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Abstract. We demonstrate how to use Lautemann's proof that BPP 
is in E~ to exhibit that BPP is in RPPromiseRP. Immediate conse
quences show that if PromiseRP is easy or if there exist quick hitting 
set generators then P = BPP. Our proof vastly simplifies the proofs 
of the later result due to Andreev, Clementi and Rolim and Andreev, 
Clementi, Rolim and Trevisan. 
Clementi, Rolim and Trevisan question whether the promise is necessary 
for the above results, i.e., whether BPP ~ RPRP for instance. We give 
a relativized world where P = RP =f. BPP and thus the promise is 
indeed needed. 

1 Introduction 

Andreev, Clementi and Rolim [ACR98] show how given access to a quick hitting 
set generator, one can approximate the size of easily describable sets. As an 
immediate consequence one gets that if quick hitting set generators exist then 
P = BPP. Andreev, Clementi, Rolim and Trevisan [ACRT97] simplify the proof 
and apply the result to simulating BPP with weak random sources. 

Much earlier, Lautemann [Lau83] gave a proof that BPP i;;; E~ = NPNP, 
simplifying work of Gacs and Sipser [Sip83]. Lautemann's proof uses two simple 
applications of the probabilistic method to get the existence results needed. 
As often with the case of the probabilistic method, the proof actually shows 
that the overwhelming number of possibilities fulfi.11 the needed requirements. 
With this observation, we show that Lautemann's proof puts BPP in the class 
RPPromiseRP[lJ. Since quick hitting set generators derandomize PromiseRP 
problems, we get the existence of quick hitting set generators implies P = BPP. 
This greatly simplifies the proofs of Andreev, Clementi and Rolim [ACR98] and 
Andreev, Clementi, Rolim and Trevisan [ACRT97]. 
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The difference between RP and PromiseRP is subtle but important. In 
the class RP we require the probabilistic Turing machine to either reject always 
or accept with probability at least one-half for all inputs. In PromiseRP we 
only need to solve instances where the machine rejects always or accepts with 
probability at least one-half. 

A survey paper by Clementi, Rolim and Trevisan [CRT98] asks whether we 
can remove the promise in our result, i.e., whether BPP ~ RPRP. We give 
a relativized counterexample to this conjecture by exhibiting an oracle A such 
that pA = RPA but pA =I- BPPA. Since virtually all the techniques used in 
derandomization relativize, this means that new techniques will be required to 
collapse BPP in this way. 

2 Definitions 

We assume the reader familiar with the standard notions of Turing machines, and 
deterministic, nondeterministic and probabilistic polynomial-time computation. 
We let E represent the binary alphabet {O, l}. 

A quick hitting set generator finds strings in large easily describable sets. 

Definition 1. A quick 8-hitting set generator is a polynomial-time computable 
function h mapping 1 n to a set of strings of length n such that for all n if 
f : En --+ { 0, 1} is a function computed by circuits of at most n gates and 
PrxEE" (f(x) = 1) ;::: 8 then f(x) = 1 for some x in h(l n). 

Andreev, Clementi and Rolim [ACR98] show that for any 8, 8' > 0, if quick 8-
hitting set generators exist than so do 8' -hitting set generators. We will drop 8 
in this case. 

We have many variations of probabilistic complexity classes. In this paper, 
we will concern ourselves with RP, BPP, PromiseRP and PromiseBPP. 

Definition 2. A language L is in the class RP if there exists a probabilistic 
polynomial-time Turing machine such that for all x E E*, 

- If x is in L then Pr(M accepts x) ;::: 1/2, and 
- If x is not in L then Pr(M accepts x) = 0. 

Sometimes the class RP is denoted simply by R. 

Definition 3. A language L is in the class BPP if there exists a probabilistic 
polynomial-time Turing machine such that for all x E E*, 

- If x is in L then Pr(M accepts x) ;::: 2/3, and 
- If x is not in L then Pr(M accepts x) :::; 1/3. 

Languages in RP require machines M that fulfill the requirements of Defini
tion 2 for all inputs. Sometimes we would like to consider probabilistic machines 
restricted to inputs where the desired requirements hold. We use PromiseRP to 
describe these problems. This does not form a class per se, but we can formally 
define the notions of PromiseRP being easy and oracle access to PromiseRP. 
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Definition 4. We say that a language A is RP-consistent with a probabilistic 
polynomial-time Turing machine M if for all x E E*, 

- x is in A if Pr(M accepts x) ~ 1/2, and 
- x is not in A if Pr(M accepts x) = 0. 

Note that A may be arbitrary for x such that 0 < Pr(M accepts x) < 1/2. 

Definition 5. We say PromiseRP is easy if for every probabilistic polynomial
time Turing machine M there is a set A in P that is RP-consistent with M. 

Using repetition we can reduce the error in Definitions 2-5 to 2-q(/xl) for any 
polynomial q. 

Contrast Definition 5 to Definition 2. In particular we have PromiseRP 
is easy implies P = RP. The converse is not so simply provable, relativized 
counterexamples easily follow from known results on generic oracles [IN88]. The 
oracle we develop in Section 4 also gives a relativizable counterexample. 

Definition 6. For any relativizable complexity class c' L is in cPromiseRP if 
there is a probabilistic polynomial-time Turing machine M such that L is in CA 
for all A RP-consistent with M. 

We can also define cPromiseRP[k] if we allow only k queries to A in Defini
tion 6. We can use the notation PromiseBPP in a similar manner. 

One might want to require in Definition 6 that L be in CA via a fixed machine 
depending only on M. Grollmann and Selman [GS88] show that this restriction 
does not affect Definition 6. For completeness we give a proof of the equivalence 
of the two definitions in Section 5. 

It is not hard to see that there is an easy connection between hitting set 
generators and PromiseRP. 

Fact 1 If there are quick hitting set generator then PromiseRP is easy. 

3 One-Sided Promise Gives BPP 

Theorem 1. 
BPP ~ RPPromiseRP[l] 

Proof: We basically use the proof of Lautemann [Lau83] that BPP is in 
E~ to prove Theorem 1. 

Let L be a language in BPP and M a probabilistic polynomial-time Turing 
machine accepting L with an error of 2-n on inputs of length n. Let q(n) be the 
maximum number of coin tosses on any computation path of M on any input of 
length n. Note q(n) is bounded by a polynomial inn. 

Let A be the set of pairs (x, r) such that lrl = q(lxl) and M(x) using r as its 
random coins will accept. Note that A is computable in deterministic polynomial 
time. We now define the set B as: 

B = {(x, z1, · · ·, Zq(/x/J) I lzil = · · · = lzq(/x/)I = q(lxl) implies there is some 

w E Eq(/x/) such that (x,w E8 z1) fj. A/\···/\ (x,w E8 Zq(/x/)) rj_ A}. 

Here u E8 v for lul = Jvl is the bitwise parity of u and v. 
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Note we have B E NP. First we will show that Lis in RPB[lJ. Our RP8 

algorithm on input x with n = Ix! simply chooses z1, ... , Zq(n) independently at 
random from 17q(n) and then accepts if (x, z1 , ... , Zq(n)) is not in B. 

If x is in L then consider a fixed wand i, 1 :::; i :::; q(n). The probability that 
(x, w EB zi) is not in A is at most 2-n. Since the zi 's are chosen independently, 
the chance that (x, w EB Zi) is not in A for every zi, 1 :::; i :::; q(n) is at most 
2-nq(n). Since there are 2q(n) possible w's we have 

Pr( (x, z1, .. ., Zq(n)) E B) :::; rn. 

Now suppose that x is not in L. Fix z1 , ... , Zq(n) and i, 1:::; i:::; q(n). If we 
choose w at random, the probability that w EB Zi is in A is at most 2-n. The 
probability that wEB Zi is in A for some i is at most q(n)2-n which for sufficiently 
large n is much smaller than 1/2. Thus for every z1, ... , Zq(n) of strings of length 
q(n), (x, z1, ... , Zq(lxlJ) is in B. 

Now we wish to show that Lis in RPPromiseRP[lJ. Let C be any set such that 
C and B agree on tuples where the w is chosen at random and the acceptance 
probability is either zero or greater than one-half. 

More specifically (x, z1, ... , Zq(lxl)l is in C if 

1. lzil = q(lxl) for each i, 1:::; i:::; q(lxl), and 
2. the number of w of length q(lxl) such that 

(x, w EB z1) rj. A/\···/\ (x, w EB Zq(lxl)l tf. A 

is greater than 2q(lxll- 1. 

The tuple (x, z1 , ... , Zq(lxl)l is not in C if 

1. lzil = q(lxl) for each i, 1:::; i:::; q(lxl), and 
2. there are no w of length q(lxl) such that 

(x, w EB z1) rJ. A/\···/\ (x, w EB Zq(lxl)l tf. A. 

The set C can be arbitrary for all other inputs. 
The proof above that L is in RPB[l] also shows that L is in RPc[iJ. D 
In the proof of Theorem 1, if x is in L and the Zi are badly chosen then the 

number of w such that 

(x, w EB z1) tj. A/\···/\ (x, w EB Zq(lxl)l tf. A 

might be nonzero yet small. This is why we need PromiseRP instead of just 
RP for this proof. Theorem 3 shows that any relativizable proof would need to 
use PromiseRP. 

From Theorem 1 and its proof we get the following two corollaries. 

Corollary 1. If PromiseRP is easy then P = BPP and PromiseBPP is 

easy. 
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Corollary 2 (Andreev-Clementi-Rolim). If quick hitting set generators ex
ist then P = BPP. 

The proof of Theorem 1 only uses the set A restricted to the inputs of the 
form {x, r). Thus we can use PromiseBPP is easy instead of just P = BPP in 
Theorem 1 and Corollaries 1 and 2. 

Andreev, Clementi and Rolim [ACR98] prove the following stronger result to 
get Corollary 2. 

Theorem 2 (Andreev-Clementi-Rolim). For any € > 0, there is a poly
nomial-time algorithm that, given access to a quick hitting set generator, and 
given as input a circuit G returns a value D such that 

I Pr (G(x) = 1) - DI SE. 
xeEn 

We should note that Theorem 2 also follows from Theorem 1. One just need 
notice that distinguishing the possibilities that Prxenn(C(x) = 1) 2:: D +€and 
Prxenn(C(x) = 1) S D - €is a PromiseBPP question. 

4 RP Can Be Easy without BPP Being Easy 

In this section we show that Theorem 1 cannot be improved to show that P = R 
implies P =:= BPP using relativizing techniques. 

Theorem 3. There exists a relativized world where P = RP f. BPP. 

Define the following function tower(O) = 2, tower(n + 1) = 2tower(n), i.e. 
tower(n) is an exponential tower of n + 1 2's. We will use a special type of 
generic (see [FFKL93] for an overview) to prove the theorem. 

Definition 7. A BPP-generic oracle G is a type of generic oracle that is only 
defined at length n such that n = tower(m) for some m. Moreover at these 
lengths it will always be the case that at most 1/3 or more than 2/3 of the 
strings of length n are in G. We will call oracles that satisfy these requirements 
oracles that are BPP-promise. 

The oracle that fulfills the conditions of Theorem 3 will be QBF $ G for 
Ga BPP-generic. Here QBF is the PSPACE-complete set of true quantified 
boolean formulae. The following lemma shows that the second part of Theorem 3 
is fulfilled. 

Lemma 1. Let G be a BPP-generic. pQBFEBG #- BPPQBFaiG. 

Proof: This follows because G is generic and the condition that P f. BPP 
can be met under the BPP promise of G. D 

The more difficult part is to show that pQBFaiG = R QBFEBG. We will need 
the following notion of categoricity. 
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Definition 8. A polynomial time nondeterministic machine M is categorically 
R if for all BPP-promise oracles B it is the case that for all x MQBFEE>B(x) 
has either more than 1/2 of its paths accepting or none. We will also call these 
machines categorical. 

The idea is to show that if M is categorical then there is a polynomial time 
(relative to QBF) algorithm that computes for all x whether M(x) accepts or 
rejects. The core of this proof will be an argument from Nisan [Nis91]. 

The proof of Theorem 3 follows from Lemmas 2 and 3. Lemma 2 says that 
if we have a machine M(x) that is categorically Rand we only consider oracles 
A such that at most 1/6 or at least 5/6 of the strings of length n are in A then 
MQBFEBA(x) can be decided in polynomial time relative to QBF EB A. 

Lemma 2. Fix an input x and let n =Ix!. Let M(x) be a categorical machine. 
For any set A that only contains strings of length n with the promise that either 
at most 1/6 or at least 5/6 of the strings of length n are in A, there exists a 
deterministic strategy that determines MQBFEBA(x), querying only a fixed poly
nomial number of strings in A. Moreover this strategy can be computed in a fixed 
polynomial time relative to QBF EB A. 

Proof We follow the lines of the proof of Nisan [Nis91]. Suppose M runs in 
time p(n). Call any B that fulfills the 1/6, 5/6 promise BPP2-prornise. Fix A 
to be any BPP2-promise oracle. 

The deterministic strategy to determine MQBFEBA(x) works as follows. 
Let 81 contain all the oracles B such that MQBFEBB(x) accepts: 

81 ={BI Pr(MQBFEBB(x) accepts)> O} 

Let So contain all the BPP2-promise oracles such that M(x) rejects: 

So= {CIC is BPP2 -promise and Pr(MQBFec(x) accepts)= O} 

Let B 1 a set in 8 1. Fix any accepting path 7f of MQBFEBB1 (x) with queries 
qi, ... , qp(n) on it and let bi, ... bp(n) be such that B1(qi) = bi. Next query 
qi, ... , qp(n) to A and let ai, ... ap(n) be the answers (i.e. ai = A(qi)). If for all 
i it holds that ai = bi we know that MQBFEBA(x) accepts and we are done. So 
assume that this is not the case. 

At this point we have the following claim: 

Claim. For all C E So at least half of the computation paths of MQBFE!lC ( x) 
query a string in Q =qi, ... ,Qp(n)· 

Proof Suppose this is not true and that there is a C E So such that less than 
half of the computation paths of MQBFEElC(x} query a string in Q. Consider 
the oracle C' which is defined as follows. For all x (/. Q, C'(x) = C(x) and 
for q; E Q, C' (q;) = b;. (i.e. C' equals C except for the queries in Q where 
it equals B 1 }. Since C was BPP2-prornise it follows that C' is BPP-prornise. 
Since MQBFeC' (x} has at least one accepting path 7r and it is categorical it 
follows that at least 1/2 of its paths are accepting. On the other hand since 
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MQBFE&C(x) has no accepting paths and more than half of the computation 
paths do not query anything in Q it follows that less than 1/2 of the paths 
changed and hence that MQBFE&C' ( x) still rejects. A contradiction. D 

Next adjust So and 51 such that they only contain oracles that agree with 
A(q1), ... , A(qp(n)) and repeat the above construction. It follows that in each 
round we learn the answer to a new query that is queried on at least half of 
the computation paths. Suppose after 2p( n) rounds we have not yet encountered 
a proof that MQBFE&A(x) accepts. Either all the queries on all the paths of 
MQBFE&A ( x) have been queried or the current So is empty. Let E be the set of 
queries made to A in all the rounds. We will have that MQBFE&A(x) accepts if 
and only if MQBFEB(AnEl(x) has an accepting path. 

To choose the set B1 in each round we need remember the oracle queries 
previously made to A. It is not hard to see then that this construction can be 
carried out in PSPACE and reducible to QBF. D 

Let D be the deterministic strategy that comes out of Lemma 2. The next 
lemma shows that this strategy also works for BPP-promise oracles. 

Lemma 3. For any BPP-promise oracle A. Let D be the strategy as described 
in Lemma 2. D will compute correctly MQBFEBA(x). 

Proof Suppose that D does not compute MQBFE&A(x) for some BPP-promise 
A. Suppose that A contains at most 1 /3 of the strings of length n. The case where 
A contains more than 2/3 of the strings of length n can be handled similarly. 

Suppose D accepted but did not find an accepting path of MQBFE&A(x). This 
could only have happened if the final So was empty. Let E be a minimal subset 
of A consistent with D's queries to A such that MQBFEBE (x) rejects. Since So 
is empty, E must contain at least 2; strings. Removing any string y from E 
not queried by D will cause MQBFE&(E-{y}l(x) to accept with probability at 
least one-half. Thus every string in E not queried by D must occur on at least 
half of the computation paths of MQBFE&E (x) which cannot happen by a simple 
counting argument. 

Thus the only way the strategy can make an error is when D rejects whereas 
MQBFEBA(x) accepts. Let Q = q1 , ... , q2p(n)2 be the queries made by D. and 
let R = r1, ... , rp(n) be the queries on some accepting path of MQBFE&A(x). 
Consider the following set A'. For all q E Q set A'(q) = A(q), and for r E R 
set A'(r) = A(r). For all the other strings x set A'(x) = 0. It now follows 
that A' contains at most a polynomial number of strings of length n and is 
BPP2-promise. Moreover since MQBFE&A' (x) has an accepting path it follows 
that MQBFEBA' (x) accepts. But since all the queries made by D will be the same 
for A and A' it follows that D still rejects contradicting Lemma 2. D 

Proof (of Theorem 3) By Lemma 1 it follows that pQBF®G =J- BPPQBFEBG. 
Let M be any categoric machine that runs in time p(n). let x be any string of 
length l and let m be the biggest m such that tower( m) ::; p( n). Set n = 
tower(m). Query all the relevant strings in G of length strictly less than n. Since 
G is only defined at lengths that are a tower of 2's it follows that the previous 
relevant length is so small that one can query all those strings in polynomial 
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time. Next apply Lemma 3 and use QBF to compute MQBFEBA(x). The last 
possibility is that MQBFtBG happens to be an R machine but it is not categoric. 
This however can not happen since the genericity of G will diagonalize against 
such non-categoric machines. (See [B187]) D 

Theorem 3 in combination with Theorem 1 gives a relativized world where 
PromiseRP is not easy but P =RP. This corollary also follows from work of 
Impagliazzo and N aor [IN88]. 

Heller [Hel86] exhibits a relativized world where BPP = NEXP. One might 
suspect that the techniques of Heller and those used in the proof of Theorem 3 
may lead to an oracle A where pA = RPA and BPPA = NEXPA. We show 
this cannot happen. 

Theorem 4. In all relativized worlds, if P = RP and NP ~ BPP then P = 
BPP. 

Proof Zachos [Zac88] shows that if NP ~ BPP then NP = RP. We then 
have P = NP = E~ and thus P = BPP. These arguments all relativize. 0 

5 Relativizing to PromiseRP 

Definition 6 may allow the machine that exhibits L in cProrniseRP to depend 
on A instead of just the underlying probabilistic machine. Grollmann and Sel
man [GS88] give a general result that implies that disallowing this dependence 
does not change the class cPromiseRP. For completeness we give a proof of this 
result. 

For simplicity we will show the equivalence for the class pPromiseRP. The 
proof works similarly for many other natural classes such as RPPromiseRP, 
NPPromiseRP, RPPromiseRP[l], pPromiseBPP' etc. 

Theorem 5 (Grollmann-Selman). For every language L and the following 
are equivalent: 

1. L is in pPromiseRP, i. e., there exists a probabilistic polynomial-time Turing 
machine M such that for all A RP-consistent with M, there is a polynomial
time oracle Turing machine N such that L = L(NA). 

2. There exist a probabilistic polynomial-time Turing machine M and a poly
nomial-time oracle Turing machine N such that for all A RP-consistent 
with M, L = L(NA). 

Proof: (2) is more restrictive than (1). We have to show that (1) implies 
(2). Fix L in pProrniseRP and a M that witnesses this. 

Let D be the set of x such that M{x) accepts with probability zero or prob
ability at least one-half. Let E be the set of x such that M(x) accepts with 
probability at least one-half. We have that A is RP-consistent with M if and 
only if An D = E. 

Let us assume that (2) fails for M, i.e., for every polynomial-time Turing 
machine N there is an A such that An D = E and L-# L(NA). We will create 
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a set B with B n D = E such that for all polynomial-time Turing machines N, 
L # L(NB). This contradicts that fact that M witnesses Lin pPromiseRP. 

Let N 1, N2, ..• be an enumeration of the polynomial-time oracle Turing ma
chines. 

We create B in stages, in each stage we give a partial setting of whether some 
strings are or are not in B. Let Bo be the oracle where all strings in E are put 
in Bo and all strings in D - E are put out of Bo. Let mo = 0. 

Our goal at stage i will be to guarantee that for any oracle A extending Bi, 
L # L(N(1). At the end of stage i we will have all strings of length less than mi 

defined in Bi and only the strings in D of length greater than i will be defined. 
Stage i + 1: 

Claim. There exists an RP-consistent A extending Bi such that LI= L(NiA). 

Proof: Suppose not. Create machine Ne that simulates Nf except that on 
oracle queries of length less than mi, N will answer them according to Bi. Let 
C be any RP-consistent language. Then Ne will simulate N{ where 

F =(Bin 17<m;) U (C n E~m;). 

Since C n D =Ewe have that F extends Bi. By the assumption that the claim 
fails we have L(Ne) = L(N{) = L. We now have that L(Ne) = L for all 
RP-consistent C contradicting the assumption that (2) fails. D 

Fix an RP-consistent A and an x such that x EL{:::} x rf. L(NiA). Let mi+l 

be one more than length the longest oracle query made by NiA(x) and let Bi+l 

be the extension of Bi where all strings of length less than mi+l are set according 
to A. D 
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