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Efficient computation of steady water flow with waves

ABSTRACT
A surface capturing model for steady water flow is presented that can be solved very efficiently.
The model contains a high-accuracy water surface discretisation and turbulence; it is solved
with a novel linear multigrid technique and defect correction. Results show the accuracy of the
model and the fast convergence of the solver.
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Efficient computation of steady water flow with waves
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SUMMARY

A surface capturing model for steady water flow is presented that can be solved very efficiently. The model contains
a high-accuracy water surface discretisation and turbulence; it is solved with a novel linear multigrid technique
and defect correction. Results show the accuracy of the model and the fast convergence of the solver.
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1. INTRODUCTION

Numerical simulation of steady water flow with gravity wavesis of major importance in marine design.
For example, accurate prediction of a ship’s wave pattern and the interaction of the waves with the
viscous flow near the ship hull enables the minimisation of the ship’s drag in the design phase, reducing
operating cost and environmental impact.

To model the water surface, two techniques exist: surface fitting and surface capturing [5]. For
surface fitting, the grid is deformed during the computation, such that its upper boundary coincides
with the water surface. This is a mature technique that givesaccurate solutions and is computationally
efficient. But it is not flexible: the grid deformation does not allow complex-shaped geometries.

For surface capturing, the grid is not deformed but the watersurface moves through the grid.
Examples are the volume-of-fluid and level set technique. These can handle arbitrary geometries and
complex, even unstructured grids. The limiting factor for the use of surface capturing is the solution
speed: as opposed to surface fitting, fast solution techniques are not readily available. Time stepping to
convergence is the usual, costly solution technique.

Fast solution of surface capturing models is made difficult by the water surface model. To prevent
excessive wave damping, an accurate model for the water surface is required. Usually, the location of
the surface is reconstructed as a plane running through the grid and boundary conditions are imposed
on that plane. It is hard to compute the flow field and this reconstructed plane simultaneously, so they
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2 J. WACKERS AND B. KOREN

must be updated alternately in a time stepping process. Furthermore, the high Reynolds numbers of
water flow require a turbulence model in the flow equations; these usually need robust, slow solvers.

We show that a surface capturing model, with an accurate water surface discretisation and including
a turbulence model, can be solved with the same efficiency as laminar flow models without a free
surface. This is achieved with a volume-of-fluid (VoF) discretisation where the surface location is not
reconstructed. The resulting flow model has no explicit surface model and consists of conservation
laws only. Therefore, it is suitable for fast solvers.

We use a multigrid method to solve the steady flow equations, without any time stepping. Our novel
multigrid technique is specially adapted for the solution of the VoF equation and the turbulence model.
Second-order accuracy is obtained with defect correction;we present a compressive limiter for the
second-order VoF fluxes that gives a highly accurate resolution of the water surface.

2. FLOW EQUATIONS

The flow is solved both in the water and in the air above it. The flow equations are based on the
Reynolds-Averaged Navier-Stokes (RANS) equations; we distinguish between water and air by adding
a mass conservation equation for the water. The water surface appears as a smeared out discontinuity,
a smooth transition from water to air. In two dimensions, thesystem is:��x

�
pC �u2

�C ��y
.�uv/ D ��x

..�C �T /2ux/C ��y

�.�C �T / .uy C vx/� (x-mom.);��x
.�uv/C ��y

�
pC �v2

� D ��x

�.�C �T / .uy C vx/�C ��y

�.�C �T / 2vy
�� �g (y-mom.);��x

.u/C ��y
.v/ D 0 (tot. mass);��x

.u�/C ��y
.v�/ D 0 (water mass);

(1)
with � the volume fraction of water. The turbulent viscosity�T is computed with Menter’s one-
equation turbulence model [7]:�.�u�T /�x

C �.�v�T /�y
D ��x

�.�C �T / ��T�x

�C ��y

�.�C �T / ��T�y

�C P � D; (2)

with �T D �T=�. The productionP and the dissipationD contain first and second velocity derivatives.

3. FLUX DISCRETISATION

The flow equations are discretised with cell-centred finite volumes on structured curvilinear grids. We
use two different discretisations: multigrid is used to solve a first-order accurate discretisation and these
solutions are improved with defect correction on a second-order accurate limited discretisation.

3.1. Flux functions

For robustness at high Reynolds numbers, the convective anddiffusive fluxes are discretised separately.
Stable convective fluxes are obtained with a Riemann solver.The states 0 and 1 on two sides of a cell
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COMPUTATION OF STEADY WATER WAVES 3

face are used as input in a 1D shock tube problem; for this problem, the Navier-Stokes equations are
made hyperbolic with artificial compressibility . The flux isset from the state between the waves in the
shock tube solution. These convective fluxes are similar to those in [4], their derivation is given in [11].
The flux function couples the normal velocityu and the pressurep, the output state12 is:

u 1
2
D u0 C p1 � p0 C �1��1 .u1 � u0/�1��1 � �0�C0 ; p1

2
D p0 � �0�C0 p1 � p0 C �1��1 .u1 � u0/�1��1 � �0�C0 ; (3)

with the wave speeds defined as�� D 1
2u�p

c2=� C .1=2u/2 and�C D 1
2uCp

c2=� C .1=2u/2, for
a constantc. The tangential velocityv, �T , and� are chosen purely upwind, based on the sign ofu 1

2
.

The states on the two sides of a cell face are reconstructed from the cell centre states. For the first-
order accurate fluxes, the state at the cell faces is the statein the centre. The second-order scheme uses
a Sweby-type limited reconstruction [8]. For example, at the left side of a vertical face the state is:

q0 D qi ; j C 1
2�.r0/ �qi ; j � qi�1; j

� ; r0 D qiC1; j � qi ; j

qi ; j � qi�1; j
; (4)

We use the� D 1
3 limiter proposed by Koren [6], which is third-order accurate in one dimension:��.r / D max.0;min.2r; 2

3r C 1
3; 2//: (5)

The diffusive fluxes and the turbulence source term are modelled with central differences. These are
stable and second-order accurate, so they are used for both the first- and the second-order scheme.

3.2. Compressive limiter for�
In our model, the volume fraction� is a smeared out discontinuity:� D 1 below the water surface,� D 0 in the air above, and the surface itself is a numerical mixing layer that contains both water and
air. The solution is accurate when the surface is in the rightlocation and when it is thin; the standard
concept of first- and second-order accuracy has no meaning for a discontinuity.

Therefore, we can use a limiter for� that is not formally second-order accurate, like the limited
downwind scheme: �L D.r / D max.0;min.2r; 2//: (6)

This limiter follows the top of Sweby’s monotonicity domain[8] so it is antidiffusive, it steepens any
gradient into a discontinuity. Therefore, it keeps the surface sharp. However, the simple�L D limiter is
too compressive: it deforms the interface into a staircase.The compressive limiters that are often used
in time-dependent VoF methods [9] need to be very complex schemes, to prevent staircase deformation
and make sure that� never becomes less than zero.

Our steady flow model allows us to use a simple compressive scheme. In steady flow, the interface
is always parallel to the flow direction. Therefore, the interface location is fixed by the velocity field;
large stairstep deformations cannot occur. And since the flow is in equilibrium, any monotone limiter
guarantees that� stays between 0 and 1. In fact, the�L D limiter is satisfactory for steady flow. Still,
following Ubbink and Issa [9], we use a hybrid limiter that switches to a second-order scheme when
the interface is parallel to the cell face normaln. This prevents even small stairsteps:�� D .1� 
 /�L D C 
 �� ; 
 D 2� arccos

ju � njkuk : (7)

Thus, the surface direction is given by the velocity fieldu. The example in figure 1 shows that the
compressive schemes give a constant surface width. For a small increase in thickness (3 cells instead
of 2), the�� limiter keeps the surface smooth, which improves the stability of the two-fluid flow model.
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Figure 1. Solution of a linear test problem (u � r� D 0 with u D [u; v] D [1; 1:5 sin 2�x]) on a 32� 32 cell grid,
for three different limiters: the second-order�� (a) and the compressive�L D (b) and�� (c).

4. FAST SOLVER

The heart of our fast solution method is a novel multigrid technique. The accuracy of the solutions is
increased with defect correction.

4.1. Improved line smoother

Multigrid is combined with a powerful nonlinear collectiveline Gauss-Seidel smoother, that is
effective for convection-dominated flow [11]. For pure convection–diffusion flows, the smoother
always converges. However, the turbulence production termP destabilises the system and may cause
the smoothing to diverge. Therefore, most turbulent flow solvers permanently damp the smoothing.

We found that local damping in the first multigrid cycles is enough. Near a steady solution, the flow
is stable, so undamped smoothing works once the solution process is partially converged. We damp the
smoothing of�T in each individual line, when the Newton-Raphson solver that computes the update in
that line does not converge. This guarantees the convergence of the line smoothing.

4.2. Linear multigrid

Standard nonlinear multigrid does not work for our system, because the flow equations on coarse grids
differ too much from the fine grid equations. The water surface is a smeared discontinuity in�, it is
sharper on fine grids than on coarse grids. Also, the turbulence model does not model boundary layers
accurately on coarse grids. Therefore, the coarse grid corrections in the multigrid algorithm become
ineffective, as they rely on the similarity between the coarse and the fine grid equations.

Therefore, we use linear coarse grid corrections with Galerkin operators [10]. The fine grid flow
equations are linearised (this linearisation is already computed for the line smoothing) and the
linearisation is restricted directly to form the coarse grid equations. Thus, the coarse and fine grid
equations are always similar. For robustness, the linear coarse grid correction is combined with
nonlinear smoothing on the finest grid, that can remove unphysical solutions (�T < 0 etc.).

4.3. Defect correction

Fast converging smoothers for the multigrid solution of second-order accurate equations are not
available. Therefore, the second-order model is solved with defect correction. In each step, the residual
of the second-order equations is put as a source term in the first-order equations, then a multigrid cycle
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COMPUTATION OF STEADY WATER WAVES 5

is applied to the first-order equations. Defect correction converges slowly, but when it is started from
the first-order accurate solution, a few steps are enough to make the solution second-order accurate [3].

For the two-fluid model, two changes are made to standard defect correction. First, the highly
nonlinear flow equations cannot handle large source terms. Therefore, the second-order residual is
scaled with a small constant; after each cycle, the change instate is unscaled, i.e. divided by the same
constant. And second, near the water surface, the first- and second-order equations differ significantly.
To keep the defect correction method stable, the corrections to the state there are limited such that�
remains between 0 and 1. In practice, this limiting is only needed in the air region.

5. RESULTS

Numerical results are shown for two 2D channel flows with a bottom bump, as measured by Cahouet
[2]. Both are computed on 256� 256 cell grids, with fine cells near the bottom and the free surface.
The first test is a subcritical flow, withFr D 0:43 (figure 2). For this flow, the grid is stretched at the
inflow and outflow boundaries. For the first-order solution, the interface is smeared and the waves damp
out quickly. The second-order solution after 8 defect correction steps shows a great improvement: the
waves are higher and the interface is smeared less (it is about 4 cells thick). The compressive scheme
makes the water surface, that smears at the inflow boundary, thinner near the first wave. Cahouet did
not measure this case, a comparison with the numerical results of Van Brummelen [1] shows excellent
agreement. A test with supercritical flow (Fr D 2:05) is shown in figure 3. Here, the first-order
solution captures the shape of the wave, but the second-order solution (5 defect correction steps) is
much sharper. The surface is 3 – 4 cells thick throughout. Theagreement with Cahouet is good.
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Figure 2. Solution of subcritical channel flow. First-ordervertical velocityv (a), volume fraction� (b), and the
residual during the full multigrid computation on 8 grids (c). Second-orderv (c), � (d), and a comparison of both

solutions with the numerical result of Van Brummelen [1] (e). Grid stretching starts atx D 4.
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Figure 3. Supercritical channel flow test: the volume fraction for the first-order (a) and second-order accurate
solution (b), and a comparison with Cahouet’s experiment [2] (c).

The multigrid convergence for the first test case is shown in figure 2c. It is a full multigrid
computation: the initial solution on each grid is found by propagating the solution on the next coarser
grid. The convergence on the last grids is just as good as for the same problem with laminar flow [11].
The computation time is compared with a solution by line smoothing only: multigrid is about 20 times
faster. Defect correction requires few cycles, it adds about a third to the first-order computation time.

6. CONCLUSION

A VoF model without interface reconstruction is proposed for steady water flow. The model consists of
conservation laws only, so it can be solved with multigrid. Linear multigrid gives very fast convergence,
even for turbulent flow. High-accuracy solutions and good agreement with experiments are obtained
with a combination of defect correction and a compressive discretisation for the volume fraction.
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