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ZERO AND POLE DISTRIBUTION OF DIAGONAL 
PADE APPROXIMANTS TO THE EXPONENTIAL 

FUNCTION 

KATHY A. DRIVER AND Nrco M. TEMME 

Dedicated to the memory of Douglas Sears 

ABSTRACT. The polynomials Pn and Qm having degrees n and m respectively, with 
Pn monic, that solve the approximation problem 

will be investigated for their asymptotic behaviour, in particular in connection with 
the distribution of their zeros. The symbol 0 means that the left-hand side should 
vanish at the origin at least to the order n + m + 1. This problem is discussed in great 
detail in a series of papers by Saff and Varga. In the present paper we show how 
their results can be obtained by using uniform expansions of integrals in which Airy 
functions are the main approximants. We shall focus on the important diagonal case 
when n = m and the polynomials Pn and Qn, as well as the remainder En,n(z) = 
Pn(z)e-z + Qn(z) can be expressed in terms of Hankel and Bessel functions. The 
approximate location of the zeros of Pn, Qn and En,n are given in terms of the known 
zeros of certain Airy functions. An application is given in which the asymptotic 
information on the zeros is used to obtain an estimate in an approximation of the 
unit block function by means of the polynomials Pn, Qn. 

1991 Mathematics Subject Classification: 41A21, 30E15, 33Cl0, 30C15, 41A60. 

1. Introduction. It is well known (cf. PERRON (1950, page 433)) that the 
solution of the Pade approximation problem for the exponential function, namely, 

(1.1) 

•Key w;rds and phrases: Pade polynomials, asymptotic behaviour, uniform asymptotic meth
ods, exponential function, Bessel functions, Airy functions, zero and pole distribution. 
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where Pn and Qm are polynomials of degree n and m respectively, with Pn monic, 
is given by 

Pn(z) = 2_ f 00 tm(t + z)ne-t dt, 
m! lo 

Qm(z):::: -l r= tn(t - z)me-t dt. 
m! lo 

Explicit forms are ( cf. PERRON (1950, page 436)) 

~ (m+n -k) zk 
Pn(z) = n! L., m k!' 

k=O 

m (m + n - k) ( -z) k 
Qm(z) = -n! L n k!· 

k=O 

(1.2) 

(1.3) 

Let the remainder En,m be defined by 

(1.4) 

then 
(-l)mzm+n+l 11 

En m(z) = un(l - u)me-uz du. 
, m! o 

The quantities Pn, Qm, En,m can be expressed in terms of (confluent) hypergeo
metric functions. We have 

U(-n, -n - m,z) = zn+m+I U(m + 1, n + m + 2,z) 

n' n' -~ U(-m, -n - m, -z) = -~ (-z)n+m+l U(n + l,n + m + 2, -z) 
m. m. 

(-l)m+ln!zn+m+l 
( )' M(n+l,n+m+2,-z) (1.5) n+m+l. 

En,m(z) 

(-l)m+l.n!zn+m+l . 
( l)' e-~M(m+l,n+m+2,z). 
n+m+ . = 

In a sequence of papers Saff and Varga investigated the polynomials Pn, Qm and 
the remainder En,m, and the distribution of their zeros, for large values of n, m with 
fixed ratio rJ = m/n (the final paper appeared in 1978). They used saddle point 
methods for the integrals defining the U - and M -functions and found curves in 
the complex z-plane along which the zeros are cumulating. Form= 0 their results 
agree with the earlier results obtained by Szego on the distribution of the zeros of 
the exponential polynomial 

n k 

en(z) = L ~!. 
k=O 

In this paper, we adopt a new approach for locating the zeros of Pn, Qm and 
En,m by using uniform asymptotic approximations for these functions in terms of 
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Airy functions. Approximate values of the zeros of Pn, Qm and En,m are given in 
terms of the (known) zeros of certain Airy functions. For all positive integers m and 
n, contour integral representations of Pn, Qm and En,m can be given and uniform 
asymptotic methods applied to these contour integrals ( cf. DRIVER & TEMME 
(1997 and 1998)). Our investigations here will focus on the diagonal case n = m 
where certain simplifications occur. For n = m, the quantities Pn, Qn and En,n 
can be expressed in terms of Hankel and Bessel functions which permit Airy-type 
approximations to be done via Sommerfeld contour integrals, which seem not to 
be available in the general non-diagonal case. 

2. The relations with Bessel and Hankel functions. In the diagonal case 
n = m we have using the representations in (1.5) (cf. also ABRAMOWITZ & STEGUN 
(1964, pages 509, 510)) 

En,n(z) = ! (-l)n+l 'll"t zn+t e-z/2 ln+!(z/2). (2.1) 

It follows immediately from (1.2) and (1.3) that, when m = n, 

Qn(z) = -Pn(-z). (2.2) 

Of course, since the [m/n] Pade approximant for e-z is -Qm(z)/Pn(z), the zeros 
of P n ( z) are the poles of this Pade approximant and the above symmetry of P n and 
Qn means that knowledge about the zeros of either one of the polynomials suffices 
for both. Nevertheless, for our discussion, it is better to write Pn and Qn in terms 
of different Bessel functions. 

We have given in (2.1) the relations with modified Bessel functions. For obtain
ing the asymptotic expansions it is better to write the functions in terms of ordinary 
Bessel and Hankel functions. We recall the expansions (cf. WATSON (1944, page 
(201) or TEMME (1996, page 239)) 

n 

H~~t(z) = J2/(7rz)e-(n+l)Tri/2+iz L(+i)m(n + !,m)(2z)-m, (2.3) 
m=O 

n 

H~~t (z) = J2/(7rZ)e+(n+l)-rri/2 -iz L (-i)m(n + !, m)(2z)-m, (2.4) 
m=O 

where Hankel's symbol (a, m) is defined by 

Since 

("·,m) = r(! +a+ m) ' .... 1 m = 0, 1, 2, .... 
m!r( 2 +a-m) 

( 1 (n + m)! 
n + 2 ,m) = '( _ )' m.n m. 

for m = 0, 1, ... , n, 
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a simple comparison of (2.3) and (2.4) with (1.3) and (1.2) respectively yields the 
relations 

Pn(2iz) = -i(2z)n Fzj2eiz H~~! (z), 

Qn(2iz) = -i(2z)n Fzj2e-iz H~~! (z), 

En,n(2iz) = -i(2z)n ..,f};i; e-iz Jn+! (z), 

where the third line in (2.5) follows from the relation 

J,,(z) = ~ [H~1l(z) + H~2l(z)J. 

(2.5) 

(2.6) 

It is known where the zeros of these Bessel functions occur when n is large. For 
Jn+l/2 (z) they are located in the interval (n, oo). For En,n(z) this gives an infinite 
set of zeros along the positive imaginary axis, in the interval (2in, ioo); there is 
a conjugate set in (-2in, -ioo). The Hankel functions have zeros along curves 
in the complex plane which start also at z = n; see ABRAMOWITZ & STEGUN 
(1964, page 373). For Pn(z) this gives n zeros in the half-plane ~z < 0 along an 
arc from 2in to -2in. The arc cuts the real positive axis at z = -2na, where 
a = 0.66274 .... The zeros of Qn(z) are located in the right half-plane, and they 
follow from Qn(z) = -Pn(-z). 

We give asymptotic representations of Pn, Qn and En,n for large values of n in 
terms of Airy functions. In OLVER (1974, Ch. ll. §10) Airy-type expansions of 
the Bessel functions J,,(vz) and HY) (vz) are considered, but in the present case 
we need similar representations for Jn+! (nz) and H~l 1 (nz). 

2 

3. Airy-type approximations for Bessel and Hankel functions. We give 
the main steps for deriving Airy-type approximations for Bessel and Hankel func
tions by using the Sommerfeld contour integrals. Since uniform asymptotic approx
imations of J,,(vz), H~1 ) (vz) and H~2 ) (vz) can be found in OLVER (1974, pages 
423-425) we can use the formulas in (2.5) to write down the corresponding approx
imations for Pn[2i(n + ~ )z], Qn[2i(n + ~ )z] and En,n[2i(n + ~ )z] immediately. In 
Olver's book the results are derived by using the differential equation of the Bessel 
functions, and the results are shown to hold in large domains of complex parameters 
and are provided with error bounds for the remainders in the expansions. 

Because in the non-diagonal case, and also in Hermite-Pade approximations 
to the exponential functions (both aspects are studied in our papers DRIVER & 
TEMME (1997, 1998)) these powerful results and methods are not available, we 
give in this preparatory paper the standard procedure based on the Sommerfeld 
integrals. A similar procedure will be used in the more general cases on more 
complicated integrals. In the Hermite-Pade case differential equations are not 
known for the corresponding polynomials. 

We have (OLVER (1974, page 58)) 

J (z) = _1_ r ez sinh t-vt dt 
v 2rri le ' 
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where C is a contour starting at oo - rri and terminating at oo + rri. It follows that 

J i(nz) = -1- { en<f>(t)-!tdt </>(t) = zsinht-t. 
n+2 2rri le ' 

Solving the equation </>'(t) = 0, gives the saddle points 

1 
T = arccosh-. 

z 
(3.1) 

When 0 < z < 1, these points are real, when z > 1 they lie on the imaginary 
axis. In order to obtain a standard form which can be used for obtaining a uniform 
expansion that is valid when the saddle points are close together, or coincide, we 
use the cubic transformation 

ef>(t) = ~(3 - ry( +A, (3.2) 

where the saddle points t± should correspond with the saddle points ±y'fi in the 
(-plane. This transformation was introduced by CHESTER, FRIEDMAN & URSELL 
(1957). They showed that the mapping is one-to-one and analytic for all z in a 
neighborhood of z = 1, which is a local result. In fact, it can be shown (cf. 
DRIVER & TEMME (1997)) that the mapping is one-to-one and analytic in a domain 
containing the path of integration. 

The cubic transformation gives, upon substituting t = t±, ( = ±y'fi, 

*17312 = T - tanh T, A = 0. 

If 0 < z < 1 then T and rJ are positive. We can also write for positive z: 

~7]3/2 

*(-17)3/2 

= arctanh)l-z2 - ~' 

= ~ -arctan)z2 -1, 

0 < z s 1, 

z 2: 1, 

(3.3) 

(3.4) 

which gives a better insight in the relation between 7J and z. We can expand the 
arctanh-function to obtain 

which gives 

ry=2113 (1-z)[l+O(l-z)], z-+I. (3.5) 

This defines the relation near z = 1. For complex values of z this relation should be 
used with analytic continuation to define which branch of the multi-valued function 
173 / 2 is used. 

Using the cubic transformation we obtain 
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where C is a contour running from oo exp( -7ri/3) to oo exp(7ri/3), through the sad
dle point at ( = .jii. The first order Airy-type uniform approximation is obtained 
by replacing f(() with 

Jo = HJ( y'ii) + J(-y'i))J 

1 dt I (3.7) = cosh ;;T d( 
~ (=,/il 

= Ff!- ( __!:J_ y/4 
1 - z2 

This gives (compare with OLVER (1974, page 425) and ABRAMOWITZ & STEGUN 
(1964, page 368)) 

J (nz) ~ n-1/ 3 fi Ai (11n 213) n -+ oo n+! 0 ·1 , 
(3.8) 

and, by using the third line in (2.5), 

En,n(2izn) ~ -i./ii n- 1! 3 (2zn)n+I/2 e-izn Jo Ai ( rJn213 ) . (3.9) 

In a similar way we obtain for the Hankel functions 

H(1)1 (nz) = ----: en<P(t)-!tdt l /oo+7ri 

n+2 7rt -oo 

Qn(2izn) 

H(2) (nz) 
n+! 

~ { eni!<3-11ClJ(()d( 
7ri lc(ll 

-2n-1/3 Joe21ri/3Ai (rJn2/3e21ri/3), 

ifi n-l/3 (2zn)n+1/2 e-izn Jo e21ri/3 Ai ( rJn2/3e27ri/3), 

1 /00-7ri =:. en<P(t)-!t dt 
7ft -oo 

-. en(3( -T10j(()d( -11 1 3 

7f2 C(-Il 

-2n-1/3 Jo e-21ri/3 Ai ( rJn2/3e-27ri/3) , 

(3.10) 

(3.11) 

Pn(2izn) i./ii n-1/3 (2zn)n+i/2 eizn Jo e-27ri/3 Ai ( rJn2/3e-21ri/3) , 

where cul are contours running from -oo to ooexp(j7ri/3),j = -1, 1. The results 
for the Hankel functions yield the Bessel function result because of the relation in 
(2.6) and (cf. OLVER (1974, page 414)) 
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We can obtain more terms in the approximations given in (3.9) - (3.11) by us
ing standard methods for obtaining uniform expansion of integrals (cf. WONG 
( 1989)). On the other hand, as remarked at the beginning of this section, de
tailed information on this type of uniform expansions can be obtained from OLVER 
(1974). 

4. Locating the zeros. Having available the asymptotic approximations in 
terms of the Airy functions we can obtain approximations of the locations of the 
zeros of Pn, Qn, En,n· The only zeros of the Airy function Ai(z) occur along the 
negative z-axis, and there are infinitely many zeros (cf. OLVER (1974, page 415)). 
When the argument of the Airy function in (3.9) is negative, we have T/ = exp(±i7r), 
and ry312 = =t=i. Because the right-hand side of (3.4) is purely imaginary when z > 1, 
we conclude that an infinite string of zeros of En,n(2izn) occurs near the intervals 
(-oo, -1), (1, oo) (in fact all zeros are real and inside these intervals). The zeros of 
the polynomials Pn(2izn), Qn(2izn) are located along curves in the z-plane that 
are defined by T/ exp(-27ri/3) < 0, TJ exp( +27ri/3) < 0, respectively, where, again, 
the relation between T/ and z is given in (3.4). 

To obtain a first approximation of these zeros, we use (3.9)-(3.11). Let aj be 
the zeros of Ai(z) (we have a 1 = -2.3381 ... ; see ABRAMOWITZ & STEGUN (1964, 
page 478) for more values). Then the zeros Zs of Pn(2izn) follow from the single 
term estimate obtained from the final line in (3.11) 

and by inverting the relation between rt and z ( cf. (3.4) ). More precise asymptotic 
estimates follow from using more terms in the uniform asymptotic approximations 
in (3.9)-(3.11) (cf. DRIVER & TEMME (1997)). The zeros of Pn(2izn) near z = 1 
satisfy (cf. (3.5)) 

Z .,...., 1 _ a· 2-1/3e27ri/3n-2/3 n---'-J J , -, 00. (4.1) 

4.1. The condition for the zeros. We compare the condition for the location 
of the zeros of the quantities Pn, Qn, En,n as given in SAFF & VARGA (1978) with 
the condition that follows from the uniform Airy-type asymptotic approximation. 
Saff and Varga introduce the quantity 

2izev'I=Z2 
W1(z) = v'l=Z2' 

1 + 1 - z 2 
(4.2) 

where we translated their notation into ours (that is, we take a = m/n = 1 and 
change z into iz). According to Saff and Varga, the zeros of the three quantities 
Pn, Qm, En,m occur along curves in the z-plane defined by 

(4.3) 

By using z = 1/ coshr (cf. (3.1)), a straightforward computation shows that 

(4.4) 

I 
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where fT/312 is defined in (3.3). The condition (4.3) can be read as: lnw1(z) is 
purely imaginary. So an equivalent formulation of (4.3) reads: -ry312 is purely 
imaginary, that is, the phase of T/ equals ±7r or ±7r /3. In other words, T) is located 
on the rays where the zeros of Ai(z) and Ai(e±2,./3z) lie. This is in agreement with 
our description of the location of the zeros given earlier in this section. 

5. An application: approximating the block function. As an application 
we consider the approximation of the block function 

J(t) = { 1, if 0 < ~ < 1; 
0, otherwise. 

(5.1) 

This function plays an important role in, for instance, the theory of electronics. We 
describe a method to obtain approximations of the block function by using Pade 
approximants of the exponential function. By using the estimates of the zeros of 
the polynomials Pn(z) given in section 4 we derive an asymptotic estimate of the 
error in the approximation of the block function. 

By taking the Laplace transform of f and inverting we can write 

f(t) = -. est (1 - e-s) -, 1 1 ds 
27ri .c s 

(5.2) 

where .C is a vertical line in the half-plane lRs > 0. To obtain smooth approxima
tions off we can replace the exponential function exp(-s) with its Pade approxi
mations, and we obtain 

fn(t) = _21. {est [1 + QPn((s))] ds, n = 1, 2, .... 
7rt } L, n S S 

(5.3) 

For example, 

fi(t) = 2e-2t, h(t) = 4J3e-3t sin(V3t). (5.4) 

From the results in the previous sections it follows that the polynomial Pn(s) in 
(5.3) has n simple zeros Sj in the left half-plane lRs < 0. When we want to evaluate 
fn(t) of (5.3) numerically we can split up the rational function into partial fractions 
and evaluate the resulting integrals. By using residue calculus it is not difficult to 
prove that 

J n(t) = t es;t Qn~Sj) . 

j=l Sj Pn(s;) 
(5.5) 

In this way we obtained the first elements given in (5.4) and in Figure 5.1. Observe 
that s = 0 is not a pole in (5.3). 

It is of interest to know the asymptotic nature of the representation in (5.5) for 
large values of n. When we order the zeros s; of Pn(s) with respect to their real 
parts, a sum of residues as in (5.5) gives an excellent representation with respect 
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Figure 5.1: 

1.5 

2.0 

The functions fn(t) of (5.3) that approximate the block function n = 2, 3, ... , 10. 
The rate of approximation for large values of n is described in (5.7), fort> 1. 

to large values oft. Surprisingly, the situation is different in the present case for 
large values of n . 

The zeros Sj with the largest real part (whose corresponding terms in (5.5) 
dominate the large t-behaviour) occur near ±2in. The behaviour of the Sj near 
s = 2in follows from (4.1): 

(5.6) 

Similar approximations hold near s = -2in, the real axis being an axis of symmetry. 
From (2.5) it follows that 

. 2iH(ll,[si/(2i)] 
Qn(sJ) -s n+2 -s·o ( -2/3) 

siP/i(sj)=e 's·H(2)'[s·/(2i)]=e' n ' 
J n+! J 

where we have used well-known estimates of the Hankel functions: 

H~1 l(vz) = 0 (v- 1! 3), H~2 )' (vz) = 0 (v-2! 3), v-+ oo 

with z ~ 1 (cf. ABRAMOWITZ & STEGUN (1964, pages 368-369)). Hence, 

fn(t) = e(t-l)s10 (n-2/3) = 0 [n-2/3e-(t-l)la1122 13 cos(71'/6)n113 ]' (5.7) 

as n-+ oo (with a1 = -2.3381 ... ), which estimate holds if t > l. 
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We see that the expected estimate fn(t) ,...., 1 for 0 < t < 1 cannot be obtained 
in this way. Apparently, if O < t < 1, all exponentially large contributions in (5.5) 
cancel against each other. When we concentrate on the error in the approximation, 
that is, on 

J(t) - fn(t) = -. est n,n -, -1 ! E (s) ds 
27ri c. Pn(s) s 

n = 1,2, ... , (5.8) 

we can use saddle point methods. We can write this in the form 

j(t) - fn(t) = - . e2w(t-l) ,. +2 -, 
( l)n+l ! In i (w) dw 

2i c. Rn+~ ( w) w 
(5.9) 

where we used the modified Bessel function representations given in (2.1). We are 
not pursuing this further, because it is outside the scope of this paper. 

We conclude this section by stating an interesting property of the approxima
tions fn(t) defined in (5.3). We have 

fo 00 f~(t)dt=1, n = 1,2, ... , (5.10) 

which, on the one hand, says that the 1 2 -norm of the approximant is the same 
as that of the block function, but on the other hand, it means that the electronic 
system, based upon these functions f n(t), is stable. 

To show (5.10) we use (5.5): 

We know from the earlier literature on Pade approximations to the exponential 
function (cf. SAFF & VARGA (1978) and their earlier papers) that all zeros SJ of 
Pn(s) are in the left half-plane Rs < 0. Hence, inverting (5.3), we have 

because Qn(-sJ) = -Pn(sj) = 0. It is not difficult to verify that 

I= 2 ( [1 + Qn(s)] ds 
2Jri Jc Pn(s) s2 ' 

where C is a vertical line in the left half-plane such that all zeros of Pn are at left 
of C; on C we integrate from -ioo to ioo. Using 1 + Qn(s)/Pn(s) = s + O(s2 ) as 
s --t 0 (which follows from the representations in (1.2) and (1.3) with n = rn), we 
see that the integrand has a simple pole at the origin, with residue equal to l. We 
shift C across the pole at the origin, picking up the residue, and observe that the 
remaining integral over C in the right half-plane vanishes. Hence, I = 1. 
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6. Concluding remarks. We have shown how to obtain the location and 
asymptotic approximation of zeros of the polynomials that constitute the diago
nal Pade approximations to the exponential function. By using uniform Airy-type 
asymptotic expansions it is possible to give a clear description of the distribution 
of the zeros and their asymptotic approximation. We have compared our method 
with Saff & Varga's approach for locating the zeros of the polynomials. 

We have used the asymptotic estimates of the zeros for obtaining an asymptotic 
estimate of functions that are smooth approximations to the block function, and 
we have proven a stability condition for these approximations. 

In DRIVER & TEMME (1997) more details are given on the non-diagonal case. 
Again we use Airy-type approximations to obtain the distribution of the zeros and 
the asymptotic estimates for the zeros of the polynomials. 
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