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ABSTRACT
We describe here a structured system for distributed mechanism design. In our approach the
players dynamically form a network in which they know neither their neighbours nor the size of
the network and interact to jointly take decisions. The only assumption concerning the
underlying communication layer is that for each pair of processes there is a path of neighbours
connecting them.This allows us to deal with arbitrary network topologies. We also discuss the
implementation of this system that consists of a sequence of layers. The lower layers deal with
the operations relevant for distributed computing only, while the upper layers are concerned
only with communication among players, including broadcasting and multicasting, and
distributed decision making. This yields a highly flexible distributed system whose specific
applications are realized as instances of a top layer. This design is implemented in Java. The
system can be used for a repeated creation of dynamically formed networks of players
interested in a joint decision making implemented by means of a tax-based mechanism. We
illustrate its flexibility by discussing a number of implemented examples.
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Abstract

We describe here a structured system for distributed mechanism
design. In our approach the players dynamically form a network in
which they know neither their neighbours nor the size of the network
and interact to jointly take decisions. The only assumption concerning
the underlying communication layer is that for each pair of processes
there is a path of neighbours connecting them. This allows us to deal
with arbitrary network topologies.

We also discuss the implementation of this system that consists of
a sequence of layers. The lower layers deal with the operations relevant
for distributed computing only, while the upper layers are concerned
only with communication among players, including broadcasting and
multicasting, and distributed decision making. This yields a highly
flexible distributed system whose specific applications are realized as
instances of a top layer. This design is implemented in Java.

The system can be used for a repeated creation of dynamically
formed networks of players interested in a joint decision making im-
plemented by means of a tax-based mechanism. We illustrate its flex-
ibility by discussing a number of implemented examples.
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1 Introduction

1.1 Background and motivation

Mechanism design is one of the important areas of economics. To quote from
[6], it deals with the problem of ‘how to arrange our economic interactions
so that, when everyone behaves in a self-interested manner, the result is
something we all like.’ So these interactions are supposed to yield desired
social decisions when each agent is interested in maximizing his utility.

Our interest here is in the distributed implementation of the large class
of tax-based mechanisms that implement the decisions either in dominant
strategies or in a Nash equilibrium (see, e.g., [9]). The traditional approaches
rely on the existence of a central authority who collects the information from
the players, computes the decision and informs the players about the outcome
and their taxes.

Recently, in a series of papers distributed mechanism design was suggested
as a realistic alternative for the applications based on the Internet. In this
setting no central authority exists and the decisions are taken by the players
themselves.

The challenge here is to appropriately combine the techniques of dis-
tributed computing with those that deal with the matters specific to mecha-
nism design, notably rationality (i.e., appropriately defined self-interest) and
truth-telling (i.e., incentive compatibility). We meet it by applying sound
and proven techniques of distributed computing and, more generally, soft-
ware engineering. More specifically, we propose an appropriate platform for
distributed computing built out of a number of layers. This leads a flexible,
hierarchical, design in which the lower layers are concerned with the commu-
nication and synchronization issues and are clearly separated from the upper
layers that deal with the relevant aspects of the mechanism design.

More specifically, the lowest communication layer allows us to detect pro-
cess failure and provides an asynchronous, non-order preserving send oper-
ation. The next layer provides a message efficient, fault-tolerant distributed
termination detection (see, e.g., [10]) algorithm. In turn, the high-level com-
munication layer provides primitives appropriate for communication among
players, including broadcasting and multicasting. The dynamic network cre-
ation is realized by means of interconnected local registries.

Any specific application, such as an appropriate instance of the Groves
mechanism (see, e.g., [9]), is realized as an instantiation of a top layer. Using
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this platform players can engage in joint decision making by dynamically
forming a network with no central authority, in which they know neither
their neighbours nor the size of the network.

This design is implemented in Java and was tested on a number of exam-
ples including Vickrey auction with redistribution, two types of auctions and
a sequential mechanism design, described in the second part of the paper.

1.2 Related work

A number of recent papers deal with different aspects of distributed comput-
ing in connection with game theory and mechanism design.

Among them, Some focus on complexity such as communication com-
plexity. Some target on computation/communication/incentive compatibil-
ity and eventually faithful implementation. Others try to build a secure
computation in a distributed system. More recently, there has been a se-
ries of work on distributed constraint optimization and partial centralized
technique.

[11] focused on message communication by players in a distributed game.
However, they assume that there is a center to which every player is directly
connected. An influential paper [5] introduced the notion of distributed algo-
rithmic mechanism design emphasizing the issues of computational complex-
ity and incentive compatibility in distributed computing. Next, [12] studied
the distributed implementations of the VCG mechanism. However, in their
approach there is still a center that is ultimately responsible for selecting and
enforcing the outcome.

[17] considered the problem of creating distributed system specifications
that will be faithfully implemented in networks with rational (i.e., self-
interested) nodes so that no node will choose to deviate from the specifi-
cation. They used interdomain routing as an example and suggested ways to
detect when nodes deviate from their specified communication. In turn, [7]
proposed in the context of secure computation a stronger form of computa-
tion in that it solely depends on players rationality not honesty.

[15] introduced the first distributed implementation of the VCG mecha-
nism. The only central authority required was a bank that is in charge of the
computation of taxes. The authors also discussed a method to redistribute
some of the VCG payments back to players. Finally, [14] proposed a new
partial centralization technique, PC-DPOP, based on the DPOP algorithm
of [13]. PC-DPOP provides a better control over what parts of the problem
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are centralized and allows this centralization to be optimal with respect to
the chosen communication structure.

1.3 Details of our approach

Our work is closest to [15] whose approach is based on distributed constraint
programming. In contrast, our approach builds upon a very general view
of distributed programming, an area that developed a variety of techniques
appropriate for the problem at hand.

This allowed us to realize the following improvements to the approach of
[15]:

• we deal with a larger class of mechanisms, notably Groves mechanisms.
They include the VCG mechanism and various forms of redistributions
of VCG payments recently studied in the literature (and considered in
[15]). Additionally, we can easily tailor our platform to other tax-based
mechanisms, such as Walker mechanism (see [18]),

• the number of players can be unknown,

• the only central authority used is a tax authority . It is weaker than
the bank process of [15] in that it is needed only for the mechanisms
that are not balanced, where it is used only to collect the resulting
deficit,

• our platform can be easily customized to real-life applications by cou-
pling it with specific registration schemes for participating in the mech-
anism. Also it can be used for a repeated distributed decision making
process, each round involving a different group of interested players.

The lower layers of our platform support a generic broadcast command

that ensures that each broadcast message is eventually delivered to each
registered player. The implementation of this command relies only on the
assumption that for each pair of players there is a path of neighbouring
processes connecting them. This allows us to deal with arbitrary network
topologies in a simple way.

Another distinctive feature of our approach is that it supports fault-

tolerance at the mechanism design level. This means that the final decision
and taxes can be computed even after some of the processes that broadcast
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the player’s types crash: the other processes then still can proceed. This is
achieved by the duplication of the computation by all players. Such a redun-
dancy is common in all approaches to fault-tolerance. In [16] it is used to
realize two natural requirements for a distributed mechanism implementa-
tion: computation compatibility and communication compatibility. Redun-
dancy was intentionally avoided in [15] that aimed at minimizing the overall
communication and computation costs. Here it allows the fastest process to
‘dominate’ the computation.

2 Mechanism design: the classical view

We recall here briefly tax-based mechanisms, notably the family of Groves
mechanisms, see, e.g., [9, Chapter 23]. Assume a set of decisions D,
a set {1, . . . , n} of players, for each player a set of types Θi and a utility

function vi : D×Θi → R. In this context a type is some private information
known only to the player, for example a vector of player’s valuations of the
items for sale in a multi-unit auction.

A decision rule is a function f : Θ → D, where Θ := Θ1 × · · · × Θn.
We call the tuple

(D,Θ1, . . . ,Θn, v1, . . . , vn, f)

a decision problem .
A decision rule f is called efficient if for all θ ∈ Θ and d′ ∈ D

n
∑

i=1

vi(f(θ), θi) ≥
n

∑

i=1

vi(d
′, θi),

and strategy-proof (or incentive compatible) if for all θ ∈ Θ, i ∈
{1, . . . , n} and θ′i ∈ Θi

vi(f(θi, θ−i), θi) ≥ vi(f(θ′i, θ−i), θi),

where θ−i := (θ1, . . . , θi−1, θi+1, . . . , θn) and (θ′i, θ−i) := (θ1, . . . , θi−1, θ
′
i, θi+1,

. . . , θn).
In mechanism design one is interested in the ways of inducing the players

to announce their true types, i.e., in transforming the decision rules to the
ones that are strategy-proof. In tax-based mechanisms this is achieved by
extending the original decision rule by means of taxes that are computed
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by the central authority from the vector of the received types, using players’
utility functions.

Given a decision problem, in the classical setting, one considers then the
following sequence of events, where f is a given, publicly known, decision
rule:

(i) each player i receives a type θi,

(ii) each player i announces to the central authority a type θ′i; this yields a
joint type θ′ := (θ′1, . . . , θ

′
n),

(iii) the central authority then makes the decision d := f(θ′), computes the
sequence of taxes t := g(θ′), where g : Θ → Rn is a given function, and
communicates to each player i the decision d and the tax |ti| he needs
to pay to (if ti ≤ 0) or to receive from (if ti > 0) the central authority.

(iv) the resulting utility for player i is then ui(d, t) := vi(d, θi) + ti.

Each Groves mechanism is obtained using g(θ′) := (t1(θ
′), . . . , tn(θ′)),

where for all i ∈ {1, . . . , n}

• hi : Θ−i → R is an arbitrary function,

• ti : Θ → R is defined by1

ti(θ
′) := hi(θ

′
−i) +

∑

j 6=i

vj(f(θ′), θ′j).

Intuitively, the sum
∑

j 6=i vj(f(θ′), θ′j) represents the society benefit from the
decision f(θ′), with player i excluded.

The importance of the Groves mechanisms is revealed by the following
crucial result, in which we refer to the expanded decision rule (f, g) : Θ →
D ×Rn.

Groves Theorem Suppose the decision rule f is efficient. Then in each
Groves mechanism the decision rule (f, g) is strategy-proof w.r.t. the utility
functions u1, . . . , un.

The proof is remarkably straightforward so we reproduce it for the con-
venience of the reader.

1Here and below
∑

j 6=i is a shorthand for the summation over all j ∈ {1, . . . , n}, j 6= i.
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Proof. Since f is efficient, for all θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi we have

ui((f, t)(θi, θ−i), θi) =
n

∑

j=1

vi(f(θi, θ−i), θi) + hi(θ−i)

≥
n

∑

j=1

vi(f(θ′i, θ−i), θi) + hi(θ−i)

= ui((f, t)(θ′i, θ−i), θi).

2

When for a given tax-based mechanism for all θ′ we have
∑n

i=1 ti(θ
′) ≤

0, the mechanism is called feasible (which means that it can be realized
without external financing) and when for all θ′ we have

∑n

i=1 ti(θ
′) = 0, the

mechanism is called balanced (which means that it can be realized without
a deficit).

Each Groves mechanism depends on the functions h1, . . ., hn. A special
case, called Clarke mechanism , or Vickrey-Clarke-Groves mecha-

nism (in short VCG) is obtained by using

hi(θ
′
−i) := −max

d∈D

∑

j 6=i

vj(d, θ′j).

So then

ti(θ
′) :=

∑

j 6=i

vj(f(θ′), θ′j) − max
d∈D

∑

j 6=i

vj(d, θ′j).

Hence for all θ′ and i ∈ {1, . . . , n} we have ti(θ
′) ≤ 0, which means

that the VCG mechanism is feasible and that each player needs to make the
payment |ti(θ

′)| to the central authority. Other feasible Groves mechanisms
exist in which some players receive the payments and others have to make
the payments, for example the one proposed in [4], which we discuss in
Subsection 5.1.

3 Our approach

In our approach we relax a number of the assumptions made when introduc-
ing mechanism design. More specifically we assume that
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• there is no central authority,

• players interested in ‘the game’ need to register,

• the players whose registration is accepted inform other registered play-
ers about their types,

• once a registered player learns that he has received the types from all
registered players, he computes the decision and the taxes, sends this
information to other registered players and terminates his computation.

We also assume that there is no collusion among the players. This leads
to an implementation of the mechanism design by means of anonymous (i.e.,
name independent) distributed processes, in absence of any central author-
ity. Because of the distributed nature of this approach no global state, in
particular no global clock, exists. The computation of the decision and of
the taxes is carried out by the players themselves.

As it stands, this revised setting is not clear on a number of counts. First,
we need to clarify the registration process, in particular what it implies and
when it ends. In our approach each player is represented by a process, in
short a player process. A player who wishes to join a specific mechanism
(e.g., an auction) must register with a local registry . Each geographic
or logical region, such as a country, city, or Internet domain can have its
own local registry. Players can find the addresses of their respective local
registries in public fora, e.g., local government web sites. Local registries
are linked together in a network that satisfies the full reachability condition
described in Subsection 4.2 (and we assume one of them is designated as the
initiator mentioned in that subsection). Receiving his registration request, a
local registry verifies the eligibility of a player (e.g., whether his IP address
puts him under the jurisdiction of this registry) and accepts his request if
the registration conditions for the specific mechanism (e.g., a deadline) are
met.

Second, once the registration process ends, in the resulting network a
player process may not know the identities of other player processes, so the
announcement of one’s type to all other players needs to be explained. In
our approach we assume that once a player process is registered, it joins
the network of (registry and player) processes wherein a generic broadcast

command is available. The topology of this network is irrelevant both from
the point of view of the individual processes, as well as the semantics of
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the broadcast command. The full reachability of the backbone network of
local registries is enough to ensure that as long as each player process knows
and is known by its local registry, full reachability also holds for the whole
network. The broadcast command uses the connectivity of this network to
ensure that a copy of a broadcast message is eventually delivered to every
registered player in finite time.

Third, we need to clarify how each player process will know that he
indeed received the types announced by all other registered players. We solve
this problem by assuming that each player process after broadcasting the
player’s type invokes a distributed termination detection algorithm

the aim of which is to learn whether all players have indeed broadcast their
types. This algorithm is tailored to deal with the communication by means
of multicasting (which subsumes broadcasting).

If this algorithm detects termination, the player process knows that he
indeed received all types, and in particular can determine at this stage the
number of players. From that moment on each player process uses the same
naming scheme when referring to other player processes. This is ensured by a
local scheme for generating globally unique player identifiers. More generally,
we use the distributed termination detection algorithm to detect the end of
each phase of the distributed computation: registration, type broadcast, etc.,
i.e., for barrier synchronization , see, e.g., [1].

Fourth, to ensure the correctness of the above approach, it is crucial that
each player process computes the same decision and the same information
concerning taxes. The former is taken care of by the fact that each player
process uses the same, publicly known, decision rule f that each player learns,
for example from a public bulletin board, and that is used by the player
process after its registration is accepted.

Further, each player process applies f to the same input θ′ and computes
the same tax scheme by which we mean a specific vector of payments
tax(t1), . . . tax(tn) computed from the tax vector (t1, . . . , tn), where tax(tj)
specifies the amount that player j has to pay to other players and possibly
the tax authority from his tax tj. All tax schemes tax(t1), . . . tax(tn) then
determine ‘who pays how much to whom’. In general most taxes equal 0,
so we optimize the computation by generating reduced tax schemes in
which only non-zero entries are listed and by multicasting them instead of
broadcasting. Note also that to compute the taxes each player process needs
to know the utility functions of other player processes.
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Finally, it is important to note that our approach allows for a repeated

mechanism , that is several rounds of decision making can take place, by
means of the same given mechanism, each time involving a possibly different
group of players. To this end we need to logically separate each round of
the mechanism. This is handled, again, using our distributed termination
detection algorithm for barrier synchronization.

4 Implementation

Our distributed mechanism design system is implemented in Java. The im-
plementation follows the guidelines explained in the previous section. Fig-
ure 1 shows the overall architecture of our system and the different layers
of software used in its implementation. The implementation of the first two
layers is about 9K lines of Java code. It was developed by Kees Blom and
took about 2 man years. The remainder of the system is about 3.5K lines
of Java code and was developed by Huiye Ma during the last 9 months. We
also relied on software for message passing between internet-based parallel
processes developed by Han Noot. Each entity in this architecture com-
municates, either through function calls or method invocations, only with
its adjacent entities. Specific applications are realized by instantiating the
crucial player process layer.

BTTF 

Low Level Communication

RegistryHigh Level Communication

Player GUI

Tax Authority S.I.

Tax Authority Process
Player Process

Figure 1: Implementation architecture
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4.1 Low Level Communication

The Low Level Communication (LLC) layer supports (1) locally generated,
globally unique process identifiers, and (2) reliable non-order-preserving,
asynchronous, targeted communication, exclusively through the exchange of
passive messages between processes. The only means of communication be-
tween processes in LLC is through message passing, where no transfer of
control takes place when messages are exchanged.

Targeted means that the sender of a message explicitly specifies the recip-
ient of the message. Asynchronous means that the receiver of a message is
not guaranteed to have received the message upon the completion of the send
operation. Non-order-preserving means that the temporal order of messages
sent from the same sender to the same receiver is not necessarily preserved.
Reliable means that every message sent by a sender will be received by its
target receiver in finite but indeterminate time, without alteration and in its
entirety (unless the receiver process fails or terminates). A message sent to
a non-existent (terminated or failed) process will be returned to its sender
intact, in finite but indeterminate time (a time-out).

The interface provided by the LLC layer contains the two operations
llsend(m, r) and llreceive(m, t). The llsend(m, r) operation sends
the message m to its target process r and returns a Boolean value that in-
dicates the success or failure of the operation. A send operation may fail,
for instance, if the size of the message is above the capacity threshold of
the transport mechanism, or due to other possible internal errors. Successful
send simply means that the message has been dispatched on its way to its
specified target.

The llreceive(m, t) operation blocks its calling process, p, until either
(a) a message sent to p has arrived, or (b) the specified time-out t has
expired. In the first case, llreceive() returns true and passes the received
message in m. In the second case, this function returns false to indicate
that the time-out t has expired. For convenience, we use the shorthand
llreceive(m) for the common situation where the time-out t is infinity.

4.2 BTTF

The Back To The Future (BTTF) layer implements a message efficient, fault-
tolerant distributed termination detection (DTD) algorithm, on top of the
LLC layer. The details of the BTTF DTD algorithm are described in [3]
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and lie beyond the scope of this paper. We describe here only those salient
features of this algorithm and its implementation that are pertinent for our
application.

Specifically, the BTTF layer contains the implementation of the BTTF
Wave algorithm, which is a wave DTD algorithm. All wave DTD algorithms
determine termination using a cascading wave of special control messages,
called tokens. They also require the designation of a single process as the
initiator , which is responsible for initiating the token waves, and typically,
several rounds of token waves are necessary for the initiator to detect global
termination. In each round, a cascading wave of tokens travels through every
process in the system and collects its status information for the initiator.

In the BTTF algorithm, the initiator is anonymous, i.e., no process (other
than the initiator) knows who the initiator is. All aspects of token handling
and termination detection are transparently handled internally by the BTTF
algorithm. The BTTF Wave algorithm is message efficient: in the absence
of process failures, to detect termination in a system of m processes that
exchange a total of n normal messages, it requires only O(n) control messages
plus 2 rounds of token waves, where each round contains between O(m)
to O(m2) token messages. The BTTF algorithm transparently detects and
tolerates persistent process failures through an optional probing mechanism.
Probing adds an extra cost of O(n) control messages. Termination detection
is costlier when process failures actually occur, because they may increase
the number of required rounds of token waves: the BTTF Wave algorithm
requires 2 successive failure-free rounds to detect termination.

Every process in the BTTF Wave algorithm must maintain a set of iden-
tifiers of k ≥ 0 other processes in the system, called its buddies. The buddies
sets of processes are transparently used by the BTTF Wave algorithm to
cascade its token waves. The processes in the buddies set of a process p may
or may not be the same as (some of) the processes that communicate with
(i.e., send messages to, or receive messages from) p. The only requirement
on the buddies sets of processes is that they must collectively provide the
initiator with full reachability.

More precisely, let P be the finite set of processes in a system, and let
b1(p) designate the buddies set of a process p ∈ P . For integers i > 0, define

bi+1(p) =
⋃

x∈bi(p)

bi(x) ∪ bi(p).

Since P is finite, there exists an i > 0 for which the above definition reaches
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a fixed point b∗(p), where b∗(p) = bi+1(p) = bi(p). The full reachability
requirement of the BTTF algorithm holds if for the initiator process a ∈ P ,
b∗(a) ∪ {a} = P . Even when the failure of a process x ∈ P partitions the
remaining processes P \ {x} into two or more mutually unreachable subsets,
the BTTF algorithm continues undeterred in the partition b∗(a) ∪ {a}\{x} ⊂
P \ {x} that includes the initiator process a. (In the calculation of b∗(a), the
b1(x) of a failed process x is ∅.)

In practice, there are many simple, local schemes that guarantee the
full reachability requirement of the BTTF algorithm. For instance, in the
common case where a system starts from a single process which transitively
creates all other processes in the system, it is sufficient that each process
keeps only its immediate parent and its immediate children in its buddies
set. In this case, any process can be designated as the initiator, and each
round of token waves involves O(2m) token messages.

Aside from its responsibility to maintain its buddies list (e.g., adding
its newly created children processes), a process using the BTTF algorithm
is oblivious to the details of termination detection and failure recovery. A
process starts by calling the initialization function provided by the BTTF
layer. At this point the process is active. While active, a process can use
the send and receive functions of the BTTF to send and receive messages
to and from other processes. A process becomes passive when it is prepared
to terminate. Termination is detected when all processes in the system are
passive. It is possible for a process that is (still) active to send a message
to a passive process, which must change the status of the receiver back to
active, allowing it to send and receive more messages.

The BTTF layer provides two receive functions in its interface: receive()
and passiveReceive(). A process uses receive() when it expects to re-
ceive a message from another process, while it is not prepared to termi-
nate. A call to receive() blocks until it returns either with a received
message, or when its optionally specified time-out parameter expires. Call-
ing passiveReceive() indicates that the process is prepared to terminate,
unless it receives a message. A call to passiveReceive() blocks until it
returns either with a received message, or with an indication that global
termination has been detected.

The DTD functionality provided by the BTTF layer can be used for bar-
rier synchronization as well as for termination detection. Once passiveReceive()
indicates termination has been detected, the calling process knows that all
processes in the system have reached the same ‘termination barrier’. This
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termination barrier is either the actual termination of the processes, or the
virtual termination of only the current phase of the activity in the system.
In the first case, the calling process must perform its local clean-up and
terminate. In the second case, the process must start a new phase of its
computation by calling the initialization function of the BTTF layer once
more.

The implementation of the BTTF layer requires only the llsend(m, r)

and llreceive(m, t) operations provided by the LLC layer. It provides an
interface consisting of the following functions:

• initializeBTTFWave(. . .) This function (re)initializes the calling pro-
cess, enabling it to participate in the (next phase of) global compu-
tation. The details of the parameters of this function are beyond the
scope of this paper.

• insertBuddy(p) This function call inserts the specified process p in
the buddies set of the calling process.

• removeBuddy(p)This function call removes the specified process p from
the buddies set of the calling process.

• send(m, T) This function implements a delayed multicast operation.
It schedules a copy of the message m to be sent to every process in the
target set of processes T. The actual dispatch of the messages to their
specified targets will take place upon a subsequent call to one of the
functions prioritySend(), receive(), or passiveReceive().

• prioritySend(m, T) This function implements a multicast operation.
It first sends all messages scheduled by earlier calls to send(), if any,
and then sends a copy of the message m to every process in the target
set of processes T.

• receive(m, t) The parameter t is an integer value. Negative t values
indicate indefinite wait, and non-negative values specify a time-out
value in milliseconds. A call to this function blocks until either the
specified time-out expires, or a message sent to the calling process is
available. If the specified time-out expires, the return result of this
function is false and the value of m is undefined. If a received message
is available, this function returns the message in m and returns true.
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• passiveReceive(m) A call to this function blocks until either global
termination (of the current phase of the computation) is detected, or
a message sent to the calling process is available. If termination is
detected, the return result of this function is false and the value of m
is undefined. If a received message is available, this function returns
the message in m and returns true.

4.3 High Level Communication and Registry

The High Level Communication (HLC) layer provides indirect, anonymous
communication among the players in a distributed system. It includes a
number of local registries whose mutual connectivity supports the full con-
nectivity of the players necessary for broadcast. A player must sign-in at a
local registry, after which it can use the other operations provided by the
HLC layer to play the game. It provides the following functions:

• signin(r) This function signs the calling player process in at the local
registry r and properly initializes the respective structures in both the
registry r and the calling player process. The player can start the
first phase of the game right after a successful return of a call to this
function.

• signout() This function terminates the participation of the calling
player process in the game.

• bsend(m) This function broadcasts the message m to all registered play-
ers in the game.

• msend(m, T) This function multicasts the message m to every player in
the target set T.

• receive(m, t) This function is the same as its homonym in the BTTF
layer.

• passiveReceive(m) This function is the same as its homonym in the
BTTF layer.
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4.4 Player Process

Specific applications are implemented using this top layer. It is built on top
of the HLC layer and is used to implement specific actions of the players, in
particular the computation of the decisions and taxes. In our implementation
of the distributed mechanism design the following sequence of actions takes
place for each player i, where flagi is a Boolean variable. By termination

loop we mean here the statement

while (passiveReceive(m))

{process message m}

and by inspect loop we mean the statement

flag = false

while (receive(m, 100)) {

if (m is a tax scheme) {

flag = true

process m

} else process or ignore m as appropriate

}

where 100 is some arbitrary time-out in miliseconds.

(i) process pi representing player i is created and assigned a globally unique
name,

(ii) pi obtains player i’s type,

(iii) pi signs in at the local registry r in its region using the signin(r)

call upon which all messages sent to pi by processes representing other
players are locked and stored. The lock prevents that pi can access
these messages,

(iv) if pi receives the confirmation of the registration (the call of signin(r)
is successful), it broadcasts player i’s type using the bsend() function
(and otherwise it terminates),

(v) the lock of pi is open so that pi can access all messages that were or
will be sent to it by processes representing other players,
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(vi) pi performs the termination loop. When it ends (i.e., global ter-
mination is detected) pi has a globally unique naming scheme at its
disposal to refer to the processes that represent all registered players,
and computes the number of players n from the number of types it has
received,

(vii) pi performs the inspect loop to determine whether another process
has already computed player i’s tax scheme. If this is the case, flagi

will be set true,

(viii) if flagi is not true, pi computes the decision and the tax schemes of
the players and multicasts using the msend() function the decision and
the tax schemes to the processes representing players who need to pay
or receive taxes and the decision to the other processes. If pi needs to
pay some tax t′ > 0 to the tax authority it sends this information to
the tax authority process using the msend() function,

(ix) pi performs the termination loop,

(x) when it ends and after pi receives from the tax authority process the
total amount of taxes the tax authority received, pi performs the
termination loop again and terminates.

The details of the tax scheme algorithm can be found in Appendix I.

4.5 Tax Authority Software Interface

This layer is built on top of the HLC layer. It provides two functions also
available in the HLC layer, passiveReceive(m) and bsend(m), and two new
functions, tsignin(r) and tsignout(), which are the counterparts of the
signin(r) and signout() functions of the HLC layer and which are used
to deal with the tax authority process registration.

4.6 Tax Authority Process

This layer is built on top of the Tax Authority Software Interface layer and
is used to implement the actions of the tax authority which is in charge of
collecting players’ taxes. The following sequence of actions takes place for it:
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(i) The tax authority process ta representing the tax authority is created
and assigned a globally unique name known to every player. It signs
in at the local registry in his region using the tsignin(r) call (which
always succeeds),

(ii) ta performs the termination loop (to synchronize the computation
phases with the player processes),

(iii) ta performs the termination loop again. When it ends, the tax au-
thority process has received all the taxes from the players. They are
kept on a single account,

(iv) ta broadcasts the total amount on its single account to all players,

(v) ta performs the termination loop and terminates.

4.7 Player GUI

The interaction between the player (user) and the system is realized in this
interface. The interaction is limited to the registration, type submission and
tax reception.

4.8 Comments

The above approach can be easily customized to specific purposes. In par-
ticular we can add specific registration details, for example stipulate that
the registration is successful only if it took place before a certain deadline
that refers to a global clock, or if some quorum (minimum number) of regis-
tered players is reached at each local registry, and/or if a global quorum of
registered players is reached.

As it stands our design seems to allow some players to modify the infor-
mation (for example, a type or tax schemes) that is passed through them
to other players or to the tax authority in ways that are advantageous for
themselves.

However, the system is so designed that this information is available only
within the player process layer and not to the players themselves. Indeed,
the players access the system only through the player GUI that limits the
interface between the players and the system to a minimum. This provides
a form of security to the users of the systems.
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Further, the use of locks in the player process layer provides a protection
against tampering with this layer. However, no provision has been imple-
mented against ‘breaking’ into lower layers of the system. These matters are
orthogonal to the ones considered here and their solution would require use
of specific techniques from computer security and cryptography.

5 Examples

We used our distributed mechanism design system in a number of test cases
that we now briefly describe. Each of them, is implemented as an instantation
of the player process layer described in Subsection 4.4.

5.1 Vickrey auction with redistribution

In Vickrey auction there is a single object for sale which is allocated to
the highest bidder who pays the second highest bid. We consider here the
proposal of [4] in which the highest bidder redistributes some amounts from
his payment to other players. This minimizes the overall tax.

First we model Vickrey auction as the following decision problem (D,Θ1, . . . ,

Θn, v1, . . . , vn, f):

• D = {1, . . . , n},

• each Θi is the set R+ of non-negative reals; θi ∈ Θi is player i’s valua-
tion of the object,

• vi(d, θi) :=

{

θi if d = i

0 otherwise

• f(θ) := i,

where θi = maxj∈[1..n] θj and2 ∀j ∈ [i + 1..n] θj < θi.

Here decision d ∈ D indicates to which player the object is sold. By
definition f is an efficient decision rule. Below, given a sequence s of reals
we denote by [s]k the kth largest element in this sequence. For example, for
θ = (1, 5, 2, 3, 2) we have [θ−2]2 = 2 since θ−2 = (1, 2, 3, 2).

2In case of a tie we allocate the object to the player with the highest index.
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The payments (taxes) in Vickrey auction are realized by applying the
VCG mechanism, which yields

t′i(θ) :=

{

−[θ]2 if f(θ) = i

0 otherwise

To formalize the redistribution scheme of [4] in our framework we combine
each tax t′i with the following function hi (to ensure that it is well-defined
we need to assume that n ≥ 3):

hi(θ−i) :=
[θ−i]2

n

that is, by using
ti(θ) := t′i(θ) + hi(θ−i).

Note that this yields a Groves mechanism since by the definition of the
VCG mechanism for specific functions h′

1, . . . , h
′
n

t′i(θ) := h′
i(θ−i) +

∑

j 6=i

vj(f(θ), θj)

and consequently

ti(θ) = (hi + h′
i)(θ−i) +

∑

j 6=i

vj(f(θ), θj).

The resulting mechanism is feasible since for all i ∈ [1..n] and θ we have
[θ−i]2 ≤ [θ]2 and as a result

n
∑

i=1

ti(θ) =
n

∑

i=1

t′i(θ) +
n

∑

i=1

hi(θ−i) =
n

∑

i=1

−[θ]2 + [θ−i]2
n

≤ 0.

Let, given the sequence θ of submitted bids (types), π be the permutation
of 1, . . . , n such that θπ(i) = [θ]i for i ∈ [1..n] (where we break the ties by
selecting players with the higher index first). So the ith highest bid is by
player π(i) and the object is sold to player π(1). Then

• [θ−i]2 = [θ]3 for i ∈ {π(1), π(2)},

• [θ−i]2 = [θ]2 for i ∈ {π(3), . . . , π(n)},
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so the above mechanism boils down to the following payments by player π(1):

• [θ]3
n

to player π(2),

• [θ]2
n

to players π(3), . . . , π(n),

• [θ]2 −
2
n
[θ]3 −

n−2
n

[θ]2 = 2
n
([θ]2 − [θ]3) to the tax authority,

that is, it does indeed coincide with the scheme of [4].

5.2 Unit demand auction

We now consider an auction with multiple items offered for sale. We assume
that there are n players and m items and that each player submits a valuation
for each item. The items should be allocated in such a way that each player
receives at most one of them and the aggregated valuation is maximal.

This auction can be modelled as the following decision problem:

• D = {f | f : A → {1, . . . , n}, A ⊆ {1, . . . ,m}, f is 1-1},

i.e., each decision is a 1-1 allocation of items to players,

• Θi = Rm
+ ; (θi,1, . . . , θi,m) ∈ Θi is a vector of player i’s valuations of the

items for sale,

• vi(d, θi) :=

{

θi,j if d(j) = i

0 if ¬∃j d(j) = i

• f(θ′) := d for which
∑

j∈dom(d) θ′d(j),j is maximal.

Decision rule f is clearly efficient, so Groves Theorem can be used. Our
distributed implementation of the corresponding VCG mechanism is again
realized as an instance of the player process layer of Subsection 4.4 with the
following details concerning computation of the decision and taxes.

When a player has received the types from all the registered players he
needs to compute the decision. To this end we use the Kuhn-Munkres al-
gorithm to compute the maximum weighted matching, where the weight
associated with the edge (j, i) is the valuation for item j reported by player
i. In our implementation we used the Java source code available at http:

//adn.cn/blog/article.asp?id=49.
To compute tax for player i according to the VCG mechanism this algo-

rithm needs to be used again, to compute the maximum weighted matching
with player i excluded.
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5.3 Single minded auction

Next we consider an auction studied in [8] in which there are n players and
m items, with each player only interested in a specific set of items (which
explains the name of the auction). In our approach we limit ourselves to the
situation in which each player i is only interested in a consecutive sequence
ai, . . . , bi of the items 1, . . . ,m, with 1 ≤ ai ≤ bi ≤ m.

We model this as the following decision problem:

• D = {f | f : A → {1, . . . , n}, A ⊆ {1, . . . ,m}},

• Θi = R+; θi ∈ Θi is player i’s valuation for the sequence ai, . . . , bi of
the items,

• vi(d, θi) :=

{

θi if d(j) = i for all j ∈ [ai, . . . , bi]
0 otherwise

• f(θ′) := d for which
∑

i:d([ai,...,bi])={i} θ′i is maximal, where d([ai, . . . , bi]) =

{d(j) | j ∈ [ai, . . . , bi]}.

So, given an allocation f ∈ D the goods in the set {k | f(k) = j} are
allocated to player j. Note that alternatively f can be defined by:

f(θ′) := d for which
n

∑

i=1

vi(d, θ′i) is maximal.

So f is efficient and consequently Groves Theorem applies. The computations
of the decision and of the taxes within the player process layer of Subsection
4.4 involve constructions of the maximum weighted matchings that are com-
puted using a dynamic programming algorithm, details of which are omitted.

5.4 Sequential Groves mechanisms

In the original set up of the decision problem all players announce their types
independently. In a modification studied in [2] the types are announced
sequentially, in a random order.

Suppose that the random order is 1, . . . , n. The crucial difference between
the customary set up and the one now considered is that player i knows
the types announced by players 1, . . . , i − 1. In [2] it was shown that in
the context of Groves mechanisms used for problems concerned with public
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projects players have then other dominant strategies than truth-telling (i.e.,
announcing their true type) and that these strategies can be used to minimize
the taxes.

Sequential Groves mechanisms can be implemented by means of our dis-
tributed mechanism system by slightly modifying the player process layer,
specifically items (iv) and (v) in the sequence of actions described in Subsec-
tion 4.4 to:

• if process pi receives the confirmation of the registration, it includes
his sequence number j and information whether it represents the last
player (the latter is needed to use other dominant strategies than truth-
telling),

• the lock of pi is partly open so that pi can access all messages that were
or will be sent to it by processes representing players with sequence
number < j,

• each process with sequence number j, where j > 1, counts the number
of types it received. When the count becomes j − 1 it broadcasts the
type,

• the lock of pi is then (completely) open.

5.5 Other applications

To test the versatility of our approach we also implemented a number of
other examples. These include:

• Vickrey auction,

• a number of examples of decision making concerned with public projects,
see [9, Chapter 23],

• Walker mechanism of [18].

In the latter mechanism each player i has a utility function of the form
vi(q) := bi(q)− ci(q). Here q is the total amount of public good (for example
grass area in a city) produced by the players, bi(q) is the benefit for player i

from the amount of q of public good, and ci(q) is the cost share player i has
to pay.
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Each player i reports a real number xi, which is interpreted as the amount
of public good he agrees to produce. Then he receives the payment (tax)

ti(x) := (xi+1 − xi−1)
n

∑

j=1

xj,

where we interpret n + 1 as 1 and 1 − 1 as n, that is i + 1 and i − 1 are the
indices of the right-hand and left-hand neighbours of player i in a ring.

So x =
∑n

j=1 xj is the total amount of public good produced and the final
utility for player i is of the form ui(x) := vi(x) + ti(x).

This mechanism is not an instance of Groves mechanism and implements
the decision not in dominant strategies but in a Nash equilibrium. To im-
plement it we again merely modified the player process layer. To test this
mechanism we used specific functions bi and ci.

6 Conclusions and future work

We presented in this paper a design of a platform that supports distributed
mechanism design. It is built as a sequence of layers. The lower layers provide
support for distributed computing, while the upper ones are concerned only
with the matters specific to mechanism design. The platform is implemented
in Java.

We believe that the proposed platform clarifies how the design of systems
supporting distributed decision making can profit from sound principles of
software engineering. We found that the division of the software into layers
resulted in a flexible design that could be easily customized to specific mech-
anisms proposed in the literature, such as (sequential) Groves mechanisms
and Walker mechanism, and to specific applications, such as various forms
of auctions.

We also provided evidence that software engineering in the area of mul-
tiagent systems can profit from the techniques developed in the area of dis-
tributed computing, for example broadcasting in an environment with an
unknown number of processes, distributed termination and barrier synchro-
nization.

In our work we have not dealt with the problem of false-name bids, see
[19], that needs to be addressed anew in the context of distributed imple-
mentations. This is the subject of our current research. Also, we plan to use
our system to implement continuous double auctions.
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Appendix I

We explain here the details of the reduced tax scheme algorithm mentioned
in Section 3. Intuitively, this algorithm determines given the tax vector
(t1, . . . , tn) ‘who pays how much to whom’.

We consider a list of players, each with his tax, and assume that the tax
vector is feasible, that is the total sum of taxes is non-positive. This means
that the claims of the players whose taxes are positive can be financed by
the players whose taxes are negative.

First the players are divided into two lists, A0
neg, . . . , A

k
neg, consisting of

players whose taxes are negative (i.e., those who should pay the taxes) and
A0

pos, . . . , A
m
pos consisting of players whose taxes are strictly positive (i.e., those

who should be paid). Players whose tax is 0 are omitted.
We start with player A0

neg and compare the absolute value of his tax,
|t0neg|, with the tax t0pos of player A0

pos.
If |t0neg| ≥ t0pos, player A0

neg pays the amount t0pos to player A0
pos. This

changes the tax of player A0
neg from t0neg to t0neg + t0pos. The process is now

repeated with player A0
neg and the next unpaid player, A1

pos.
If |t0neg| < t0pos, then player A0

neg pays the amount |t0neg| to player A0
pos.

This changes the tax of player A0
pos from t0pos to t0pos + t0neg. The process is

now repeated with the next player who should pay a tax, A1
neg, and player

A0
pos.

The loop stops when all players with negative taxes paid. Termination is
ensured by the assumption that the tax scheme is feasible. If the mechanism
is not balanced, upon termination each player that still needs to pay some
tax pays it to the tax authority.

The pseudo-code of the algorithm is given in Figure 2.
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Lall is the list of n players;
Ai is the (i + 1)st player in the list Lall;
nall is the length of the list Lall;
ti is the tax of player Ai;
tax is the list representing the computed tax scheme;
for i = 0 to nall do

if ti < 0 then

append Ai to the list Lneg;
end if

if ti > 0 then

append Ai to the list Lpos;
end if

end for;
let A

j
neg be the (j + 1)st player in the list Lneg;

t
j
neg is the tax of player A

j
neg;

let Ak
pos be the (k + 1)st player in the list Lpos;

tkpos is the tax of player Ak
pos;

let nneg be the length of the list Lneg;
let npos be the length of the list Lpos;
let tcursum be the current sum of all the negative taxes not yet paid;
if nneg != 0 then

k = 0; j = 1; tcursum = t0neg;
while j ≤ nneg and k < npos do

if |tcursum| ≥ tkpos then

player j − 1 pays player k

amount = tkpos − (|tcursum| − |tj−1
neg |);

t
j−1
neg = t

j−1
neg + (tkpos − (|tcursum| − |tj−1

neg |));

tcursum = t
j−1
neg ;

k = k + 1;
if tcursum == 0 then

tcursum = t
j
neg; j = j + 1;

end if

else

player j − 1 pays player k amount = |tj−1
neg |;

tcursum = tcursum + t
j
neg; j = j + 1;

end if

tax = tax+(j − 1, k, amount);
end while

end if

Figure 2: The algorithm to compute reduced tax scheme
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Appendix II

In this appendix we illustrate a sample interaction with the platform. We
assume that each player chooses from the pull down menu a single minded
auction, discussed in Section 5.3. We consider a specific instance with

• 5 players,

• 3 items for sale,

• the following players bids: A: 20:(1,2), B: 50:(3), C: 32:(2), D: 60:(2,3),
E: 19:(1),

that is, player A bids 20 for the bundle (1,2), etc.

The registration process was taken care of by creating two local registries.
In this example, the generated allocation is: (3:B, 28), (2:C, 10), (1:E, 0),
that is item 3 is sold to player B who pays for it to the tax authority 28, etc.

The interaction with the system is presented in Figures 3 – 8 below. The
first two figures depict phase 1 which consists of the registration process
for players A and B. The 2nd phase, depicted in Figures 5 and 6, is type
submission that takes place after the registration is accepted.

The 3rd phase consists of the computation of the tax scheme, its multi-
casting of it to other players and (in case of unbalanced mechanism) payment
of the remaining taxes to the tax authority. The 4th phase consists of re-
ceiving by the players information from the tax authority about the overal
tax received by it. These two phases are depicted in Figures 7 and 8. They
show the difference in computation between fast players (here player A) and
slow players (here player B). In this example, in phase 3, the tax scheme was
only computed by the fast player, A, who subsequently multicast it.
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Figure 3: Phase 1: player A

Figure 4: Phase 1: player B
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Figure 5: Phase 2: player A

Figure 6: Phase 2: player B
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Figure 7: Phases 3 & 4: player A

Figure 8: Phases 3 & 4: player B
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