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1. Introduction

In applications such as weather and climate predictions, long numerical simulations are carried out
for dynamical systems that are known to be chaotic, and as a result, for which it is impossible to
simulate a particular solution with any accuracy in the usual sense of numerical analysis. Instead,
the goal of such simulations is to obtain a data set suitable for computing statistical averages or
otherwise to sample the probability distribution associated with the continuous problem.

However it known that different discretizations have very different properties—backward error
analysis ([23, 24, 6, 9]) stresses viewing the discrete solution as being sampled from a perturbed
problem—and the effects of these different properties become more pronounced when the numerical
map is iterated over a very large number of time steps. Therefore it is important to establish the
influence the method has on the statistical results. Preferrably, one would like to determine creteria
a method should satisfy to yield meaningful statistics, and to understand statistical accuracy in
terms of discretization parameters.

In this paper, we adapt the statistical mechanics theory of 2D ideal fluids—as first developed by
Kraichnan [8] and Salmon et al. [21], and recently expounded in Majda & Wang [11]—to the
semi-discretizations proposed by Arakawa [2] for an ideal fluid in vorticity-stream function form.
Arakawa’s discretizations conserve energy (E), enstrophy (Z), or both (EZ), and we construct a
statistical mechanics theory for each discretization. The resulting theories give entirely different
predictions for the statistical behavior of the methods. Numerical experiments with conservative
and projected time integrators agree with the statistical predictions, confirming that the conser-
vation properties of a method define the backdrop, or climatic mean, against which the dynamics
takes place. A further experiment, using a non-conservative spatial discretization, coupled with
projection onto the energy and/or enstrophy manifolds, yields statistics that disagree with the
theories, suggesting that local conservation is crucial.
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It should be mentioned at the outset that the statistical theory is a model and is known to be
incomplete. In [1], Abramov & Majda show that nonzero values of the third moment of potential
vorticity can cause significant deviation from the statistical predictions. On the other hand, the
third moment cannot be incorporated into the equilibrium statistical mechanics distribution, be-
cause it is non-normalizable. In Section 6 we use the numerical setup of [1] to facilitate comparison
with their results. We wish to stress, however, that the focus of this article is not the statistical
mechanics of ideal fluids per se, but rahter the application of statistical mechanics as a tool for
the numerical analysis of discretizations.

In Section 2 we recall the quasi-geostrophic potential vorticity equation and its conservation prop-
erties. Section 3 reviews Arakawa’s discretizations. In Section 4, the equilibrium statistical me-
chanical theories are developed for the three discretizations. Time integration aspects are discussed
in Section 5. The numerical experiments confirming the statistical predictions are presented in
Section 6.

2. The quasi-geostrophic model

This paper addresses the statistical behavior of conservative discretizations of the quasi-geostrophic
potential vorticity model (QG) on a doubly periodic domain, Ω = {x = (x, y) |x, y ∈ [0, 2π)}. The
QG equation [17, 18] is

qt = J (q, ψ), (2.1a)

∆ψ = q − h, (2.1b)

where the potential vorticity (PV) q(x, t), the stream function ψ(x, t), and the orography h(x)
are scalar fields, periodic in x and y with period 2π. The Laplacian operator is denoted by ∆, and
the operator J is defined by

J (q, ψ) := qxψy − qyψx. (2.2)

The QG equation is a Hamiltonian PDE [14] having Poisson bracket

{F ,G} =

∫

qJ (
δF
δq
,
δG
δq

) dx (2.3)

and Hamiltonian functional

E [q] = −1

2

∫

ψ · (q − h) dx. (2.4)

The Poisson bracket is degenerate with Casimir invariants the generalized enstrophies C [q] =
∫

f(q) dx for arbitrary function f . In particular, the polynomial enstrophies

Cp [q] =

∫

qp dx, p = 1, 2, . . .

are conserved, of which the most important—the second moment of vorticity C2—will be denoted
by Z

Z [q] =
1

2

∫

q2 dx, (2.5)

and will henceforth be referred to as the enstrophy.

3. Spatial semi-discretization

We first consider the discretization of (2.1) in space only. The resulting system of ordinary differ-
ential equations will be referred to as the semi-discretization, and we will primarily be concerned
with its analysis and statistical mechanics.
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When discretizing Hamiltonian PDEs, it is advisable to consider the discretizations of the Poisson
bracket and the Hamiltonian separately. As noted in [12], if a discrete Poisson bracket can be
constructed to maintain skew-symmetry and satisfy the Jacobi identity, then any quadrature for
the Hamiltonian will yield a semi-discretization that is a Hamiltonian ODE, and as a result will
conserve energy and (possibly some subclass of) Casimirs. Similarly, from the point of view of
statistical mechanics, it is also useful to consider the discretizations of the bracket and the Hamil-
tonian separately. The bracket ensures the conservation of energy and enstrophy and preservation
of volume, which are necessary ingredients for the existence of a statistical theory at all. But only
the conserved quantities themselves enter into the probability distribution. Thus the predictions
of the theory depend only on the discretization of these conserved quantities. The discretization of
the Hamiltonian (2.4) amounts to a choice for the discrete Laplacian in (2.1b) and will be treated
in Section 3.1. The bracket will be discretized with Arakawa’s schemes in section 3.2.

For Eulerian fluid models, the only known discretization with Poisson structure is the sine-bracket
truncation of Zeitlin [25], which is limited to 2D, incompressible flows on periodic geometry. This
truncation has spectral accuracy and conserves M polynomial enstrophies on an M ×M grid. Its
statistics are investigated in [1]. For more general fluid problems, no Poisson discretizations are
available. In lieu of a semi-discretization with Poisson structure, one may attempt to construct
discretizations which conserve desired first integrals and are volume preserving. The flow of
energy is important for statistics, and the spatial discretization determines the local flow. In
numerical weather prediction, energy conserving discretizations were advocated by Lorenz in 1960
[10]. Motivated by Lorenz’s work, Arakawa [2] constructed discretizations that conserved energy,
enstrophy or both. As we will see, these discretizations are also all volume preserving.

We discretize (2.1) on a uniform M × M grid. Let ∆x = ∆y = 2π/M and consider a grid
function q(t) ∈ RM×M , where qm(t) = qm1,m2

(t) ≈ q(m1∆x,m2∆y, t), m1,m2 = 0, . . . ,M − 1,
with periodicity realized by identifying the indices M and 0. We think of q as a vector in an
M2-dimensional phase space; that is, we identify RM2

and RM×M , and use vector notation, e.g.,
qTq for the vector inner product of such a vector with itself.

3.1 Spectral solution of the stream function
The linear elliptic PDE (2.1b) is solved using the Fourier spectral method. Let the Fourier trans-
form of q ∈ RM×M be defined by

q̂ = Fq ⇐⇒ q̂k =
1

M

M−1
∑

m1,m2=0

qme−i(m·k), k1, k2 = −M/2 + 1, . . . ,M/2. (3.1)

The inverse transform is F−1 = F∗, and, for later reference, Parseval’s identity reads

∑

m1,m2

q2m =
∑

k1,k2

|q̂k|2.

Equation (2.1b) is solved exactly in Fourier-space. Denote the discrete Laplacian operator by ∆M :

∆Mψ = q − h ⇐⇒ −|k|2ψ̂k = q̂k − ĥk, k1, k2 = −M/2 + 1, . . .M/2, (3.2)

where |k|2 = k2
1 + k2

2 . This relation is solved for stream function field ψ with mean zero. The

inverse Laplacian restricted to the hyperplane ψ̂0,0 ≡ 0 is denoted by ∆−1
M

, i.e.

ψ = ∆−1
M

(q − h) ⇐⇒ ψ̂k =

{

−|k|−2(q̂k − ĥk), k 6= 0,
0, k = 0.
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3.2 Arakawa’s discretizations
Arakawa [2] constructed finite difference discretizations of (2.2) that preserve discrete versions of
energy (2.4), enstrophy (2.5), or both.

Define matrices Dx and Dy that implement the standard second order central difference approxi-
mations to the first derivative

(Dxq)m1,m2
=
qm1+1,m2

− qm1−1,m2

2∆x
, (Dyq)m1,m2

=
qm1,m2+1 − qm1,m2−1

2∆y
.

These matrices are skew-symmetric: DT
x = −Dx, DT

y = −Dy. Additionally, denote the element-
wise product of two vectors by (u ∗ v)m = umvm. The scalar product

uT (v ∗w) =
∑

k

ukvkwk (3.3)

is fully symmetric with respect to the vectors u, v and w.

Arakawa’s discretizations can be viewed as discrete approximations to the equivalent formulations
of (2.2)

J (q, ψ) = qxψy − qyψx,

J (q, ψ) = ∂x(qψy) − ∂y(qψx),

J (q, ψ) = ∂y(qxψ) − ∂x(qyψ),

and are given by

J0(q,ψ) := (Dxq) ∗ (Dyψ) − (Dyq) ∗ (Dxψ), (3.4)

JE(q,ψ) := Dx(q ∗Dyψ) −Dy(q ∗Dxψ), (3.5)

JZ(q,ψ) := Dy(ψ ∗Dxq) −Dx(ψ ∗Dyq). (3.6)

The Arakawa schemes are interesting for us, because they are all based on the standard second
order central difference operators applied in various ‘conservation forms’ and hence, for short
simulations with smooth solutions, there is often little noticeable difference between different
discretizations. One might therefore expect that they yield similar statistics. On the contrary, the
statistical behavior is dramatically different.

To understand the conservation properties of these three discretizations, it is useful to introduce
the Nambu bracket formalism [15, 16, 20]. Define the associated brackets (the gradients are with
respect to q)

{F,G,H}0 := −∇FTJ0(∇G,∇H)

= −∇FT [(Dx∇G) ∗ (Dy∇H) − (Dy∇G) ∗ (Dx∇H)] ,

{F,G,H}E := −∇FTJE(∇G,∇H)

= −∇FT [Dx(∇G ∗Dy∇H) −Dy(∇G ∗Dx∇H)] ,

{F,G,H}Z := −∇FTJE(∇G,∇H)

= −∇FT [Dy(Dx∇G ∗ ∇G) −Dx(Dy∇G ∗ ∇H)] ,

for arbitrary differentiable F (q), G(q), H(q) : RM2 → R.

Then second order consistent discretizations of (2.1) are obtained in the bracket with EM and ZM

according to:

q̇m = {qm, ZM , EM},
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where EM and ZM are discrete approximations to the energy

EM (q) = −1

2
ψT (q − h)∆x∆y =

1

2

∑

k

|k|2|ψ̂k|2∆x∆y (3.7)

and enstrophy

ZM (q) =
1

2
qTq∆x∆y =

1

2

∑

k

|q̂k|2∆x∆y. (3.8)

The Lie derivative dF
dt of a function F (q) along a solution to the discrete equations is given by the

Nambu bracket of F with ZM and EM :

dF

dt
= {F,ZM , EM}.

This fact can be used to establish the conservation properties of the various discretizations.

First note that the bracket {·, ·, ·}0 is antisymmetric in its last two arguments, due to the commu-
tativity of the ∗ operator:

{F,G,H}0 = −{F,H,G}0. (3.9)

Next, using the skew-symmetry of Dx and Dy and the symmetry of (3.3), we observe that

{F,G,H}E = (Dx∇F )T (∇G ∗Dy∇H) − (Dy∇F )T (∇G ∗Dx∇H) = {G,H,F}0,

and similarly,

{F,G,H}Z = {H,F,G}0.

It follows that the JE discretization conserves energy, since

dEM

dt
= {EM , ZM , EM}E = {ZM , EM , EM}0 = 0

by the antisymmetry property (3.9). By the same token, JZ conserves enstrophy:

dZM

dt
= {ZM , ZM , EM}Z = {EM , ZM , ZM}0 = 0.

Furthermore, a fully antisymmetric Jacobian can be derived as an average of (3.4)–(3.6)

JEZ(q,ψ) =
1

3
[J0(q,ψ) + JE(q,ψ) + JZ(q,ψ)] , (3.10)

and the associated bracket

{F,G,H}EZ :=
1

3
({F,G,H}0 + {F,G,H}E + {F,G,H}Z)

=
1

3
({F,G,H}0 + {G,H,F}0 + {H,F,G}0)

is fully antisymmetric (with respect to transposition of any two elements). For example, trans-
posing G and H yields

{F,H,G}EZ =
1

3
({F,H,G}0 + {H,G, F}0 + {G,F,H}0)

=
1

3
(−{F,G,H}0 − {H,F,G}0 − {G,H,F}0) = −{F,G,H}EZ .

As a result, this bracket conserves both invariants (3.7) and (3.8).

One can check that a solution of the form q = µψ is an exact steady state for the discretizations
J0 and JEZ . Such a solution is not, in general, a steady state solution for discretizations JE and
JZ . However, the limit cases {ψ ≡ 0, q = h} and {q ≡ 0,ψ = −∆−1

M
h} obviously are steady

states to those discretizations.
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3.3 Volume preservation
In addition to conservation, a second important ingredient for statistical mechanics is the preser-
vation, by the flow map, of the phase space volume element. In this section we demonstrate that
each of the discretizations from the previous section is volume preserving. Let us define the matrix
D(a) = diag(a) to be the diagonal matrix whose diagonal elements are the components of the
vector a (i.e. D(a)ij = aiδij).

Recall that for an ODE

y′ = f(y)

the divergence of the vector field f satisfies

div f = tr(f ′),

where f ′ denotes the Jacobian matrix of f . In particular, for a matrix A, divAf(y) = tr(Af ′).
Furthermore, for

y′ = f(y) = g(y) ∗ h(y)

it holds that

f ′ = D(g)h′ +D(h)g′.

In the following calculations we make ready use of the commutative and transpose properties of the
trace tr(AB) = tr(BA) = tr(BTAT ). We also need the following properties of our discretization
matrices. The difference operators Dx and Dy are skew-symmetric and commute DxDy−DyDx =
0. The discrete inverse Laplacian matrix ∆−1

M
is symmetric and represents a central finite difference

stencil. In this case, the matrices Dx∆−1
M

and Dy∆−1
M

have zeros on the diagonal.

Let us write the discretizations J0, JE and JZ as functions of q only

J0(q) = (Dxq) ∗ (Dy∆−1
M
q) − (Dyq) ∗ (Dx∆−1

M
q), (3.11)

JE(q) = Dx(q ∗Dy∆−1
M
q) −Dy(q ∗Dx∆−1

M
q), (3.12)

JZ(q) = Dy

(

(Dxq) ∗ ∆−1
M
q
)

−Dx

(

(Dyq) ∗ ∆−1
M
q
)

. (3.13)

We calculate, for (3.11),

div J0(q) = tr
(

D(Dy∆−1
M
q)Dx

)

+ tr
(

D(Dxq)Dy∆−1
M

)

− tr
(

D(Dx∆−1
M
q)Dy

)

− tr
(

D(Dyq)Dx∆−1
M

)

= 0, (3.14)

since each term is the trace of the product of a diagonal matrix and a matrix with zero diagonal.

For (3.12),

div JE(q) = tr
(

Dx

[

D(q)Dy∆−1
M

+D(Dy∆−1
M
q)
])

− tr
(

Dy

[

D(q)Dx∆−1
M

+D(Dx∆−1
M
q)
])

= tr(D(q)[Dy∆−1
M
Dx −Dx∆−1

M
Dy]) + tr

(

DxD(Dy∆−1
M
q) −DyD(Dx∆−1

M
q)
)

= 0.

The term in brackets in the last expression is identically zero by symmetry considerations.

Similarly, for (3.13) we have

div JZ(q) = tr
(

Dy

[

D(∆−1
M
q)Dx +D(Dxq)∆

−1
M

])

− tr
(

Dx

[

D(∆−1
M
q)Dy +D(Dxq)∆

−1
M

])

= tr
(

D(∆−1
M
q) [DxDy −DyDx]

)

+ tr
(

D(Dxq)∆
−1
M
Dy −D(Dyq)∆

−1
M
Dy

)

= 0.

Finally, JEZ is divergence-free because it is a linear combination of divergence-free vector fields.
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4. Energy-enstrophy statistical theory

The equilibrium statistical mechanical theory for 2D ideal fluids was developed by Kraichnan [8],
and Salmon et al. [21]. It is based on a finite truncation of the spectral decomposition of the
equations of motion. Statistical predictions are obtained for the truncated system, and these are
extended to the infinite dimensional limit.

In this paper we will adapt the analysis to the semi-discretizations outlined in the previous section.
For the discretization JEZ , which conserves both energy and enstrophy, the analysis is identical
to the spectral case, so in the following we simply review the presentation of Majda & Wang [11].

As previously noted, semi-discretization of (2.1) using the bracket (3.10) yields a system of M2 or-
dinary differential equations having the Liouville property and two first integrals that approximate
the energy (3.7) and enstrophy (3.8). Due to the Liouville property, one can speak of transport of
probability density functions by this semi-discrete flow, and consider equilibrium solutions to Liou-
ville’s equation. In particular, any normalized function of the two first integrals is an equilibrium
distribution.

4.1 Mean field predictions
The equilibrium distribution of least bias maximizes entropy under the constraints imposed by
conservation of energy and enstrophy. Let X parametrize the M2 dimensional phase space; that
is, each X ∈ RM×M corresponds to a particular realization of the grid function (or discrete field)
q. A probability distribution ρ : RM×M → R on phase space satisfies

ρ(X) ≥ 0,

∫

RM×M

ρ(X) dX = 1.

The least biased distribution maximizes the entropy functional

S [ρ] = −
∫

RM×M

ρ(X) log ρ(X) dX (4.1)

under constraints on the ensemble averages of energy:

KE [ρ] =

∫

RM×M

EM (X)ρ(X) dX − E∗

M = 0, (4.2)

and enstrophy:

KZ [ρ] =

∫

RM×M

ZM (X)ρ(X) dX − Z∗

M = 0, (4.3)

where E∗

M and Z∗

M are prescribed values. Additionally, there is the implied constraint that ρ be
a probability distribution, i.e.

N [ρ] =

∫

RM×M

ρ(X) dX − 1 = 0. (4.4)

Using the method of Lagrange multipliers, one seeks

ρ∗ = arg max
ρ

{S [ρ] + λ0N [ρ] + λ1KE [ρ] + λ2KZ [ρ]}

to maximize the functional in braces. subject to the constraints (4.2)–(4.4), where the λj can be
chosen to ensure (4.2)–(4.4). For the maximizing distribution, the variational derivative of the
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expression enclosed in braces above must vanish. The variational derivatives of (4.1)–(4.4) are

δS
δρ

= −(1 + log ρ),

δKE

δρ
= EM ,

δKZ

δρ
= ZM ,

δN
δρ

= 1.

The maximizing distribution must therefore satisfy

−(1 + log ρ∗) + λ1EM + λ2ZM + λ0 = 0.

This equation can be solved for ρ∗ to give the Gibbs-like distribution (i.e. G ≡ ρ∗)

G(X) = C−1 exp [−α (ZM (X) + µEM (X))] , (4.5)

where C is the normalizing constant to ensure (4.4) and α and µ are chosen to ensure (4.2) and
(4.3).

The expected value of a function F (X) is the ensemble average of F with the measure G, denoted

〈F 〉 =

∫

RM×M

F (X)G(X) dX.

The mean state is obtained from the observation
〈

∂ZM

∂X
+ µ

∂EM

∂X

〉

=

∫

RM×M

(

∂ZM

∂X
+ µ

∂EM

∂X

)

C−1 exp [−α (ZM (X) + µEM (X))] dX

= −α−1

∫

RM×M

∂

∂X
G(X) dX = 0

assuming G decays sufficiently fast at infinity. Since ∇qEM = −ψ and ∇qZM = q, the mean field
relation

〈q〉 = µ〈ψ〉 (4.6)

follows. In other words, the ensemble averages of potential vorticity and stream function are
linearly related. Coupled with the second relation of (2.1) one has

∆M〈ψ〉 = 〈q〉 − h,

which yields a modified Helmholtz problem for the stream function given µ:

(µ− ∆M)〈ψ〉 = h. (4.7)

4.2 PV fluctuation predictions
Majda & Wang [11] show that states (4.6) are nonlinearly stable steady states of (2.1). They
rewrite solutions to (2.1) as the sum of mean and fluctuation parts

q = 〈q〉 + q′, ψ = 〈ψ〉 +ψ′, 〈q〉 = µ〈ψ〉.

This yields the equation for fluctuations

q′t = J(〈q〉,ψ′) + J(q′, 〈ψ〉) + J(q′,ψ′), ∆Mψ
′ = q′. (4.8)
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This differential equation has the first integral

IM (q′) ≡ Z ′

M + µE′

M , Z ′

M =
1

2
(q′)Tq′∆x∆y, E′

M = −1

2
(ψ′)Tq′∆x∆y. (4.9)

One can also set up a statistical mechanics for the fluctuation equations and obtain predictions.
To do so, let

p̂k =

(

1 +
µ

|k|2
)1/2

q̂′k. (4.10)

Then the Fourier transform of (4.9) gives

IM =
1

2

∑

k

(

1 +
µ

|k|2
)

|q̂′k|2∆x∆y =
1

2

∑

k

|p̂k|2∆x∆y =
1

2

∑

m

p2
m∆x∆y, (4.11)

with corresponding fluctuation Gibbs distribution

G′(p) = C−1 exp

(

−β
2

∑

m

p2
m∆x∆y

)

=
∏

m

c−1 exp

(

−β
2
p2

m∆x∆y

)

, (4.12)

where c−M2

= C−1. Denote the Guassian distribution with mean x̄ and standard deviation σ by

g(x; x̄, σ) =
1

σ
√

2π
exp

(

− (x− x̄)2

2σ2

)

,

for which it holds that
∫

R
g(x) dx = 1. The distribution (4.12) is the product of M2 identical such

functions, i.e.,

G′(p) =
∏

m

g(pm; 0, σp),

where σp = (β∆x∆y)−1/2.

Define the partial energy Im = 1
2p

2
m∆x∆y. We calculate

〈Im〉 =

∫

RM×M

1

2
p2

m∆x∆y
∏

k

g(pk; 0, σp) dpk

=
∆x∆y

2

∫

R

p2
mg(pm; 0, σp) dpm =

∆x∆y

2
σ2

p =
1

2β
.

This holds for each partial energy. The energy is equipartitioned, and

〈IM 〉 =
∑

m

〈Im〉 =
∑

m

1

2β
=
M2

2β
,

from which we obtain the estimates

β =
M2

2〈IM 〉 , σp =

√

2〈IM 〉
M2∆x∆y

=

√

〈IM 〉
2π2

.

Let us further assume that the pm are independent. Let P = aTp denote a linear combination of
the pm. Since these are identically distributed, P is Gaussian with variation

σ(P )2 = aTaσ2
p = |a|2σ2

p.
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From (4.10) we have

q′ = F−1 diag

(

(

1 +
µ

|k|2
)

−1/2
)

Fp = Ap,

where A is real and symmetric. It follows that the time series q′m(t) at each grid point m is
Gaussian with mean zero and variance

σ2
q = |a|2σ2

p = |a|2 〈IM 〉
2π2

, (4.13)

where for a we can take any row of A.

4.3 Approximation of µ and α
The ensemble averages of energy and enstrophy can be split into a mean part and a fluctuation
part [11]:

〈EM 〉 = EM (〈q〉) + E′

M , 〈ZM 〉 = ZM (〈q〉) + Z ′

M , (4.14)

where, using (4.7),

EM (〈q〉) = −1

2
〈ψ〉T (〈q〉 − h)∆x∆y =

1

2

M/2
∑

k1,k2=−M/2+1

|k|2|ĥk|2
(µ+ |k|2)2 ∆x∆y, (4.15a)

E′

M =
1

2α

M/2
∑

k1,k2=−M/2+1

1

µ+ |k|2 , (4.15b)

and

ZM (〈q〉) =
1

2
〈q〉T 〈q〉∆x∆y =

1

2

M/2
∑

k1,k2=−M/2+1

µ2|ĥk|2
(µ+ |k|2)2 ∆x∆y, (4.16a)

Z ′

M =
1

2α

M/2
∑

k1,k2=−M/2+1

|k|2
µ+ |k|2 . (4.16b)

Given guesses for µ and α, it is straightforward to compute 〈EM 〉 and 〈ZM 〉 by solving (4.15) and
(4.16) and then substituting into (4.14). To estimate µ and α, we proceed iteratively, by implicitly
solving (4.2) and (4.3) under that assumptions E∗

M ≈ E0 and Z∗

M ≈ Z0.

4.4 Alternative statistical theories
In this section we derive alternative statistical models for the cases where either energy or enstro-
phy, but not both, is conserved numerically.

4.4.1 Energy-based statistical mechanics For a semi-discretization that only preserves the energy
EM , the least biased distribution (4.5) becomes

GE(X) = C−1 exp {−λEM (X)} .

The mean field prediction (4.6) gives

〈ψ〉 ≡ 0, 〈q〉 = h. (4.17)

The fluctuation dynamics (4.8) becomes

q′t = JE(h+ q′,ψ′), ψ′ = ∆−1
M
q′,
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which preserves the pseudo-energy

IM = −1

2
(ψ′)Tq′∆x∆y = E′

M ≈ E0

We define

p̂k =
q̂′k

(|k|2)1/2
,

and obtain the fluctuation Gibbs distribution (4.12) with σp = (〈IM 〉/2π2)1/2. The fluctuation
vorticity σq is given by (4.13) with A = (−∆M)1/2.

4.4.2 Enstrophy-based statistical mechanics For a semi-discretization that only preserves the
enstrophy ZM , the least biased distribution (4.5) becomes

GE(X) = C−1 exp {−λZM (X)} .

The mean field prediction (4.6) gives

〈q〉 ≡ 0, 〈ψ〉 = −∆−1
M
h. (4.18)

The fluctuation dynamics (4.8) becomes

q′ = JZ(q′, 〈ψ〉 + ψ′), ψ′ = ∆−1
M
q′,

and the pseudo-energy is just the enstrophy, i.e.

IM =
1

2
(q′)Tq′∆x∆y = Z ′

M ≈ Z0.

We obtain the fluctuation Gibbs distribution (4.12) with p̂k = q̂′k and find

σq =

√

〈IM 〉
2π2

.

5. Time integration

5.1 Time discretizations
Since both invariants EM and ZM of the discretizations are quadratic functions of q, they are au-
tomatically conserved if the equations are integrated with a Gauss-Legendre Runge-Kutta method
[6]. The simplest such method is the implicit midpoint rule

qn+1 − qn

∆t
= J

(

qn+1 + qn

2
,
ψn+1 +ψn

2

)

.

The discretization is also symmetric, and in the case of zero topography h(x) ≡ 0, preserves the
time reversal symmetry t 7→ −t, q 7→ −q of (2.1). Although it is symplectic for Hamiltonian
systems with constant structure operators, the implicit midpoint rule is not volume preserving in
general. Indeed, a numerical check indicates that it does not preserve volume for our discretiza-
tions. However, it is nondamping and exactly preserves linear stability, and, as our numerical
experiments indicate, it does accurately reproduce the statistical predictions, even for a relatively
large step size.
Implicit midpoint requires the solution of a nonlinear system of dimension M2 at every time step.
As a more efficient alternative, we can take any explicit Runge-Kutta method and project the
solution onto the integral manifolds as desired. Let the Runge-Kutta method be represented by a
map qn+1 = Φ∆t(q

n) and compute a predicted step

q∗ = Φ∆t(q
n).
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Then project q∗ onto the desired constraint manifolds. For example, we solve

qn+1 = q∗ + g′(q∗)Tλ

g(qn+1) = 0

for λ where g(q) : RM×M → Rr, r the number of first integrals, and λ ∈ Rr is a vector of Lagrange
multipliers. For example, we can take (r = 3)

g(q) =





EM (q) − E0

ZM (q) −Z0

(
∑

m qm) − 1



 ,

where the last constraint ensures that there is no drift in total vorticity. At each time step,
projection requires solving a small nonlinear problem of dimension r. Projected Runge-Kutta
methods will generally not preserve volume.
One can also combine projection with an arbitrary spatial discretization, i.e. even one that does
not have EM or ZM as a first integral. This allows us to investigate the relative importance of
conservation in spatial and temporal discretizations. In the numerical experiments we use J0, for
which we have established that the semi-discretization preserves volume but neither energy nor
enstrophy.

5.2 Time averages
Our interest is in the statistics applied to numerical data obtained from simulations over long times.
To apply the theory from the previous sections, we further have to assume that the semi-discrete
dynamics are ergodic. Denote the time average of a quantity F (q(t)) by

F̄T =
1

T

∫ t0+T

t0

F (q(t)) dt.

Then the assumption of ergodicity implies that the long time average converges to the ensemble
average

F̄ = lim
T→∞

F̄T = 〈F 〉.

On the other hand, suppose one chooses discrete initial conditions to have a prescribed energy
and enstrophy consistent with the continuum problem, i.e.

EM (q(0)) = E0, ZM (q(0)) = Z0.

Then it is clear that since EM (q(t)) = EM (q(0)) and ZM (q(t)) = ZM (q(0)) are conserved, the
dynamics only samples at best a codimension two subspace of RM×M , so one may ask to what
extent the averages will converge. Indeed, one has inequality

ĒM = 〈EM 〉 6= E0, Z̄M = 〈ZM 〉 6= Z0,

in general. By analogy with molecular dynamics, the Gibbs distribution (4.5) determines expec-
tations in the canonical ensemble, whereas a constant energy-enstrophy simulation determines
expectations in the microcanonical ensemble (assuming ergodicity). It is only in the ‘thermody-
namic limit’ M → ∞ that these averages coincide, giving equality in the above relations.

6. Numerical experiments

For the numerical experiments we use the test problem of [1]. The grid resolution is M = 22. The
orography is a function of x only, specifically

h(x, y) = 0.2 cosx+ 0.4 cos 2x.
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(As a result the predicted mean fields q̄ and ψ̄ should be functions of x only.) The integrations
were carried out using a step size of ∆t = 0.1.
For initial conditions we take a random field1 q = qm1,m2

, m1,m2 = 1, . . .M and project this onto
the constraints

EM (q) = E0, ZM (q) = Z0,
∑

m

qm = 0.

The same initial condition is used for all simulations. The discrete energy and enstrophy were
taken to be E0 = 7 and Z0 = 20.
With these values prescribed, the statistical predictions of Section 4 can be computed for the three
discretizations (3.5), (3.6), and (3.10). The Lagrange multiplier µ is computed using the procedure
described at the end of Section 4.3. Fluctuation statistics apply to the time series of PV at an
arbitrarily chosen monitor point on the grid qmon = q3,12.
For the energy-enstrophy theory we obtain the mean state (4.6) and estimates

JEZ : µ = −0.730, 〈qmon〉 = −0.341, σq = 0.970. (6.1)

For the energy theory of Section 4.4.1 we obtain the mean state (4.17) and estimates

JE : 〈ψ〉 ≡ 0, 〈qmon〉 = 0.0740, σq = 5.36. (6.2)

For the enstrophy theory of Section 4.4.2 we obtain the mean state (4.18) and estimates

JZ : µ = 0, 〈qmon〉 = 0, σq = 1.01. (6.3)

6.1 Results using implicit midpoint
We first present results obtained using the implicit midpoint discretization in time. The nonlinear
relations were solved using fixed point iteration to a tolerance of 10−13, which was the smallest
tolerance that gave convergence at each step size for all discretizations. The solutions were averaged
over the interval [103, T ], for T = 104, 105 and 106.
Given the average fields q̄ and ψ̄, the best linear fit to (4.6) yields an estimate of the Lagrange
multiplier µ, i.e.

µ̄ =
ψ̄

T
q̄

ψ̄
T
ψ̄
.

The relative change in energy and enstrophy for each discretization is plotted in Figure 1 on the
interval [0, 104]. The relative change is defined as

∆En
M =

En
M − E0

E0
, ∆Zn

M =
Zn

M −Z0

Z0
.

For the discretization JEZ , both quantities are conserved up to the tolerance of the fixed point
iteration, which leads to a small drift of magnitude 3× 10−11 (relative) over this interval. For the
JE discretization, energy is conserved to the tolerance of the fixed point iteration, but enstrophy
makes a rapid jump to a mean state roughly 30 times its initial value and subsequently undergoes
bounded fluctuations with amplitude about 10 times Z0. By contrast, for the JZ discretization,
enstrophy is similarly conserved, but energy drifts gradually with a negative trend, by about 30%
of its initial value.

6.1.1 Long-time mean fields The time-averaged mean field ψ̄ obtained by averaging over the
interval [103, 104] is shown in Figure 2 for the three discretizations JEZ , JE and JZ . Also shown is a
scatter plot of the locus (ψ̄m, q̄m) and a linear best fit to this data for the respective discretizations.
For the JEZ discretization, the mean stream function is similar to that predicted by the energy-
enstrophy statistical theory (4.6), with µ̄ = −0.734. For the JE discretization, the mean stream
function satisfies ψ̄ ≈ 0, consistent with (4.17), and the linear regression is inaccurate. For the JZ



6. Numerical experiments 14

0 5 10

x 10
4

−2

0

2

4
x 10

−11

t

Rel. error

 

 

E
Z

0 5 10

x 10
4

−10

0

10

20

30

40

t

Rel. error

 

 

E
Z

0 5 10

x 10
4

−1

−0.5

0

0.5

t

Rel. error

 

 

E
Z

Figure 1: Relative change in energy and enstrophy with discretizations JEZ (left), JE (middle),
and JZ (right).
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Figure 2: Mean fields with averaging time 104, JEZ (left), JE (middle), and JZ (right). The insets
show the best linear fit to the relation ψ̄m = µq̄m at all grid points.
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discretization, we observe a similar mean state with µ̄ = −0.715 on this averaging interval, which
is inconsistent with prediction (6.3).
In Figures 3 and 4 we examine more closely the mean fields for the JEZ and JZ discretizations,
for longer averaging times of T = 105 and T = 106. For the energy-enstrophy discretization JEZ

in Figure 3, the mean field appears to converge to an equilibrium state with µ̄ ≈ −0.732. The
tendency in Figure 4 is toward a mean field with zero vorticity, consistent with (4.18). However
the relaxation time is much longer than for the other discretizations. For T = 106, the mean flow
has µ̄ = −0.0529. Note that the relation q̄ = µψ̄ approximates the data well, however. In Section
6.1.3 below, we show that the convergence of the JZ discretization is in agreement with the JEZ

predictions on short time intervals, so that we can think of the system staying near statistical
equilibrium with slowly drifting energy.

−1

0

1

T = 104, µ = -0.734

−1

0

1

T = 105, µ = -0.73

−1

0

1

T = 106, µ = -0.731

−1 0 1

−1
0
1

Ψ̄

q̄

−1 0 1

−1
0
1

Ψ̄

q̄

−1 0 1

−1
0
1

Ψ̄

q̄

Figure 3: Mean fields for discretization JEZ with averaging times 104 (left), 105 (middle), and 106

(right). The insets show the best linear fit to the relation ψ̄m = µq̄m at all grid points.
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Figure 4: Mean fields for discretization JZ with averaging times 104 (left), 105 (middle), and 106

(right). The insets show the best linear fit to the relation ψ̄m = µq̄m at all grid points.

6.1.2 PV fluctuation statistics In Figure 5, the time series for potential vorticity qmon at an
arbitrarily chosen grid point (3, 12) is analyzed. As discussed in Section 4.2, the statistical theory
for fluctuations predicts that the PV should be distributed normally about the mean field according
to (6.1)–(6.3). For the longest simulation time of T = 106, the JEZ discretization exhibits Gaussian

1Experiments with smooth initial conditions show no noticable difference.
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fluctuations with mean q̄mon = −0.395 and standard deviation σ = 0.927; the JE discretization
with mean q̄mon = −0.0093 and standard deviation σ = 5.35; and the JZ discretization with
mean q̄mon = −0.0575 and standard deviation σ = 1.05. These observations are approximately in
agreement with (6.1)–(6.3).
We mention that the value m̄u = 0.732, to which the JEZ discretization seems to relax, corresponds
to a mean energy value of 〈EN 〉 = 7.07. For this value of mean energy, the prediction of Section
4.2 gives σ = 0.928, which is much closer to the value observed in Figure 5. This indicates that for
implicit midpoint, the mean energy is somewhat preturbed from the microcanonical energy E0.
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Figure 5: Fluctuation statistics for the potential vorticity about the predicted mean. The his-
togram is observation. The red line is a Gaussian fit. The black line is the predicted distribution.
Discretizations JEZ , JE , and JZ in left, middle and right columns. Integration intervals of 104,
105 and 106 in top, middle and bottom rows.

6.1.3 Time-dependent energy-enstrophy model In Figure 6, the convergence of µ̄ is plotted as
a function of averaging interval T for both the JZ and JEZ discretizations. The JEZ dynamics
relaxes very rapidly to give µ̄ ≈ −0.73, whereas the JZ dynamics converges rather slowly towards
µ̄ = 0. Given the relatively fast relaxation of the energy-enstrophy conserving discretization to
statistical equilibrium (4.6) and the slow drift of energy in Figure 1 for the enstrophy conserving
discretization JZ , a natural model for the approach to equilibrium would be to consider a state
q̄T = µ̄T ψ̄T with µ̄T corresponding to the instantaneous energy EM (T ).
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To test this idea, we define

ψ̄T =
1

NT

NT
∑

n=1

ψn, q̄T =
1

NT

NT
∑

n=1

qn,

where T = NT · ∆t, and

µT =
(ψ̄T )T q̄T

(ψ̄T )T ψ̄T

.

The energy of the associated equilibrium state is denoted EM (µ̄T ) and is determined from the
relations in Section 4.3. This energy is plotted in Figure 7 next to the actual discrete energy
function, for increasing averaging intervals T = 10, T = 100 and T = 1000. The agreement
supports this model. That is, the JZ dynamics relaxes on a fast time scale to the statistical
equilibrium predicted by energy-enstrophy theory for the instantaneous energy, while the energy
drifts on a slow time scale towards the equilibrium state predicted by the enstrophy theory.
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Figure 6: Convergence of parameter µT as a function of the averaging interval T for the JEZ and
JZ discretizations.

6.2 Results using projected Heun’s method
Besides preserving quadratic first integrals exactly, the implicit midpoint rule is symmetric. It is
unclear what effect, if any, this may have on statistics. Furthermore, the implicit midpoint rule
is fully implicit and therefore not a very practical choice for integrating a nonstiff system such
as (2.1). For these reasons we repeat the experiments of the previous section using the second
order, explicit Runge-Kutta method due to Heun [7], coupled with projection onto the discrete
energy and/or enstrophy manifolds. It should be noted that Heun’s method is linearly unstable
with respect to a center equilibrium, and it is only due to projection that we can carry out long
integrations with this method.
Figure 8 compares the convergence of the parameter µ̄T as a function of T for the implicit midpoint
and projected Heun integrators for the JEZ and JZ discretizations. In both cases, it appears that
the projected method approaches equilibrium faster than implicit midpoint.
Figures 9, 10 and 11 are analogous to Figures 2, 3 and 4 for implicit midpoint. Again we note that
the projected method converges more rapidly and more accurately to the mean states (6.1)–(6.3).
The fluctuation statistics for the projection method are illustrated in Figure 12. Here, too, we
see that the projection method is very close to the statistically predicted value for mean and
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Figure 7: Energy drift with JZ discretization, compared to the energy associated with the best
linear fit µT with averaging intervals T = 10, T = 100 and T = 1000.
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Figure 9: Same as Figure 2, but using projected Heun’s method
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Figure 10: Same as Figure 3, but using projected Heun’s method.
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Figure 11: Same as Figure 4, but using projected Heun’s method.
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standard deviation of PV fluctuations in (6.1)–(6.3). However, it is important to note that since
a measure of predictability is the deviation from the statistical equilibrium, a numerical method
that approaches equilibrium excessively fast is undesirable from a prediction perspective.
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Figure 12: Same as Figure 5, but using projected Heun’s method.

6.3 The importance of conservative spatial discretization
One may ask about the relative importance of the conservative properties of the spatial and
temporal discretizations. We can project any solution onto the energy or enstrophy manifolds; is
it really necessary that the spatial discretization have these quantities as first integrals? In this
section we demonstrate numerically that the conservation properties of the spatial discretization
are vital to obtaining correct statistics.
We repeat the experiment of the previous section, this time using the spatial discretization J0

which conserves neither energy nor enstrophy. The semi-discretization is integrated in time with
the projected Heun method of the previous section.
The numerical results are presented in Figures 13 and 14 for the intermediate averaging interval
of T = 105. We note that the mean state (4.6) is still recovered accurately for projection on both
energy and enstrophy. For projection on energy or enstrophy alone, however, the mean states do
not agree with the statistical predictions (6.2) and (6.3). In all cases the fluctuation statistics are
entirely incorrect. In fact, further experimentation suggests that in the absence of conservative
structure in the semi-discretization, projection introduces an asymptotically stable limit cycle that
attracts a large set of initial conditions.
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Figure 13: Same as Figure 2, but using semi-discretization J0 and projected Heun’s method,
T = 105.
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7. Conclusions

In this paper we have constructed statistical mechanical theories for three conservative discretiza-
tions of the quasi-geostrophic model due to Arakawa [2], based on conservation of energy, enstro-
phy, or both. Numerical experiments indicate that the statistical theories can give insight into
the long time behavior of the discretizations, making this approach a useful tool for numerical
analysis.
Time integration of the semi-discretization was done with the symmetric implicit midpoint method—
which automatically conserves any quadratic first integrals of the semi-discrete system—and with
a projected Runge-Kutta method. Long time averages with the implicit midpoint discretization
relax to the predicted equilibrium at a slower rate than for the projected method, suggesting that
implicit midpoint has higher potential for prediction.
Experiments with a nonconservative spatial discretization and projected time integrator show
that the conservative properties of the spatial discretization are essential for statistical accuracy.
A conservative spatial discretization ensures proper local transport of energy and/or enstrophy.
The three statistical theories predict dramatically different behavior, and this is confirmed by the
numerical experiments. In other words, the three discretizations exhibit dramatically different
behavior in simulations over long intervals. The statistical equilibrium states define a backdrop on
which the discrete dynamics occurs, and that backdrop depends on the conservation properties of
the spatial discretization. Assuming the energy-enstrophy theory to be correct, it is thus essential
for any code to preserve both quantities (under semi-discretization) if statistical accuracy is desired.
On the other hand, it has been shown by Abramov & Majda [1] that the energy-enstrophy theory
is incomplete. In [1], the Poisson discretization of [25] is integrated using the Poisson splitting of
McLachlan [13]. The semi-discretization preserves, in addition to the Hamiltonian, N Casimirs
corresponding to the first N moments of potential vorticity (PV), and these are preserved by the
splitting (the energy is only preserved approximately, in the sense of backward error analysis [6]).
Abramov & Majda give convincing evidence that nonzero values of the third moment of PV, when
conserved by the discretization, can significantly skew the predictions of the standard theory of
[8, 21, 11].
Nonetheless the results of this paper make a strong argument for the use of conservative discretiza-
tions in weather and climate simulations.
Planned further work on the subjects of this paper will address shallow water equations on the
sphere, energy and enstrophy conserving discretizations [22, 19, 20], and the Hamiltonian Particle-
Mesh method [3, 4, 5], a symplectic discretization of inviscid fluids. In [4] it is shown that the HPM
method satisfies a circulation theorem, but it is uncertain to what extent this can be interpreted
as enstrophy conservation. We expect the current approach will clarify this issue.
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16. P. Névir and R. Blender. A Nambu representation of incompressible hydrodynamics using
helicity and enstrophy. J. Phys. A, 26(22):L1189–L1193, 1993.

17. J. Pedlosky. Geophysical Fluid Dynamics. Springer, 2nd edition, 2005.

18. R. Salmon. Lectures on Geophysical Fluid Dynamics. Oxford University Press, New York,
1998.

19. R. Salmon. Poisson-bracket approach to the construction of energy- and potential-enstrophy-
conserving algorithms for the shallow-water equations. J. Atmospheric Sci., 61(16):2016–2036,
2004.

20. R. Salmon. A general method for conserving quantities related to potential vorticity in nu-
merical models. Nonlinearity, 18(5):R1–R16, 2005.

21. R. Salmon, G. Holloway, and M. C. Hendershott. The equilibrium statistical mechanics of
simple quasi-geostrophic models. J. Fluid Mech., 75:691–703, 1976.

22. R. Salmon and L. D. Talley. Generalizations of Arakawa’s Jacobian. J. Comput. Phys.,
83(2):247–259, 1989.

23. J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems, volume 7 of Applied
Mathematics and Mathematical Computation. Chapman & Hall, London, 1994.

24. A. M. Stuart and A. R. Humphries. Dynamical Systems and Numerical Analysis, volume 2 of
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, Cambridge, 1996.

25. V. Zeitlin. Finite-mode analogs of 2D ideal hydrodynamics: coadjoint orbits and local canon-
ical structure. Phys. D, 49(3):353–362, 1991.


