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Abstract

We propose an abstract approach to coalition formation that fo-
cuses on simple merge and split rules transforming partitions of a
group of players. We identify conditions under which every iteration
of these rules yields a unique partition. The main conceptual tool is
a specific notion of a stable partition. The results are parametrized
by a preference relation between partitions of a group of players and
naturally apply to coalitional TU-games, hedonic games and exchange
economy games.

1 Introduction

1.1 Approach

Coalition formation has been a research topic of continuing interest in the
area of coalitional games. It has been analyzed from several points of view,
starting with [3], where the static situation of coalitional games in the pres-
ence of a given coalition structure (i.e. a partition) was considered.

In this paper we consider the perennial question ‘how do coalitions form?’
by proposing a simple answer: ‘by means of merges and splits’. This brings
us to the study of a natural problem, namely under what assumptions the
outcomes of arbitrary sequences of merges and splits are unique.

These considerations yield an abstract approach to coalition formation
that focuses on partial preference relations between partitions of a group of
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players and simple merge and split rules. These rules transform partitions of a
group of players under the condition that the resulting partition is preferred.
By identifying conditions under which every iteration of these rules yields a
unique partition we are brought to a natural notion of a stable partition.

This approach is parametrized by a generic preference relation. The ob-
tained results depend only on a few simple properties, namely irreflexivity,
transitivity and monotonicity, and do not require any specific model of coali-
tional games.

In the case of coalitional TU-games the preference relations induced by
various well-known orders on sequences of reals, such as leximin or Nash
order, satisfy the required properties. As a consequence our results apply to
the resulting preference relations and coalitional TU-games. We also explain
how our results apply to hedonic games (games in which each player has
a preference relation on the sets of players that include him) and exchange
economy games.

This approach to coalition formation is indirectly inspired by the theory
of abstract reduction systems (ARS), see, e.g. [15], one of the aims of which
is a study of conditions that guarantee a unique outcome of rule iterations.
In an earlier work [1] we exemplified another benefit of relying on ARS by
using a specific result, called Newman’s Lemma, to provide uniform proofs
of order independence for various strategy elimination procedures for finite
strategic games.

1.2 Related work

Because of this different starting point underpinning our approach, it is diffi-
cult to compare it to the vast literature on the subject of coalition formation.
Still, a number of papers should be mentioned even though their results have
no bearing on ours.

In particular, rules that modify coalitions are considered in [16] in the
presence of externalities and in [13] in the presence of binding agreements.
In both papers two-stage games are analyzed. In the first stage coalitions
form and in the second stage the players engage in a non-cooperative game
given the emerged coalition structure. In this context the question of stability
of the coalition structure is then analyzed.

The question of (appropriately defined) stable coalition structures often
focused on hedonic games. [5] considered four forms of stability in such
games: core, Nash, individual and contractually individual stability. Each
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alternative captures the idea that no player, respectively, no group of players
has an incentive to change the existing coalition structure. The problem of
existence of (core, Nash, individually and contractually individually) stable
coalitions was considered in this and other references, for example [14] and [6].

Recently, [4] compared various notions of stability and equilibria in net-
work formation games. These are games in which the players may be involved
in a network relationship that, as a graph, may evolve. Other interaction
structures which players can form were considered in [7], in which formation
of hierarchies was studied, and [10], in which only bilateral agreements that
follow a specific protocol were allowed.

Early research on the subject of coalition formation is discussed in [9].
More recently, various aspects of coalition formation are discussed in the
collection of articles [8] and in the survey [11]. Initially, we obtained the
corresponding results in [2] in a limited setting of coalitional TU-games and
the preference relation induced by the utilitarian order.

1.3 Plan of the paper

The paper is organized as follows. In the next section we set the stage by
introducing an abstract comparison relation between partitions of a group
of players and the corresponding merge and split rules that act on such
partitions. Then in Section 3 we discuss a number of natural comparison
relations on partitions within the context of coalitional TU-games and in
Section 4 by using arbitrary value functions for such games.

Next, in Section 5, we introduce and study a parametrized concept of a
stable partition and in Section 6 relate it to the merge and split rules. Finally,
in Section 7 we explain how to apply the obtained results to specific coali-
tional games, including TU-games, hedonic games and exchange economy
games.

2 Comparing and transforming collections

Let N = {1, 2, . . . , n} be a fixed set of players called the grand coalition.
Non-empty subsets of N are called coalitions. A collection (in the grand
coalition N) is any family C := {C1, . . . , Cl} of mutually disjoint coalitions,
and l is called its size. If additionally

⋃l
j=1Cj = N , the collection C is called

a partition of N . For C = {C1, . . . , Ck}, we define
⋃
C :=

⋃k
i=1Ci.
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In this article we are interested in comparing collections. In what follows
we only compare collections A and B that are partitions of the same set,
i.e. such that

⋃
A =

⋃
B. Intuitively, assuming a comparison relation �,

A�B means that the way A partitions K, where K =
⋃
A =

⋃
B, is

preferable to the way B partitions K.
To keep the presentation uniform we only assume that the relation � is

irreflexive, i.e. for no collection A, A�A holds, transitive, i.e. for all collec-
tions A,B,C with

⋃
A =

⋃
B =

⋃
C, A�B and B�C imply A�C, and

that � is monotonic in the following two senses: for all collections A,B,C,D
with

⋃
A =

⋃
B,
⋃
C =

⋃
D, and

⋃
A ∩

⋃
C = ∅,

A�B and C �D imply A ∪ C �B ∪D, (m1)

and for all collections A,B,C with
⋃
A =

⋃
B and

⋃
A ∩

⋃
C = ∅,

A�B implies A ∪ C �B ∪ C. (m2)

The role of monotonicity will become clear in Section 5, though property
(m2) will be already of use in this section.

Definition 2.1. By a comparison relation we mean an irreflexive and tran-
sivite relation on collections that satisfies the conditions (m1) and (m2). 2

Each comparison relation � is used only to compare partitions of the same
set of players. So partitions of different sets of players are incomparable
w.r.t. �, that is no comparison relation is linear. This leads to a more
restricted form of linearity, defined as follows. We call a comparison relation
� semi-linear if for all collections A,B with

⋃
A =

⋃
B, either A�B or

B�A.
In what follows we study coalition formation by focusing on the following

two rules that allow us to transform partitions of the grand coalition:

merge: {T1, . . . , Tk} ∪ P → {
⋃k
j=1 Tj} ∪ P , where {

⋃k
j=1 Tj}�{T1, . . . , Tk}

split: {
⋃k
j=1 Tj} ∪ P → {T1, . . . , Tk} ∪ P , where {T1, . . . , Tk}�{

⋃k
j=1 Tj}

Note that both rules use the � comparison relation ‘locally’, by focusing
on the coalitions that take part and result from the merge, respectively split.
In this paper we are interested in finding conditions that guarantee that
arbitrary sequences of these two rules yield the same outcome. So, once
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these conditions hold, a specific preferred partition exists such that any initial
partition can be transformed into it by applying the merge and split rules in
an arbitrary order.

To start with, note that the termination of the iterations of these two
rules is guaranteed.

Note 2.2. Suppose that � is a comparison relation. Then every iteration of
the merge and split rules terminates.

Proof. Every iteration of these two rules produces by (m2) a sequence of
partitions P1, P2, . . . with Pi+1 �Pi for all i ≥ 1. But the number of different
partitions is finite. So by transitivity and irreflexivity of � such a sequence
has to be finite.

The analysis of the conditions guaranteeing the unique outcome of the
iterations is now deferred to Section 6.

3 TU-games

To properly motivate the subsequent considerations and to clarify the status
of the monotonicity conditions we now introduce some natural comparison
relations on collections for coalitional TU-games. A coalitional TU-game is
a pair (N, v), where N := {1, . . ., n} and v is a function from the powerset
of N to the set of non-negative reals1 such that v(∅) = 0.

For a coalitional TU-game (N, v) the comparison relations on collections
are induced in a canonic way from the corresponding comparison relations
on multisets of reals by stipulating that for the collections A and B

A�B iff v(A) � v(B), (1)

where for a collection A := {A1, . . ., Am}, v(A) := {̇v(A1), . . ., v(Am)}̇, de-
noting multisets in dotted braces.

So first we introduce the appropriate relations on multisets of non-negative
reals. The corresponding definition of monotonicity for such a relation � is
that for all multisets a, b, c, d of reals

a� b and c� d imply a ∪̇ c� b ∪̇ d
1The assumption that the values of v are non-negative is non-standard and is needed

only to accomodate for the Nash order, defined below.
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and
a� b implies a ∪̇ c� b ∪̇ c,

where ∪̇ denotes multiset union.
Given two sequences (a1, . . ., am) and (b1, . . ., bn) of real numbers we define

the (extended) lexicographic order on them by putting

(a1, . . ., am) >lex (b1, . . ., bn)

iff
∃i ≤ min(m,n) (ai > bi ∧ ∀j < i aj = bj)

or
∀i ≤ min(m,n) ai = bi ∧ m > n.

Note that in this order we compare sequences of possibly different length.
We have for example (1, 1, 1, 0) >lex (1, 1, 0) and (1, 1, 0) >lex (1, 1). It is
straightforward to check that it is a linear order.

We assume below that a = {̇a1, . . ., am}̇ and b = {̇b1, . . ., bn}̇ and that a∗

is a sequence of the elements of a in decreasing order, and define

• the utilitarian order:

a �ut b iff
∑m

i=1 ai >
∑n

j=1 bj,

• the Nash order:

a �Nash b iff
∏m

i=1 ai >
∏n

j=1 bj,

• the elitist order:

a �el b iff max(a) > max(b),

• the egalitarian order:

a �eg b iff min(a) > min(b),

• the leximin order:

a �lex b iff a∗ >lex b
∗.

In [12] these relations were considered for sequences of the same length.
For such sequences we shall discuss in Section 4 two other natural orders.
The intuition behind the Nash order is that when the sum

∑m
i=1 ai is fixed,
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the product
∏m

i=1 ai is largest when all ais are equal. So in a sense the Nash
order favours an equal distribution.

The above relations are clearly irreflexive, transitive and linear. Addi-
tionally the following holds.

Note 3.1. The above relations are all monotonic both in sense (m1) and (m2).

Proof. The only relation for which the claim is not immediate is �lex. We
only prove (m1) for �lex; the remaining proof is analogous.

Let arbitrary multisets of non-negative reals a, b, c, d be given. We define,
with e denoting any sequence or multiset of non-negative reals,

len(e) := the number of elements in e,

µ := (a ∪̇ b ∪̇ c ∪̇ d)∗ with all duplicates removed,

ν(x, e) := the number of occurrences of x in e,

β := 1 +
len(µ)
max
k=1
{ν(µk, a ∪̇ b ∪̇ c ∪̇ d)},

#(e) :=

len(µ)∑
k=1

ν(µk, e) · β−k.

So µ is the sequence of all distinct reals used in a ∪̇ b ∪̇ c ∪̇ d, arranged
in a decreasing order. The function #(·) injectively maps a multiset e to a
real number y in such a way that in the floating point representation of y
with base β, the kth digit after the point equals the number of occurrences
of the kth biggest number µk in e. The base β is chosen in such a way that
even if e is the union of some of the given multisets, the number ν(x, e) of
occurrences of x in e never exceeds β − 1. Therefore, the following sequence
of implications holds:

a∗ >lex b
∗ and c∗ >lex d

∗ ⇒ #(a) > #(b) and #(c) > #(d)

⇒ #(a) + #(c) > #(b) + #(d)

⇒ #(a ∪̇ c) > #(b ∪̇ d)

⇒ (a ∪̇ c)∗ >lex (b ∪̇ d)∗
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Consequently, the corresponding five relations on collections induced by
(1) are all semi-linear comparison relations.

As a natural example of a transitive relation on multisets of reals that is
not monotonic consider �av defined by

a �av b iff (
∑m

i=1 ai)/m ≥ (
∑n

j=1 bj)/n.

Note that for

a := {̇3}̇, b := {̇2, 2, 2, 2}̇, c := {̇1, 1, 1, 1}̇, d := {̇0}̇

we have both a �av b and c �av d but not a ∪̇ c �av b ∪̇ d since {̇3, 1, 1, 1, 1}̇ �av
{̇2, 2, 2, 2, 0}̇ does not hold.

4 Individual values

In the previous section we defined the comparison relations in the context
of TU-games by comparing the values (yielded by the v function) of whole
coalitions. Alternatively, we could compare payoffs to individual players.
The idea is that in the end, the value secured by a coalition may have to be
distributed to its members, and this final payoff to a player may determine
his preferences.

To formalize this approach we need the notion of an individual value
function φ that, given the v function of a TU-game and a coalition A, assigns
to each player i ∈ A a real value φvi (A). We assume that φ is balanced, i.e. that
it exactly distributes the coalition’s value to its members:∑

i∈A

φvi (A) = v(A).

For a collection C := {C1, . . . , Ck}, we put

φv(C) := {̇φvi (A) | A ∈ C, i ∈ A}̇.

Given two collections C = {C1, . . . , Ck} and C ′ = {C ′1, . . . , C ′l} with⋃
C =

⋃
C ′, the comparison relations now compare φv(C) and φv(C ′), which

are multisets of |
⋃
C| real numbers, one number for each player. In this way

it is guaranteed that the comparison relations are anonymous in the sense
that the names of the players do not play a role.
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In this section, to distinguish between comparison relations defined only
by means of v and those defined using both v and φ, we denote the former
by �v and the latter by �φ.

We now examine how these two different approaches for defining compari-
son relations relate. To this end, we will clarify when they coincide, i.e. when
given a comparison relation defined in one way, we can also obtain it using
the other way, and when they are unrelated. We begin by formalizing the
concept of anonymity.

Definition 4.1. Assume a coalitional TU-game (N, v).

• An individual value function φ is anonymous if for all v, permutations
π of N , i ∈ N , and A ⊆ N

φvi (A) = φv◦π
−1

π(i) (π(A)).

• v is anonymous if for all permutations π of N and A ⊆ N

v(A) = v(π(A)).

Note that for all A we have (v◦π−1)(π(A)) = v(A). Intuitively, φ is anony-
mous if it does not depend on the names of the players and v is anonymous
if it is defined only in terms of the cardinality of the argument coalition.

The following simple observation holds.

Note 4.2. For any v and φ, if �v and �φ are the utilitarian order (as defined
in Section 3), then for all collections C and C ′, we have φv(C) �φ φ

v(C ′) iff
v(C) �v v(C ′).

Proof. Immediate since∑
A∈C

v(A) =
∑
A∈C

∑
i∈A

φvi (A) =
∑

A∈C,i∈A

φvi (A).

For other orders discussed in Section 3 no relation between �v and �φ

holds. In fact, we have the following results.
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Theorem 4.3. Given v and �v, it is in general not possible to define an
anonymous individual value function φ along with �φ such that for all col-
lections C and C ′, we have φv(C) �φ φ

v(C ′) iff v(C) �v v(C ′). This holds
even if we restrict ourselves to anonymous v.

Proof. Consider the following game with N = {1, 2}:

v({1}) := 1 v({2}) := 1 v({1, 2}) := 2,

and take �v to be the Nash order as defined in Section 3. This yields both

v({{1, 2}}) = {̇2}̇�v {̇1, 1}̇ = v({{1}, {2}})

and
v({{1}, {2}}) 6�v v({{1, 2}}).

However, the symmetry of the game and anonymity of φ forces

φv({{1, 2}}) = {̇1, 1}̇ = φv({{1}, {2}}),

so we have either

φv({{1, 2}}) �φ φ
v({{1}, {2}}) and φv({{1}, {2}}) �φ φ

v({{1, 2}})

or

φv({{1, 2}}) 6�φ φ
v({{1}, {2}}) and φv({{1}, {2}}) 6�φ φ

v({{1, 2}}).

Theorem 4.4. Given v, φ and �φ, it is in general not possible to de-
fine �v such that for all collections C and C ′, we have v(C) �v v(C ′) iff
φv(C) �φ φ

v(C ′). This holds even if we restrict ourselves to anonymous v,
anonymous φ, and a Nash, elitist, egalitarian or leximin order (as defined in
Section 3) for �φ.

Proof. Consider N = {1, . . . , 4} and

v(A) := 6 for all A ⊆ N

φvi (A) :=
v(A)

|A|
.
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Then we have

φv({{1}, {2, 3, 4}}) = {̇6, 2, 2, 2}̇
φv({{1, 2}, {3, 4}}) = {̇3, 3, 3, 3}̇,

which are distinguished by each of the mentioned �φ, while

v({{1}, {2, 3, 4}}) = v({{1, 2}, {3, 4}}) = {̇6, 6}̇.

These results suggest that the two approaches for defining preference
relations are fundamentally different and coincide only for the utilitarian
order.

In the case of individual values we can introduce natural orders that have
no counterpart for the comparison relations defined only by means of v. The
reason is that for each partition P , φv(P ) can be alternatively viewed as a
sequence (of payoffs) of (the same) length n. Such sequences can then be
compared using

• the majority order :

(k1, . . ., kn) �m (l1, . . ., ln) iff |{i | ki > li}| > |{i | li > ki}|,

• the Pareto order :

(k1, . . ., kn) �p (l1, . . ., ln) iff

∀i ∈ {1, . . . , n} ki ≥ li and ∃i ∈ {1, . . . , n} ki > li.

The relation �m is clearly irreflexive and monotonic both in sense (m1)
and (m2). Unfortunately, it is not transitive. Indeed, we have both (2, 3, 0) �m
(1, 2, 2) and (1, 2, 2) �m (3, 1, 1), but (2, 3, 0) �m (3, 1, 1) does not hold.
In contrast, the relation �p is transitive, irreflexive, monotonic both in
sense (m1) and (m2), and linear.

5 Stable partitions

We now return to our analysis of partitions. One way to identify conditions
guaranteeing the unique outcome of the iterations of the merge and split
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rules is through focusing on the properties of such a unique outcome. This
brings us to the concept of a stable partition.

We follow here the approach of [2], although now no notion of a game
is present. The introduced notion is parametrized by means of a defection
function D that assigns to each partition some partitioned subsets of the
grand coalition. Intuitively, given a partition P the family D(P ) consists of
all the collections C := {C1, . . . , Cl} whose players can leave the partition
P by forming a new, separate, group of players ∪lj=1Cj divided according
to the collection C. Two most natural defection functions are Dp, which
allows formation of all partitions of the grand coalition, and Dc, which allows
formation of all collections in the grand coalition.

Next, given a collection C and a partition P := {P1, . . . , Pk} we define

C[P ] := {P1 ∩
⋃

C, . . . , Pk ∩
⋃

C} \ {∅}

and call C[P ] the collection C in the frame of P . (By removing the empty
set we ensure that C[P ] is a collection.) To clarify this concept consider
Figure 1. We depict in it a collection C, a partition P and C in the frame
of P (together with P ). Here C consists of four coalitions, while C in the
frame of P consists of three coalitions.

Collection C

Partition P

C[P ]

Figure 1: A collection C in the frame of a partition P

Intuitively, given a subset S of N and a partition C := {C1, . . . , Cl} of
S, the collection C offers the players from S the ‘benefits’ resulting from the
partition of S by C. However, if a partition P of N is ‘in force’, then the
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players from S enjoy instead the benefits resulting from the partition of S
by C[P ], i.e. C in the frame of P .

To get familiar with the C[P ] notation note that

• if C is a singleton, say C = {T}, then {T}[P ] = {P1 ∩ T, . . ., Pk ∩ T} \
{∅}, where P = {P1, . . ., Pk},

• if C is a partition of N , then C[P ] = P ,

• if C ⊆ P , that is C consists of some coalitions of P , then C[P ] = C.

In general the following simple observation holds.

Note 5.1. For a collection C and a partition P , C[P ] = C iff each element
of C is a subset of a different element of P . 2

This brings us to the following notion.

Definition 5.2. Assume a defection function D and a comparison relation
�. We call a partition P D-stable if C[P ] �C for all C ∈ D(P ) such that
C[P ] 6= C.

The last qualification, that is C[P ] 6= C, requires some explanation. Intu-
itively, this condition indicates that the players only care about the way they
are partitioned. Indeed, if C[P ] = C, then the partitions of

⋃
C by means

of P and by means of C coincide and are viewed as equally satisfactory for
the players in

⋃
C. By disregarding the situations in which C[P ] = C we

therefore adopt a limited viewpoint of cooperation according to which the
players in C do not care about the presence of the players from outside of⋃
C in their coalitions.
The following observation holds, where we call a partition P of N �-

maximal if for all partitions P ′ of N different from P , P �P ′ holds.

Theorem 5.3. A partition of N is Dp-stable iff it is �-maximal.
In particular, a Dp-stable partition of N exists if � is a semi-linear com-

parison relation. 2

Proof. Note that if C is a partition of N , then C[P ] 6= C is equivalent to the
statement P 6= C, since then C[P ] = P . So a partition P of N is Dp-stable
iff for all partitions P ′ 6= P of N , P �P ′ holds.

13



In contrast, Dc-stable partitions do not need to exist even if the compar-
ison relation � is semi-linear.

Example 5.4. Consider N = {1, 2, 3} and any semi-linear comparison re-
lation � such that {{1, 2, 3}}�{{1}, {2}, {3}} and {{a}, {b}}�{{a, b}} for
all a, b ∈ {1, 2, 3}, a 6= b.

Then no partition of N is Dc-stable. Indeed, P := {{1}, {2}, {3}} is not
Dc-stable since for C := {{1, 2, 3}} we have C[P ] = {{1}, {2}, {3}} 6�{{1, 2, 3}} =
C. Further, any other partition P contains some coalition {a, b} and is
thus not Dc-stable either since then for C := {{a}, {b}} we have C[P ] =
{{a, b}} 6�{{a}, {b}} = C. 2

In [2] another example is given for the case of TU-games and utilitarian
order. More precisely, a TU-game is defined in which no Dc-stable partition
exists, where � is defined through (1) using the utilitarian order �ut.

6 Stable partitions and merge/split rules

We now resume our investigation of the conditions under which every itera-
tion of the merge and split rules yields the same outcome. The following main
result of the paper provides an answer in terms of the Dc-stable partitions.

Theorem 6.1. Suppose that � is a comparison relation and P is a Dc-stable
partition. Then

(i) P is the outcome of every iteration of the merge and split rules.

(ii) P is a unique Dp-stable partition.

(iii) P is a unique Dc-stable partition.

To prove it we establish first a sequence of lemmata about Dc-stable
partitions.

Lemma 6.2. Every Dc-stable partition is closed under the applications of
the merge and split rules.

Proof. To prove the closure of a Dc-stable partition P under the merge rule
assume that for some {T1, . . . , Tk} ⊆ P we have {

⋃k
j=1 Tj}�{T1, . . . , Tk}.
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Dc-stability of P with C := {
⋃k
j=1 Tj} yields

{T1, . . . , Tk} = {
k⋃
j=1

Tj}[P ] �{
k⋃
j=1

Tj},

which is a contradiction by virtue of the transitivity and irreflexivity of �.
The closure under the split rule is shown analogously.

Next, we provide a characterization of Dc-stable partitions. Given a par-
tition P := {P1, . . . , Pk} we call here a coalition T P -compatible if for some
i ∈ {1, . . . , k} we have T ⊆ Pi and P -incompatible otherwise.

Lemma 6.3. A partition P = {P1, . . . , Pk} of N is Dc-stable iff the following
two conditions are satisfied:

(i) for each i ∈ {1, . . . , k} and each pair of disjoint coalitions A and B
such that A ∪B ⊆ Pi

{A ∪B}�{A,B}, (2)

(ii) for each P -incompatible coalition T ⊆ N

{T}[P ] �{T}. (3)

Proof. (⇒) Immediate.

(⇐) Transitivity, monotonicity (m2) and (2) imply by induction that for
each i ∈ {1, . . . , k} and each collection C = {C1, . . . , Cl} with l > 1 and⋃
C ⊆ Pi, {⋃

C
}

�C. (4)

Let now C be an arbitrary collection in N such that C[P ] 6= C. We prove
that C[P ] �C. Define

Di := {T ∈ C | T ⊆ Pi},

E := C \
⋃k
i=1D

i,

Ei := {Pi ∩ T | T ∈ E} \ {∅}.
Note that Di is the set of P -compatible elements of C contained in Pi, E

is the set of P -incompatible elements of C and Ei consists of the non-empty
intersections of P -incompatible elements of C with Pi.
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Suppose now that
⋃k
i=1E

i 6= ∅. Then E 6= ∅ and consequently

k⋃
i=1

Ei =
k⋃
i=1

({Pi ∩ T | T ∈ E} \ {∅}) =
⋃
T∈E

({T}[P ])
(m1),(3)

� E. (5)

Consider now the following property:

|Di ∪ Ei| > 1. (6)

Fix i ∈ {1, . . . , k}. If (6) holds, then{
Pi ∩

⋃
C
}

=
{⋃

(Di ∪ Ei)
} (4)

�Di ∪ Ei

and otherwise {
Pi ∩

⋃
C
}

=
{
Di ∪ Ei

}
.

Recall now that

C[P ] =
k⋃
i=1

{
Pi ∩

⋃
C
}
\ {∅}.

We distinguish two cases.

Case 1. (6) holds for some i ∈ {1, . . . , k}.
Then by (m1) and (m2)

C[P ] �
k⋃
i=1

(Di ∪ Ei) = (C \ E) ∪
k⋃
i=1

Ei.

If
⋃k
i=1E

i = ∅, then also E = ∅ and we get C[P ] �C. Otherwise by (5),
transitivity and (m2)

C[P ] �(C \ E) ∪ E = C.

Case 2. (6) does not hold for any i ∈ {1, . . . , k}.
Then

C[P ] =
k⋃
i=1

(Di ∪ Ei) = (C \ E) ∪
k⋃
i=1

Ei.
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Moreover, because C[P ] 6= C, by Note 5.1 a P -incompatible element in C
exists. So

⋃k
i=1E

i 6= ∅ and by (5) and (m2) we get as before

C[P ] �(C \ E) ∪ E = C.

In [2] the above characterization was proved for the coalitional TU-games
and the utilitarian order. We shall now use it in the proof of the following
lemma.

Lemma 6.4. Assume that P is Dc-stable. Let P ′ be closed under applications
of merge and split rules. Then P ′ = P .

Proof. Suppose P = {P1, . . . , Pk}, P ′ = {T1, . . . , Tm}. Assume P 6= P ′.
Then there is i0 ∈ {1, . . . , k} such that for all j ∈ {1, . . . ,m} we have Pi0 6=
Tj. Let Tj1 , . . . , Tjl be the minimum cover of Pi0 . In the following case
distinction we use Lemma 6.3.

Case 1. Pi0 =
⋃l
h=1 Tjh .

Then {Tj1 , . . . , Tjl} is a proper partition of Pi0 . But (2) (through its gen-
eralization to (4)) yields Pi0 �{Tj1 , . . . , Tjl}, thus the merge rule is applicable
to P ′.

Case 2. Pi0 (
⋃l
h=1 Tjh .

Then for some jh we have ∅ 6= Pi0 ∩ Tjh ( Tjh , so Tjh is P -incompatible.
By (3) we have {Tjh}[P ] �{Tjh}, thus the split rule is applicable to P ′.

We can now prove Theorem 6.1.

Proof of Theorem 6.1.
(i) By Note 2.2 every iteration of the merge and split rules terminates, so
the claim follows by Lemma 6.4.

(ii) Since P is Dc-stable, it is in particular Dp-stable. By Theorem 5.3 for all
partitions P ′ 6= P , P �P ′ holds. So uniqueness follows from the transitivity
and irreflexivity of �.

(iii) Suppose that P ′ is a Dc-stable partition. By Lemma 6.2 P ′ is closed
under the applications of the merge and split rules, so by Lemma 6.4 P ′ = P .
2
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This theorem generalizes [2], where this result was established for the
coalitional TU-games and the utilitarian order. It was also shown there that
there exist coalitional TU-games in which all iterations of the merge and split
rules have a unique outcome which is not a Dc-stable partition.

7 Applications

The obtained results do not involve any notion of a game. In this section we
show applications to three classes of coalitional games. In each case we define
a class of games and a natural comparison relation for which all iterations of
the merge and split rules have a unique outcome.

7.1 Coalitional TU-games

To show that the obtained results naturally apply to coalitional TU-games
consider first the special case of the utilitarian order, according to which
given a coalitional TU-game (N, v), for two collections P := {P1, . . ., Pk}
and Q = {Q1, . . ., Ql} such that

⋃
P =

⋃
Q, we have

P �Q iff
∑k

i=1 v(Pi) >
∑l

i=1 v(Qi).

Recall that (N, v) is called strictly superadditive if for each pair of disjoint
coalitions A and B

v(A) + v(B) < v(A ∪B).

Further, recall that given a partition P := {P1, . . ., Pk} of N and coali-
tional TU-games (P1, v1), . . ., (Pk, vk), their union (N,⊕ki=1vi) is defined by

(⊕ki=1vi)(A) =
k∑
i=1

vi(Pi ∩ A).

We now modify this definition and introduce the concept of a semi-union
of (P1, v1), . . ., (Pk, vk), written as (N,⊕ki=1vi), and defined by

(⊕ki=1vi)(A) :=

{
(⊕ki=1vi)(A) if A⊆ Pi for some i
(⊕ki=1vi)(A)− ε otherwise

where ε > 0.
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So for P -incompatible coalitions the payoff is strictly smaller for the semi-
union of TU-games than for their union, while for other coalitions the payoffs
are the same. It is then easy to prove using Lemma 6.3 that in the semi-
union (N,⊕ki=1vi) of strictly superadditive TU-games the partition P is Dc-
stable. Consequently, by Theorem 6.1, in this game P is the outcome of
every iteration of the merge and split rules.

The following more general example deals with arbitrary monotonic com-
parison relations as introduced in Sections 3 and 4.

Example 7.1. Given a partition P := {P1, . . . , Pk} of N , with � being one
of the orders defined in Section 3, we define a TU-game for which P is the
outcome of every iteration of the merge and split rules.

Let

f(x, y) :=


x+ y if � is the utilitarian order

x · y if � is the Nash order

max{x, y} if � is the elitist or leximin order

min{x, y} if � is the egalitarian order

and define

v(A) :=


1 if |A| = 1

max
B∪C=A

B,C disjoint
coalitions

{f(v(B), v(C))}+ 1 if |A| > 1 and A ⊆ Pi for some i

0 otherwise.

Then

(i) for any two disjoint coalitions A,B with A∪B ⊆ Pi for some i, we have

v(A ∪B) > f(v(A), v(B))

by construction of v, and thus

• v(A ∪B) > v(A) + v(B) for utilitarian �;

• v(A ∪B) > v(A) · v(B) for Nash �;

• v(A ∪B) > max{v(A), v(B)} for elitist or leximin �;

• v(A ∪B) > min{v(A), v(B)} for egalitarian �.
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Hence in all cases {A ∪B}�{A,B}.

(ii) for any P -incompatible coalition T ⊆ N , we have

v(A) > 0 for all A ∈ {T}[P ], and v(T ) = 0.

Hence {T}[P ] �{T}.
Lemma 6.3 now implies that P is indeed Dc-stable, so Theorem 6.1 applies.
2

Example 7.2. Given a partition P := {P1, . . . , Pk} of N , with � being one
of the orders defined in Section 3 or Pareto order of Section 4, we define a
TU-game and an individual value function for which P is the outcome of
every iteration of the merge and split rules.

Let

f(x, y) :=

{
|N | ·max{x, y}+ 1 if � is elitist, leximin or Pareto

x+ y otherwise,

define v as in Example 7.1, and define

φvi (A) :=
v(A)

|A|
.

Then

(i) for any two disjoint coalitions A,B with A∪B ⊆ Pi for some i, we have

v(A ∪B) > f(v(A), v(B))

again by construction of v, and thus

• for utilitarian, Nash, or egalitarian �:
v(A∪B) > v(A)+v(B), and since φvi distributes the value evenly,
in all cases {A ∪B}�{A,B},
• for elitist, leximin, or Pareto �:
v(A ∪B) > |A ∪B| ·max{v(A), v(B)},
thus φvi (A ∪B) > max{v(A), v(B)} for all i,
thus {A ∪B}�{A,B} in all cases,

(ii) for any P -incompatible coalition T ⊆ N , {T}[P ] �{T} as before.

Again, Lemma 6.3 implies that P is Dc-stable, and Theorem 6.1 applies. 2
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7.2 Hedonic games

Recall that a hedonic game (N,�1, . . .,�n) consists of a set of players N =
{1, . . ., n} and a sequence of linear preorders �1, . . .,�n, where each �i is the
preference of player i over the subsets of N containing i. In what follows we
shall not need the assumption that the �i relations are linear. Denote by �i
the associated irreflexive relation.

Given a partition P of N and player i we denote by P (i) the element of
P to which i belongs and call it the set of friends of i in P .

We now provide an example of a hedonic game in which a Dc-stable
partition w.r.t. to a natural comparison relation � exists.

To this end we assume that, given a partition P := {P1, . . ., Pk} of N ,
each player

• prefers a larger set of his friends in P over a smaller one,

• ‘dislikes’ coalitions that include a player who is not his friend in P .

We formalize this by putting for all sets of players that include i

S �i T iff S ∪ T ⊆ P (i) and S ⊇ T ,

and by extending this order to the coalitions that include player i and possibly
players from outside of P (i) by assuming that such coalitions are the minimal
elements in �i. So S �i T iff either S ∪ T ⊆ P (i) and S ) T or S ⊆ P (i)
and not T ⊆ P (i).

We then define

Q�Q′ iff for i ∈ {1, . . ., n} Q(i) �i Q′(i) with at least one �i being strict.

(Note the similarity between this relation and the �p relation introduced
in Section 4.) It is straightforward to check that � is indeed a comparison
relation and that the partition P satisfies then conditions (2) and (3) of
Lemma 6.3. So by virtue of this lemma P is Dc-stable. Consequently, on the
account of Theorem 6.1, the partition P is the outcome of every iteration of
the merge and split rules.

7.3 Exchange economy games

Recall that an exchange economy consists of
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• a market with k goods,

• for each player i an initial endowment of these goods represented by a
vector ~ωi ∈ Rk

+,

• for each player i a transitive and linear relation �i using which he can
compare the bundles of the goods, represented as vectors from Rk

+.

An exchange economy game is then defined by first taking as the set of
outcomes the set of all sequences of bundles,

X := {(~x1, . . ., ~xn) | ~xi ∈ Rk
+ for i ∈ N},

i.e. X = (Rk
+)n, and extending each preference relation �i from the set Rk

+

of all bundles to the set X by putting for ~x, ~y ∈ X

~x �i ~y iff ~xi �i ~yi. (7)

This simply means that each player is only interested in his own bundle.
Then we assign to each coalition S the following set of outcomes:

V (S) := {~x ∈ X |
∑

i∈S ~xi =
∑

i∈S ~ωi and ~xj = ~ωj for all j ∈ N \ S}.

So V (S) consists of the set of outcomes that can be achieved by trading
between the members of S.

Given a partition P = {P1, . . . , Pk} of N = {1, . . . , n} we now define a
specific exchange economy game with n goods (one type of good for each
player) as follows, where i ∈ N :

~ωi := characteristic vector of P (i),

~xi �i ~yi iff xi,i ≥ yi,i and ~xi �i ~yi iff xi,i > yi,i,

that is, each player’s initial endowment consists of exactly one good of the
type of each of his friends in P , and he prefers a bundle if he gets more goods
of his own type.

Now let A�B iff

∀Al ∈ A \B ∃~x ∈ V (Al) ∀j ∈ Al[(
∀~y ∈ V (B(j))~x �j ~y

)
∨
(
∀~y ∈ V (B(j))~x �j ~y ∧ |Al| < |B(j)|

)]
.
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So a partition A is preferred to a partition B if each coalition Al of A not
present in the partition B can achieve an outcome which each player of Al
strictly prefers to any outcome of his respective coalition in B, or which he
likes at least as much as any outcome of his respective coalition in B when
that coalition is strictly larger than Al. The intuition is that the players’
preferences over outcomes weigh most, but in case of ties the players prefer
smaller coalitions.

It is easy to check that � is a comparison relation. We now prove that
the partition P is Dc-stable w.r.t. �. First, note that by the definition of the
initial endowments for all l ∈ {1, . . . , k} and coalitions A ⊆ Pl there is an
outcome ~zA ∈ V (A) which gives exactly |A| units of good j to each player
j ∈ A. We have ~zA �i ~x for all i ∈ A and ~x ∈ V (A). This implies that P is
Dc-stable by Lemma 6.3 since

(i) for each pair of disjoint coalitions A and B such that A ∪ B ⊆ Pl we
have ~zA∪B �i ~zA for each i ∈ A and ~zA∪B �i ~zB for each i ∈ B since
|A ∪B| > |A| and |A ∪B| > |B|, thus {A ∪B}�{A,B},

(ii) for any P -incompatible T ⊆ N , A ∈ {T}[P ], i ∈ A, and ~x ∈ V (T ),
we have ~zA �i ~x (since player i can get in T at most all goods of his
type from his friends in P , which are exactly the same as in A), and
|A| < |T |, thus {T}[P ] �{T}.

Consequently, in the above game, by Theorem 6.1 the partition {P1, . . ., Pk}
is the outcome of every iteration of the merge and split rules.
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