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Spatial Localization for a 
General Reaction-Diffusion System(*) 

GONZALO GALIANo(l) and MARK ADRIAAN PELETIER(2) 

RESUME. - Nous a.ppliquons une methode d 'energie locale pour demon­
trer la localisation en espa.ce du support des solutions d 'un systeme general 
de reaction-diffusion. Nous demontrons que la. vitesse de propagation est 
finie et qu'il existe des "temps de reponse" {waiting times) sous des hy­
potheses faibles sur la structure du systeme. Ces hypotheses admettent 
des termes de reaction additifs et multiplica.tifs, une dependa.nce en temps 
et en espace des coefficients a.insi qu 'un terme de convection de divergence 
nulle. 

ABSTRACT.- We use a local energy method to study the spatial 
loca.liza.tion of the supports of the solutions of a reaction-diffusion system 
with nonlinear diffusion and a general reaction term. We establish 
finite speed of propagation a.nd the existence of waiting times under a 
set of weak assumptions on the structural form of the system. These 
assumptions allow for additive a.nd multiplicative reaction terms and 
space- and time-dependence of the coefficients, as well as a divergence-free 
convection term. 

Introduction 

In the study of the transport of a chemical species through groundwater 
flow the following system of equations arises: 

{ <;i>(u)t + Vt - div A(u, 'Vu)+ B(u, 'Vu)= 0 

Vt=f(u,v). 
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The unknown functions u and v represent concentrations of the species; the 
former, in solution, and the latter in adsorption on the surface of the soil 
particles. The functions ef;, A, B, and f are all supposed given. In Section 
3.1 we give a brief derivation of these equations. 

Our interest lies in the support of solutions (u, v) of (1.1). It is well 
known that solutions of the equation 

(1.2) 

can exhibit a compact (spatial) support, provided the nonlinearity <P is 
degenerate at u = 0. A travelling wave analysis of ( 1.1) ( cf. [7]) shows that 
solutions with compact support can also exist when ef; and the diffusion 
operator are non-degenerate; in that case the function f must have a 
degeneracy at u = 0. Another fact that is known from the literature is 
that interfaces of solutions of (1.2) can remain stationary for short time, 
before starting to move (and never stopping afterwards). This is called the 
waiting time phenomenon. In this article we wish to investigate the compact 
support and waiting time phenomena of solutions of (1.1) in a general way. 

A number of results concerning finite speed of propagation for systems 
of equations are known in the literature. Diaz and Stakgold [5] considered 
problem (1.1) with a reaction term of the form f(u, v) = g(u)h(v), and 
Hilhorst, Van der Hout, and L. A. Peletier [8] extended this to more 
general reaction terms. Both works consider one-dimensional autonomous 
situations with simple initial and boundary data. In addition, they heavily 
rely on the existence of a comparison principle. 

The method that we use, often called "the energy method for free 
boundary problems", was introduced by Antontsev [3], rendered in a 
mathematically rigorous form by Diaz and Veron [6], and later extended and 
applied by several other authors, amongst whom Bernis [4] and Shmarev 
[10]. We refer to [1] and [2] for a good overview of the existing literature 
on this point. The method has two principal features. On one hand, it 
is a local method: it operates in subsets of the domain without taking 
into account global information like boundary conditions or boundedness of 
the domain. On the other hand, it has a very general setting, allowing to 
consider, for instance, problems in any space dimension, (x, t)-dependence 
of the different terms of the equations, and anisotropy. In addition we do 
not require a comparison principle. It is worth noting that the method 
is essentially qualitative, in the sense that it does not provide, in general, 
quantitative estimates of the evolution of the support. 
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Let us start by giving the definitions of the properties of system (1.1) 
that we will prove in this article: 

DEFINITION 1.1.- (Finite speed of propagation, FSP) If (u, v) is a 
solution such that u( ·, 0) and v( ·, 0) both vanish on a ball B(x0 , p0 ), then 
there exists an instant to > 0 and a continuous function p : [ 0, t0 ] --+ I&, 
p(O) = po, such that u( ·, t) and v( ·, t) vanish almost everywhere in 
B(xo, p(t)) for all t ~to. 

DEFINITION 1.2. - (Waiting times, WT) If ( u, v) is a solution such that 
u( ·, 0) and v( ·, 0) both vanish on a ball B(xo, po) and satisfy a flatness 
condition in an annulus B(xo, P1) \ B(xo, Po), then there exists an instant 
t* > 0 such that u( ·, t) and v( ·, t) vanish almost everywhere in B(xo, po) 
for all t E [ 0 , t*]. 

Two remarks are due. First, we have not yet defined the notion of a 
solution; we postpone this to Section 2.2. Second, the flatness condition 
that the defintion of the WT property refers to is unspecified; in practice, 
the precise condition depends on the assumptions that we make about the 
components of (1.1). This will become clear in what follows. 

1.1 Statement of results 

Let us state our hypotheses. We consider the problem 

{ 
c/J(u)t + Vt - div A(x, t, u, 'Vu)+ B(x, t, u, 'Vu)= 0 

Vt = f(x, t, u, v) 

(u, v) = (uo, vo) 

(x,t) E Q 
(x,t)EQ 

at t = 0 

(1.3) 

on a domain Q = n x (O , T], where n is a bounded domain in~ N. Solutions 
to this problem are defined in Definition 2.1. The following hypotheses shall 
hold throughout this article, even when not stated explicitly: 

(1) uo, vo E L00 (n); 

(2) c/J, A, B, and fare Caratheodory functions; 

(3) m 0 uP+l ~ <I>(u) < m 1uP+1 for all u 2::: 0, where the function <I> is 

given by 

<l>(u) = fou s<P'(s) ds. (1.4) 

- 421 -



G. G-1.iano and M.A. Peletier 

(5) jA( ·. ·. · .e)i $ m3jel, e E ~N; 
( 6) B satisfies either 

B =0 

or 
B = w · V' IP( u) • 

where w E L00 (Q;:i."') and divw = 0. 

(i) f is Lipschitz continuous in the second variable: 

lf(z, t, u, v1) - f(z, t, u, v2)I :S Livi - v2I 

for all u, v1, v2 E IR, and (z, t) E Q. 

(1.5) 

(1.6) 

Here 0 < p $ 1 and the numbers mi are positive constants. In view of 
properties FSP and WT defined previously we fix once and for all zo E Q 

and PfJ > 0 such that BPo = B(xo, PQ) C n and uo = vo = 0 on Bp0 . In 
addition, for property WT we assume that P1 >Po and Bp1 C n. We shall 
use the notation "B p " for B( xo, p). 

We shall use the following hypotheses in the formulation of the different 
theorems: 

(Hl) There exists a number 0 < v $ oc and a non-negative function 
t;: : [ 0 , v) - lll such that 

(u - ll)(v)) f(x, t, u, v) ~ 0 

for all u ~ 0, 0 S t' < "f, x E B-p and for all t > 0. Here p > Po 
and, if appropriate, p > Pl. If v < oc then we set 1,b( v) = oo for all 
t' ~ v. 

(H2) 0 S f( ·, ·, u, 0) S ki uP for all u ;::: 0; 

(H3) k2u.., $ f( ·, ·. u, 0) S k3u.., for all u ~ 0. 

Here the exponent p is the same as above and the exponent 7 is free to 
be chosen in (0, 1). The ki are positive constants. Whenever possible we 
shall omit the variables x, tin expressions of the type A(x, t, u, V'u). 

Although at first sight hypothesis (Hl) may seem far-fetched, it arises in 
a natural way in the derivation of the model underlying (1.3). In Appendix 
3.1, we therefore give an outline of the derivation of the model and its 
relation to this hypothesis. 
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To make clear what we shall state from hypothesis (H2) and (H3) let us 
assume for a moment that f( u, 0, · , ·) is a power-like function depending 
only on u, f(u, 0) = uq, and that u, v E L00 (Q). Then we can restrict our 
attention to the case 0 :$ u, v :-::; 1 for which we shall prove the FSP and 
WT properties in the following range of parameters p, q: 

p = 1 , 0 < q < 1 (by means of (H3)) 

p < 1 , p :$ q < oo (by means of (H2)) 

p < 1, 0 < q < 1 (by means of (H3)) 
}=>p<l, O<q<oo. 

Therefore, we shall arrive at the desired results by the natural hypothesis of 
either strong absorption (even without parabolic degeneracy of our PDE), 
or parabolic degeneracy without restriction in the absorption. 

We shall now state our main results. The first one extends a known 
result for the "porous medium equation" (1.2): if p < 1, then, under a weak 
condition on f, system (1.3) has property FSP. Besides, an advection term 
of the form (1.5) does not change this property. 

THEOREM A. - Let hypothesis (HJ) be satisfied. If p < 1 and the 
condition on the advective term (J.5) holds, then problem (J.S) has property 
FSP. 

For the theorem on waiting times we introduce an auxiliary function: 

where ?./;is given by (HI). Ifs~ v, then w(s) is taken equal to infinity. 

THEOREM B. - Let hypothesis (HJ) be satisfied and suppose that B = O. 
If p < 1 then problem (1.3) has property WT. The accompanying flatness 

condition reads: 

{ 
there exists a constant C > 0 such that 

{ <l)(uo) + { w(vo) :$ C(p- po)~(l-,B) for all 0 < P <PI· 
}Bp }Bp 

Here f3 is given by (2.JO). 
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It was already known from a travelling wave analysis [7] that if the func­
tion f satisfies a certain kind of degeneracy, then finite speed of propagation 
can occur even for regular (i.e., Lipschitz continuous) nonlinearities </>. The 
following theorem makes this statement precise. 

THEOREM C. - Let either of the following conditions be satisfied: 

(H2) with p < 1 or (H3) with/ < 1. 

Set T) = p for (H2) and T) =/for (H3). Then, 

(1) if the advection condition (1.5} is satisfied, then problem (1.3} has 
the property FSP; 

(2) if B = 0, then problem (1.3) also has the property WT under the 
assumption of the flatness condition: 

there exists a constant C > 0 such that 

l u71 +1 + l v(7J+l)/7J < 
0 0 -

B(xo,p) B(xo,p) 

:::; C(p- Po)~(l-!3) for all 0 < p <Pl. 

Here (3 is given by (2.10) for (H2) and by (2.25) for (H3). 

1.2 A comparison with the method of travelling waves 

In many cases results of the type of Theorem A (finite speed of propa­
gation) are proved by comparing the solution with travelling waves. This 
allows the often detailed information that can be obtained on travelling 
waves to be transferred to general solutions. 

For this method to apply it is however necessary that the problem is 
autonomous, i.e., invariant under translations. Although the study of such 
equations and systems can lead to valuable insight, many applications 
explicitly require results that remain valid when this spatial invariance 
condition is relaxed. A typical example is the model of transport of chemical 
substances through a porous medium that is derived in Section 3.1. Even if 
the medium itself is supposed homogeneous, together with its characteristics 
such as the functions </> and f, then the dispersion coefficient D will generally 
depend on space and time, because it depends on the discharge field w. 
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Simply stated, Dis a tensor that "has the value" °'Llwl in the direction of 
w and a:Tlw I in the other directions. Note that such a dispersion coefficient 
does not only bring space- and time-dependence into the problem, but also 
anisotropy. 

The price to be paid for the gain in generality, however, is obvious; for 
instance, while for the travelling wave solutions (necessarily in homogeneous 
media) that were examined in [7] a very precise characterization could be 
given of the occurrence and non-occurrence of bounded supports, in the 
general case we just obtain the one-sided results of Theorems A, B and C. 

For the travelling wave method it is also necessary that the problem 
satisfy a comparison principle. It is not difficult to see that if B = 0 and <I> 

is an increasing function, system (1.1) satisfies a comparison principle if and 
only if f is increasing in u and decreasing in v. A comparison principle is a 
very important tool, not only in proving existence and uniqueness, but also 
in proving finite speed of propagation (property FSP) or its converse, by 
comparing the solution with travelling waves. Generically, the information 
about the travelling waves immediately carries over to the full problem. 

Therefore it is important to note that the conditions that we set on f 
allow for non-monotonicity. Indeed, they could be said to imply a form of 
"weak monotonicity": a function f that is increasing in u and decreasing in 
v automatically satisfies condition (Hl) as well as the requirement 

f(u,0)?:0 forallu>O 

which is part of (H2) and (H3). 

As a second point of difference, we should note that in general a travelling 
wave comparison method can not prove the existence of waiting times, since 
travelling waves mostly have non-zero speed. 

2. Main results 

2.1 An outline of the method 

As was mentioned in the Introduction, an important aspect of this 
energy method is its applicability to very general equations and systems. 
The other side of the coin is that proofs tend to be very technical and 
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obscure the underlying ideas. We therefore start with an introduction to 
the method, aimed at conveying philosophy rather than mathematically 
correct statements. After this introduction we shall prove Theorems A, B 
and C in full rigor. 

We shall discuss the method applied to a simplified version of (1.3): 

{ 
uf + Vt - du = 0 

Vt = f(u, v) 
(2.1) 

The result we seek is that of Theorem A, i.e., if p < 1 and f satisfies (Hl), 
then system (2.1) has property FSP. 

The key idea is to derive an ordinary differential inequality from this 
system of partial differential equations and to conclude by means of the 
study of this inequality. Following the definition of property FSP we assume 
that the initial data uo and vo both vanish in the ball Bp0 = B(xo, po). We 
multiply the first equation of (2.1) by the solution u and integrate by parts 
on a ball Bp centered in xo with radius p <PO· We obtain 

~ ! r uP+l + r IV'ul2 = r u\i'u. II - [ uf(u, v). (2.2) 
P + lBp lBp laBp lBp 

By integrating over (0, t) for some 0 < t < T, 

~ i l u(ty+1 + rt r IV'ul2 = rt [ u\i'u. II - r [ uf(u, v). 
P Bp lo lBp lo laBp lo lBp 

(2.3) 
We now define the non-negative functions b and E, which represent gener­
alized energies (whence the term "energy method"): 

b(p, t) = sup r u(ry+1 and E(p, t) = r [ IV'ul2. 
0$T~t1Bp lo lBp 

Both are non-decreasing with respect to p; using 

~E (p, t) = rt r IV'ul2 
up lo laBp for p <Po (2.4) 

it follows from the Holder inequality that 

J,' J.B, u?u V,; (l J.B, u2 r (~!f' (2.5) 
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Using this in (2.3) we find that 

~ 1 b(p, t) + E(p, t)::::; ( r f u2)1/2 (~E)1/2 - r { uf(u, v). 
P Jo laBp P lo lBp 

(2.6) 

The next step consists in using an interpolation-trace inequality (see 
Appendix 3.3) to derive the estimate 

where 

and 

K(T) = max(l, T 812) max(l, b(T, p1) 8(l-p)/(2(P+l))) , 

O- N(l-p)+p+l 
- N(l - p) + 2p + 2 . 

(2.7) 

(2.8) 

It is important to remark here that "' > 1/2 if and only if p < l. Therefore 
the arguments that follow can only be executed if p < 1, since they require 
that "' > 1/2. This is the point in the reasoning where the degeneracy of 
the nonlinearity is essential. Applying Young's inequality we obtain from 
(2.5) that 

(0E)1/2 
::::; Ct(l-B)/2 K(T)(E + b)"' op 

(oE)l/(J 
::::; c(E + b) + Ci;(Ct(l-B)/2K(T)) 1/(l-x) op 

where 0 < c < p/(p + 1) and 

,B = 2(l _ "-) = 3p + 1 + N(l - p) . 
2p+2+N(l-p) 
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By combining (2.6) and (2.9) we obtain 

(aE)l//3 lot i b + E < C1t(l-B)//3 -· - 02 uf(u, v), 
- op o Bp 

(2.11) 

where C1 and C2 collect all the different constants. 

In the rigorous proofs we shall show how to handle the second term on 

the right-hand side in (2.11) depending on the assumptions on f. For the 

moment we assume that it is non-positive, allowing us to find an ordinary 

differential inequality for the function E: 

(2.12) 

which holds for all 0 < p < po and 0 < t < T. For such ordinary differential 

inequalities it is not difficult to prove the following lemma, which is a special 

case of Lemma 3.1, part 2. 

LEMMA.- Let v > 0 and j3 < 1, and let?./; E C([O, T] x [0, po]) be a 

non-negative function such that 

for almost every p E (O,po) and for allt E [O, T]. Then there exists a time 

t" ~ T and a continuous function r : [ 0 , t"' J --+ JR with r(O) = Po such that 

1/;(p, t) = 0 for all p and t such that p::; r(t). 

We conclude from this Lemma that in the region p ::; r( t) the function 

E(t, p), and therefore also the function b(t, p), is equal to zero. Therefore 

system (2.1) possesses property FSP. 

As we said above, this is not more than an intuitive outline of a general 

method which can be proved in full rigour. Many steps are only formal, and 

the treatment of the function f has been completely neglected. In Sections 

2.2, 2.3 and 2.4, we shall give the details which are necessary to render the 

ideas presented above rigorous. 
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2.2 Proof of Theorem A 

Even for the simple system (2.1) the proof of Theorem A given above is 
not complete. The steps that were omitted were: 

(1) the definition of a solution of the problem; 

(2) the justification of equations (2.2) and (2.4) and estimate (2.5). This 
depends strongly on the choice of the function space to which a 
solution ( u, v) should belong; 

(3) the treatment of the term J~JBp uf(u, v). 

Besides, in order to complete the proof for system (1.3), we need to 
consider the more general functions </J, A, B, and f instead of their simple 
counterparts in (2.1). We shall discuss these points one by one. 

The definition of a solution. - This first omission is easily remedied. 

DEFINITION 2.1. - A pair of measurable functions ( u, v) defined in 
Q = 0 x (0, T] is a weak solution of (1.3) with initial data (uo, vo) if 
the following conditions are satisfied: 

{1} u E L 00 (0, T; LP+l(O)) n L2 (0, T; H 1(0)) and v E L00 (Q); 

(2) u ~ 0 and v ~ 0; 

(3) A(·, ·, u, \7u) E L 1(Q; m.N) and B( ·, ·, u, 'Vu) E L 1 (Q); 

(4) limt_.o cl>(u( ·, t)) = cl>(uo) and limt ..... o v( ·, t) = vo in 11(0); 

(5) for any'!/; E C00 ([0, T]; Cg"(O)) we have 

k cl>(u)'l/;(T) - k { (f)(u)'l/;t - A(u, \Ju)· 'V'lj;- B(u, \Ju)'lf;} = 

= k cl>(uo)t,li(O) - k f(u, v)'I/; 

and 

k v'lf;(T) - k vt/Jt = k vo'i/;(O) + h f(u, v)'lf;, 

where we have omitted the variable pair (x, t) for clarity. 

(2.13) 

We emphasize that we leave aside all questions of uniqueness, as well as 
existence under given boundary conditions. The arguments that follow only 
require the existence of a solution in the local sense of Definition 2.1. 

- 429 -



G. Galiano and M. A. Peletier 

Non-zero convection. - In order to accommodate non-zero convection 
(condition (1.5)) we shall use a domain of integration that is not the cylinder 
Bp x (0, T) but a truncated cone 

Kp,t = { (x, r) E 0 x (0, t) : JxJ < g(p, r)} , (2.14) 

where g(p, r) := p-ar and a > O shall be fixed later. For a general function 
'lj;, we introduce the notation 

1 ltl latl 'if;: 'if;:= 'if; dxdr, 
Kp,t o B9 o B 9(p,.,.) 

and similarly for the boundary integrals. 

It can easily be verified that the following identity holds for smooth 
functions (: 

r ~~ (x,t)dx= ! r ((x,t)dx-g'(t) r ((x,t)ds. (2.15) 
lBg(p,t) lBg(p,t) laB9(p,t) 

By a truncation-regularization scheme such as in [1] or [6], we can combine 
this formula with equation (2.13) (for 'if;= u) to obtain for all 0 < p < Po 
and for all 0 < t < T, 

f <t>(u(t)) + r f (w. 1.1 + a))<t>(u) + f A(u, V'u) · V'u = 
lBg(p,t) lo laBg lKp,t 

= r f uA(u, 'Vu)· 1.1- f uf(u, v). 
lo laB9 1 Kp,1 

(2.16) 
When p is allowed to take values in the interval (po, p1), as is necessary 
for property WT, the right-hand side of (2.16) contains the extra term 
J8 P <t>(uo). 

Equation (2.16) is the equivalent of (2.2) for general functions </J, A, 
and B. Observe that by choosing a= jjw!IL 00 (Q)' the second term on the 
left-hand side becomes non-negative. 

Remark. - The use of a cone instead of a cylinder has a very simple 
physical interpretation. When a = !lw!IL00 (Q)• the spatial boundary of 
the cone (i.e., oBg(p,t)) moves inward with time with a velocity that is 
as least as large as the maximum velocity of the flow field. Therefore 
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the convection term will not introduce any material from outside into the 
integration domain; the occurrence or non-occurrence of zero sets is then 
determined by the interplay between the time derivative, the diffusion term, 
and the function f, as is the case when convection is absent. 

Justification of equation (2.4) and estimate (2.5). - It follows from 
Fubini's theorem that for u E H 1 (0.) and p0 such that Bp0 C n, the function 

is defined for almost every p E (0, po). Since the domain of integration is a 
cone, we now define the functions b and E in the following way: 

b(p, t) = sup J, uP+ 1 

0$T$t Bg(p,r) 

and E(p, t) = J, J'VuJ 2 . 
Kp,t 

Definition 2.1 guarantees that these expressions are well-defined. It then 
follows that for almost every p E (0, Po), 

oE lot 1 2 ~ (p, t) = J'VuJ , 
up o oB9 

and 

t (lot 1 )112 (oE)1/2 { { uA(u, 'Vu)· V S m3 u2 a lo laB 9 o oB9 P 

We can then combine this with (2.16) to obtain 

( 
t ) 112 (oE)1/2 j mob(p,t)+m2 E(p,t)5m3 { { u2 a - . uf(u,v). lo IaB 9 P I'l.p,i 

(2.17) 

This inequality is the rigorous counterpart of (2.6). 

Handling of the term fr" uf(u, v). - Let us now consider the last term 
'\.~t . 

in (2.17). Hypothesis (Hl) ensures the existence of a function 'lf;. By 
multiplying the second equation in (1.3) by 1/;(v) and integrating we find 

that r w(v(t)) s l. 1/J(v)f(u, v)' 
lBg(p,t) Kp,t 

- 431-



G. Galiano and M.A. Peletier 

for all 0 < p < p0 . Note that since hypothesis (Hl) allows the function ?,ii(s) 
to assume the value oo for some values of s, the two integrals written above 

might both be infinite. Now we add this inequality to (2.17) to obtain 

mo b(p, t) + J, w( v(t)) + m2E(p, t) :::; 
Bg(p,t) 

( 
t ) 112 (oE)1/2 { 

:::;m3 { { u2 a - lv (u-1/;(v))f(u,v). 
lo laa9 P Kp,t 

(2.18) 

Hypothesis (Hl) now ensures that the second term on the left-hand side is 

non-negative and the last term on the right-hand side is non-positive. This 

also ensures that both sides of the inequality have finite values. We are left 
with 

( )
112 (oE)1/2 

mo b(p, t) + m2E(p, t) ::; m3 jKp,t u2 Op · (2.19) 

From here onwards the proof is the same as in the formal discussion, with 
the one exception that Lemma 3.1 should now be applied to a truncated 
cone instead of a cylinder. 

2.3 Proof of Theorem B 

Throughout the previous section the variable p took values in [ 0, Po). 
For values outside of this range, i.e., for p E [Po , p1 ) , essentially the same 

arguments hold. The main difference is that when integrating over the 
cylinder (that is, the passage from (2.2) to (2.3)) the terms at t = 0 do not 
necessarily vanish. The equivalent of inequality (2.18) then reads 

mob(p,t)+ ( w(v(t))+m2E(p,t):::; 
lap 

( r r )112 (aE)112 
::; m3 lo lBp u2 ap +!BP <P(uo) + kP W(vo). 

(2.20) 

The first term on the right-hand side is handled as before, and the proof of 
Theorem 1.2 is concluded by the application of Lemma 3.1. 
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2.4 Proof of Theorem C 

The essential difference between Theorem C and the two other theorems 
lies in the assumptions on the nonlinearity f. We shall therefore only discuss 
this part of the total argument. 

The following lemma combines some technical estimations. 

LEMMA 2.2. - Let f satisfy (H2) or (H3). Then for all c > 0 and 
0 < t < T, 

- r f uf(u,v) s - ft f uf(u,O) + 
lo 1B9 lo lB9 

+ c-1!ric1t f v~TJ+i)/TJ + C(c, t) rt f uT1+1 , 
lBp lo }B9 

(2.21) 
where 'fJ = p for (H2) and T/ = 'Y for (H3), and 

C(c, t) =Le+ c-l/TIC1t and C1 = C1(TJ, T, L) > 0. 

Here p takes values in (0, po) for property FSP and in (0, P1) for property 
WT. 

We first continue the proof of Theorem C and prove this lemma after­
wards. 

Let us first tackle the case of property FSP under hypothesis (H2). In 

that case the integral f B Vbp+l)/p is equal to zero by assumption. Fix 

T/ = p. Using the non-neg~tiveness of the term uf( u, O) stated in (H2) we 
obtain from (2.21) 

_ r { uf(u, v) SC r { uP+l. 
lo lB9 lo 1B9 

(2.22) 

Now, combining (2.17) and (2.22) we get 

mob(p,t)+m2E(p,t) :5 (l !,,, u') (~!t' +Cl!,,, uP+1 . (2.23) 

By choosing s and t* small enough, 

C( e:, t)t s ~ mo for all t E [ 0, t*] . 
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Then (2.23) becomes 

1 ( ft f ) (0E)1/2 
2 mo b(p, t) + m2E(p, t) :::; Jo laBg uz op , (2.24) 

and we conclude by a combination of Theorem 3.2 and Lemma 3.1, in the 

same way as in the proof of Theorem A. 

For property WT we consider cylinders Bp x (0, t) where p now takes 

values in (0, p1), which introduces two extra terms in (2.24): 

imo b(p, t) + m, E(p, t) ,:; ( J,' J,B, ·'f' ( ~! )"' + 

+ m1 f ug+1 + c:-1/ri eC1 T Lt f v~TJ+l)/ry . 
jBp jBp0 

The result follows in the same way as in the proof of Theorem B. 

When we trade hypothesis (H2) for hypothesis (H3) we introduce a new 

energy, 

( t) ~-1-i "Y+l c p, - u . 
1 + 'Y Kp,t 

Using (H3) and (2.21), inequality (2.17) becomes 

mo b(p, t) + m2E(p, t) + (kz - C(c:, t))c(p, t) :::; 

For property FSP the last term disappears, and we choose c: and t* such 

that C(c:, t) :S k2/2 for all 0 :::; t :::; t*. Then, applying Theorem 3.2 with 

parameter /' instead of p, we obtain 

( r { u2)1/2 (oE)l/2 :S c(E + c) + C (t(l-B)/2)1/(l-1':) (aE)l/(J 
lo laB 9 op c: op 

where K, Band /3 all have the same values as in (2.7), (2.8) and (2.10) with 
p replaced by 'Y, and 

K(T) = max(l, T 1912) max ( 1, c(T, p1 ) B(l-"Y)/2h+1l) . 
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:'\otably, 8 has the value 

8 = 3~1 + 1 + s (1 - ") ) 
2; + 2 + S ( 1 - /) ' (2.25) 

and therefore 3 < 1 if and only if ; < 1. Property \VT is handled 
analogously. 

\'Ve conclude with the proof of Lemma 2.2. Multiply the second equation 
in (1.3) by vq-l, where q > 1 will be fixed later. Integrating over Bg(p,t) 
and using formula (2.15) we obtain 

(2.26) 

:\ow. if we write 

f(u, v) = f(u, 0) + (f(u. v) - f(u. 0)) 

and use the assumption of Lipschitz continuity off in v together with either 
(H2) or (H3) - depending on which one is valid - we find 

and with Young's inequality with exponent q we obtain 

t'q-l f(u, v) < L + C-- t'q + - u119 • £ . ( q-1) l cl 
• B 9 (p,t) - q B 9 (p.t) q B 9 (p,t) 

where: 

•for (H2) we set 17 = p and C = k1. and 

•for (H3) we set 'f) =; and C = k3· 

By Gronwall's Lemma it follows that (setting C' = (q - l)C) 
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Using this estimate on v, we estimate the integral of uf( u, v) which 

appears in (2.17). Again using the decomposition f(u, v) = f(u, 0) + 
(!( u, v) - f( u, 0)), the Lipschitz continuity, and Young's inequality, we 

obtain for any < > 0, 

- r [ uf(u,v)::::; 
lo lBg 

::::; - ft { uf ( u, 0) + L r { uv 
lo 1B9 Jo JBg 

::::; - ft { uf( u, 0) + cL r { u11+1 + c-1/'T/ L r f v(77+1)/77 ' 
lo 1B9 lo lBg Jo lBg 

where we are writing again g for g(p, 7). Now if we use (2.27) with 

q = (TJ + l)/TJ we obtain 

- r f uf(u, v)::::; - r f uf(u, 0) + cL r r u11+1 + 
lo JB9 lo lBg lo 1B9 

+ c-l/77 eC'T Lt r v6 + c-l/77 eC'T LCt rt [ u77+1 ' 
JBPo lo lBg 

and by rearranging the different terms, 

(2 .28) 

This proves the lemma. D 

3. Appendices 

3.1 Physical background 

One of the major hypotheses that we use in this paper (hypothesis (Hl)) 

has a mathematically unusual form. When interpreted in physical terms, 

however, this hypothesis is very natural and even arises directly in the 

model derivation. We therefore feel that the reader may benefit from a brief 
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discussion of the physical background of ( 1.1). Since our interest lies in the 
structure, not the details, of the derivation of the model, we shall simply 
explain the underlying ideas without aspiring to physical completeness. 

We are interested in the transport of a hydrophobic chemical through 
groundwater flow. This chemical substance can be found in either of two 
states: dissolved in the water and adsorbed on the surface of the soil 
particles. Let C and S denote the concentration of the chemical in dissolved 
and adsorbed form, respectively. It is common in the hydrological literature 
to assume incompressibility, 

divw = 0, 

and conservation of mass, 

(C + S)t + div(Cw - DV'C) = 0, (3.1) 

where w is a given discharge field and Dis a combined dispersion/diffusion 
tensor. In (3.1) the assumption is implicitly present that the chemical 
substance only moves in dissolved state. 

The behaviour of the concentrations C and S is mainly determined by 
the choice of the interaction between them. A typical assumption is 

St= kf(C, S), (3.2) 

where f is called the rate function and k > 0 is a rate parameter. It is also 
common to distinguish between different types of adsorption sites on the 
surface of the soil particles. This leads to a formulation of the form 

In experimental practice it is not easy to measure the rate function f. 
However, a very natural quantity to measure is the set of pairs (C, S) such 
that /(C, S) = 0. If this set can be represented as the graph of a function 
..p, i.e., 

f(C, S) = O <==> S = ..p(C), 

then 'P is called an isotherm. The curve S = <p(C) divides the S, C-plane 
into two parts; a common physical observation is that 

f(C, S) < 0 when S > ip(C); 

f(C, S) > 0 when S < <p(C). 
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In view of (3.2) this property can be interpreted as stating that the chemical 
always seeks an equilibrium distribution. In some sense it therefore is a 
stability property. 

By setting u = C and v = S, equations (3.1) and (3.2) form a system of 
the same type as (1.1). In this case the function </; can be taken to be the 
identity. In the sequel we shall also be interested in cases in which <P has an 
unbounded derivative in the origin, and we shall therefore briefly show how 
such a situation follows from similar assumptions. 

Consider a model that allows for two types of adsorption sites: sites 
of type 1 are considered to react on the same time scale as the advection 
dynamics, while sites of type 2 are supposed to react much more quickly. 
We can therefore reasonably assume that for sites of type 2 the equilibrium 
condition S2 = r.,o2( C) is satisfied at all time, which allows us to substitute 
this expression into (3.1): 

(C + 1<'2(C) + S1)t + div(Cw - D'VC) = O. 

For S1 we retain the original equation 

Sit= fi(C, S1). 

By setting u = C and v = S1 we now obtain a nonlinear function </; that -
depending on the isotherm 'P2 - may or may not degenerate at C = 0. 

We now return to hypothesis (Hl). Expressed in terms of C and S1, this 
hypothesis states that: 

{ 
there exists a function 'I/; such that 

(C- t/!(S1)) !i(C,S1)?: O 

for all C and S1. 

(3.4) 

It follows from property (3.3) that ifthe isotherm l<'l is invertible, we can 
choose its inverse 1"11 as the function 1/; in (3.4). Generally, experimentally 
determined isotherms are monotone and therefore invertible, although other 
cases have been observed. 
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3.2 A nonlinear ordinary differential inequality 

LEMMA 3.1.- Let/ 2'.: 0 and 0 < {3 < 1. 

1) Let 6 2'.: 0 and let <p E C([O, po+ 6] x [O, T]) be a nonnegative 
function such that 

,pi3(p, t) ::; KfY~~ (p, t) + c(p - Po)~(l-(3) 

for almost every p E [O, Po+ 6] and for all t E [O, T]. Here e is a 
nonnegative number. If 'f' is non-decreasing in both arguments, then 

there exists a time 0 < t* ::; T such that <p = 0 on [ 0, Po] x [ 0, t*]. 

2) Let Kp0 ,T be the cone defined in (2.14) with p = Po and t = T, and 
let 'f' E C(Kpo,T) be a nonnegative function such that 

1.pf3(p, t) $ K{Y~~ (p, t) (3.5) 

for all t E [ 0 , T] and for almost all p E [ 0, g(po, t)]. Then there 
exists a continuous function r : [ 0, T] - ~ with r(O) =Po such that 

'f'(p, t) = 0 for all p and t such that p $ r(t). 

Proof. - For part 1), we consider an auxiliary function z = z(p) that 
satisfies 

z!3(p) = K(t*)T/ dz (p) + c(p- Po)f3/(l-f3) 
dp + 

and 
z(po + 6) ?: 'f'(Po + 6, t"') . 

Here t* > 0 is still to be chosen. It is easily shown that the function 

z(p) = A(p - po)~(l-{3) 

satisfies these two conditions if 

A> max{ e1/!3, 'f'(Po + 6, t*) 6-l/(l-!3)}. 

In that case t* is deduced from (3.6): 

Af3 = K(t*)"1 A (3 +e. 
1-

(3.6) 

(3.7) 

The statement of the lemma then follows from the monotonicity of 'f' in t 
and p. 
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Part 2) is proved in the following way. Fix 0 < t ::; T and suppose that 

'P is strictly positive on (£, g(po, t)]. Remark that by (3.5) the function 

'P is non-decreasing in p, and therefore 1.p(p, t) > 0 implies r,o( ·, t) > 0 on 

(p, g(po,t)]. Then for all p_ < p::; g(po,t), 

(1 - /3)K-1c-y < o(r,ooi-13) . 
- p 

Now integrate over(£, g(p0,t)]: 

or equivalently, 

Clearly this implies a contradiction if 

K 1' 1-13( ) ) p_<g(po,t)-(l-/3)t r,o g(p0 ,t,t. (3.8) 

Since 'P is continuous on the closed set J{Po,T• ip1 -13 is bounded by a constant 

M > 0 and as a consequence 

( ) - 0 .f ( ) KM 1' <pp,t - r p::Sgpo,t -(l-/3)t .o 

3.3 An interpolation-trace inequality 

As there exist some slighty different versions of interpolation-trace in­

equalities, we present here that used in the present work. For further refer­

ence (see [1], [9]). We denote the norm of the space of Lebesgue integrable 

functions LP(X) on a measure space X by 11 ·II x· 
p, 

THEOREM 3.2.- Let n be a bounded domain in Jll?.N with piecewise 

smooth boundary f and let u E W 1•P(Q), 1 < p < oo. The following 
inequality holds: 
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where 
(} = E qN - r(N - 1) E (0 1) 

q p( N + r) - N r ' ' 1 ::; 'Y < 00 

1::; r < NNp and 1 ::; q < p(N - l) if N > p 
-p N-p 

l::;r, q<ooifp=N, 

1 ::; r , q ~ oo if p > N 

and the constant c depends on n and the exponents. 
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