
One-Sided Versus Two-Sided Error in
Probabilistic Computation

Harry Buhrman1* and Lance Fortnow2**

1 CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands,
buhrman©cwi .nl,

http: //ww. cwi .nl/,-..,buhrman
2 University of Chicago, Department of Computer Science,

1100 E. 58th St., Chicago, IL 60637
fortnow©cs.uchicago.edu,

http://ww.cs.uchicago.edu/,-..,fortnow

Abstract. We demonstrate how to use Lautemann's proof that BPP
is in E~ to exhibit that BPP is in RPPromiseRP. Immediate conse­
quences show that if PromiseRP is easy or if there exist quick hitting
set generators then P = BPP. Our proof vastly simplifies the proofs
of the later result due to Andreev, Clementi and Rolim and Andreev,
Clementi, Rolim and Trevisan.
Clementi, Rolim and Trevisan question whether the promise is necessary
for the above results, i.e., whether BPP ~ RPRP for instance. We give
a relativized world where P = RP =f. BPP and thus the promise is
indeed needed.

1 Introduction

Andreev, Clementi and Rolim [ACR98] show how given access to a quick hitting
set generator, one can approximate the size of easily describable sets. As an
immediate consequence one gets that if quick hitting set generators exist then
P = BPP. Andreev, Clementi, Rolim and Trevisan [ACRT97] simplify the proof
and apply the result to simulating BPP with weak random sources.

Much earlier, Lautemann [Lau83] gave a proof that BPP i;;; E~ = NPNP,
simplifying work of Gacs and Sipser [Sip83]. Lautemann's proof uses two simple
applications of the probabilistic method to get the existence results needed.
As often with the case of the probabilistic method, the proof actually shows
that the overwhelming number of possibilities fulfi.11 the needed requirements.
With this observation, we show that Lautemann's proof puts BPP in the class
RPPromiseRP[lJ. Since quick hitting set generators derandomize PromiseRP
problems, we get the existence of quick hitting set generators implies P = BPP.
This greatly simplifies the proofs of Andreev, Clementi and Rolim [ACR98] and
Andreev, Clementi, Rolim and Trevisan [ACRT97].

* Partially supported by the European Union through NeuroCOLT ESPRIT Working
Group Nr. 8556, and HC&M grant nr. ERB4050PL93-0516.

** Supported in part by NSF grant CCR 92-53582.

C. Meinel and S. Tison (Eds.): STACS'99, LNCS 1563, pp. 100-109, 1999.
© Springer-Verlag Berlin Heidelberg 1999

One-Sided Versus Two-Sided Error in Probabilistic Computation 101

The difference between RP and PromiseRP is subtle but important. In
the class RP we require the probabilistic Turing machine to either reject always
or accept with probability at least one-half for all inputs. In PromiseRP we
only need to solve instances where the machine rejects always or accepts with
probability at least one-half.

A survey paper by Clementi, Rolim and Trevisan [CRT98] asks whether we
can remove the promise in our result, i.e., whether BPP ~ RPRP. We give
a relativized counterexample to this conjecture by exhibiting an oracle A such
that pA = RPA but pA =I- BPPA. Since virtually all the techniques used in
derandomization relativize, this means that new techniques will be required to
collapse BPP in this way.

2 Definitions

We assume the reader familiar with the standard notions of Turing machines, and
deterministic, nondeterministic and probabilistic polynomial-time computation.
We let E represent the binary alphabet {O, l}.

A quick hitting set generator finds strings in large easily describable sets.

Definition 1. A quick 8-hitting set generator is a polynomial-time computable
function h mapping 1 n to a set of strings of length n such that for all n if
f : En --+ { 0, 1} is a function computed by circuits of at most n gates and
PrxEE" (f(x) = 1) ;::: 8 then f(x) = 1 for some x in h(l n).

Andreev, Clementi and Rolim [ACR98] show that for any 8, 8' > 0, if quick 8-
hitting set generators exist than so do 8' -hitting set generators. We will drop 8
in this case.

We have many variations of probabilistic complexity classes. In this paper,
we will concern ourselves with RP, BPP, PromiseRP and PromiseBPP.

Definition 2. A language L is in the class RP if there exists a probabilistic
polynomial-time Turing machine such that for all x E E*,

- If x is in L then Pr(M accepts x) ;::: 1/2, and
- If x is not in L then Pr(M accepts x) = 0.

Sometimes the class RP is denoted simply by R.

Definition 3. A language L is in the class BPP if there exists a probabilistic
polynomial-time Turing machine such that for all x E E*,

- If x is in L then Pr(M accepts x) ;::: 2/3, and
- If x is not in L then Pr(M accepts x) :::; 1/3.

Languages in RP require machines M that fulfill the requirements of Defini­
tion 2 for all inputs. Sometimes we would like to consider probabilistic machines
restricted to inputs where the desired requirements hold. We use PromiseRP to
describe these problems. This does not form a class per se, but we can formally
define the notions of PromiseRP being easy and oracle access to PromiseRP.

102 Harry Buhrman and Lance Fortnow

Definition 4. We say that a language A is RP-consistent with a probabilistic
polynomial-time Turing machine M if for all x E E*,

- x is in A if Pr(M accepts x) ~ 1/2, and
- x is not in A if Pr(M accepts x) = 0.

Note that A may be arbitrary for x such that 0 < Pr(M accepts x) < 1/2.

Definition 5. We say PromiseRP is easy if for every probabilistic polynomial­
time Turing machine M there is a set A in P that is RP-consistent with M.

Using repetition we can reduce the error in Definitions 2-5 to 2-q(/xl) for any
polynomial q.

Contrast Definition 5 to Definition 2. In particular we have PromiseRP
is easy implies P = RP. The converse is not so simply provable, relativized
counterexamples easily follow from known results on generic oracles [IN88]. The
oracle we develop in Section 4 also gives a relativizable counterexample.

Definition 6. For any relativizable complexity class c' L is in cPromiseRP if
there is a probabilistic polynomial-time Turing machine M such that L is in CA
for all A RP-consistent with M.

We can also define cPromiseRP[k] if we allow only k queries to A in Defini­
tion 6. We can use the notation PromiseBPP in a similar manner.

One might want to require in Definition 6 that L be in CA via a fixed machine
depending only on M. Grollmann and Selman [GS88] show that this restriction
does not affect Definition 6. For completeness we give a proof of the equivalence
of the two definitions in Section 5.

It is not hard to see that there is an easy connection between hitting set
generators and PromiseRP.

Fact 1 If there are quick hitting set generator then PromiseRP is easy.

3 One-Sided Promise Gives BPP

Theorem 1.
BPP ~ RPPromiseRP[l]

Proof: We basically use the proof of Lautemann [Lau83] that BPP is in
E~ to prove Theorem 1.

Let L be a language in BPP and M a probabilistic polynomial-time Turing
machine accepting L with an error of 2-n on inputs of length n. Let q(n) be the
maximum number of coin tosses on any computation path of M on any input of
length n. Note q(n) is bounded by a polynomial inn.

Let A be the set of pairs (x, r) such that lrl = q(lxl) and M(x) using r as its
random coins will accept. Note that A is computable in deterministic polynomial
time. We now define the set B as:

B = {(x, z1, · · ·, Zq(/x/J) I lzil = · · · = lzq(/x/)I = q(lxl) implies there is some

w E Eq(/x/) such that (x,w E8 z1) fj. A/\···/\ (x,w E8 Zq(/x/)) rj_ A}.

Here u E8 v for lul = Jvl is the bitwise parity of u and v.

One-Sided Versus Two-Sided Error in Probabilistic Computation 10a

Note we have B E NP. First we will show that Lis in RPB[lJ. Our RP8

algorithm on input x with n = Ix! simply chooses z1, ... , Zq(n) independently at
random from 17q(n) and then accepts if (x, z1 , ... , Zq(n)) is not in B.

If x is in L then consider a fixed wand i, 1 :::; i :::; q(n). The probability that
(x, w EB zi) is not in A is at most 2-n. Since the zi 's are chosen independently,
the chance that (x, w EB Zi) is not in A for every zi, 1 :::; i :::; q(n) is at most
2-nq(n). Since there are 2q(n) possible w's we have

Pr((x, z1, .. ., Zq(n)) E B) :::; rn.

Now suppose that x is not in L. Fix z1 , ... , Zq(n) and i, 1:::; i:::; q(n). If we
choose w at random, the probability that w EB Zi is in A is at most 2-n. The
probability that wEB Zi is in A for some i is at most q(n)2-n which for sufficiently
large n is much smaller than 1/2. Thus for every z1, ... , Zq(n) of strings of length
q(n), (x, z1, ... , Zq(lxlJ) is in B.

Now we wish to show that Lis in RPPromiseRP[lJ. Let C be any set such that
C and B agree on tuples where the w is chosen at random and the acceptance
probability is either zero or greater than one-half.

More specifically (x, z1, ... , Zq(lxl)l is in C if

1. lzil = q(lxl) for each i, 1:::; i:::; q(lxl), and
2. the number of w of length q(lxl) such that

(x, w EB z1) rj. A/\···/\ (x, w EB Zq(lxl)l tf. A

is greater than 2q(lxll- 1.

The tuple (x, z1 , ... , Zq(lxl)l is not in C if

1. lzil = q(lxl) for each i, 1:::; i:::; q(lxl), and
2. there are no w of length q(lxl) such that

(x, w EB z1) rJ. A/\···/\ (x, w EB Zq(lxl)l tf. A.

The set C can be arbitrary for all other inputs.
The proof above that L is in RPB[l] also shows that L is in RPc[iJ. D
In the proof of Theorem 1, if x is in L and the Zi are badly chosen then the

number of w such that

(x, w EB z1) tj. A/\···/\ (x, w EB Zq(lxl)l tf. A

might be nonzero yet small. This is why we need PromiseRP instead of just
RP for this proof. Theorem 3 shows that any relativizable proof would need to
use PromiseRP.

From Theorem 1 and its proof we get the following two corollaries.

Corollary 1. If PromiseRP is easy then P = BPP and PromiseBPP is

easy.

104 Harry Buhrman and Lance Fortnow

Corollary 2 (Andreev-Clementi-Rolim). If quick hitting set generators ex­
ist then P = BPP.

The proof of Theorem 1 only uses the set A restricted to the inputs of the
form {x, r). Thus we can use PromiseBPP is easy instead of just P = BPP in
Theorem 1 and Corollaries 1 and 2.

Andreev, Clementi and Rolim [ACR98] prove the following stronger result to
get Corollary 2.

Theorem 2 (Andreev-Clementi-Rolim). For any € > 0, there is a poly­
nomial-time algorithm that, given access to a quick hitting set generator, and
given as input a circuit G returns a value D such that

I Pr (G(x) = 1) - DI SE.
xeEn

We should note that Theorem 2 also follows from Theorem 1. One just need
notice that distinguishing the possibilities that Prxenn(C(x) = 1) 2:: D +€and
Prxenn(C(x) = 1) S D - €is a PromiseBPP question.

4 RP Can Be Easy without BPP Being Easy

In this section we show that Theorem 1 cannot be improved to show that P = R
implies P =:= BPP using relativizing techniques.

Theorem 3. There exists a relativized world where P = RP f. BPP.

Define the following function tower(O) = 2, tower(n + 1) = 2tower(n), i.e.
tower(n) is an exponential tower of n + 1 2's. We will use a special type of
generic (see [FFKL93] for an overview) to prove the theorem.

Definition 7. A BPP-generic oracle G is a type of generic oracle that is only
defined at length n such that n = tower(m) for some m. Moreover at these
lengths it will always be the case that at most 1/3 or more than 2/3 of the
strings of length n are in G. We will call oracles that satisfy these requirements
oracles that are BPP-promise.

The oracle that fulfills the conditions of Theorem 3 will be QBF $ G for
Ga BPP-generic. Here QBF is the PSPACE-complete set of true quantified
boolean formulae. The following lemma shows that the second part of Theorem 3
is fulfilled.

Lemma 1. Let G be a BPP-generic. pQBFEBG #- BPPQBFaiG.

Proof: This follows because G is generic and the condition that P f. BPP
can be met under the BPP promise of G. D

The more difficult part is to show that pQBFaiG = R QBFEBG. We will need
the following notion of categoricity.

One-Sided Versus Two-Sided Error in Probabilistic Computation 105

Definition 8. A polynomial time nondeterministic machine M is categorically
R if for all BPP-promise oracles B it is the case that for all x MQBFEE>B(x)
has either more than 1/2 of its paths accepting or none. We will also call these
machines categorical.

The idea is to show that if M is categorical then there is a polynomial time
(relative to QBF) algorithm that computes for all x whether M(x) accepts or
rejects. The core of this proof will be an argument from Nisan [Nis91].

The proof of Theorem 3 follows from Lemmas 2 and 3. Lemma 2 says that
if we have a machine M(x) that is categorically Rand we only consider oracles
A such that at most 1/6 or at least 5/6 of the strings of length n are in A then
MQBFEBA(x) can be decided in polynomial time relative to QBF EB A.

Lemma 2. Fix an input x and let n =Ix!. Let M(x) be a categorical machine.
For any set A that only contains strings of length n with the promise that either
at most 1/6 or at least 5/6 of the strings of length n are in A, there exists a
deterministic strategy that determines MQBFEBA(x), querying only a fixed poly­
nomial number of strings in A. Moreover this strategy can be computed in a fixed
polynomial time relative to QBF EB A.

Proof We follow the lines of the proof of Nisan [Nis91]. Suppose M runs in
time p(n). Call any B that fulfills the 1/6, 5/6 promise BPP2-prornise. Fix A
to be any BPP2-promise oracle.

The deterministic strategy to determine MQBFEBA(x) works as follows.
Let 81 contain all the oracles B such that MQBFEBB(x) accepts:

81 ={BI Pr(MQBFEBB(x) accepts)> O}

Let So contain all the BPP2-promise oracles such that M(x) rejects:

So= {CIC is BPP2 -promise and Pr(MQBFec(x) accepts)= O}

Let B 1 a set in 8 1. Fix any accepting path 7f of MQBFEBB1 (x) with queries
qi, ... , qp(n) on it and let bi, ... bp(n) be such that B1(qi) = bi. Next query
qi, ... , qp(n) to A and let ai, ... ap(n) be the answers (i.e. ai = A(qi)). If for all
i it holds that ai = bi we know that MQBFEBA(x) accepts and we are done. So
assume that this is not the case.

At this point we have the following claim:

Claim. For all C E So at least half of the computation paths of MQBFE!lC (x)
query a string in Q =qi, ... ,Qp(n)·

Proof Suppose this is not true and that there is a C E So such that less than
half of the computation paths of MQBFEElC(x} query a string in Q. Consider
the oracle C' which is defined as follows. For all x (/. Q, C'(x) = C(x) and
for q; E Q, C' (q;) = b;. (i.e. C' equals C except for the queries in Q where
it equals B 1 }. Since C was BPP2-prornise it follows that C' is BPP-prornise.
Since MQBFeC' (x} has at least one accepting path 7r and it is categorical it
follows that at least 1/2 of its paths are accepting. On the other hand since

106 Harry Buhrman and Lance Fortnow

MQBFE&C(x) has no accepting paths and more than half of the computation
paths do not query anything in Q it follows that less than 1/2 of the paths
changed and hence that MQBFE&C' (x) still rejects. A contradiction. D

Next adjust So and 51 such that they only contain oracles that agree with
A(q1), ... , A(qp(n)) and repeat the above construction. It follows that in each
round we learn the answer to a new query that is queried on at least half of
the computation paths. Suppose after 2p(n) rounds we have not yet encountered
a proof that MQBFE&A(x) accepts. Either all the queries on all the paths of
MQBFE&A (x) have been queried or the current So is empty. Let E be the set of
queries made to A in all the rounds. We will have that MQBFE&A(x) accepts if
and only if MQBFEB(AnEl(x) has an accepting path.

To choose the set B1 in each round we need remember the oracle queries
previously made to A. It is not hard to see then that this construction can be
carried out in PSPACE and reducible to QBF. D

Let D be the deterministic strategy that comes out of Lemma 2. The next
lemma shows that this strategy also works for BPP-promise oracles.

Lemma 3. For any BPP-promise oracle A. Let D be the strategy as described
in Lemma 2. D will compute correctly MQBFEBA(x).

Proof Suppose that D does not compute MQBFE&A(x) for some BPP-promise
A. Suppose that A contains at most 1 /3 of the strings of length n. The case where
A contains more than 2/3 of the strings of length n can be handled similarly.

Suppose D accepted but did not find an accepting path of MQBFE&A(x). This
could only have happened if the final So was empty. Let E be a minimal subset
of A consistent with D's queries to A such that MQBFEBE (x) rejects. Since So
is empty, E must contain at least 2; strings. Removing any string y from E
not queried by D will cause MQBFE&(E-{y}l(x) to accept with probability at
least one-half. Thus every string in E not queried by D must occur on at least
half of the computation paths of MQBFE&E (x) which cannot happen by a simple
counting argument.

Thus the only way the strategy can make an error is when D rejects whereas
MQBFEBA(x) accepts. Let Q = q1 , ... , q2p(n)2 be the queries made by D. and
let R = r1, ... , rp(n) be the queries on some accepting path of MQBFE&A(x).
Consider the following set A'. For all q E Q set A'(q) = A(q), and for r E R
set A'(r) = A(r). For all the other strings x set A'(x) = 0. It now follows
that A' contains at most a polynomial number of strings of length n and is
BPP2-promise. Moreover since MQBFE&A' (x) has an accepting path it follows
that MQBFEBA' (x) accepts. But since all the queries made by D will be the same
for A and A' it follows that D still rejects contradicting Lemma 2. D

Proof (of Theorem 3) By Lemma 1 it follows that pQBF®G =J- BPPQBFEBG.
Let M be any categoric machine that runs in time p(n). let x be any string of
length l and let m be the biggest m such that tower(m) ::; p(n). Set n =
tower(m). Query all the relevant strings in G of length strictly less than n. Since
G is only defined at lengths that are a tower of 2's it follows that the previous
relevant length is so small that one can query all those strings in polynomial

One-Sided Versus Two-Sided Error in Probabilistic Computation 107

time. Next apply Lemma 3 and use QBF to compute MQBFEBA(x). The last
possibility is that MQBFtBG happens to be an R machine but it is not categoric.
This however can not happen since the genericity of G will diagonalize against
such non-categoric machines. (See [B187]) D

Theorem 3 in combination with Theorem 1 gives a relativized world where
PromiseRP is not easy but P =RP. This corollary also follows from work of
Impagliazzo and N aor [IN88].

Heller [Hel86] exhibits a relativized world where BPP = NEXP. One might
suspect that the techniques of Heller and those used in the proof of Theorem 3
may lead to an oracle A where pA = RPA and BPPA = NEXPA. We show
this cannot happen.

Theorem 4. In all relativized worlds, if P = RP and NP ~ BPP then P =
BPP.

Proof Zachos [Zac88] shows that if NP ~ BPP then NP = RP. We then
have P = NP = E~ and thus P = BPP. These arguments all relativize. 0

5 Relativizing to PromiseRP

Definition 6 may allow the machine that exhibits L in cProrniseRP to depend
on A instead of just the underlying probabilistic machine. Grollmann and Sel­
man [GS88] give a general result that implies that disallowing this dependence
does not change the class cPromiseRP. For completeness we give a proof of this
result.

For simplicity we will show the equivalence for the class pPromiseRP. The
proof works similarly for many other natural classes such as RPPromiseRP,
NPPromiseRP, RPPromiseRP[l], pPromiseBPP' etc.

Theorem 5 (Grollmann-Selman). For every language L and the following
are equivalent:

1. L is in pPromiseRP, i. e., there exists a probabilistic polynomial-time Turing
machine M such that for all A RP-consistent with M, there is a polynomial­
time oracle Turing machine N such that L = L(NA).

2. There exist a probabilistic polynomial-time Turing machine M and a poly­
nomial-time oracle Turing machine N such that for all A RP-consistent
with M, L = L(NA).

Proof: (2) is more restrictive than (1). We have to show that (1) implies
(2). Fix L in pProrniseRP and a M that witnesses this.

Let D be the set of x such that M{x) accepts with probability zero or prob­
ability at least one-half. Let E be the set of x such that M(x) accepts with
probability at least one-half. We have that A is RP-consistent with M if and
only if An D = E.

Let us assume that (2) fails for M, i.e., for every polynomial-time Turing
machine N there is an A such that An D = E and L-# L(NA). We will create

108 Harry Buhrman and Lance Fortnow

a set B with B n D = E such that for all polynomial-time Turing machines N,
L # L(NB). This contradicts that fact that M witnesses Lin pPromiseRP.

Let N 1, N2, ..• be an enumeration of the polynomial-time oracle Turing ma­
chines.

We create B in stages, in each stage we give a partial setting of whether some
strings are or are not in B. Let Bo be the oracle where all strings in E are put
in Bo and all strings in D - E are put out of Bo. Let mo = 0.

Our goal at stage i will be to guarantee that for any oracle A extending Bi,
L # L(N(1). At the end of stage i we will have all strings of length less than mi

defined in Bi and only the strings in D of length greater than i will be defined.
Stage i + 1:

Claim. There exists an RP-consistent A extending Bi such that LI= L(NiA).

Proof: Suppose not. Create machine Ne that simulates Nf except that on
oracle queries of length less than mi, N will answer them according to Bi. Let
C be any RP-consistent language. Then Ne will simulate N{ where

F =(Bin 17<m;) U (C n E~m;).

Since C n D =Ewe have that F extends Bi. By the assumption that the claim
fails we have L(Ne) = L(N{) = L. We now have that L(Ne) = L for all
RP-consistent C contradicting the assumption that (2) fails. D

Fix an RP-consistent A and an x such that x EL{:::} x rf. L(NiA). Let mi+l

be one more than length the longest oracle query made by NiA(x) and let Bi+l

be the extension of Bi where all strings of length less than mi+l are set according
to A. D

Acknowledgments

We thank Noam Nisan for bringing the "PromiseRP is easy implies P = BPP"
')roblem to our attention. We thank Luca Trevisan for suggesting the alternate
iefinition for relativized PromiseRP (Definition 6) and the possibility that the
;wo definitions are equivalent.

We thank Luca Trevisan, Noam Nisan, Stuart Kurtz, John Rogers and Steve
Fenner for many helpful discussions. Dieter van Melkebeek provided many help­
ful suggestions on earlier drafts. We also thank Ronald de Wolf for the use of
his notes.

References

[ACR98] A. Andreev, A. Clement, and J. Rolim. A new derandomization method.
Journal of the ACM, 45(1):179-213, Januari 1998.

[ACRT97] A. Andreev, A. Clement, J. Rolim, and L. Trevisan. Weak random sources,
hittings sets, and BPP simulations. In Proceedings of the 38th IEEE Sym­
posium on Foundations of Computer Science, pages 264-272. IEEE, New
York, 1997.

One-Sided Versus Two-Sided Error in Probabilistic Computation 109

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Pro­
ceedings of the 28th IEEE Symposium on Foundations of Computer Sci­
ence, pages 118-126. IEEE, New York, 1987.

[CRT98] A. Clementi, J. Rolim, and L. Trevisan. Recent advances towards proving
BPP = P. Bulletin of the European Association for Theoretical Computer
Science, 64:96-103, February 1998.

[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder's toolkit. In
Proceedings of the 8th IEEE Structure in Complexity Theory Conference,
pages 120-131. IEEE, New York, 1993.

[GS88] J. Grollmann and A Selman. Complexity measures for public-key cryp­
tosystems. SIAM Journal on Computing, 17:309-355, 1988.

[Hel86] H. Heller. On relativized exponential and probabilistic complexity classes.
Information and Computation, 71:231-243, 1986.

[IN88] R. Impagliazzo and M. Naor. Decision trees and downward closures. In
Proceedings of the 3rd IEEE Structure in Complexity Theory Conference,
pages 29-38. IEEE, New York, 1988.

[Lau83] C. Lautemann. BPP and the polynomial hierarchy. Information Processing
Letters, 17(4):215-217, 1983.

[Nis91] N. Nisan. CREW PRAMSs and decision trees. SIAM Journal on Com­
puting, 20(6):999-1007, December 1991.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Proceedings
of the 15th ACM Symposium on the Theory of Computing, pages 330-335.
ACM, New York, 1983.

[Zac88] S. Zachos. Probabilistic quantifiers and games. Journal of Computer and
System Sciences, 36:433-451, 1988.

