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Efficient computation of steady water flow with waves

ABSTRACT

A surface capturing model for steady water flow is presented that can be solved very efficiently.
The model contains a high-accuracy water surface discretisation and turbulence; it is solved
with a novel linear multigrid technique and defect correction. Results show the accuracy of the
model and the fast convergence of the solver.
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SUMMARY

A surface capturing model for steady water flow is preseritatidan be solved very efficiently. The model contains
a high-accuracy water surface discretisation and turlmeleit is solved with a novel linear multigrid technique
and defect correction. Results show the accuracy of the haodthe fast convergence of the solver.

KEY WORDS. steady water waves; turbulence; volume-of-fluid; comgikeslimiter; multigrid; defect correction

1. INTRODUCTION

Numerical simulation of steady water flow with gravity wavesf major importance in marine design.
For example, accurate prediction of a ship’s wave patteththa interaction of the waves with the
viscous flow near the ship hull enables the minimisation efdhip’s drag in the design phase, reducing
operating cost and environmental impact.

To model the water surface, two techniques exist: surfatieditand surface capturing [5]. For
surface fitting, the grid is deformed during the computatisunch that its upper boundary coincides
with the water surface. This is a mature technique that gagesirate solutions and is computationally
efficient. But it is not flexible: the grid deformation doeg iatlow complex-shaped geometries.

For surface capturing, the grid is not deformed but the wateface moves through the grid.
Examples are the volume-of-fluid and level set techniquesé&lcan handle arbitrary geometries and
complex, even unstructured grids. The limiting factor foe tuse of surface capturing is the solution
speed: as opposed to surface fitting, fast solution tecksigte not readily available. Time stepping to
convergence is the usual, costly solution technique.

Fast solution of surface capturing models is made difficyltie water surface model. To prevent
excessive wave damping, an accurate model for the wateacgui$ required. Usually, the location of
the surface is reconstructed as a plane running throughritieugd boundary conditions are imposed
on that plane. It is hard to compute the flow field and this retieted plane simultaneously, so they
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2 J. WACKERS AND B. KOREN

must be updated alternately in a time stepping processhémnbre, the high Reynolds numbers of
water flow require a turbulence model in the flow equationsséhusually need robust, slow solvers.

We show that a surface capturing model, with an accuratersatéce discretisation and including
a turbulence model, can be solved with the same efficiencaramar flow models without a free
surface. This is achieved with a volume-of-fluid (VoF) ditisation where the surface location is not
reconstructed. The resulting flow model has no explicitaafmodel and consists of conservation
laws only. Therefore, it is suitable for fast solvers.

We use a multigrid method to solve the steady flow equatioitepwt any time stepping. Our novel
multigrid technigue is specially adapted for the solutibthe VoF equation and the turbulence model.
Second-order accuracy is obtained with defect correctiompresent a compressive limiter for the
second-order VoF fluxes that gives a highly accurate reisolatf the water surface.

2. FLOW EQUATIONS
The flow is solved both in the water and in the air above it. Thevfequations are based on the
Reynolds-Averaged Navier-Stokes (RANS) equations; wengjsish between water and air by adding
a mass conservation equation for the water. The water udppears as a smeared out discontinuity,

a smooth transition from water to air. In two dimensions,ghstem is:

ad ad ad ad
ax (P PU2) 50 o) = 25 (4 ) 200 + 0 (4 a7 (Uy o+ 05) (x-mom.)

9 9 3 9
75 (U + 3y (IO + pvz) = ((n =+ pt) WUy + v0)) + 3y ((n + u1) 2vy) — pg  (y-mom.)

aa_x (u) + 8% (v) =0 (tot. mass)
a a
o (Ua) + P (va) =0 (water mass)
1)

with « the volume fraction of water. The turbulent viscosjty is computed with Menter's one-

equation turbulence model [7]:
d(puvt) I(pvvT) d ovT 0 ovT
-2 7Ty 2 — )+ P-D, 2
PV 3y ax \ (T = +ay (1 + p1) 3y + : 2)
with vt = ut/p. The productiorP and the dissipatio® contain first and second velocity derivatives.

3. FLUX DISCRETISATION

The flow equations are discretised with cell-centred fin@kimes on structured curvilinear grids. We
use two different discretisations: multigrid is used tosea first-order accurate discretisation and these
solutions are improved with defect correction on a secomi@oaccurate limited discretisation.

3.1. Flux functions

For robustness at high Reynolds numbers, the convectivdifindive fluxes are discretised separately.
Stable convective fluxes are obtained with a Riemann solVer.states 0 and 1 on two sides of a cell
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COMPUTATION OF STEADY WATER WAVES 3

face are used as input in a 1D shock tube problem; for thisl@nofthe Navier-Stokes equations are
made hyperbolic with artificial compressibility . The fluxdgst from the state between the waves in the
shock tube solution. These convective fluxes are simildrded in [4], their derivation is given in [11].
The flux function couples the normal velociiyand the pressurp, the output staté is:

P1 — Po+ p1A; (U1 — Uo) P1 — Po + p1A; (U1 — Up)
— 1 F pl = pO - 100)\'_0!_ — 1 T ) (3)

P1rq — poAg 2 P1rq — pPoAg
with the wave speeds definedias = 3u — /c2/p + (1/2u)2 andrt = Ju++/c2/p + (1/2u)2, for
a constant. The tangential velocity, vt, anda are chosen purely upwind, based on the sign%of

The states on the two sides of a cell face are reconstruatettfie cell centre states. For the first-
order accurate fluxes, the state at the cell faces is theistdte centre. The second-order scheme uses
a Sweby-type limited reconstruction [8]. For example, atléft side of a vertical face the state is:

Ui = Up+

NI

Qo= Gi,j + 36(o) (Gi,j —Gi-1j) . rozm, (4)
Gi,j —di-1j
We use thec = 1 limiter proposed by Koren [6], which is third-order accigét one dimension:
¢ (r) = max(0, min(2r, %r + % 2)). (5)

The diffusive fluxes and the turbulence source term are niedlalith central differences. These are
stable and second-order accurate, so they are used forHmofinst- and the second-order scheme.

3.2. Compressive limiter far

In our model, the volume fractioa is a smeared out discontinuity: = 1 below the water surface,
a = 0in the air above, and the surface itself is a numerical ngixatyer that contains both water and
air. The solution is accurate when the surface is in the figtation and when it is thin; the standard
concept of first- and second-order accuracy has no meanirgdizcontinuity.

Therefore, we can use a limiter far that is not formally second-order accurate, like the limiite
downwind scheme:

¢Lp(r) = max(0, min(2r, 2)). (6)
This limiter follows the top of Sweby’s monotonicity domdBj so it is antidiffusive, it steepens any
gradient into a discontinuity. Therefore, it keeps the atefsharp. However, the simpbgp limiter is
too compressive: it deforms the interface into a staircike.compressive limiters that are often used
in time-dependent VoF methods [9] need to be very complegrees, to prevent staircase deformation
and make sure that never becomes less than zero.

Our steady flow model allows us to use a simple compressivensehin steady flow, the interface
is always parallel to the flow direction. Therefore, the ifdee location is fixed by the velocity field;
large stairstep deformations cannot occur. And since theiidn equilibrium, any monotone limiter
guarantees that stays between 0 and 1. In fact, thep limiter is satisfactory for steady flow. Still,
following Ubbink and Issa [9], we use a hybrid limiter thatigshes to a second-order scheme when
the interface is parallel to the cell face normalThis prevents even small stairsteps:

2 u-n
ba = (1 =y)pLD + VP y = —arccos— . (7

Thus, the surface direction is given by the velocity fieldThe example in figure 1 shows that the
compressive schemes give a constant surface width. For khisoraase in thickness (3 cells instead
of 2), theg, limiter keeps the surface smooth, which improves the stgloif the two-fluid flow model.
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4 J. WACKERS AND B. KOREN
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Figure 1. Solution of a linear test problem (Va = 0 withu = [u, v] = [1, 1.5sin 2rX]) on a 32x 32 cell grid,
for three different limiters: the second-ordgy (a) and the compressivia p (b) andgy (C).

4. FAST SOLVER

The heart of our fast solution method is a novel multigricht@que. The accuracy of the solutions is
increased with defect correction.

4.1. Improved line smoother

Multigrid is combined with a powerful nonlinear collectiMne Gauss-Seidel smoother, that is
effective for convection-dominated flow [11]. For pure ceation—diffusion flows, the smoother
always converges. However, the turbulence production terdestabilises the system and may cause
the smoothing to diverge. Therefore, most turbulent flowad permanently damp the smoothing.

We found that local damping in the first multigrid cycles i®agh. Near a steady solution, the flow
is stable, so undamped smoothing works once the solutiarepsads partially converged. We damp the
smoothing ofvt in each individual line, when the Newton-Raphson solver tbanputes the update in
that line does not converge. This guarantees the conveggsribe line smoothing.

4.2. Linear multigrid

Standard nonlinear multigrid does not work for our systeetduse the flow equations on coarse grids
differ too much from the fine grid equations. The water suefaca smeared discontinuity i it is
sharper on fine grids than on coarse grids. Also, the turloelemodel does not model boundary layers
accurately on coarse grids. Therefore, the coarse gricectons in the multigrid algorithm become
ineffective, as they rely on the similarity between the seaand the fine grid equations.

Therefore, we use linear coarse grid corrections with Gateoperators [10]. The fine grid flow
equations are linearised (this linearisation is alreadynmated for the line smoothing) and the
linearisation is restricted directly to form the coarsedgeiquations. Thus, the coarse and fine grid
equations are always similar. For robustness, the linearseogrid correction is combined with
nonlinear smoothing on the finest grid, that can remove usighy/solutions {1 < 0 etc.).

4.3. Defect correction

Fast converging smoothers for the multigrid solution ofsetorder accurate equations are not
available. Therefore, the second-order model is solved défect correction. In each step, the residual
of the second-order equations is put as a source term in gtefiler equations, then a multigrid cycle
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COMPUTATION OF STEADY WATER WAVES 5

is applied to the first-order equations. Defect correctionverges slowly, but when it is started from
the first-order accurate solution, a few steps are enougtat@riie solution second-order accurate [3].

For the two-fluid model, two changes are made to standardctleferection. First, the highly
nonlinear flow equations cannot handle large source termerefore, the second-order residual is
scaled with a small constant; after each cycle, the changtatr is unscaled, i.e. divided by the same
constant. And second, near the water surface, the first-ecwhsl-order equations differ significantly.
To keep the defect correction method stable, the corrextiorthe state there are limited such that
remains between 0 and 1. In practice, this limiting is onlgaed in the air region.

5. RESULTS

Numerical results are shown for two 2D channel flows with adratbump, as measured by Cahouet
[2]. Both are computed on 256 256 cell grids, with fine cells near the bottom and the fredaser.
The first test is a subcritical flow, withr = 0.43 (figure 2). For this flow, the grid is stretched at the
inflow and outflow boundaries. For the first-order solutidre interface is smeared and the waves damp
out quickly. The second-order solution after 8 defect atiiom steps shows a great improvement: the
waves are higher and the interface is smeared less (it ist @boells thick). The compressive scheme
makes the water surface, that smears at the inflow boundamper near the first wave. Cahouet did
not measure this case, a comparison with the numericaltsasiVan Brummelen [1] shows excellent
agreement. A test with supercritical flor{ = 2.05) is shown in figure 3. Here, the first-order
solution captures the shape of the wave, but the second-sotigtion (5 defect correction steps) is
much sharper. The surface is 3 — 4 cells thick throughout.aigreement with Cahouet is good.
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F)lgure 2. Solution of subcritical channel flow. First-ordertical velocityv (a), volume fractiorw (b), and the

residual during the full multigrid computation on 8 grid9.(8econd-order (c), « (d), and a comparison of both
solutions with the numerical result of Van Brummelen [1]. @)id stretching starts at = 4.
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Figure 3. Supercritical channel flow test: the volume fractfor the first-order (a) and second-order accurate
solution (b), and a comparison with Cahouet’s experimeh{dp

The multigrid convergence for the first test case is shown guré 2c. It is a full multigrid
computation: the initial solution on each grid is found bgagating the solution on the next coarser
grid. The convergence on the last grids is just as good asiéosame problem with laminar flow [11].
The computation time is compared with a solution by line sthimg only: multigrid is about 20 times
faster. Defect correction requires few cycles, it adds abdhird to the first-order computation time.

6. CONCLUSION

A VoF model without interface reconstruction is proposedsteady water flow. The model consists of
conservation laws only, so it can be solved with multigrichéar multigrid gives very fast convergence,
even for turbulent flow. High-accuracy solutions and gootkament with experiments are obtained
with a combination of defect correction and a compressigerdtisation for the volume fraction.
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