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Abstract. The following problem arose in the planning of optical communications networks which 
use bidirectional SONET rings. Traffic demands di,j are given for each pair of nodes in an 
n-node ring; each demand must be routed one of the two possible ways around the ring. 
The object is to minimize the maximum load on the cycle, where the load of an edge is 
the sum of the demands routed through that edge. 

We provide a fast, simple algorithm which achieves a load that is guaranteed to exceed 
the optimum by at most 3/2 times the maximum demand, and that performs even better 
in practice. En route we prove the following curious lemma: for any x1, ... , Xn E [O, 1] 
there exist Yl, ... , Yn such that for each k, IYk I = Xk and 

l
ty;- t Yil :52. 
i=l i=k+l 

[This article is reprinted here (with updates) from SIAM J. Discrete Math., 11 (1998), 
pp. 1-14. New developments include a 1 + E: approximation algorithm and a variation 
of ring loading in the setting of wavelength division multiplexing; remarks added for this 
printing, about these and other issues, are enclosed in brackets.] 
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I. Introduction. Around the world, billions of dollars are being spent by tele
phone operating companies to replace copper circuits with optical fiber, vastly increas
ing potential bandwidth and opening the network to multiple data types, including 
video. The dominant technological standard in the United States is the Synchronous 
Optical NETwork (SONET) [1]. In one very popular configuration, called a SONET 
ring, nodes (typically telephone central offices) are connected by a ring of fiber, with 
each node sending, receiving, and relaying messages by means of a device called an 
add-drop multiplexer (ADM). 

SONET rings enjoy several advantages over other network configurations. The 
vertex-symmetry of the rings ensures that nodes play the same role and are simi
larly equipped, and the connectivity of the cycle protects against failure of either a 
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link (that is, an edge) or a node. Thus, a major task of network-planning software, 
including Bellcore's SONET Toolkit [3], is to identify groups of nodes that can be 
turned into SONET rings in such a way as to satisfy traffic demands in a cost-efficient 
manner. 

[As of the middle of 1999, SONET rings are carrying a large part of this nation's 
long-distance telephone traffic, and with it, of course, a great deal of internet traffic. 
i\fany of the rings have capacity "OC-48," meaning that they can carry 2.5 billion 
bits per second. New rings of size OC-192 are already contemplated. In Europe, a 
standard similar to SONET, called SDH (Synchronous Digital Hierarchy), is in effect.] 

The capacity of a SONET ring varies from ring to ring but is the same for each 
link of a ring, and the cost of a ring (all other factors being equal) is an increasing 
function of its capacity. It is not the fiber itself but the ADMs that limit bandwidth. 
However. the effect is the same: for each SONET ring there is a capacity C such that 
no link of the ring may carry more than C units of traffic. 

In some SONET rings all traffic is routed clockwise (unless a fault has occurred) 
and the capacity is selected so as to handle the sum of all the point-to-point demands 
between nocles of the ring. Such "unidirectional" SONET rings will not concern us 
here. 

In bidirectional rings, however, a routing is chosen independently for each pair of 
nodes, and all traffic between those nodes (in either direction) i8 sent by that route. 
Clearly, bidirectional ring8 are much more bandwidth efficient; for example, when 
demands arc uniform they can carry four times the traffic of a unidirectional ring 
having the same capacity. 

In order to compute the capacity required for a proposed bidirectional SONET 
ring, the planning software must route the projected traffic demands in such a way as 
to minimize, or at least approximately minimize, the maximum load on any link. The 
problem is described formally below. We remark that the actual capacity selected 
for a proposed ring is further adjusted to allow for failures and abnormal demancl8, 
and that there is a diocrete set of standard capacities from which to choose; but these 
considerations do not change the objective. 

[Problems similar to the one considered in this paper have arisen in a new tech
nology called wavelength division multiplexing (WDM). Here many signals are sent 
simultaneously through the same fiher at different wavelengths. Because it is difficult 
to change the wavelength of a given signal without an optical-to-electronic-to-optical 
conversion, wavelength assignment problems arise as well as routing problems. Later 
we will indicate how the method used here for the SONET ring loading problem was 
adapted to WDl\I rings.] 

2. Notation and Terminology. The problem i8 formally stated as follows: 
RING LOADING 

INSTANCE: Ring size n and nonnegative integers d;,j, 1 :::; i < j :::; n. 
QUESTION: Find a map <P : {U, j) : 1 S ·i < j :::; n} ~ {O, 1} which minimizes 
L = max1:s;k:s;n Lki where 

Lk = L{d;,J: </>(i,j) = 1 and k E [i,j)} + L{d;,j: </>(i,j) = 0 and k ~ [i,j)}. 

The notation '' [·i, j)" is used here for the half-closed integer interval { i, i + 1, ... , 
j - 1}. 

To make RING LOADING a decision problem as in [8], we append a target value T 
to the instance and ask whether there is a <f> for which L :::; T. 
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Each di,j is ~alled a dem.and, and the map q; is called a mut·ing. Setting <j>(i,j) = () 
amm~nts to routmg the traffic between nodes i and j the "'back" way, that is, through 
the lmk {n, 1}. When </>(i,j) = 1 we say that the (i,j)th demand has been routed 
through the "front." 

The routing induces a load L; on each link {·i, i + 1 }, namely, the sum of the 
demands routed through that link. The largest load is the ringload L, the quantity 
to be minimized. , 

3. Theory and Reality. The decision form of RING LOADING is clearly in the 
class NP ~ince ~he routing provides a witness that is only (~) bits long. In f~ct, RING 

LOADING is an mteger multicommodity flow problem (the reader is referred to [5] for 
a survey of such problems); in general, such problems are NP-complete, but we are 
dealing with a very special case. 

Technically, the input size for an instance of RING LOADING is slightly more than 

llog n l + llog Tl + L jlog d;.Jl. 
isi<Jsn 

relative to which RING LOADING is NP-complete. A simple reduction is available from 
the PARTITION problem [8, p. 223], in which positive integers a 1, ... , am are given 
and the question is whether one can divide them into two groups of equal sum. Put 

n = m + 3, d.i,m+2 = ai for 1 ::::; i ::::; m, and dm+1,m+2 = dm+2.m+3 = L a.;/2. Set 
all other demands equal to zero, and let T = Lai. Then a good routing must send 

dm+l ,rn+2 and dm+2,m+3 the short way (front) and must partition the other demands 
so that Lm+l = Lm+2 = T. This solves PARTITION, and vice versa. 

An even ea;;ier reduction-with just two nodes--was given by Casares and Saniee 
[4] and was made possible by their slightly more general RING LOADING formalization 
in which more than one demand per node pair is allowed. (The positive results to 
follow are also easily extended to cover the more general formulation; we prefer the 
more restrictive version for notational reasons.) 

However, the reduction from PARTITION says nothing about the tractability of 
RING LOADING in practice, because PARTITION is solvable in time polynomial in rn · 

max a; and actual demand sizes for RING LOADING are not large numbers. In fact, 
traffic demands are estimates to begin with, and the range 0 to 100 units is typically 
adequate. Thus, we may even take the ma..ximum demand D to be bounded by a 
reasonable constant. The size n of a SONET ring is currently restricted to about 
20. With these parameters, an instance of PARTITION can be solved using dynamic 

programming by hand! 
Modest as the parameters are, however, they do not permit exhaustive search of 

the 2(~) possible routings, and the PARTITION-to-RING-LOADING reduction does not 
appear to permit reversal. As far as we know, any of the following three statements 
may be true (see [8] for descriptions of CLIQUE and CHROMATIC NUMBER): 

• RING LOADING (like PARTITION) can be solved in time polynomial in n and 

D. 
• RING LOADING (like CLIQUE) can be solved in time polynomial in n but only 

if a bound on the maximum demand D is fixed. 
e JUNG LOADING (like CHROMATIC NU!vIBER) is NP-complete even for (some) 

fixed D. 
Mercifully, the D = 1 case is solvable in time polynomial in n. The proof is due to 

Frank [6] and is explained nicely in [7]; it relies on a theorem of Okamura and Seymour 
[12]. This case is important because in some cases demands can be split, but only at 
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integral values, and can thus be regarded as a multiplicity of unit dPmands. In fact, as 
we shall demonstrate, our approximation algorithm for HINC: LOA!>IN<: ad11ally solves 

this case exactly. 
We do not have a fast exact algorithm, <'ither iu t hrnry or in prnct i<'P, for the 

RING LOADING problem with D> 1. Fortunat.C'ly, in prnctic(•, a n•aso1111hlP approximate 
solution to RING LOADING was acceptable. Tiwrc wa.<> no room for 1·omprornis(• on the 
issue of computation time: the RING LOADING problPlll had to lw solV<'d i11 a matter of 
seconds at most, because it was part of a frequently cal!Pd sulm111ti11P for cli>tennining 
the cost of proposed SONET rings. The full program c<msid1•rs N1or111011s mmthen; of 
potential SONET rings and is supposed to work ou rnn-of-tlw-mill s<•rial <·omputers. 

To be precise, we sought an algorithm A with t lw followiup; t hr1•1• propPrties, listed 
in order of importance: 

1. A must be fast. 
2. A should provide a i;olution to HINC: LOADIN<: that PXc1•1•d .... tll!' opt i11111m load 

by no more than about 5% in most c;i.-;ps, 
3. A should, if possible, corne with a j)(•rfonnauc<• µ;uarm1tP1· for hot h propt>rtiP:-; 

1 and 2. 
As it turns out, these properties wen• ohtai11ahl1• with a fairl.v simpl .. alµ;orit lim whos1• 
efficiency does not much depend on D (the c!Pm1mds can lw t rMll•d 11.'i n·11l 11tu11l><'rs). 

4. Linear Relaxation. The "relax<!d" wrsioll of HI:-<<: l.!>Al>I:>:<:. i11 wlikb c!P
mands may be split (that is, sent partly aro11nd tlw fro11t. part!~· 11n11111d tlw lm<·k), is 
formulated as follows: 

RELAXED RING LOADING 

INSTANCE: Ring size n and nourwgative i11t.Pgn:-; d,,1 • 1 "':i.::· .J ·• 11. 

QUESTION: Find a map <P* : ffi, j) : I ":::: i < j < 11} • [O. I j wliidi mi11imizPs 
L* = max1:::;k:Sn Lk, where 

Lk=L{<P*(i,j)di,J: kE[i.))}+2:.:{(l·· <:>(i.j))d,): k•/(1..J)}. 

Since this is now a lirn~ar progrnmmiug prohl1•m. it is :-;11lmlil1· i11 p11ly1111111i11l t i11w 
[9]. In fact, we shall see that a solution to HELAXEll !tl~c; l.OAlll~<: nm h1· 11htai1wd 
in a very fast greedy fashion, PV<'ll if we dPmawl t lw add ii io1111I ptop1 ·rl y d1'l'i<'rilwcl i11 
Proposition 4.1. 

It is useful to think of <lerrnmds g<~>lllPl.rirnll.v 1r.o; Wl'iglit1·d 1fomJ..., i11 a drdP 
representing the SO NET ring. Two demai1<b <iy.I. awl d, 1 . wit Ii !I . Ii and i ,,.,. j. an• 
said to cross if all of the indicPs Ill'<' distiiwt awl if 1•xactlr ow· of 1 a11d .I liPs i11 (g. Ii): 
otherwise they are said to lH! pamlld. 111 part.il'11lar. d1·11111111ls s11d1 11.-. tl, 1 a11d di.A .. 
which share a node, are parnlld. 

A link which lies lwtweP11 two dwrds n•pn•si•11ti11g paralli·l d1·11m111ls is said to 
be "between" the demands. Pi11ally. a ro11ti11g 1:1• for tlll' 1t1·.1.t\Xl"l1 111:-;c: t.OAl>INC: 
problem is said to spl'it a demand d, ,1 if O < r;? (i . .I) ,... I. 

PROPOSITION 4.1. Lei</>' he a nmfiny for 1rn 1Tt.!<ilr111n of lH.l..\Xl·.IJ HI:'\<; l.OAll!NC; 

which ach·ieves the opt.irnal load L • llnd i:; al.w mm111wl. 111 t/11 .~t'T1!<i1· t/111 t nr1 11flw1· 

ro·uting has L.i :::; Ll for ell(:1~11 i and L 1 < /, ~ for .~111111· J. Thn1 1w lmk u•}llf'h lif:s 
between two parallel rlerrumrls will i:tLT'17J tmj]i<' fmm both 1lt 111 ,1111/.~. 

Proof Assume otlwrwis1!, !Pt.ting li11k { k. k + I } <'atTy 11 q1111111 it v n of 1 rnffic from 
demand rlfl,h and b ~ a from d;,J. Afl.!•r rl'ro11t i11g 11 q1111111 it:.· 11 uf 1 rullk from t•acli 
demand so as to no longer J>&"is thrrntf.!;h t h1• kt Ii li11k. 110 li11k s11ffn"' 1m i11<T1•1t..'tt•d lond. 
This contradicts the rninimality of rp•. O 
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Proposition 4.1 fails for RING LOADING, as can be seen from the example in 
Figure 4.1, where n = 8 and the nonzero demands are d2,3 = d1,4 = 1 and d6,7 = 
d5 ,8 = 2. The optimal {O, 1}-assignment sends both d1,4 and d5 ,8 the long way around 
the ring, achieving L = 3; no other assignment can do better than L = 4. What is 
significant, however, is that the proposition does hold in the case of {O, 1} demands. 

We can turn RELAXED RING LOADING into a decision problem in a more general 
way than before. We append to the instance a capacity ei for each link {i,i+l} and 
ask whether there is a routing c/>* for which Li :::; Ci for each i. In the following it 
will be useful to regard node labels as integers modulo n, so that, for example, the 
link { n, 1} is also written { n, n+ 1} and the half-open interval (g, h] is interpreted as 
{g, g + 1, .... n- l, n, 1, 2, ... , h-1} if h < g. 

Each pair of links {g,g+l}, {h,h+l}, with g < h, constitutes a cut of capacity 
e9 + eh in the network. We may think of a cut as a chord connecting the midpoints 
of the links {g, g + 1} and { h, h + 1}; if a demand di,j crosses this chord, any routing 
will contribute load di,j to the cut's two links. Thus, if the instance is solvable, then 
D 9 ,h ::::; e9 +eh, where 

Dg,h := I:{di,J: i::::; g and j E (g,h], or i E (g,h] and j > h} 

is the total traffic demand across the cut. The following converse is a special case of 
the Okamura-Seymour theorem [12]; we give a simple proof here. 

PROPOSITION 4.2. If Dg,h ::::; eg +eh holds .for each wt, then there is a solution 
to RELAXED RING LOADING satisfying the capacity constraints. 

Proof. It will be useful in what follows to allow "cuts" of the form {g, g }, with ca
pacity 2e9 and demand Dg,g = 0. The cut constraint for these cuts is thus equivalent 
to normegativity of the link capacities. 

Assume the theorem fails and fix a counterexample with n minimal and, subject 
to the minimality of n, having the least possible number of nonzero demands. 

Choose any nonzero demand-say, di,j -with ·i < j, and let {g, h} minimize 
M = Dg,h - eg - eh subject to i:::; g < h < j; thus, {g, h} is the tightest cut in the 
front route for di,j· (A cut {g, h} is said to be "tight" if D 9 ,h = e9 +eh.) 

We propose to send min(di,j, M/2) of the demand d;,j around the front and, if 
di,j > A.f /2, send the remaining d;,j - Jl,1 /2 around the back. When the capacities 
have been decreased accordingly, we will have a new RELAXED RING LOADING instance 
with one less nonzero demand. If the new instance still satisfies tbe cut constraints, 
it will contradict minimality of the counterexample, proving the tlworem. 

Suppose that in the new instance some cut is violated. That c:11t must lie on the 
back route for d;,j, since this demand has already been accounted for in cuts which 
it crosses, and cuts on the front route have sufficient slack by choice of Jl;1. Then we 
have a cut {g',h'} with [g',h') n [i,.i) = 0 such that 

D9',h' + 2(d;,J - M/2) > eg' + e1i,, 

where all quantities are computed in the original instance. 
Call the {g, h} cut and the {g', h'} cut "straight" and consider also the "diagonal" 

cuts {g, g'} and {h, h'}. Every demand must cross at least as many of the two diagonal 
cuts as the two straight cuts, while di,j crosses both diagonal cuts and neither straight 
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1 

2 2 

Fig. 4.1 An 'instance of RING LOADING with optimal solution, 

cut. Hence. 

D9 ,9, + Dh,h' 2: D9 ,1t + D9',h' + 2di,j 

> Cg +eh - 2(M/2) + Cg' +eh' - 2(di,j - M/2) + 2di,j 

= C9 + c9, + eh +eh' 

so that one of the diagonal cuts must have violated the cut constraint. 
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Note that non violation of cuts of the form {g, g} assures us that the given routing 
of d;,j is actually possible, i.e., that no link capacity will become negative after-
ward. D 

Given a set of demands, we now wish to find an assignment </J* which minimizes 
L * and satisfies the conclusion of Proposition 4.1. This can be done quickly by putting 
each link in a tight cut as follows. 

First we compute the (~) values D9,h, 1 5 g < h ~ n; let the largest of these 
be M. Then L* ?: M/2, but the ring with all capacities set to M/2 satisfies the 
cut constraint, so in fact L* = M/2. We now take the links in any order (say, {l, 2} 
through { n, 1}) and lower their capacities as much as possible; that is, define capacities 
{ C;} recursively by 

C9 = max (maxh < g(D9 ,h - Ch), max h > g(Dg,h - M/2)), 

noting that C9 ?: O. 
No realizable set {ea of capacities can have C~ 5 C; for every i and Cj < Cj 

for some j, since the least such j would be part of a bad cut. Hence any fea
sible assignment ef;* for these capacities is a minimal solution of the original RE

LAXED RING LOADING instance, and Proposition 4.1 applies. In particular, if S = 
{{i,j} : di,j is split by ef;*}, then every pair of chords in S crosses and, therefore, 
ISI 5 n/2. 

In fact, after reducing the capacities as above we can solve RELAXED RING LOAD

ING to route each demand all front or all back until only mutually pairwise crossing 
demands remain. To see this, assume that there is still a parallel pair of unrouted 
demands and choose a link between them; fix a tight cut containing that link. At 
most one of the two parallel demands crosses the cut; the other can, and indeed must, 
be routed to miss the cut entirely. 

In summary, our algorithm for solving RELAXED RING LOADING proceeds as fol-
lows: 

1. Compute the(;) values D9,h, and L* = M/2. 
2. Compute minimal capacities { Ci} as described above. 
3. While there are pairs of parallel demands, find tightest cuts and route de

mands all front or all back, resetting capacities accordingly. 
4. When only crossing cuts remain, route as much as possible by the front and 

the remainder by the back. 
The running time of this procedure is approximately of order kn2 , where k is the 

number of nonzero demands; this is very fast for the parameter sizes that we require. 
See [13] for an even faster solution to problems akin to RELAXED RING LOADING. 

[In [11] a clever combinatorial method for solving RELAXED RING LOADING is 
presented, which runs in time only O(nk). It is used there to obtain only a factor-of-2 
approximation to RING LOADING, but we will see later that the methods here (with 
any means of solving RELAXED RING LOADING) can be adapted to approximate the 
optimal solution within a factor of 1 + c for any c > O.] 

In any case, our solution to RELAXED RING LOADING ends with at most only n/2 
of the demands split. It therefore seems natural to compute ef;* and then "unsplit" the 
demands in S as gently as possible in order to get a near-optimal { 0, 1} assignment 
for RING LOADING. This is exactly what we do. 

5. Unsplitting. Henceforth ef;* will be a fixed, minimal solution to RELAXED RING 

LOADING with a set of split demands S as above. We seek a solution ef; to RING 

LOADING which agrees with ef;* when </J* (i, j) E {O, 1} and for which L- L * is as small 
as possible, where L is the ringload of ef;. 
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If node i is not an endpoint of a split demand, then the difference between the 
loads on links {i-1,i} and {i,i+l} will not change as we pass from <P* to </J. Hence, 
for the purpose of determining <J>, we may as well delete vertex i and combine the two 
former links to form a single link whose load under the relaxed assignment is taken to 
be max(L~_ 1 . Li). Proceeding in this fashion for each vertex not involved in a split 
demand. we are reduced to the case where n is even and S = { { i, i+m} : 1 :::; i :::; m}, 
with m = n/2. 

Let us define u; to be the amount of demand di,;+rri sent by <P* via the front route, 
and v; via the back, so that u;, v; > 0 and ui + v; = d;,;+rri· If <P routes d;,;+m by the 
front, then each link {j,j+l} with j E [i,i+m) has its load incremented by v; (the 
amount formerly sent around the back) relative to the relaxed assignment <P*, while 
the rest of the link loads are decremented by v;. Similarly, if demand d;,;+m is sent by 
the back route, the load of each link in [i, i+m] is decreased by ?L; while the rest are 
incremented by the same amount. 

Hence if we set z; = L'i when q?(i, i+m) = 1, and z; = -u; otherwise, we have 

iE[l,m] 
jE[i,i.+m) 

iE[l,m] 
jE[i+m,i) 

Notice that LJ + LJ+m = Lj + L)+m for all j. Thus L :::; 2L* for all choices of q?, 
duplicating the performance ratio claimed by Cosares and Saniee [4], but we will do 
much better by choosing cjJ judiciously. 

The optimal dJ can be found by dynamic programming, but in practice we try 
every <f) and d10ooe the best one! There are at most 2n/2 choices for q?, a list easily 
exhausted for all currently contemplated SO NET ring sizes. In effect, for our values of 
n (up to 32. possibly) the line between tractability and intractability lies not between 
polynomial and exponential but between exponential in n and exponential in n 2 . 

Our embarrassment. as theorists, is assuaged somewhat by the fact that there is 
a polynomial algorithm for finding an assignment </; that achieves the performance 
guaranteed by the following theorem. 

THEO RE!\! 5 .1. Let </;* be a rninimal solution, with ringload L •, to the rela:red 
uersion of an instance of RING LOADING. Let D be the maximum rnagnii'ILde of the 
demands split by </;*. Then thei·e is a { 0, 1} ass·ignrnent <P with ringload L that agrees 
with <:p*. c;rcept on split demands, and that satisfies L - L * :::; ~D. 

Proof. We define Zi (hence <P) inductively, ensuring that I:~=l z; E [-D /2, D /2] 
for all k, 1 :S k S m. This is always possible since, once z1 , ... , zk- l are defined and 
the partial sum s = :z=;::-11 z; lies in the required interval, the two possible value;.; of 
L~=l z; lie on both sideo of sand differ by only Ilk+ vk :::; D. 

Put 

and 

then 

L - L*:::; rnax(LJ - L*) = M < ~D 
j J - 2 . D 
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The greedy unsplitting given in the proof of Theorem 5.1, when appended to 
our solution to RELAXED RING LOADING, gives the polynomial-time approximation 
algorithm, which we call Algorithm A. 

Of course, the true optimum L 0 Pt for the original RING LOADING problem is at 
least equal to L *, so the theorem guarantees an additive error of at most a constant 
(3/2) times the maximum original demand irrespective of the value of n. 

How good is this performance guarantee? This method can never achieve a multi
plicative performance bound better than 2 relative to L *, since the "square example" 
with n = 4, di,3 = d2,4 = 1, and other demands 0 gives £* = 1, £ 0 Pt = 2. Nor can 
we hope to get a factor better than 4/3 relative to L 0 Pt due to the example shown in 
Fig. 4.1. 

However, for larger n, if demands average D/2 in size then the typical demand 
adds n/4 · D/2 to the total load when routed the short way; thus we expect the sum 
of the loads of all the links to be approximately (~) · n/4 · D/2 :::::J (D/16)n3 , giving 
L* ;:::: (D/16)n2 . Next to an optimum of order n2 , an additive error that does not 
depend on n at all looks pretty good; but we must again remember that n is never very 
large. For n = 16 this analysis allows a relative error of (~D)/(l6D)::::::: 9%, which is 
not so impressive. Of course this is pessimistic; the Cosares-Saniee algorithm allows 
1003 error in theory but does far better in practice. In any case, it would clearly be 
worth some effort to determine whether the constant 3/2 is the best possible, and we 
tackle this problem in the last section. 

[Thanks to Sanjeev Khanna [10], we now know that in fact our method can be 
used to obtain a polynomial-time approximation scheme for RING LOADING; that is, a 
multiplicative performance guarantee of 1 + c for any c > 0. This is achieved by first 
reducing the given instance to one in which the maximum demand is at most 2c£0 Pt; 

then our additive guarantee gives the desired result. To effect the reduction, Khanna 
observes that no more than 3 / c of the "big" demands-those which exceed 2c L0 Pt /3 
in size-can be routed more than halfway around the ring, in any optimal solution. 
A linear program can test those small sets of big demands; this can be done in a neat 
combinatorial way, and without knowing the value of £ 0 Pt in advance.] 

We return now, briefly, to the {O, l} demands case. 

6. { 0, I} Demands. In this section it will not complicate notation to allow many 
demands between two nodes of the ring, each of magnitude 1; we also allow capacities 
Ci for the links, not necessarily equal. A cut {g, h} is said to be even if C9 +C1i -D9 ,h = 
0 (mod 2). In [7] feasibility is shown to be equivalent to the cut condition together 
with the following parity condition. 

Parity condition. For every pair of links g, h, if g and h are each in a tight eut, 
then the cut {g, h} is even. 

THEOREM 6.1. In the {O, 1} case, if we put C; = L for each link i, then RING 

LOADING is feasible with ringload::; L if and only if the cut and parity constraints are 
satisfied. If only the cut constraint is satisfied, then the optimal ringload is L + 1. In 
any case, the algorithm A described above finds an optimal assignment. 

Proof It is straightforward to verify that if a demand is assigned (all front or all 
back) without violating the cut condition, then the truth value of the parity concli
tion is preserved. Since the parity condition is met when all demands are assigned, 
necessity is clear. 

On the other hand, suppose that demands are assigned in accordance with Algo
rithm A until all remaining demands require splitting. Suppose there is at least one 
left, say, di,j; then there must be parallel cuts {g, h} and {g', h'} on each side of di,J 
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with C 9 + C1i - Dy,h = C9, + c,,, - D g' ,h' = L Since the diagonal cuts must be tight, 
the parity condition is (twice) violated. 

It remains only to observe that if the cut constraint is satisfied when Ci = L, 
then at C; = L + 1 we also satisfy the parity constraint since all the cuts have 
slack. D 

[It turns out that a variation of the case of {O, 1} demands is particularly relevant 
for the \VDM rings mentioned earlier. Here each demand is for a single-wavelength 
connection between two nodes of the ring; if there is more traffic than can be carried 
by one wavelength (unlikely), the resulting traffic requirement is rendered as separate 
demands for the same pair of nodes. 

However, in a \VDf..I ring, traffic: demands in different directions can be handled 
separately, so that a general set of demands consists of ordered pairs of nodes. Each 
consecutive pair of nodes is connected by two links, one clockwise and one countcr
c:lockwise; the object now is to minimize the maximum traffic in any of the 2n links. 

In [14] several linear programs and a rounding algorithm are used to obtain an 
optimal routing for the WDl\1 ri11g. Although the general plan is much like that 
used on RJNG LOADING, and fits the well-known paradigm of relaxation followed b)• 

intcgerization, it is unusual in achieving exact optimality. 
The solution so obtained can be used directly for an optimal assignment of wave

lengths. provided that there is a node at which wavelengths can he translated; other
wise the assigrnnent problem is NP-complete and a pe11alty of up to a factor of 2 in 
the required number of wavelengths may be incurred. 

In [2], the wavelength assignment problem appears, in effect, in a purely SONET 
setting. The authorn consider only route:-; tlrnt occupy the same '·slot'' in each link of 
a 800/ET ring, and present heuristics for solving that, again, achieve tlte factor-of-2 
guarantee.] 

7. The Constant. Let d be the infimurn of all reals 0: such that the follow
i11g combinatorial statcruent holds: for all positive i11tegers rn and 11onrH'gative real:-; 
11 1 ....• u,,, and 1•1 ....• '1' 111 with u; + v; '.':: 1, there exist z1 , ...• z, 11 snc:h that for every 
/..-. ::1, E {1'k· -ud and 

I 
h: /)/ I 

'Lz; - .'L. Z; '.'::ex. 
i=I i=A·+l 

Then d is the "right" constant for Theorem 5.1; i.e .1 L - L * '.':: /3 D for some choice 
of o. Note' that any choice of ntti01ml values for the u;'s am! u; 's cau actually occur 
(up to constant factor) from an instance of RING LOADING, since we can constrnct one 
as follows. Ld M 1 he t lw load actually incurred by link {j, j + 1} wh<~n the dcnrnuds 
d;,;+111 = II; + 1•; are split 11; front and I'; back. Let Af be huge, and postnlak 
additional "short'' demands dj,j t1 = Al - Mi ((x each j 1 l '.':: j '.':: 2rn. Then auy 
optimal HELAXED FUNG LOADTNG soluticrn will send all the short demands by the onc
link route: !towfW('r. the sum of the link loads d1w to tlw other demands is coustant 
since each has two routes of tlw same length. Thus splittiug the other clmmu1ds as 
give1i, so as to obtain the same load f\1 011 every link, is optimal, and it is easy to sc~e 
that no other splittiug cau achieve m1ifrmn load. 

\Ve already know that /1 '.':: 3/2 and the square example, wlicrc rn = 2 and 
111 = 1•1 = u2 = V2 = 1/2, shows that /j 2: l. (In fact, u;'s and 'U; 's chosen uniformly 
at ranclurn subject to the given constrai11ts also fol'C'e /j 2: l.) 
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The special case where Ui = Vi for each i is interesting for several reasons. This 
means that <P* is sending exactly half of each demand di,i+m each way around the 
ring, giving us no clue to how to unsplit them. Furthermore, this is the case which 
arises when (as in the square example) all of the nonzero demands in the original 
RING LOADING instance are mutually crossing. 

The case ui = v; thus gives rise to a new ring loading problem as well as the 
following new constant. 

CROSSED RING LOADING 
INSTANCE: Ring size 2m and nonnegative reals di, 1 :$ i :S m. 
QUESTION: Find a map <P: {1, 2, ... , m}---+ {O, 1} which minimizes L = max1::;k:52m Lk, 
where 

Lk = .l_)<P(i)di: k E [i,i+m)} + L{(l -q';(i))di: k rj. [i,i+m)}. 

Note that we have allowed real demands here (rationals would be fine, too) in 
order to handle nonintegral splits produced by a previous linear programming phase. 

We define "( be the infimum of all reals a such that the following combinato
rial statement holds: for all positive integers m and x 1 , ..• ,Xm E [O, 1] there exist 
Y1, ... , Ym such that for every k, IYkl = Xk and 

(Note that we have rescaled the combinatorial statement so that the Xi 's lie in the 
unit interval instead of [O, 1/2].) 

We have 1 :S 'Y :S f3 :S 3/2. For lack of a counterexample, the authors were moved 
to conjecture publicly that both constants are equal to 1. After an embarrassingly 
long interval, we found a simple proof, given below, that 'Y = l; thus we have the 
following theorem. 

THEOREM 7 .1. Let K be the sum of the demands of an instance of CROSSED RING 
LOADING. Then there is an assignment cp ( wh-ich can be found ·in time polynomial in m 
and the length of the demand descript'ions) whose ringload L satisfies L - K /2 :$ D. 

Proof We must show that given x 1 , ... , Xm E [O, 1] there are y1, ... , Ym such that 
for every k, IYkl = Xk and 

As in the asymmetric case, we can obtain a bound of 3 instead of 2 by greedy assign
ment; in this case that amounts to putting Yk = Xk when I:~,:-{ Yi :S 0 and Yk = -xk 

otherwise. We generalize this algorithm by choosing a real w instead of 0 as the 
"en1pty ::mm." 

Specifically, for fixed w E [-1, l], define Yk inductively by Yk = Xk when w + 
:z=7,:-11 y.; :S 0 and Yk = -Xk otherwise. Then w + E7=l Yi E [-1, l] for all k; let 
f(w) := w + L:;:1 Yi· 



788 ALEXANDER SCHRIJVER, PAUL SEYMOUR, AND PETER WINKLER 

Suppose that f(w) = -w; then 

k m k m 

L Yi - L Yi = 2 L Yi - L Yi 
·i=l i=k+l i=l i=l 

=2 (w+ tYi)-(w+ f Yi)-w 
i=l i=l 

E [-2,2] 

as desired. 
Since J(-1) + (-1) s 0sf(l)+1, the existence of a w for which f(w) = -w 

would follow from the intermediate value theorem if f were continuous. Of course this 
is not the case; whenever a partial sum hits 0, some Yi's change sign and f(w) may 
jump. (Since we have chosen y; positive when the partial sum is 0, f will be continuous 
from the left.) However, it turns out that the absolute value of f is continuous. 

Note first that when no partial sum is at 0, the derivative f'(w) is 1. On the 
other hand suppose that w = w0 is chosen such that one or more of the partial sums 
is zero; in particular, let k ;::: 0 be minimal such that w + 2:7=1 Yi = 0. Then for 
sufficiently small c, the signs of Yj and w + 2:{=1 Yi, for j > k, flip as we move from 
w = w0 tow= w0 +c. Hence, taking j = m, we have that limw ...... w+ f(w) = -f(w0 ). 

0 

It follows that when any partial sum hits zero we will have limw ...... wci f(w) = 
-f(w0 ); thus the function g given by g(w) = lf(w)I will be continuous everywhere 
and differentiable except at finitely many points. The graph of g is a zig-zag, with 
derivative 1 where g(w) = f(w), and -1 where g(w) = -f(w). 

Of course, if we define h by h(w) = -w, then the graph of h is a line of slope -1 
from (-1, 1) to (1, -1) which must intersect the graph of g. Moreover, it must either 
intersect at a point where g'(w) = 1 or coincide with a segment of the graph of g of 
slope -1, in which case the leftmost point of the segment lies also on the graph of f. 
Either way we have a point w at which -w = g(w) = f(w). 

To complete the proof we need to demonstrate a fast algorithm for finding this w. 
To do this we set they; 's one at a time while keeping a solution w in range. Specifically, 
at stage j we have values Y1, ... , Yj fixed and aj :<:::: w s bj, with g( aj) s -aj and 
g(b1);::: -b1; of course this holds at stage 0 with a0 = -1, b0 = 1. At stage j + 1, if 
a;+ 2:{=1 y; and b; + I:i=i Yi are both positive, then perforce we set YJ+l = -xJ+1 ; 

if both are S 0, then we put YJ+I = XJ+I· In either of these cases we set aJ+1 = aj 
and bJ+1 = bJ. 

Otherwise s := - 2:{=1 Yi lies in the half-open interval [aj, bj)· If g(s) < -s, we 
put YJ+I = -XJ+1 and set aj+l = s and bJ+1 = bj; if g(s) 2'. -s, put YJ+l = XJ+l 
and set aJ+I = aj and bJ+I = s. In any case the inductive conditions are preserved, 
the intervals [aJ, bj] are nested downward, and at stage m all the Yi 's are correctly 
set. D 

We have shown 'Y = 1, but the proof above will not work for /3, as g = If I is no 
longer continuous in the asymmetric case. Even so, we may gain by replacing f by 
a multivalued function F, defined by z E F( w) if z = w + I:~=l Zi for any z1 , •• . , Zn 

which keep the sums w + 2:7=1 Zi within bounds. 
Then the graph of F will be a union of slope-1 line segments, each corresponding 

to an assignment of z; 's. The sum of the lengths of these segments will be at least 
J2 since F(w) always takes on at least one value, and in practice--and in virtually 
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i= 2 3 4 5 7 8 JO JI 12 13 

u. .17 .71 .25 .71 .23 .75 .76 .21 .75 .21 .73 .25 .50 
I 

~ .83 .23 .75 .21 .77 .21 .24 .73 .25 .71 .27 .71 .50 

Fig. 7.1 An example in which additive error of D cannot quite be achieved. 

any random model-the segments will almost always intersect the line from (-.5, .5) 
to (.5, -.5) at least once, providing a solution to RING LOADING which is within D of 
L*. 

However, it is just barely possible to choose values u.; and Vi for which the diagonal 
line sneaks through between the line segments of the graph of F. A set of such values, 
form = 13, is given in Figure 7.1 along with the corresponding graph of F. On the 
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Table 8.1 

I n I k C3 I C-B B=C I A-C I A=C I A-B I A=B I Bt At I Ct 

8 28 1003 .0054 63% .0110 19.43 .0160 10.73 .0001 .0002 .002 

12 66 993 .0013 85% .0036 21.23 .0051 19.53 .0004 .0005 .1 

16 120 963 .0003 94% .0017 22.33 .0023 20.73 .0016 .0016 .45 
20 190 933 .00014 96% .0010 26.23 .0015 23.63 .0036 .0038 .78 

24 276 933 .00002 993 .0007 27.23 .0008 24.83 .007 .007 .84 
28 378 923 .00000 993 .0004 28.33 .00056 25.53 .013 .012 .92 
32 496 923 .00000 993 .0002 29.23 .00037 26.43 .02 .019 1.1 

graph, each of the 213 routings is represented by a diagonal line segment, often null, 

indicating the final sum w + E7~ 1 z; as a function of w, for just those values of w for 

which all partial sums w + E7=l z; lie between -.5 and .5. 
With this general definition of the multifunction F, a crossing of the diagonal is 

necessary as well as sufficient to get a solution within 2 of L *. Hence the example 

shows that (3 is at least 1.01. This lower bound can certainly be raised somewhat but 

it is far from clear that the true value of f3 is anywhere near 3/2. 

8. Conclusions. Experimental results show that indeed our proposed algorithm 

is adequately fast and, when applied to random examples small enough to compute 

L0 Pt, produces a ringload very close to optimal. We have never managed to produce 

a random example with L > L • + D even though our theorem guarantees only L :::; 
L * + * D, and we clou bt such an instance will ever be seen in practice. 

H~nce, even though the ma.thematics refuses to cooperate, we guarantee L :::; 
L* +D. 

Table 8.1 exhibits the results of testing our algorithm, which we call Algorithm 

A, on uniformly random data. Alongside A we ran a linear programming algorithm, 

Algorithm B, in order to compute the lower bound given by the RELAXED RING 

LOADING solution. To find the optimum ringload and for purposes of comparison, 

we also tested Algorithm C, which recursively looks for an optimal solution. In most 

cases Algorithm C was not enormously slower than A, but it became hopelessly stuck 

in some cases, leaving us with no value for the optimal ringload. 

For each set of parameters, 1000 cases were run. The interpretation of the columm; 
of the table is as follows: 

n: number of nodes in the ring, 
h:: number of demands, 

C%: percentage of runs in which the optimum was found, 

C-B: average error of LP bound relative to optimum, 

B=C: percentage of runs in which LP bound = optimum, 

A-C: average error of our algorithm relative to optimum, 

A=C: percentage of cases in which A hit the optimum, 

A-B: average error of LP bound relative to A, 

A=B: percentage of cases in which A achieves LP bound, 

Bt: average running time for the LP algorithm, 
At: average running time for Algorithm A, 
Ct: average running time for Algorithm C. 

The fourth through seventh columns a.re computed only for those rounds in which 

the optimum was found; that creates a bias, especially for the column labelled B=C, 

since we will probably never get equality when Algorithm C fails. The run time fm 
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Algorithm C includes cases where it failed to find the optimum, and it was terminated 
after 10 seconds of CPU time on any one run. 
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