 

nz cosh(fz) - 1+7T2z2 + (1+7T2z2 )3 

+ 1-2tanh - -1 ( 2(1))]1 
8z2 cosh( t) 2z n 

For the given z-domains, these approximations have the indicated asymp
totic properties, and, in addition, they are the first tenns of convergent ex

pansions. 

2. Uniform expansions and the saddle point method 

From definitions (1) and (2), 

( 1) n! 1 wewz dw 
B z+- =-

n 2 27Ti c 2sinh(w/2) wn+I' 
(3) 

and 

( 1) n! 1 ewz dw 
E z+- =- , 

n 2 27Ti c cosh( w/2) wn+1 
(4) 

where the contour C encircles the origin in the counterclockwise direction 
and contains no poles of wsinh-1(w/2) or cosh-1(w/2), respectively. The 
shift of 1/2 in the variable z is introduced to have reflection symmetry z --l> 

-z in these polynomials. To deal with both Bn(z) and En(z) simultaneously, 
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we will start this section with generic polynomials defined by the contour 
integral 

( ) n ! 1 f ( ) wz dw P11 z =-. we --1 , 
2m c w 11+ 

(5) 

where f(w) is a meromorphic function with simple poles w1' w2 , ••• and 
analytic at the origin. The contour C is a circle whose center is at the origin 
and which contains no poles off ( w) inside. Bernoulli and Euler polynomials 
defined by (3) and ( 4) are nothing but particular cases. 

We can write (5) in the form 

Pn(nz) = n! · 1. f(w)en(wz-log(w)) dw. 
2m c w 

The key observation used for obtaining approximations of P11 (nz) for large n 

and fixed z is the following. The main contribution of the integrand above to 
the integral originates at the saddle point of the argument of the exponential 
[ 17], that is, at the point w = z- 1• Approximations of P,, ( nz) for large n and 
fixed z can be obtained by expanding f(w) around the saddle point [18-21]. 
Therefore, if z- 1 is not a pole of f ( w ), we expand 

00 t<k)( -l) 
f(w)=L k~ (w-z-l)k, 

k=O . 

(6) 

where r is the distance from z- 1 to the nearest singularity off ( w ). The radius 
E1 of the contour C in definition (5) of P11 (z) can be chosen as close to zero 
as necessary. Then, for w E C (lwl = E 1), the above series is absolutely 
convergent if lz- 1 I < iz- 1 - wkl V k = 1, 2, ... (see Figure l(a) where the 
particular case f(w) = (w/2)sinh(w/2) is represented). 

Substituting expansion (6) in (5), we obtain 

n' 1 oo J<kl(z-1) dw 
P ( ) · L ( -1 )k nwz nz = - w - z e --. 

n 21Ti (' k' w11+1 
k=O . 

The kth derivative of f ( w) evaluated at point z- 1 may be written 

f(kl(z-l) = !.}___ 1 f(t)dt 
21Ti c(t-z-l)k+l' 

(7) 

where the contour C' is a circle around the point z- 1 whose radius R = 
It - z- 11 is smaller than the distance from z-1 to any of the singularities wk 

of f(t), that is, R = minkEN lwk - z- 11- E 2 for some E2 > 0 (see Figure 2(b) 
where the particular case wk = ±2k1Ti is represented). Therefore, 

lflkl(z- 1)!:::; K ~~, (8) 
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Figure 1. (a) The meromorphic function f(w) (w/2)sinh(w/2) has singularities wk = 
±2k7ri, k = 1, 2, .... For small e1, the validity of (6) is guaranteed if the saddle point z-1 is 
closer to the origin than to any of the singularities wk. This happens for z-1 inside a strip of 
width 27T along the real axis. (b) For z- 1 inside that strip, we can choose small enough e1 and 
e2 = jz-1 - 21Til - R such that the circle C is inside the circle C'. Then, a = maxwec lw -
z- 11; R < 1 and (9) holds. 

where K does not depend on k_ Then, for jz-1 j < jz-1 - wkl If k = 1, 2, ... 
and small enough € 1 and € 2, maxwEC jw - z-11/R =a< 1 for a certain a> 0 
which only depends on z, E1, and R (see Figure l(b)). Taking the modulus in 
(7) and using (8), we obtain 

(9) 

x 

x 

(a) n= 3. (b) n = 10. 

Figure 2. Solid lines represent Bn(nx + 1/2) for several values of n, whereas dashed line 
represent the right-hand side of (19) with z = x, both normalized by the factor (1 + [x/a[nt 1 

where a is half the width of the oscillatory region. 
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where Kn is a certain constant. Therefore, after substituting (6) in (5), we 
can apply Fubini's theorem and interchange summation and integration to 
obtain, for lz-11 < lz-1 - w;I Vi= 1, 2, 3, ... , 

n oo f(k)(z-1) 
Pn(nz) = (nz) ~ k! cf>k(n, z), (10) 

where 

"' ( ) 1 n! 1( -J)k nzw dw '!'kn,z =-2 .-(-) w-z e --+J· 
1Tl nz n c wn 

(11) 

The functions <l>k(n, z) are polynomials in n divided by powers of z and 
constitute an asymptotic sequence for n -+ oo. More precisely, 

LEMMA 1. The functions cf>k(n, z) defined in (11) can be represented in the 
form 

(12) 

where 

Po(n) = 1, p3(n) = 2n, (13) 

and the remaining polynomials Pk(n) are given by the recurrence 

(14) 

Proof By direct calculation from definition (11) for k = 0 and k = 1, we 
obtain <1>0(n, z) = 1 and cf>1(n, z) = 0. Fork:::: 2, we can write 

cf>k(n,z)=~ n! J<w-z-l)k-l~{enz[w-z-1 1n(w)]}dw. 
2m (nz)n+I c dw 

Integrating by parts and after straightforward operations, we obtain 

(15) 

from which (14) follows trivially. D 

LEMMA 2. For fixed z I= 0, the sequence cf>k(n, z) is an asymptotic sequence 
for n-+ oo that satisfies cf>k(n, z) = &'(nlk/21-k). 

Proof It is trivially verified for cf>0(n, z) and <1>1 (n, z). For k :::: 2 it can be 
easily proved by induction over k by using (12) and the recurrence (14). D 
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We can summarize this discussion as follows: 

THEOREM 1. The polynomials Pn(nz) defined in (5), where f(w) is a mero

morphic function with simple singularities w1, w2, ••• and analytic in the origin, 

may be expanded as the infinite sum 

00 f(k)( -1) ( ) 
Pn(nz) = (nzt L : Pk nk' 

k=O k. (nz) 
(16) 

valid for z E C, jz-1 j < jz-1 - w,I V i = 1, 2, 3, ... , where Pk(n) are the 

polynomials defined in (13)-(14). 

Remark 1. Observe that the polynomials Pk(n) that appear in the expan

sion (16) of Pn(nz) are the same for any set of polynomials of the family Pn(z) 

defined in (5). The particular information about the particular set of polyno

mials defined by each f(w) in (5) is contained in the coefficients J<kl(z-1). 

2.1. Uniform expansions of Bernoulli polynomials 

The Bernoulli polynomials Bn(nz + 1/2) may be expanded in the form (16) 

with /(w) = (w/2)/sinh(w/2) and wk = ±2k1ri, k = 1,2,3, .... In this 
case, for w E C, Equation (6) reads, 

~ oo J<kl(z-1) _ --:----- ='"""' (w-z 1)k jw-z-11<1±2?Ti-z-1j. (17) 
sinh(?f) b k! ' 

After straightforward operations, we find that the derivatives j(kl(z-1) are 

given by the recurrence 

k ?:. 2, 

where 
z - .! coth( ..1.) 

/ (O)(z-1) - 1 and j<l)(z-1) = 2 2z (18) 
- 2 · h( 1.) 2zsinh(fz) zsm 2Z _ 

In the results shown we also use /(2l(z-1), which is given by 

f(Z>(z-1)= .1 {i+4[z-~coth(2-)Jcoth(;z)}· 
8zsmh(tz) 2 2z 

Introducing these J<k>(z-1) in (16) and retaining only the first three terms of 

the expansion for convenience, we obtain the following corollary: 
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COROLLARY 1. For IIm(z- 1 )I < 7T (or lz ± 2irr I > 2~) and n ~ 1, 

( 1) n"z"-1 
B nz+- - ----

" 2 - 2sinh(fz) 

x { 1 + [ 1 + 4 ( z - ~ coth ( 2
1
2 )) coth ( 2

1
2 )] 

x 8: 22 + &(:2 ) }· (19) 

Figure 2 shows the accuracy of approximation (19) for several values of n 
for real values of the uniformity parameter z. 

Although expansion (16) with j(kl( z-1) given by (18) is convergent for 
lz ± 2~1 > 2~, convergence is slow for lzl :.::; 7T-1 (and lz ± 2~1 > 2~) and 
quite fast for lzl > 7T-t. The relative error decreases for increasing lzl or 
n. For example, for lzl ,....., 7T- 1 and n = 10, the relative error is ,....., 10'-2 . 

For n = 40 and lzl ,....., 1, the relative error is ,....., 10-5 . The accuracy is even 
better for a real argument, as shown in Figure 2. For a real argument, the 
oscillatory region of Bn(nx + 1/2) is contained in lxl _:::: 77'- 1, whereas the 
monotonic region contains lxl > 7T- 1. Therefore, for a real argument, 
the accuracy of approximation ( 19) is restricted to the monotonic region. 

2.2. Uniform expansions of Euler polynomials 

The Euler polynomials E11 (nz + 1/2) may be expanded in the form (16) with 
f(w) = 1/ cosh(w/2) and wj = ±(2j + 1)7Ti, j = 0, 1, 2, .... Calculations 
similar to those of the above subsection may be performed in this case. For 
w EC, Equation (6) reads 

l oo jCkl(z-1) _ 
cosh(w/2) = {; k! (w - z 1

)\ 

After straightforward operations, we find that the derivatives jCkl(z- 1) are 
given by the recurrence 

Lk/2J ( k ) Jk-21( 2-1) 
Jlk)cz-1) = - L 

i=l 2! 41 

1 ( 1 ) l<k-I)/2J ( k ) Jk-21-t(z-1) 
- -tanh - L 

2 2z l=O 21 + 1 41 ' 

where 

k ~ 1, 

(21) 
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x 

-1 

(a) n = 3. (b) n = 10. 

Figure 3. Soli~ lines represent En(nx + 1/2) for several values of n. whereas dashed lines 
r~present the nght-hand side of (22) with z = x, both normalized by the same factor as in 
Figure 2. 

In the results shown, we also use f(2l(z- 1 ), which is given by 

f( 2l(z- 1) = 1 
1 [ztanh2(2-)- 1]. 

4cosh( ,-- ) 2z 
-Z 

Introducing these JCkl(z-1) in (16) and retaining for convenience only the 
first three terms of the expansion, we obtain the following corollary: 

COROLLARY 2. For llm(z- 1)1 <~(or iz± ~I>~) and n :'.:: 1, 

En(nz+ ~) = (nz)n {1+[1-2tanh2(2.)J-2,+ (·~)}· (22) 
2 cosh( -fz) 2z 8nr n-

Figure 3 shows the accuracy of approximation (22) for several values of n 
for real values of the uniformity parameter z. 

As in the Bernoulli case, although expansion (16) with fu"(z- 1) given by 
(22) is convergent for !z ±~I > ~'convergence is slow for Jzl:; 21T- 1 (and 
iz ±~I > ~)and quite fast for jzl > 21T- 1• The relative error decreases for 
increasing izl or n. For example, for lzl "'21T-1 and n = 10, the relative error 
is '""'10-2 • For n = 40 and lzl "' 1, the relative error is"' 10-4• The accuracy is 
even better for a real argument, as shown in Figure 3. For a real argument, 
the oscillatory region of En(nx+l/2) is also contained in lxl:: zu- 1

, whereas 
the monotonic region contains lxl > 21T- 1• Therefore, the accuracy ofapprox-
imation (22) is restricted to the monotonic region. 

3. Enlarging the region of validity of the uniformity parameter :: 

In Theorem 1 we proved that the validity of approximation ( l~) is restricted 
to the region jz-1 \ < jz-1 _ wd v i = 1, 2, 3, .... (in the parncular cases of 
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the Bernoulli and Euler polynomials, the uniformity parameter z is restricted 

to be outside the discs lz ± 2~ I s 2~ and lz ± *I s ~, respectively). The 
expansions in these z-domains are convergent series, as in (16) we conclude 
from computer experiments (see also Figures 2 and 3) that, in addition, in the 
Bernoulli and Euler cases, the uniformity parameter should satisfy lzl ::: 1T-1 

and lzl ::: 21T- 1, respectively, to yield a good approximation by using only the 
first few terms of the expansion (16). 

However, the region {z E C, lz- 1 I < lz- 1 - wil 'v' i = 1, 2, 3, ... } may be 
enlarged by "isolating" the contribution of the poles w1, w2 , •.• off( w). Take 
the (simple) poles {w; E C, i = 1, 2, 3, ... } of f(w), ordered by increasing 

modulus I wi I .S I wi+ 1 I and define 

m r 
fm(w) = f(w) - L k , 

k=I w-wk 
(23) 

where rk are the residues of f ( w) in wk. The function fm( w) has no poles 

inside the disc {w EC, lwl < lwm+il}. Introducing (23) in (5), we obtain 

(24) 

where 

pm(z) = ~ r f, (w)ewz dw 
n 27ri le m wn+l 

(25) 

and 

Qm( )- n. e w I m 1 wz d 
II Z --. rk --. 

27Tl 8 C W - Wk wn+I 
(26) 

Now, the poles wm+1, wm+z, ... of the function fm(w) are farther away from 
the origin than the poles of the function f ( w ). Repeating the process of the 
last section for P:;'(z) instead of Pn(z), we obtain 

00 f(k)( -1) h(k)( -1) ( ) 
P;:'(nz) = (nzt L z ~ m z Pk nk 

k=O k. (nz) 
(27) 

that is valid for lz-1 I < lz-1 - wil 'v' i = m + 1, m + 2, ... (and z =I= 0), where 
h~) ( w) is the kth derivative of 

(28) 

Therefore, now the range of validity of expansion (27) is larger than that of 
expansion (16). On the other hand, the functions Q~(z) defined in (26) are 
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just combinations of incomplete gamma functions. By shifting the integration 
contour by w = wk + t in each integral in (26), writing 

- = e1xdx+-
etz 1z 1 
t 0 t' 

and after straightforward operations using elementary properties of incom
plete gamma functions ([16], Chap. 11, Section 2), we obtain 

that is simply -n!jwz+ 1 multiplied by the Taylor polynomial of degree n in 
z = 0 of ewkz. Therefore, 

and we have the following: 

THEOREM 2. The polynomials Pn(z) defined in (5) by a meromorphic func
tion f(w) analytic in the origin with simple poles w1, w2, ••• (and respective 
residues ri. r2 , •• • ), can be represented, for each integer m > 0, as 

that is valid for z E C, iz-' I < !z-1 - w;!, Vi= m + 1, m + 2, ... , where 
the polynomials p k ( n) are given in ( 14) and h;; J ( z-1) is the kth derivative of 
the function hm( w) defined in (28). Each term of the finite sum in the first line 
in the above equation equals n!rkfwz+1 multiplied by the Taylor polynomial of 
degree n in z = 0 of ewknz. 

The "isolation" technique used above for enlarging the region of validity of 
z is quite similar to that employed to obtain uniform asymptotic expansions 
of contour integrals with a saddle point near a pole ([17], Chap. 7, Section 2). 
There, by a change of variable, the contribution of the poles (Equation (26)) 
is expressed as an error function. Here, it is expressed just as a combination 
of incomplete gamma functions. 

The series expansion of P:;'(nz) on the right-hand side of (27) converges 
in a larger region !z-11 < iz- 1 - w;! Vi= m + 1, m + 2, .... But, moreover, 
the polynomial Q~'(z) has been defined in (26) by using a function -hm(w) 
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in the integral that has the same first 2m poles and the same residues as 
the function f(w) that defines Pn(z) in (5). The contour C in (5) and in 
(26) may be chosen to pass near the singularities of f(w) closest to the 
origin. If lzl is small, the saddle point is far away from the path C and the 
greatest contribution to the integral is given by the piece of integral closest to 
these singularities. Therefore both integrals in (5) and in (26) are dominated 
by the same singularity, and then these integrals should be similar, that is, 
Pn(nz) ::::::: Q;;'(nz) for small lzl and m ::: 1. Therefore, for small lzl, it must 
happen that IP:'(nz)I « IQ;;'(nz)I. We check these facts in the Bernoulli and 
Euler examples. 

3. I. Bernoulli polynomials 

The first 2m poles and residues of f(w) = (w/2)/ sinh(w/2) are wk = ±2kTri, 
rk = (-l)kwk, k = 1, 2, ... , m. From (28) and after straightforward algebra, 
one may easily check that the derivatives h~>cz- 1 ) of hm(w) at the saddle 
point z- 1 can be obtained from 

m 

h~~>cz- 1 ) = :L)-lih~k>, 
l=l 

where h~k) are given by the recursive formula 

h(k)=- k [2z-1h(k-l)+(k-l)h(k-2>] (30) 
I z-2 + 4Tr2f2 I I 

for k ::: 2, where 

(31) 

In the results shown, we also use hj2>, which is given by 

(2) 16Tr2l2(3z-2 - 4l2Tr2) 

h, = (z-2+4f2Tr2)3 . 

Introducing t<k>(z-1) given in (18) and h~~l(z- 1 ) given in (30)-(31) in Equa
tion (29), using wk = ±2kTri, rk = (-l)kwk> k = 1, 2, ... , m, and retaining 
only the first three terms of the infinite sum in the second line of (29), we 
obtain the following corollary: 
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COROLLARY 3. For flm(z- 1)1<(m+1)77 (or fz ± - 1-· -/ > - 1-) and 
1 2(m+1)1T 2(m+l)7T 

n, rn 2: , 

B"( nz + ~) = - ~(-l)kL~::·;;11 f(n + 1, 2k7rinz) 

+ ( ~~2~:~;11 f(n + 1, -2k7rinz)] 

+(nz)"{[ 1 +87T2f (-l)kk2z2 J 
2z sinh( tz) k=I 1+4k27T2z2 

+ [ 16z3 si~h(t) ( 1+4( z - ~ coth(;z)) coth(2~)) 
-87r ~ -+& -2 m (-l)kk2z2(3-4k21T2z2)Jl (l)J 

b (1+4k21T2z2)3 n n2 . 

Remark 2. Form= 1, by using 

n zj 

f(n + 1, z) = n! e-z L 1 , 
}=0 ]. 

(32) 

it follows that the first sum on the right-hand side, that is, the polynomial 
Q~(nz), reduces to 

ln/2J (-l )k 

Q~(z) = 2n!zn 8 (41T1z2)k(n - 2k)! 

This is simply 2n!/(21T)" multiplied by the Taylor polynomial of degree n in 

z = 0 of cos(21Tnz - 1Tn/2), which in turn is the first term of the Fourier 

expansion of B,,(nz + 1/2) ([1], 23.1.16), which converges very rapidly if n is 
large. 

Figure 4 shows the strong accuracy of approximation (32) already obtained 

from n = 3 with m = 1 for real values of the uniformity parameter z. 

Approximation (32) is not valid for /z ± Z(m!I)7T I ::;: 2(m~l)7T. Convergence 

is slow in the vicinity of these discs and grows sharply for increasing distance 

from z to these discs and/or increasing n. For example, for m = 1 and n = 10, 

the relative error is ~ 10-2 for fz ± f-1 "' f- and ~ 10-5 for /zl ~ 1. For 
7T 7T 3 . I d 

m = 1 and n = 40, the relative error is "' 10- for /z ± 4~ I "' 4,,. an 

"" 10-6 for /zl ,.., 1. Accuracy is even better for a real argument, as shown 

in Figure 4, and differing from approximation (19), accuracy is also good 

in the oscillatory region. For a real argument and in the osciliatory region, 

Q~(nx)::::::: B,,(nx + 1/2) and P,:(nx) tends to zero exponentially fast. On the 

other hand, the approximation of B11(nx+ 1/2) in the monotonic region given 

by P,;(nx) + Q~(nx) is better than the approximation given by P11(nx). 
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x 
-0.4 

x 
0.4 

-0.08 
-0. 

(a) n = 3. (b)n=lO. 

Figure 4. Solid lines represent Bn(nx + 1/2) for several values of n, whereas dashed lines 
represent the right-hand side of (32) with z = x, both normalized by the same factor as in 
Figure 2. 

3. 2. Euler polynomials 

The first 2m poles and residues of f(w) = 1/ cosh(w/2) are, respectively, 
wk = ±(2k + l)?Ti and rk = =i=2i(-l)k, k = 0, 1, 2, ... , m - 1. From (28) 
and after straightforward algebra, one may easily check that the derivatives 
h~ 1 ( z- 1) of h,,.( w) at the saddle point z- 1 can be obtained from 

m-1 

h~~\z- 1 ) = I::C-1/hik), 
1=0 

where hikl are given by the recursive formula 

h(kl = - k [2z- 1 h(k-ll + (k - l)h(k-21 ] (33) 
I z-2 + (21+1)27T2 I I 

that is valid for k :=:: 2 where 

h(O) _ _ 47T(2/ + 1) 
I - z-2+(2/+1)2772 

d (I} 877(2/ + l)Z- 1 
an h = ----'---___;'----

! (z-2 + (2/ + 1)2772)2 
(34) 

In the results shown, we also use hj2l, which is given by 

h(Zl = -8(21 + l)77(3z-2 - (21+1)27T2). 
I (z-2+(2/+1)2 772)3 

Introducing f<kl(z- 1) given in Equation (21) and h~~J(z- 1 ) given in (33)-(34) 
in Equation (29), using wk = ±(2k + 1 )77i and rk = =i=2i, k = 0, 1, 2, ... , m -
1, and retaining only the first three terms of the infinite sum in the second 
line of (29), we obtain the following corollary: 
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COROLLARY 4. F; \I ( I or m z- )\ < (2m + 1)11'/2 (or lz ± -1 _; -l > _1 -) and n, m '.:: 1, (~m+I).,,. (2m+!):rr 

En nz + - = 2i (-1 k eC2k+1)7Tinz ( 1) m-1 

2 f; ) L(2k + 1)1Ti]n+/[n + 1, (2k + l)?Tinz] 

e-(2k+l)7Tinz 

- [-(2k + l)?Ti]n+I f[n + 1, -(2k + 1)7Tinz]} 

+(nzt{[ 1 _ 41TI: (-ll(2k+l)z2] 
cosh(t) k=0 1+(2k+lfrr2z2 

+ [41T ~ (-l)k(2k + l)z2(3- (2k + 1)27l"~Z2) 
k=O (1+(2k+1)27T2zZ)3 

1 ( '(l))]l + 1 - 2 tanh- - -
8z2 cosh(tz) 2z. n 

+ &(~2) }· (35) 

Rema~k 3. 
1 

For 1:1 ~ 1, the first line o~ t~e right-hand side, that is, the 
polynom1~l Qn(nz), is simply 4n!/1Tn+i multiplied by the Taylor polynomial of 
degree n m z = 0 of cos( 7TnZ - 'TT'n /2 ), the first term of the Fourier expansion 
of En(nz + 1/2) ([1], 23.1.16), 

Figure 5 shows the strong accuracy of approximation (35) already obtamt~d 
from n = 3 with m = 1 for real values of the uniformity parameter z. 
. Approximation (35) is not valid for lz ± (Zm~l)" I ~ (2m~ll,,.· Convergence 
is slow in the vicinity of these discs and grows sharply for increasing distance 
from z to these discs and/or increasing n. For example, form == 1 and n = 10. 
the relative error is ~ 1 o-3 for I z ± J... I ~ 1- and "' 10-5 for ~ 1. For 31T 3.,,. I 
m = 1 and n = 40, the relative error is ""' 10-5 for !z ± :f;! ~ ;;; and 
"' 10-6 for \z\ ~ 1. Accuracy is even better for a real argument. as shown 
in Figure 5, and differing from approximation (22), accuracy is also 
in the oscillatory region. For a real argument and in the oscillatory Q~(nx) '.:::'. En(nx + 1/2) and P~(nx) tends to zero exponential~ fas~. On the 
other hand, the approximation of En(nx+l/2) in th~ mo~to~1c reg10~ 
by P~(nx) + Q~(nx + 1/2) is better than the approximation given f ). 
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x 

x 

(a) n = 3. (b) n = 10. 

Figure 5. Solid lines represent En(nx + 1/2) for several values of n, whereas dashed lines 
represent the right-hand side of (35) with z = x, both normalized by the same factor as in 
Figure 2. 

4. Conclusions 

Convergent expansions of the family of polynomials P,, ( nz) defined by for
mula (5) have been given in Equation (10). For the particular cases of 
Bernoulli B,,(nz + 1/2) and Euler E,,(nz + 1/2) polynomials, these expan
sions are given in Equations (19) and (22), respectively. They are uniformly 
valid for I z- 11 < lz- 1 - w;i V i = 1, 2, ... , where W; are the singularities of 
the meromorphic function f(w) defining P,,(nz) in (5) ordered by increas
ing modulus, lw;I s lw;+il· For the particular cases of Bernoulli B,,(nz + 1/2) 
and Euler E,,(nz + 1/2) polynomials, convergence is restricted to the region 
lz±f-1 > -f- and lz±i.1 > l, respectively, although the convergence is quite 

-7T -11' 1T 7T 

strong only outside the discs lzl s 71"- 1 and lzl s 271"- 1, respectively, and slow 
inside these discs. Figures 2 and 3 show the accuracy of these approxima
tions for several values of n and a real argument z. Strong convergence is 
restricted to the monotonic region. 

The convergence may be strongly accelerated by "isolating" the poles of 
f ( w ), as described in Section 3. In this way we find that the convergence 
rate of expansion (10) is improved in expansion (29). In particular, the con
vergence rate of the expansions (19) and (22) of Bernoulli and Euler poly
nomials are improved by (32) and (35), respectively. These "improved" ex
pansions are valid in a larger region of the uniformity parameter z. They are 
uniformly valid for lz-11 < lz- 1 - w;I Vi= m + 1, m + 2, ... with ma pos
itive integer. In the particular cases of the Bernoulli and Euler polynomials, 
expansions (32) and (35) are uniformly valid for lz ± Z(m~l)7T I > Z(m~l)7T and 
lz ± (Zm~l)7TI > (Zmll)7T' respectively. For a real argument, the convergence 
is quite strong everywhere including the oscillatory region. Figures 4 and 5 
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show the accuracy of these approximations for several values of n and a real 
argument. We notice that the expansions in (32) and (35) are much better 
at the origin z = 0 than the simpler expansions (19) and (22). This can be 
explained by observing that the latter expansions, though not correct, are ex
ponentially small at the origin and that the contributions from the incomplete 
gamma functions can be viewed as first terms of fast converging expansions 
for the Bernoulli and Euler polynomials (see Remarks 2 and 3). 

Approximations (19) and (22) may be quite useful for practical evaluations 
of Bernoulli Bn(nz + 1/2) and Euler En(nz + 1/2) polynomials for large n in 
the appropriate region of z. When the uniformity parameter satisfies jzj > 
7T-1 or jzi > 21T- 1, respectively, only the three first terms of the expansion 
(19) or (22) are needed to approximate B10(10z+ 1/2) or E10(10z+l/2) with 
two digits. For izl > 1, the first three terms approximate these polynomials 
with four digits. Because of the asymptotic character, the accuracy of the 
approximation increases for increasing n. 

Only the first few terms of the expansion of P~(nz) are needed to obtain a 
good approximation of Bernoulli and Euler polynomials in a larger region of 
the uniformity parameter z by using the improved approximations (32) and 
(35) containing incomplete gamma functions. Besides, the accuracy of these 
expansions is greater. On the other hand, the knowledge of the zeros of the 
incomplete gamma functions may be used to approximate the zeros of the 
Bernoulli and Euler polynomials by approximations (32) and (35). 
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