
Adv. Appl. Prob. (SGSA) 31, 31.'.>-J42 (1YYY) 

Printed in Northern Ireland 
©Applied Probability Trust 1999 

QUERMASS-INTERACTION PROCESSES: 
CONDITIONS FOR STABILITY 

W. S. KENDALL,* University of Warwick 

M. N. M. VAN LIESHOUT,** CW! 

A. J. BADDELEY,*** University of Western Australia 

Abstract 

We consider a class of random point and germ-grain processes, obtained using a rather 

natural weighting procedure. Given a Poisson point process, on each point one places 
a grain, a (possibly random) compact convex set. Let S be the union of all grains. 
One can now construct new processes whose density is derived from an exponential of a 
linear combination of quermass functionals of S. If only the area functional is used, then 

the area-interaction point process is recovered. New point processes arise if we include 
the perimeter length functional, or the Euler functional (number of components minus 
number of holes). The main question addressed by the paper is that of when the resulting 
point process is well-defined: geometric arguments are used to establish conditions for 
the point process to be stable in the sense of Ruelle. 
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The analysis of digital images and spatial patterns calls for tractable stochastic models 
of random sets and point processes. In this paper, we investigate new point process and 
germ-grain models which are constructed by weighting a Poisson point process (or germ­
grain process) using exponentials of (sums of) quermass integrals (Minkowski functionals) 
of a Boolean model based on the reference random process. These functionals are obtained 
from local geometric measurements including set volume and integrals of curvature over the 
boundary, and include the Euler-Poincare characteristic. 

In the point process case the model under investigation generalises the Widom-Rowlinson 
penetrable spheres model [65] the area-interaction point process [4] and the morphological 
model in [34, 37, 38]. 

In this paper our main focus will be on the conditions under which planar quermass­
interaction processes are stable in the sense of Ruelle (inequality (9) in Section 2.1 below). 
This is important because stability is an accessible condition for the density to be proper (to 

Received 11 September 1996; revision received 25 February 1998. 
*Postal address: Department of Statistics, University of Warwick, Coventry, CV4 7 AL, UK. 
Email address: w.s.kendall@warwick.ac.uk 
**Postal address: Centre for Mathematics and Computer Science, PO Box 94079, 1090 GB. Amsterdam, The 
Netherlands. 
***Postal address: Department of Mathematics. University of Western Australia, Nedlands, WA 6907, Australia. 

315 



316•SGSA W. S. KENDALL ET AL. 

integrate to unit total mass rather than infinity), as well as being useful when studying the 
behaviour of the process (for example, whether its definition can be extended from bounded 
windows to the whole plane) and when devising simulation algorithms. Stability has already 
been established for the special case of area-interaction [4]; we shall establish it in greater 
generality, with particular attention to the Euler-Poincare characteristic. Our arguments are 
basically geometric covering arguments of a rather non-standard form, essentially elementary 
but of some intrinsic geometric interest. In further papers we hope to develop inferential and 
simulation theory as well as to explore the utility of this class of models in applications. 

The paper is divided into seven sections: Section 1 covers preliminaries on stochastic geo­
metry; Section 2 defines quermass-interaction germ-grain models and random sets; Section 3 
begins the discussion of the important planar case, which introduces the main question to be 
dealt with in this initial study, namely the range of permissible parameter values under which 
the Euler-Poincare characteristic yields a stable germ-grain process; Section 4 shows stability 
when grains are planar disks; Section 5 considers the case when grains are convex polygons, 
in which case a lower bound on interior angles and side-lengths is needed; finally Section 6 
indicates our plans for future investigation of these point processes, including simulation and 
inference issues. 

1. Preliminaries 

In this section we briefly summarize relevant facts from the theories of Markov point 
processes, Boolean models, and quermass integrals. 

1.1. Point processes 

The basic reference process is a (stationary) Poisson point process in a bounded observation 
region -8. This can be understood to exhibit spatial independence in the sense that points do not 
interact with each other. More specifically, given that there are n points, these are independent 
and uniformly distributed over -8. The total number of points in -8 is Poisson distributed with 
mean proportional to the area of -8. The constant of proportionality is called the intensity. The 
area measure can be replaced by any finite diffuse measure µ, yielding an inhomogeneous 
Poisson point process with intensity measure µ. 

One can define other processes by specifying their densities with respect to the Poisson 
process. For a process defined in this way, with density p(· ), the distribution (qo, q1, q1, ... ) 
of the total number of points is given by 

e-µ,(-8) 1 1 
qn=--1 - ••• p({x1, ... ,xn})dµ(x1) ... dµ(xn) 

n. .& .& 

and, given N = n, the joint conditional probability density of the point pattern is 

where the reference measure is provided by the product measure µn on .sn. 
It will be convenient to impose conditions on the density. 

Definition 1.1. Let~ be a symmetric relation on -8. Then a density p(·) defines a Markov 
point process [53] if for all patterns x = {x1, ... , Xn} such that p(x) > 0 

(Ml) p(y) > 0 for ally c x; 
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(M2) the Papangelou conditional intensity 

'(. )- p(xU{u}) /\. u, x - .o__ __ _ 

p(x) 

depends only on u and {xi : u ,...., Xi }. 

Note that any strictly positive density p(x) can be reconstructed from the Papangelou 
conditional intensity up to a constant factor (and this means that p( ·) is completely defined 
once the conditional intensity 'A(·;·) is prescribed, since the density p(·) must have unit total 
mass). 

A generalization of Definition l. l can be obtained by allowing the relation to depend on the 
configuration [5]. 

The celebrated Hammersley-Clifford theorem [5, 6, 8, 16, 51, 53, 59] gives a simple in­
terpretation in terms of interpoint interactions. A process with density p(·) is a Markov point 
process if and only if 

p(x) = n q(y) =a TI q(y) 
cliques ys;x cliques ys;x 

y'F0 

for arbitrary non-negative interaction functions q( · ), save that a = q (0) is determined by the 
requirement that the total integral of p ( ·) equals 1. 

Because of property (M2), Markov point processes are natural models for problems 
involving derivation of conditional probabilities and also are easy to simulate using Markov 
chain Monte Carlo methods, and hence are amenable to iterative statistical techniques [7, 9, 
15, 33, 40]. 

1.2. Boolean models 

The Boolean model and its associated Poisson germ-grain model are defined in [60]. Briefly, 
a set called a grain is placed at each point of a (possibly inhomogeneous) Poisson point process 
of germs in Euclidean space. Different random grains are random compact sets which are 
independent of each other conditional on the realization of the point process of germs. We 
consider two cases: 

(a) Different grains are independent both of each other and of locations, and follow the same 
distribution v, and (more generally) 

(b) The distribution of a grain depends continuously with respect to the Hausdorff metric on 
the location of the respective germ, but each grain is independent of other locations and 
other grains. 

This produces a Poisson marked point process, by marking the germ process with the grains. 
Finally, the Boolean model is the random set obtained by the union of all the grains. In this 
paper, unless specifically stated otherwise, we will assume that the grains are ovoids (that is to 
say, non-empty convex compact sets with non-empty interior). 

By virtue of the Choquet theorem [36, Theorem 2-2-1], a random closed set 8 is determined 
by its avoidance function on X, the family of compact sets, defined by 

Q(K) = JPl(Sn K = 0). (1) 
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For a Boolean model based on a homogeneous Poisson point process with random grains (case 
(a)), 

Q(K) = exp[-/3IE volume(K $ Z)] (2) 

where !E. denotes the expectation with respect to v of the typical grain Z, f3 is the intensity of 
the underlying Poisson point process and $is the Minkowski sum. 

We should distinguish between the case where we can observe both the germs and the 
grains (for example in the area-interaction point process model described below where the 
configuration of grains can be deduced from the configuration of germ points) and the random 
set case where only the union of the grains is observed and not the underlying germ process. 
This distinction has important consequences for statistical inference, which has to be based 
only on observable quantities. However it does not affect the arguments of this paper, which 
focus on stability and existence considerations. 

1.3. Quermass integrals 

The quermass integrals or Minkowski functionals are fundamental concepts of geometry [ 18, 
58] generalising the notions of area and perimeter. In d dimensions and for j :S d - 1, they 
are defined for ovoids K E C(X) by 

d bd f wj (K) = -b . Vd-j(prOfr!.(K))dµj(S) 
d-J Lj 

(3) 

where L j is the class of all }-dimensional subspaces S, µ J is the unique probability measure 
on L j that is invariant under rigid motions, projs.L is the map projecting onto SJ_ the subspace 
orthogonal to S, and v j is Lebesgue measure on j -dimensional space. Furthermore, bd = 
rrd/2/r(l +d/2) is the d-volume of the d-dimensional unit ball. Equivalently, WJ(K) for 

j :S d - 1 is the invariant measure of the set of all affine }-dimensional subspaces intersecting 
K, normalised so that the unit ball B = B(O, 1) has Wf (B) = bd. Finally, set w3 (·) = bd. 

A different but equivalent definition is via the Steiner formula 

Vd(K $ B(O, t)) = t (~) Wf (K)ti. 
}=0 J 

Interesting special cases include the following: 

wg(K) is the Lebesgue measure vd(K) of K; 

dWf (K) is the surface area of K; 

dWf (K) is the integral mean curvature over the boundary of K; 

and W1- 1 (K) = (bd/2) b(K) is proportional to the mean breadth b(K) of the ovoid K. 

If the boundary aK is sufficiently regular, for example if it is possible to define at each point 
t E a K the d - 1 principal curvatures, then the Minkowski functionals admit simple integral 
representations using symmetric functions of these curvatures (see Matheron [36]). Thus for 
example 

dWf(K) = ( m(t)dt 
laK 

where m(t) is the mean curvature at t. 
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Let 1fr be a functional defined for all ovoids. It is called C-additive if 

for any ovoids K1, K2 E C(JC) for which the union is again an ovoid (K1 U K2 E C(JC)). 
The Minkowski functionals are C-additive, and also increasing, continuous with respect to 
Hausdor:ff distance and invariant under rigid motions. Hadwiger's characterization theorem 
delivers a converse to this observation: any sufficiently well-behaved ovoid-functional can be 
written as a linear combination of Minkowski functionals. More specifically 

Theorem 1.2. (Hadwiger's characterization theorem [18]) Suppose that 1fr is a C-additive 
ovoidfanctional (hence 1/f (K) is defined for K E C(X)) which is continuous with respect to 
the Hausdoif.fmetric on C(X) and is invariant under rigid motions. Then it can be written as 
a linear combination of quermass integrals 

d 

t = I>jwf 
j=O 

where the coefficients a j are uniquely defined. (If' continuous' is replaced by 'increasing' (with 
respect to set-inclusion) or 'non-negative' then the same statement holds under the further 
condition that the aj are non-negative.) 

We intend to use quermass integrals to define new germ-grain models. Hence we will be 
interested in evaluation of quermass integrals on finite unions of convex compact sets, which 
form the convex ring :R. The quermass integrals can be extended onto the convex ring in 
several ways. The most direct is the additive extension 

Wj(K) = _.!:!!.___ { ( { x(K n Sx) dx) dµ.j(S) 
bd-j }LJ lsj_ 

(4) 

where x denotes the Euler-Poincare characteristic, and Sx the translation of the subspace S 
using the vector x. This equals 1 for any ovoid; while for any K = uf=t K; (for K; E C(X)) 
we have an inclusion-exclusion formula: 

x(K) = I:x(K;)- L x(K;1 n K;2 ) + · ·· + (-l)P+'x<Ki n · · · n Kp). 
i i1 <i2 

In particular the right-hand side does not depend on the particular representation K = ur=l Ki 
[17]. An equivalent definition uses the (generalised) Steiner formula 

j x(K n B(x, t))dx = ~ (Jwf(K)tl. 

The extension (4) is by no means the only possibility; another option is to require the 
original formula (3) to hold for all Kin the convex ring, resulting in a different extension. But 
the Euler-Poincare extension (4) has a useful relationship to 'number' which is exploited in 
various applications of stochastic geometry; in the planar (d = 2) case W}(K)/rr is equal to 
the number of components of K minus the number of holes of K. (For an example of this in 
the theory of high-level excursions of random fields, see Adler [l, Chapter 4].) 
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Yet another possibility (albeit computationally more involved) is the positive extension, 
defined via a different generalised Steiner formula 

d J n(K;r;x)dx = f;G)wf(K)tj (5) 

where n(K; r; x) is the number of projections y E K of x (points in K locally closest to x) 
lying within distance r of x (see Matheron [36, (4-7-8)] or Schneider (58]). A significant 
subtlety in this definition is that it is possible to have n(K; r; x) > 1 for x E int(K). The 
-d 
W j (K) defined here satisfy 

wf ( l)Ki) ~ ~wf CKd 
I I 

(6) 

for any compact convex sets K1, ... , Kn. However in the following we shall focus our 
attention mainly on the simpler and more intuitive additive extension. 

It is important that wf o = wfo for j = 0, 1, so the two main extensions discussed 
above will agree for the basic cases of Lebesgue measure and surface area. 

2. Quermass-interaction point processes 

2.1. Notation and framework 

Let -8 be JRd or a compact subset, µ a finite non-atomic measure on -8 and v a probability 
measure on C{JC). In this section we will define new germ-grain models by their density with 
respect to a Poisson marked point process of intensityµ@ v on -8 x C(X). Realisations will 
be denoted by y = {(x1, K1), ... , (Xn, Kn)} (n?: 0). 

Definition 2.1. A quermass-interaction germ-grain model is absolutely continuous with re­
spect to a Poisson marked point process on -8 x C(JC) with intensityµ @ v, and has density 
p(y) given by 

d 

p(y) =a,8n(ylexp[ - ?=YjWj('Uy)l 
1=0 

(7) 

Here f3 > 0 and Yj E lR are model parameters, Wj is the additive extension (4) of the jth 
Minkowski functional, and 'Uy is the set union LJ7= 1 (K; + x;). 

Note that the random marks will not be independent under (7). In a variation on this 
definition we may replace the additive extension by the positive extension (5). 

An important special case is that where the mark distribution v of the reference process is 
degenerate. In that case, the quermass-interaction germ-grain model (7) can be viewed as an 
unmarked point process on -8 and (7) is its density with respect to a Poisson point process on 
-8 with intensity measure µ. 

The models in Definition 2.1 can be used to define quermass-interaction random sets by 
setting 

x ='Uy (8) 
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where Y is a quermass-interaction germ-grain model. As in the Boolean model, the component 
grains are not observable since their boundaries may be occluded by other grains. Indeed, there 
is no way of determining even the number of germs giving rise to the union set X, complicating 
the question of estimation of model parameters (see later). 

Special cases of Definition 2.1 have been discussed in the literature. The penetrable spheres 
[21, 54, 55, 65] or area-interaction model [4] is the case 

p(y) = af3n(y) exp[-yWQ1('Uy)] 

and v degenerate on a closed ball of radius t > 0. Generalisations allow for the replacement of 
wg by any finite Borel regular measure. Note that even though the perimeter wf is a positive 
functional it is not a measure, and so the corresponding quermass-interaction point process 
does not fall within the generalised area-interaction framework of [ 4]. 

The case of Euler-Poincare interaction p(y) = af3n(y) exp[-y Wt('Uy )] in three dimen­
sions is discussed from a physics point of view in (34, 38], though no consideration is given 
there to questions of existence and stability. 

Finally, note that we have taken the approach (a) outlined in Section 1.2, in specifying 
densities with respect to a reference process which is a Poisson marked point process using the 
product measureµ 0 v as intensity. Alternatively, the more general approach (b) (Section 1.2) 
may be taken, but it would result in more cumbersome formulae. 

Area-interaction models are Markov (see Definition 1.1) with respect to the overlapping 
object relationship [3] 

(u,K)~(v,L) ifandonlyif (K+u)n(L+v)::j::.0 

and satisfy Ruelle's stability condition for all values of y. This condition requires that the 
energy E(·) = - log(p(· )/ p(0)) is bounded below by a linear bound in the number of points: 

E(y) .'.::: -A - Bn(y) (9) 

for some positive A, B. Indeed, the area-interaction density with respect to a Poisson(.$) 
process (restricted to a bounded window, as is always the case here) is uniformly bounded. 

Stability is a sufficient condition for a measurable density to be integrable and is important 
with respect to simulation and edge effects. Indeed Ruelle (56, Section 3.2] shows that, for 
(upper semi-continuous) pairwise interaction processes, unless the energy is stable the weight 
functional will diverge for a motion-invariant point process extending over the whole of space. 
Gates and Westcott [ 13] show that, even in a bounded window and conditional on the number 
of points, unstable point processes may yield problems in simulations (published examples are 
typically not yet in equilibrium, and results will be very sensitive to boundary conditions) and 
approximations of the partition function can be wrong by many orders of magnitude. See also 
[40]. 

Before we start to investigate quermass-interaction point processes we must first show that 
they are well-defined, and the first step is the tedious but elementary chore of establishing the 
measurability of the function p(y). 

Lemma 2.2. The fanction p (y) of Definition 2.1 is measurable with respect to Jf f, the Borel 
a-algebra corresponding to the weak topology on the space of all integer-valued simple finite 
measures >Jtf. 
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Proof It suffices to consider Wf ("11 y) for all j. Using the inclusion-exclusion formula 

for Wf ('Uy) and the fact that the mapping (A, B) ~ An Bis upper-sernicontinuous (see 

Corollary 1 to Proposition 1-2-4 in [36]), the measurability follows. 

The measurability of the positive extension wf ('Uy )of the quermass integrals follows from 
the corollary on page 126 of [36]. Hence the analogue of (7) for the positive extension is 
measurable as well. 

In order to check that the derived random set model (8) is well-defined, we need to check 
that hitting events {X n K :f. 0} are measurable. To see this, observe that 

{X n K :f. 0} = {y: n(yL) = O}c 

where 

L = {(u, Z): (Z + u) n K :f. 0}. 

As the mapping f : -8 x C(X') -T C(X') : (u, Z) ~ Z + u is continuous, L is closed. Thus 
{X n K :f. 0} is measurable when viewed as a subset of {IJtf, NI}, hence measurable when 
considered as an event. 

We turn to the issue of when the quermass-interaction density is integrable, which is the 
main question addressed by this paper. 

Note that the energy is 

d 

-n(y)log,B+ Z::>jwj('lly). 
j=O 

The stability condition for y > 0 would follow from 

Wf ('Uy)~ -Bn(y) 

for each j = 0, ... , n whilst for y < l it would suffice to show 

(for some B > 0). Since the log .B term is linear inn (y), it will not affect questions of stability. 
We note in passing that the positive extension of Minkowski functionals always produces 

stability. 

Lemma2.3. Assume that in Definition 2.1 the positive extensions W~(-) of the Minkowski 
functionals are used. Then a quennass-interaction genn-grain ~odel with Yj 2: 0 

( j = 1, ... , n) is stable. lf Yj < 0, but W f (K) is bounded above for all K in the support of 
v, then the quennass-interaction germ-grain model is also stable. 

Proof It is sufficient to consider each j = 1, ... , n separately. For Yj 2: 0 the sta­
bility inequality (9) is trivially verified. For Yj < 0, use subadditivity as given in (6): if 
Y = {(x1, K1), .. ., (Xn, Kn)} then 

n 
-d ""-d o s wj ('Uy) s L w1 (K; +x;). 

i=l 
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In fact even more can be said for the perimeter interaction genn-grain model 
p(y) = af3n(y) exp[-yWf('Uy)] when the grains are disks of constant radius. Stability 
follows as a consequence of [2], which actually proves the stronger result of a unifonn bound 
on the density with respect to a Poisson process over a compact region. Complementary 
geometric arguments yield a unifonn bound on the Papangelou conditional intensity [29]. 

Corollary 2.4. The quennass-interaction germ-grain model (Definition 2.1) using the positive 
extension is integrable whenever Yj ::'.::: 0 for all j; if on the other hand Yi < 0 then the density 

is still integrable provided that W f (K) is uniformly bounded above for all K in the support 
of\). 

The situation is much more interesting for the additive extensions (except for wg (·), Wf (·) 
in which case the positive and additive extensions are identical). We shall focus on the planar 
Euler-Poincare characteristic W'J:( · ). Further interest is added to this case because the density 

depends only on the topology of the union of the grains, noting that W'J:(K)/rr: equals the 
number of components of K minus the number of holes of K. Clearly n (y) provides an upper 
bound, hence the associated 'repulsive' quennass-interaction germ-grain model is stable. For 
the 'attractive' counterpart Y2 > 0, we need an upper bound on the number of holes. This 
problem is dependent on the geometry of the grains and is treated in Sections 3, 4, 5. 

2.2. Markov properties 

As the area-interaction model [ 4], the quennass-interaction generalizations are Markovian 
in the sense of Definition 1.1. 

Theorem 2.5. Whenever p(·) in Definition 2.1 is integrable, it is Markov with respect to the 
overlapping objects relation. 

Proof Property (Ml) of the definition of a Markov point process is trivial since p(·) > 0, 
so it suffices to establish property (M2). 

The case wgo has been established in [4], so we consider wf o for j > 0. By the 
inclusion-exclusion formula, 

-log p(y Up{(~; K)}) = [Wj('Uy U (K + u)) - Wj('Uy)]Yj - log~ 
1 

= [Wj((K + u)) - Wj((K + u) n 'Uy)]Yj - log~ 

=[wf((K+un-wf(<K+u)n LJ (Ki+xi))]vj 
(x; ,Ki)-(u,K) 

1 
- log-. 

f3 

Thus the Papangelou conditional intensity for adding (u, K) to y depends only on the sub­
configuration of points (Xi, K;) ~ (u, K). Hence (M2) follows. There is a corresponding ~d 
straightforward argument for the positive extension, depending on the fact that for Xi for which 
(Ki + Xi) n (K + u) = 0 the exposed boundary in y U {(u, K)} is the same as in y, so that a 

similar cancellation occurs. 
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If it can be shown that the grain is always contained in a disk centred on o of fixed radius r 
then the above argument establishes a local Markov property with respect to the conventional 
neighbourhood relationship u ,...., v when u, v are closer than 2r. 

A fortiori the process is nearest-neighbour Markov with respect to the connected component 
relation of Baddeley and Ml15ller [5]. Note also the continuum random cluster model [19, 
32, 40], in which the weighting is carried out by counting connected components instead of 
calculating with the Euler characteristic. In that model the Markov property is replaced by a 
nearest-neighbour Markov property. 

By the Hammersley-Clifford theorem (see Section 1.1 above), the density p(·) can be 
written as a product of clique interaction terms 

p(y) = TI q(z) 
zs;y 

where q(z) = 1 unless (z;, L;) ,...., (Zj, Lj) for all elements of z. The interaction functions 
resemble those of the area-interaction model. For the additively extended Wf, 

q(0) =a 

q({(u, K)}) = f3y-Wf<K+u) 

q({(x1, K1), ... , (xk, Kk)}) = Y(-1/wfcn~=1 (K;+x;ll; (10) 

(for positive extensions one can replace wf (K + u) by a boundary integral). In particular, the 
model has interaction of all orders. 

The querrnass-interaction germ-grain models Y satisfy a spatial Markov property [27, 53] 

Y n E .l_ Y n D(E)c I Y n D(E) \ E (11) 

where D(E) is the set of marked points that are related under,...., to a marked point in E. In 
words, the random point pattern Y n E is independent of the random point pattern Y n D(Ef 
when conditioned on the realization of the 'frontier' pattern Y n D (E) \ E. 

It is possible to derive a random set Markov property in the I-dimensional case. For 
example in IfRd, Matheron defines two compact sets Kand K' as separated by another compact 
set C E X if any line segment joining x E K with x' E K' hits C. Furthermore, the random 
set X is said to be semi-Markovian if a conditional independence property similar to ( 11) holds 
for X n E, X n F E X for any sets E and F separated by G E X and the conditioning is on 
X n G = 0. It is then easy to show that the one-dimensional quermass-interaction random 
sets are semi-Markov. 

No such result can be expected in higher dimensions, as separation no longer implies 
topological separation. 

In the discrete case (grains replaced by pixels), Mpller and Waagepetersen [41] have studied 
Markov connected component fields, and proved a characterization theorem. In particular, 
if the process is both a second order Markov random field and connected component field, 
the density factorises in terms related to area, perimeter and Euler characteristic, as well as 
continuity terms related to the digitization. 
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3. Planar case: illustrative examples 

In this section we consider in detail the two-dimensional case d = 2 of additive quermass-
interaction point processes in the plane. In this case, for K E C(X), we have 

WJ(K) = v2(K) = area 

w?(K) = !V(K) =!perimeter = i mean breadth 

W}(K) = JT 

and we study the point process whose density with respect to a Poisson point process (or 
marked Poisson point process, if the grains are random) is given by 

( ) Rn(y) -W(i('Uy) -Wj('Uy) 
p Y =al-' Yo x ... x yd . 

In the instances r = 0 and r = 1, the functional W,2 ( ·) is positive, both extension methods 
coincide, and Lemma 2.3 leads to the simple conclusion that integrability holds for all values 
of y (at least for bounded convex grains as above). So it remains to consider the case r = 2. 

Here the extension methods do not coincide and we have to argue in detail. The additive 
extension of W}(·) has a simple interpretation: it is proportional to the Euler-Poincare char­
acteristic x ('the number of components minus the number of holes' for this planar case). Ir 
fact W:?CK) = rr x(K). For Ruelle stability (9) to hold for all parameter values, we require 

(12) 

where B1, B2 are positive constants. The right-hand inequality is immediate from C-additivity 
but the left-hand inequality is actually false in general (see the illustrative examples below. 
Let us examine what can go amiss. First note that if y = I then the weighting has no effec 
and everything is trivial. The case y < 1 (inhibition) is also clear: 

f · ·· f Y-rrx('Uy)dµh1)dv(K1) ... dµ,(x12 )dv(K11 ) :'.S y-rrn(y)µ,(X)n(y)_ 

and so the process is then bounded above by a Poisson process with intensity measure y-rr µ(·) 
and therefore is integrable and indeed stable. However stability does not hold in general for 
the clustered case of y > 1, as we now indicate by exhibiting various illustrative examples. 

The first illustrative example is suggested by the observation that n lines in general position 
in the plane produce (n - I)(n - 2)/2 (bounded) holes. (Recall that 'general position' means 
that no three lines meet at one point.) The proof is by induction: adding a line in general 
position to an assembly of n lines in general position produces n - l new bounded holes. 

Example 3.1 (Poisson line process in the plane.) Let the germ process be an inhomogen­
eous Poisson point process of finite total intensity. Let the typical grain be a line randomly 
oriented with some fixed directional distribution. Suppose that the intensity measure of the 
resulting line process is diffuse and has topological support containing two lines which in­
tersect (of course this second requirement will be fulfilled unless all lines in the process are 
almost surely parallel!). Then the expectation with respect to the Poisson line process 

(13) 

is infinite if y > 1. 
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Since wf ('Uy)/ rr = x ('Uy) is 'the number of components minus the number of holes' this 
means that we cannot weight the model towards having more holes than would be expected in 
the unweighted (Poisson) case. 

Proof Note that -x('Uy) is bounded above by the number of (bounded) holes in 'Uy. The 
topological support condition means that we can choose two compact sets K 1, K 2 in line space 
such that (a) the intensity measure charges both K1 and K1, and (b) all lines in K1 intersect 
all lines in K2. We condition on the event that all lines of the process belong to K 1 U Kz. 
Under this conditioning event (which is of positive probability) the number of holes is given 
by (N1 - l)(N2-l)/2 where N; is the (random) number of lines in Ki and has a nondegenerate 
Poisson distribution. But this means that the expectation in Equation (13) is infinite, because 
the moment generating function of the product of two non-degenerate Poisson distributions is 
infinite for positive argument. 

It might be objected that the above example uses non-compact grains of zero area, so that 
the grains are definitely not ovoids. Basic arguments using Boolean models readily yield the 
following localization and conditioning argument which replaces unbounded lines by bounded 
line segments: it is then a straightforward if tedious exercise to make further modifications to 
produce a genuine counterexample based on thin random rectangles (we can supply details on 
request). 

Example 3.2 (Poisson segment process in the plane.) Let the germ process be an inhomo­
geneous Poisson point process of finite total intensity. Let the typical grain be a line segment 
randomly oriented with some fixed directional distribution. Suppose that the intensity measure 
of the resulting line segment process is diffuse and has topological support containing two line 
segments which intersect. Then the expectation with respect to the Poisson segment process 

!E{y-Wf('Uy)} = lE{exp(-(ln y) x Wf('Uy))} (14) 

is infinite if y > 1. 

Proof We can argue exactly as in Example 3.1, except that this time the topological support 
condition allows us to choose compact sets in segment space, K 1 and K 2, such that (a) the 
intensity measure charges both K 1 and Kz, and (b) each segment in K 1 intersects all segments 
in Kz. 

The problems in the above two examples appear to be related to the pathological 'sharpness' 
of the grains, and in particular to the fact that they have negligible area. A natural condition to 
exclude this pathology is to require a lower bound on the internal angles of convex polygonal 
grains. 

Definition 3.3. A convex grain G is said to satisfy a 'local wedge condition of angle cf> > O' 
if for any point w E BG there is a disk B(w, r) (centred at w, of positive radius r = r(w)) such 
that B(w, r) n G is a sector of the disk of angle at least cf>. (No lower bound is placed on the 
radius of the disk, other than the requirement that it be positive.) 

Note that a convex grain satisfying this condition is automatically polygonal. 
Here is a counterexample to show that care is required even when the grains satisfy a 

local wedge condition (note that another counterexample is provided by the thin rectangle 
modification alluded to in the discussion of Example 3.2). 
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FIGURE 1: How to build configurations of n polygonal grains which create O (n2 ) holes (pentagonal 
case). We can arrange k = n/2 pentagons one on top of the other so that by adding r = n/2 other 

polygons we can create n/4 holes per polygon. 

Example 3.4 (Germ-grain model with ovoid grains satisfying a local wedge condition.) In 
general the weighting need not satisfy the stability condition when y > l. 

Proof The grains are regular k-gons, of varying side-number k (k > 3) and size. To 
establish failure of stability, we have to show how to construct configurations of n grains 
which possess 0(n2) holes. 

Fix k > 3, r > 1 and set E = (r - 1 )rr / (k(k - 1 )2). Notice that the local wedge condition 
is satisfied for <P = Jr /2, since k > 3. 

Consider r similar k-gons, of which the first is inscribed in a circle of unit radius centered 
on the origin o, and such that the ith k-gon is obtained from the first by rotation about o through 
an angle of (i - l)E and scaling (again about o) by a factor of sec((i - l)E). At each vertex 
of the first k-gon place a square with sides of unit length, tangent to the inscribing circle at the 
midpoint of a side. (See Figure 1 for the case k = 5, r = 5.) 

For all sufficiently large k, each square intersects each of the k-gons at a vertex, and none of 
the intersections of squares with k-gons are covered by other squares or k-gons. (This follows 
from the observation that the k-gons intersect in singleton sets with lines through vertices of the 
first polygon which are perpendicular to radii of the circle which it inscribes.) Consequently 
this configuration of (r - 1) k-gons and k squares creates at least k(r - 1) holes. Setting 
k = r = n /2 for even n delivers the required violation of stability. 

It is important to note that the above counterexample works only if we allow polygonal 
grains of arbitrarily small sidelength. Later on we shall see that an additional lower bound 
on sidelength (obtained by requiring a uniform local wedge condition) is sufficient to ensure 
stability for polygonal grains. 

In this paper we confine ourselves to the planar case, which is the case of principal import­
ance for image analysis (though not for physics! see [34, 37, 38]). However it is interesting to 
note that things can go even more badly wrong for the Euler-Poincare characteristic in the spa­
tial case. We illustrate this with a simple non-ovoid example (as before, it is a straightforward 
but tedious exercise to modify this to produce a counterexample using ovoids). 
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Example 3.5 (Process of flats in space.) Divergence can occur for all parameter values 
except for the trivial (unweighted) case of y = 1. Take the Poisson point process of germs to 
be inhomogeneous and of unit total intensity. Fix an orthonormal basis. Let the typical grain 
be a 'flat' or 2-plane, normal to a vector chosen randomly from the orthonormal basis with 
probabilities .A.1, .A.z, A.3. Suppose that the intensity measure of the underlying flat process is 
diffuse. Then the expectation with respect to the Poisson fiat process 

(15) 

is finite if and only if y = 1 (the trivial unweighted case!). 

Proof First note that Wj('Uy) is no longer proportional to the number of holes minus the 
number of components, but is proportional to the three-dimensional Euler-Poincare character­
istic. However (in the simple case which we have chosen to consider) it is easily computed 
from first principles using the inclusion-exclusion formula of C-additivity. Let N1, Nz, N3 be 
the numbers of fiats normal to each of the three basis vectors. Then 

Wj('Uy) == (N1 + Nz + N3) - (N1N2 + N1N3 + N3Ni) + N1 NzN3 

== (N1 - l)(N2 - l)(N3 - 1) + 1 

(since intersections of more than three fiats will be almost surely void, because the underlying 
intensity measure of the fiat process is diffuse). It suffices to show divergence of 
JE{y-(N1 -l)(N2-l)(N3-l)-l }. 

Suppose that y < 1. Then (noting that). 1 + A.2 + A.3 = 1) 

where the divergence follows from Stirling's formula. 
Suppose y > 1. Then consider the bound obtained by restricting the above expectation to 

the event, which is of positive probability, that NJ == 0. We have 

IE{y-(N1-l)(N2-l)(N3-l)-l}::: IE{y-(N1-l)(N2-l)(N3-l)-l I N3 = 0) x JF{N3 = 0) 

A n1 ;,.n2 
= "'"' e-1 _1_2_y(n1-l)(ni-l)-l 

L.J L.J n 1!n2! 
n1 n2 

1n;,.n >"' -1 I 2 (n-1)2-1 - L.J e -,2-Y = oo 
n n. 

where once again the divergence follows from Stirling's formula. 

Naiman and Wynn have generously contributed the following counterexample, which shows 
that in 4-space one cannot expect convergence for all parameter values even in the well­
behaved case of balls of unit radius. 

Example 3.6 (Unit balls in 4-space.) Consider the germ-grain model 'Uy based on an 
inhomogeneous Poisson process of finite total intensity in 4-space with grains which are unit 
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FIGURE 2: Vertical section view of 2n balls of varying radius in 3-space, whose union has Euler­
Poincare characteristic 1 - n2. First arrange n unit-radius balls in an overlapping horizontal ring (two of 
these seen in section as dark circles). Then build a fan of n balls with centres located along the axis of 
symmetry, so that the balls in the fan form a connected union and each ball in the fan touches each of the 

first n balls in one point only. 

balls. Suppose that the intensity measure has a density which is constant over the ball centred 
on the origin and of radius ,J2. Then for y > 1 the distribution produced by weighting using 

(16) 

is not stable in Ruelle's sense. 

Proof. First note that Wt ('Uy) is proportional to the Euler-Poincare characteristic of 'Uy. 
Consider the ensemble of 2n balls of unit radius, of which the first n are centred respectively 

at (,J"i cos(2krr /n), ,J2 sin(2krr /n), 0, 0) fork = 1, ... , n, and the second n are centred 
respectively at (0, 0, v'2cos(2krr/n), ,J2sin(2br/n)) fork = l, ... , n. (The condition on 
the density of the intensity measure is imposed in order to ensure that such a configuration is 
feasible for 'Uy.) The first n balls form a sub-ensemble whose union is homotopic to a circle 
(for large enough n) and therefore has Euler-Poincare characteristic 0, and similarly for the 
sub-ensemble of the other n balls. 

However intersections between balls from the first and second sub-ensembles are pairwise 
only, and are singleton sets for every possible intersection of this kind. It follows from the 
inclusion-exclusion identity that the Euler-Poincare characteristic of the union of all 2n balls 
is -n2 . Hence Ruelle stability fails. 

It is an open question whether stability fails for the weighting y-Wj('Uy) (case y -:/=- 1) when 
'Uy is the germ-grain model produced by using unit balls in 3-space. However Naiman and 
WSK have independently produced a counterexample for the case of balls ofrandom radius in 
3-space, based on Figure 4. 7 .1 from [ 49] (see also [31]). See Figure 2 for an indication of the 
construction. 

At this point we note in passing the early work of Eckhoff [10], who discusses rather general 
bounds on the range of values of the Euler-Poincare characteristic. 

These examples show that even in the planar case some conditions are needed if the range 
of y is to be unconstrained. On the other hand the planar examples appear to be somewhat 
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pathological. Note that the problems are local (the treatment of the line process case makes this 

clear) and appear in Examples 3. 1, 3.2, 3.5 to be related to the 'sharpness' of the constituent 

grains, while Example 3.4 shows problems arise when grains of 'small' sidelength are allowed. 

There are two positive results which cover an important range of practical examples, and 

which serve to clarify the sense in which the above examples are pathological. These cover 

the complementary cases of (a) random disk grains and (b) random polygon grains which are 

neither too sharp nor too small. We deal with these results in the two following sections. 

As a final remark, note that it is natural to enquire whether the divergence (in d = 2 at least) 

can ever occur ifthe grains are non-random. Divergence can occur for simple non-convex non­

random grains: consider the case of a grain composed of intersecting horizontal and vertical 

line segments, and apply the ideas underlying Example 3.2. In the case of convex non-random 

grains which are polygons, one can argue that either the grains are parallel line segments or 

parallel lines (in which trivial case stability is immediate, as there will be no holes!) or they 

must satisfy a uniform local wedge condition (given below as Definition 5.1), in which case 

stability follows from the arguments in Section 5. The case of non-polygonal convex non­

random grains is currently open, with the exception of grains which are disks, which case is 

covered by the results in the following section. 

4. Planar case: when grains are disks 

In this section we show that if the grains are random disks then the Euler-Poincare 

quermass-interaction germ-grain model 

is stable, and hence integrable for all values of the parameter y. Remarkably, no size constraint 

is required: the disk radii can be random and need only be strictly positive. This is particularly 

striking in the light of the examples in the previous section, which suggest that stability 

problems arise when side length is small. Here we see such problems need not occur at the 

limit. The argument is strictly geometrical, and is to be found in the theorem below: an 

ensemble of N disks has a union with at most 2N - 5 holes. 

If the disks are of constant size then there is an easy argument using the Dirichlet tessellation 

based on the disk centres: we sketch it here. Let B(x1, r 1 ), B(x2, r2), ... , B(xN, rN) be the 

(closed) disks. In each component of the complement of U; B(x;, n) there must be at least one 

node of the tessellation (a node is a vertex of the planar linear graph formed by the tessellation, 

including the 'vertex at infinity'), for otherwise the boundary of this component would have to 

be made out of the boundaries of at most two disks (which would force the 'vertex at infinity' to 

belong to the complement). Hence the number of holes in the union U; B (x;, r;) is dominated 

by the number of nodes of the Dirichlet tessellation, equivalently the number of triangles in the 

Delaunay tessellation, which by planar graph theory (using the Euler formula; see for example 

[ 66, Theorem l 3A]) is itself dominated by the bound 2N - 5, since N is the number of vertices 

of the Delaunay tessellation (note the bound is not 2N - 6, as we exclude the hole at infinity). 

Unfortunately this simple argument appears not to generalize, being tied to the Euclidean 

metric structure underlying the definitions of a disk and of Dirichlet and Delaunay tessellations. 

For disks of arbitrary radius we have to argue carefully about how to reduce the union of disks 

to a planar network without decreasing the number of holes. The reduction uses line segments 

connecting certain of the disk centres (together with some polygons): the main technical issue 

is to choose a set of such line segments which leave connectivity unchanged and which do not 
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FIGURE 3: A typical field of overlapping disks B(x1. r1), B(xz, rz), .... B(xN, rN) of varying sizes. 

cross each other. Naiman and Wynn have recently discovered a delightful argument deriving 
Theorem 4.3 from their work on abstract tube theory [43, 45], based on an algebraic topology 
argument related to the Morse inequalities. However the argument given below is more self­
contained, and in particular avoids algebraic topology. 

We commence by introducing notation and proving two preliminary lemmas. 
Consider an ensemble B(x1, r1), B(x2, r2), ... , B(xN, rN) of N overlapping closed disks 

of varying sizes all lying in the plane. Set :JJ to be the union of the disks, and :JJo to be the 
union of the interiors of the disks, so that 

N 

:JJ = LJ B(x; ,r;) 

i=I 

N 

:Do= LJ int(B(x;, r;)). 
i=I 

We suppose that they are placed in general position, so that no more than two disk boundaries 
intersect at any given point, and so that if two disk boundaries do intersect then they intersect 
at two distinct points. Figure 3 illustrates a possible arrangement: close inspection will reveal 
that the disks here are in fact in general position! 

Each pair of overlapping disks B(x;, r; ), B (x j, rj) has boundaries intersecting in two points 
x :-: , x :':", where the order of i and 1· and the sign are chosen by an arbitrary convention so that 

IJ IJ 
i < j and x;j is on the clockwise side of B(x;, r;) n B(x j, Tj) when viewed from the centre of 

B(x;, ri). 
For each point of intersection xt of the boundaries of two disks B(x;, r; ), B(x j, rj ), if xt 

is not covered by :Do then define r/~ to be the closed triangular region with vertices at xt 

and the centres of B(x;, r; ), B(x j, r/). Define Sij to be the line segment running between the 

centres of B(x;, r;), B(Xj, rj). 
We say that T/j is not defined if the corresponding x~ is covered by 9Jo. We say that Sij is 

not de-kned if both the corresponding x:':" and x:-: are covered by 9Jo. 
;}' l) I} 
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FIGURE 4: The closed triangular region T/J with vertices at xJ and the centres of B(xi, ri ), B(Xj, rj ). 

In this example Ti} is not defined, since xij is covered by the interior of a third disk B(xk. rk ). 

Figure 4 illustrates the definition of xJ, 1f} and Sij. Note that if 1fT (respectively Ti}) 

is defined then xJ (respectively xij) is a 'comer' of the union :D. We now make some 
observations about these triangular regions. Firstly we note that they serve as 'dead areas' 
for disks, in the sense that if a B(xk. rk) has centre Xk lying in IiT (for i, j, k distinct) then it 
cannot contribute any exposed Xkl. This follows readily from geometric intuition, but here we 
give a rigorous proof based on homogeneous coordinates. 

Lemma 4.1. If If} (respectively Ijj) is defined then any further disk B(xk, rk) with centre in 

T;j (respectively Ti)) must be wholly contained in int(B(xi, r; )) U int(B(x j, rj )). 

Proof. Without loss of generality consider T;j. Because T;j is defined, xJ must lie outside 
B(xk, rk) (recall that the disks are placed in general position, so we can replace int(B(xk, rk )) 
by B(xk, rk) here). (Figure 5 illustrates the situation.) 

Choose coordinates such that xt = 0 and the centres of B(xi, ri ), B(x j, Yj) are at a, b 

respectively. If the centre of B(xk. rk) lies in Tf) then it is at A.a + µb, for A. + µ ::=:: 1, ).. ::: 0, 
µ ::: 0. (In fact A, µ, 1 - A. - µ provide a system of homogeneous coordinates for the centre 
of B(xk. rk).) 

Consider a pointy lying outside the interiors of both B(xi, n) and B(x j, rj ). This means 

lly-all::: llall. 
lly-bll::: llbll, 

and on squaring and simplifying we find 

Hence we deduce 

llYll2 - 2(y, a) 2: 0, 

llYll 2 - 2(y, b) 2: 0. 

(A.+ µ)llyll 2 - 2(y, (>..a+ µb)) ::: 0 

(note that ).. and µ are both non-negative!) and therefore, because A. + µ, ::=:: I, 

lly- (A.a+ µb)ll 2: llA.a +µbi!. 

(17) 

(18) 
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FIGURE 5: An argument using homogeneous coordinates, based on 0 = xiJ and the centres of B(x;. r;) 

and B(xj, rj ), shows that if T;J is defined, and if B(xk, rk) is centred in TiT' then B(.t}, rk) is contained 
in the union of the interiors of B(x;. r;) and B(xj. rj). 

But B(xk. rk) must not contain xt, and this means that its radius must be strictly less 
than /IA.a + µbll- So y must lie outside B(xk, rk), and so B(xk. rk) must be contained in 
int(B(x;,r;))U int(B(xj.rj)). 

Therefore no Tk1 or Skt can be defined for such a B(xk. rk); T/j is a 'dead area' for disks. 

A similar argument holds for r.-:-. 
I} 

Secondly we note that no two of these 'dead-area' triangles can have overlapping interiors. 

Lemma 4.2. No two triangles Ti~' Tr7 can have overlapping interiors. (Here the± super­

script refers systematically to one of+ or - in each of the two cases ofT;t· r,=:; ). 
Proof Let x;, Xj, Xr, Xs be the centres of disks B(x;, r;), B(Xj, r;), B(xr, rr), B(xs.rs) 

respectively. Let x&, x,; be exposed intersections of the respective disk boundaries. Suppose 

that a point u is in the interiors of both the triangle x; x jX& and the triangle x,x5x~. We derive 
a contradiction from this and the requirement of the disks being in general position, as follows. 

First observe that by the previous lemma we can deduce that the open disk D of centre u and 
radius Ju -xtl is contained in int(B(x;, r; )) U int(B(x j, rj )). Thus we can add a further closed 
disk B(xN+1,rN+J) to the original assembly of disks B(x1.ri), B(x2,r2) •... ,B(xNJNl 
without altering the union of all the disks, where B(xN+I· rN+ll is a closed disk of centre 
u and radius less than but arbitrarily close to lu - x&I· Consequently B(xN+1 • rN+I) cannot 

cover x,;, since otherwise x,; would be covered by !Do = LJ;:, 1 int(B(x;. r; )), contradicting 
our assertion that Tr7 is defined. 

Working with the new assembly B(x 1, r1), B(x2, r2) .... , B(xN, l'N), B(XN+I· rN+1). W<" 

can also apply the previous lemma to Tr~ and B(xN+I • rN+I ), to deduce that 

B(xN+l, rN+I) s;; int(B(xr, rr)) U int(B(XsJs)). 

Since the radius of B(xN+I, rN+l) is arbitrarily close to lu - x&I, we deduce that 
int(B(x,, r,)) U int(B(x5 , r5 )). 
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FIGURE 6: (a): 1) together with the configuration of defined triangles T/j» (b): Construction of j) from 
1) by retracting the 'edges' back to joined pairs of triangle segments. 

But now we have shown that the open disk D of center u and radius I u - x"/j I is contained in 

int(B(xr, r, )) U int(B(xs. rs )), while x"/j is not so contained (since it is exposed). So xi] lies 
on the boundaries of B(xr. rr). B(xs. rs). as well as on the boundaries of B(x;, r;), B(xj. rj). 
At least three of these disks are distinct, so this violates the requirement for the disks to be in 
general position. We deduce that the interiors of the triangles x;x jX"/j and XrXsx,; are disjoint, 
as required. 

We now turn to the main result of this section. 

Theorem 4.3. For :J) a union of N closed disks in the plane, the number of holes in 9) is 
bounded above by 2N - 5. 

Proof. We may suppose the disks are in general position as described at the beginning of 
this section. We use the notation established above. 

For every (exposed) 'corner' x"/j of :J) we have defined a 'dead-area' triangle T;1 with 

vertices atxi] and the centres of the two disks B(x;, r; ), B(x j, rj) whose overlapping forms the 
'corner'. Moreover we have shown that the interiors of distinct defined 'dead-area' triangles 
do not overlap. The resulting configuration of defined triangles T/} is shown in Figure 6(a). 

The 'comers' of :D divide the boundary o:D into 'edges' (circular arcs). To each 'edge' 
we can associate two bounding 'corners', PI and pz, except when the 'edge' is a complete 
circle, corresponding to a disk separated from all the others (note that the configuration of 
general position removes ambiguous cases). We need not consider the exceptional case, as 
this makes no contribution to the number of holes of D. For the non-exceptional edges 
the corresponding triangles share a vertex which is a disk centre c. The non-overlapping 
property given in Lemma 4.2 means we can retract each 'edge' back to the joined segments 
PI - c - pz, without altering the number of holes of 9). 

We can do this by the mapping F : [0, 1) x H - H, defined for a circular sector 
H = p1cp2 by 

F(t, (r, &)) = ((1 _ t(llo-9)/eo)r, &) 
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FIGURE 7: Construction of 8 from iJ by retracting the triangles T/j back to line segments Sij. 

where we coordinatize the sector H by polar coordinates such that 

H = {(r, 8): r E [0, ro], IBI :::: Bo}. 

Call the resulting region D. Figure 6(b) illustrates the construction. 
Now notice that each triangle T/J' can be retracted back to the line segment SiJ running 

between the centres of the two defining disks without altering the number of holes in jj. (This 
follows from general position and Lemma 4.2.) Call the resulting region 8. Figure 7 illustrates 
the construction. 

Finally consider the holes in 8. If we replace 8 by the network of line segments SiJ then 
we can only increase the number of holes (points disconnected by 8 will remain disconnected 
by the network). 

But we can now use planar graph theory as in the constant-radius case (using Euler's 
formula; see for example [66, Theorem 13A]) to obtain an upper bound of 2N - 5 on the 
number of holes in the network, as required. 

We owe the application of planar graph theory here to Mike Alder: a previous version of 
the argument used a simple angle-counting argument. Note that the major part of the effort in 
the proof of an apparently simple result goes towards establishing that we can shrink the union 
of disks to a planar graph of which nodes are disk centres, without decreasing the number of 
holes. 

Corollary 4.4. Let Y be a quermass-interaction germ-grain model whose grains are random 
disks. Assume the reference Poisson model has arbitrary positive radius distribution and finite 
intensity. Then the density p(y) = a,Bn(y) exp[-y Wi('U y )] is stable for all values of y. 

The main result of this section, Theorem 4.3, is of independent geometric interest. Simple 
periodic examples show asymptotic sharpness of the bound of at most 2N - 5 holes for the 
union of N disks. 

Extreme Euler-Poincare quermass-interactions which bias patterns 'against holeyness' are 
also of interest: if the intensity is high enough to force overlaps then it is an interesting question 
as to what are the most probable configurations, and indeed whether phase-transitions appear. 
We plan to investigate both ranges of extremes using simulation. 
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5. Planar case: when grains are polygons 

In this section we establish stability for the Euler-Poincare quermass-interaction germ­
grain model when the typical grain is a randomly rotated polygon (or more generally a random 
polygon which is neither too small nor too sharp). More precisely, we consider the case when 
the grains satisfy a uniform version of Definition 3.3. 

Definition 5.1. A convex grain G is said to satisfy a 'uniform wedge condition of angle <P > 0 
and radius r > O' iffor any pointw E aG the disk B(w, r) (ofradius rand centred at w) when 
intersected with G produces a circular sector B(w, r) n G of angle at least </J. 

This holds for example (for some r, <P) if G is a convex polygon of positive area. It 
corresponds to the wedge condition of Definition 3.3 together with a lower bound on side­
length. 

Theorem 5.2. Suppose that the grains G satisfy a unifonn wedge condition of angle <P and 
radius r for some fixed r, ef>. Then, for any germ-grain configuration y, W} ('Uy) is bounded 
above and below by a constant times the number of germs. 

Proof The proof begins with a series of reductions directed at resolving the question down 
to an unusual but deterministic geometric packing problem. 

A. It suffices to bound the number of holes. 
Arguing as before, the Euler-Poincare characteristic x ('Uy) = w} ('Uy) Irr is equal to 

the number of components of 'Uy minus the number of holes of 'Uy, and the number of 
components is bounded above by the number of germs. It therefore suffices to obtain a suitable 
upper bound for the number of holes. 

B. It suffices to consider the case of grains which are random wedges. 
Localizing to a disk ofradius r, it suffices to consider the case when G is an infinite convex 

planar wedge of angle exceeding <P > 0. To see this, note that the observation window can be 
covered by discs of radius r, and that there is a many-to-one correspondence between holes 
produced by the various intersections of 'Uy with covering disks and holes produced by the 
original 'Uy. Let N be the total number of wedges, equivalently the total number of germs. 

C. Discretization of wedge angle and orientation. 
It suffices to consider the case of grains which are randomly oriented wedges of fixed 

positive angle e /2, with clockwise-edge orientations distributed over a finite set of orienta­
tions 0, e, w' ... ' ke, where se /2 < <P depends only on the original c/> and k is given by 
(k + 1 /2)8 < 2rr :'.:': (k + 1 )e. (Here 'clockwise' edge refers to the view from the wedge 
vertex. This is illustrated in Figure 8(a).) 

To analyse the discretization, note that each original wedge can be replaced by a shrunken 
wedge, sharing the same vertex and contained in the original wedge, but of angle e and of 
lockwise-edge orientation belonging to the finite set described in the above sentence. It is 
)Ssible for this replacement to decrease the number of holes, but only by at most N. In 
et suppose the original wedges are W1, ... , W N, and the shrunken wedges are U 1, ... , UN. 
et U; (t) be a continuously shrinking wedge, changing monotonically from U; (0) = W; to 
; (I ) = U; by reducing wedge angle while keeping the vertex fixed. Consider the procedure 

Nhich shrinks the wedges one after the other in order, and consider the stage at which Wi is 
shrunk to U;. 

As t E [O, l] increases so the number of connected components of the complement of 
CU j<i Uj) U U;(t) U (LJ j>i Wj) (the number of holes of the union of wedges) decreases only 
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counterclockwise edge 

FIGURE 8: (a) Illustration of clockwise and counterclockwise edges of a wedge of vertex angle B. (b) 
The two vertical wedges to the right are downwind of the vertical wedge to the left: there is one slanted 

wedge. 

when there is an exposure of the vertex of one of the wedges Uj or Wj. But this can happen 
only once for each index j in the entire sequence of shrinkages Wi --+ U;, i = I, ... , N. 

Consequently the total reduction of the number of holes cannot exceed N, which therefore 
does not alter the required conclusion. 

D. It suffices to bound the number of exposed intersections of edges of wedges. 
Except in the trivial case of 'Uy = 0, every hole of 'Uy has a boundary possessing at 

least one exposed intersection of edges of wedges (meaning an edge intersection not itself 
covered by 'Uy). It therefore suffices to obtain an upper bound on the number of exposed edge 
intersections which is linear in N, the number of germs. 

E. We need only consider the case when there are two distinct orientations of wedges. 
Let us call the collection of wedges of a given orientation a wedge packet. 
The number of wedge packets being finite and depending only on the wedge-angle bounrl rl>. 

it suffices to bound intersections between just two wedge packets. If these are the same 
then all wedges are parallel. But then there can be only at most two exposed edge inte· 
per wedge and the required bound follows. 

F. For the purposes of exposition we consider only the number of exposed inten. 
clockwise edges of wedges. 

It will be observed that the argument below applies equally to the other forms of inte •. 
tion (counter-clockwise to clockwise, clockwise to counter-clockwise, counter-clockwise l 

counter-clockwise). 

Orient the configuration so that clockwise edges of wedges from one wedge packet are 
all vertical. We call the wedges from this packet vertical. We call the wedges from the other 
packet slanted. Let V be the number of vertical wedges and S be the number of slanted wedges. 
Say that one vertical wedge is downwind of another if it is further from the vertex of a slanted 
clockwise edge intersecting both (and of course the other wedge is said to be upwind of the 
first!). This is illustrated in Figure 8(b ). 

Now we proceed to assign each exposed intersection to a unique wedge, though not 
necessarily one of the two wedges directly involved in the intersection in question. To do 
this we must distinguish between two kinds of exposed intersection: 
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FIGURE 9: Space taken up by an exposed clockwise-clockwise edge intersection. 

(a) exposed intersections such that the slanted wedge has no (exposed or unexposed) inter­

sections upwind on its clockwise edge; 

(b) exposed intersections such that the slanted wedge does have (exposed or unexposed) 

intersections upwind on its clockwise edge. 

We shall assign an exposed intersection of type (a) to its slanted wedge. There can be only 

one such wedge per slanted intersection, therefore the total number of exposed intersections of 

type (a) is bounded by S, the number of slanted wedges. 
The total number of type (b) intersections is bounded linearly in V, the number of vertical 

wedges, as follows. 
To each type (b) intersection we assign a predecessor vertical wedge which provides the 

first upwind intersection (exposed or unexposed!) with the slanted wedge. Now each vertical 
wedge can be predecessor to at most M (a, 8) type (b) intersections, where 

M(a, {)) = l + ------[ 
cot(8) - cot(a) J 

cot(a) - cot(a + 8) 
(19) 

and a is the angle of intersection between the slanted and vertical clockwise edges (see Fig­

ure 9). This follows because exposed type (b) intersections owning the same predecessor 
wedge P must involve slanted wedges which do not overlap on L, where L is the vertical line 
determined by the most upwind of the vertical wedges providing type (b) intersections which 

own P. Figure I 0 (a, b) illustrates these considerations, especially the predecessor relationship. 

Note that we must have 8 :S a :S rr - fl, because of the 58 /2 < </> bound and since we are 
dealing with distinct wedge packets and orientations are multiples of e which itself is of the 
form rr/m. 

Calculus shows that the number M (a, 8) in equation (19) is bounded above for this range 
of a by [I + cot2(fl)]. 

This achieves a bound which is linear in the number of wedges, as required. 

Thus the number of exposed clockwise-clockwise edge intersections between two distinct 
wedge packets is bounded above by 

S + [ 1 + cot2 8] x V (20) 
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FIGURE 10: (a) The exposed clockwise-clockwise edge intersections owning the most upwind vertical 
wedge as predecessor are marked by stars; those on the most upwind wedge itself are marked by disks. 
(b) The most upwind exposed intersections of slanted wedges are marked by disks, others by stars. The 

predecessor relationship is indicated by arrows. 

(recall S is the number of wedges in the slanted wedge packet and V is the number of wedges 
in the vertical wedge packet). 

Together with the reduction steps listed above, this establishes the result. 

As a consequence of Theorem 5.2, the quermass-interaction germ-grain model with density 

p(y) = af3n(y) exp[-y Wi('Uy)] 

is stable and well-defined. 

6. Conclusion 

6.1. Simulation 

There is much further work to be done on these models. For example how can they best be 
simulated? After the recent work of Propp and Wilson [52] stochastic geometers are interested 
in constructing simulation algorithms which sample from equilibrium exactly rather than as 
the limit distribution of a Markov chain using reverse-time coupled Markov chains. This has 
already been done for the area-interaction point process in [19, 28]; indeed the algorithms 
presented there generalise easily to cover a variety of other point process models [30]. However 
the Euler weighting is less amenable, since the local energy is not bounded. One of us [29] is 
working on this and will report progress at a later date. 

6.2. Inference 

For point processes the methods described in [ 4] can be adapted quite easily. In particular, 
in the planar case the proposed quermass-interaction provides an exponential family of 1 + 3 
parameters (intensity f3 and coefficients of quermass integrals) and the sufficient statistic is 
the pair composed of the total number of objects and the vector of values of the quermass 
integral. We plan to investigate inference and maximum likelihood via Markov chain Monte 
Carlo techniques, as in [15, 14], and by approximation methods as in [42, 46, 47, 48, 50]. 
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It should be noted that for the random set case the unobservability issue is likely to make 
estimation difficult, although Monte Carlo techniques for missing data may be adapted to deal 
with this problem. 

6.3. Preston extensions 
One may ask whether these processes can be extended to the whole of Euclidean space. 

Following the arguments in Preston's book, as in [4], it can be shown that we can always 
ex.tend the notion of a quennass-interaction to the whole of Euclidean space so long as (a) the 
interaction is stable, and (b) the diameters of the grains are bounded above. Thus the work 
described above does indeed set the scene for querrnass-interaction point processes. 

6.4. Relationship to abstract tube theory 

We have already noted (in Section 4) an intriguing overlap with the work of Naiman and 
Wynn on abstract tubes and inclusion-exclusion identities [43, 45], which can be used to 
provide an alternative proof of Theorem 4.3. We hope to pursue this relationship in joint 
work with Naiman and Wynn. The intriguing question is to what extent the relationship can 
be developed in order to exploit the results of Section 5 in a more general context since these 
results currently appear to go beyond what may be obtained from abstract tube theory (but see 
the work on Vapnis-Chervonenkis dimension in [44]). 
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