
Some Examples of Average-case Analysis
by the Incompressibility Method

Tao Jiang, Ming Li, and Paul Vitanyi

Summary. The incompressibility method is an elementary yet powerful proof tech
nique. It has been used successfully in many areas, including average-case analysis
of algorithms [14]. In this expository paper, we include several new simple average
case analyses to further demonstrate the utility and elegance of the method.

1 Introduction

The incompressibility of individual random objects yields a simple but pow
erful proof technique, namely the incompressibility method. This method is a
versatile tool that can be used to prove lower bounds on computational prob
lems, to obtain combinatorial properties of concrete objects, and to analyze
the average-case complexity of algorithms. Since the early 1980's, the in
oompressibility method has been successfully used to solve many well-known
questions that had been open for a long time and to supply new simplified
proofs for known results. A comprehensive survey can be found in (14].

In this short expository paper, we use four simple examples of diverse
topics to further demonstrate how easy the incompressibility method can be
used to obtain (upper and lower) bounds which are useful in the domain
of average-case analysis. The topics covered in this paper are well-known
ones such as sorting, matrix multiplication, longest common subsequences,
and majority finding. The proofs that we choose to include are not difficult
ones a.nd all the results are known before. However, our new proofs are much
simpler than the old ones and are easy to understand. More such new proofs
are contained in [5,13].

Te> make the paper self-contained, we give an overview of Kolmogorov
complexity and the incompressibility method in the next section. We then
consider the four diverse problems, namely sorting, boolean matrix multipli
cation, longest common subsequences, and majority finding, in four separate
sections.

Average-case Analysis by the Incompressibility Method 251

2 Kolmogorov Complexity and the Incompressibility
Method

We use the following notation. Let x be a finite binary string. Then l(x)
denotes the length (number of bits) of x. In particular, l(e) = 0 where e
denotes the empty word.

We can map {O, 1}* one-to-one onto the natural numbers by associating
each string with its index in the length-increasing lexicographical ordering

(e, O), (0, 1), (1, 2), {00, 3), (01, 4), (10, 5), (11, 6), (1)

This way we have a binary representation for the natural numbers that is
different from the standard binary representation. It is convenient not to
distinguish between the first and second element of the same pair, and call
them "string" or ''number'' arbitrarily. As an example, we have l{7) ;;;; 00.
Let x,y, E .N, where .N denotes the natural numbers. Let To,T1, ... be a
standard enumeration of all Turing machines. Let (·, ·) be a standard one-one
mapping from .N x .N to N, for technical reasons chosen so that Z((:z:1y)) =
l(y) + O(l(x)).

Informally, the Kolmogorov complexity, [15], of x is the length of the short
ut effective description of x. That is, the Kolmogorov complexity C(x) of a
finite string x is simply the length of the shortest program, say in FORTRAN
(or in Turing ma.chine codes) encoded in binary, which prints x without any
input. A similar definition holds conditionally, in the sense that C(xjy) is
the length of the shortest binary program which computes x on input y.
Kolrnogorov complexity is absolute in the sense of being independent of the
programming language, up to a fixed additional constant term which depends
on the programming language but not on x. We now fix one canonical pro
gramming language once and for all as reference and thereby C (). For the
theory and applications, as well as history, see [14]. A formal definition is as
follows:

Definition 1. Let Ube an appropriate universal 'Turing machine such that

U(((i,p), y)) = 1i((p, y))

for all i and (p,y). The conditional Kolmogorov complexity of x given y is

C(xjy) = min {l(p): U({p,y)) = x}.
pE{O,l}"

The unconditional Kolmogorov complexity of x is defined as C(x) := O(xje).

By a simple counting argument one can show that whereas some strings
can be enormously compressed, the majority of strings can hardly be com
pressed at all. For each n there are 2n binary strings of length n, but only
E~.:01 2i = 2n - 1 possible shorter descriptions. Therefore, there is at least
one binary string x of length n such that C{x) ;::: n. We call such strings
incompressible.

252 T. Jiang, M. Li, a.nd P, Vid.nyi

Definition 2. For each constant c we say a string x is c-incompressible if
C(:z:) ~ l(x) - c.

Strings that are incompressible (say, c-incompressible with small c) a.re
patternless, since a pattern could be used to reduce the description length.
Intuitively, we think of such patternless sequences as being random, and we
use "random sequence" s:ynonymously with "incompressible sequence." It is
possible ta give a rigorous formalization of the intuiti\•e notion of a. random
sequence as a sequence that passes all effective tests for randomness, see for
example [14].

How many strings of length n are o-incompressible? By the same count
ing argument we find that the number of strings of length n that are c
incompressible is at least 2" - 2n-c + 1. Hence there is at least one 0-
incompressible string of length n, at least one-half of all strings of length
n a.re 1-incompressible, at least three-fourths of all strings of length n are
2-incompressible, ... , and at least the (1 - 1/2c)th pa.rt of all 2" strings
of length n are c-incompressible. This means that for each constant c ~ 1
the majority of all strings of length n (with n > c) is c-incompressible. We
generalize this to the follov.ring simple but extremely useful Incompressibility
Lemma.

Lemma 1. Let c be a positive integer. For each fe;ed y, every set A of cardi
nality m has at leastm(l-r0) + l elements x with C(xlA,y) ~ llogmj-c.

Proof By simple counting. D

Definition 3. A prefix set, or prefix-free code, or prefix code, is a set of
strings such that no member is a prefix of any other member. A prefix set
which is the domain of a partial recursive function (set of halting programs for
a Turing machine) is a special type of prefix rode called a self-delimiting code
because there is an effective procedure which reading left-to-right determines
where a code word ends without reading past the last symbol. A one-to
one function with a range that is a self-delimiting code will also be called a
self-delimiting code.

A simple self-delimiting code we use throughout is obtained by reserving
one symbol, say 0, as a stop sign and encoding a natural number x as l"'O.
We can prefix an object with its length and iterate this idea to obtain ever
shorter codes:

E.(x) = { l"'O for i == 0,
Ei-1(l(x))x for i > 0. (2)

Thus, E 1 (:i:) = 11(:i:)ox and has length l(E1 (x)) = 2l(x)+l; E2(x) == E1 (l(x))x
= 11(l(:i:))Ox and has length l(E2 (:x)) == l(x)+2l(l(x))+l. We have for example

l(E3 (x))::; l(x) + logl(x) + 2loglogl(x) + 1.

Average-case Analysis by the Incompressibility Method 253

Define the pairing function

(x,y) = Ei(x)y (3)

with inverses 0 i, (-)2. This can be iterated to ({., ·), -).

The Incompressibility Method. In a typical proof using the incompress
ibility method, one first chooses an individually random object from the class
under discussion. This object is effectively incompressible. The argument in
variably says that if a desired property does not hold, then the object can be
compressed. This yields the required contradiction. Then, since most objects
are random, the desired property usually holds on the average.

3 Lower Bound for Sorting

We begin this paper with a very simple incompressibility proof for a well
known lower bound on comparison based sorting.

Theorem 1. Any comparison based sorting algorithm requires lognl com
parisons to sort an array of n elements.

Proof. Let A be any comparison based sorting algorithm. Consider permu
tation I of {l, ... ,n} such that

C(IjA, P) ~ logn!

where P is a fixed program to be defined. Suppose A sorts I in m comparisons.
We can describe I by recording the binary outcomes of the m comparisons,
which requires a total of m bits. Let P be such a program converting m to I
(given A). Thus,

m ~ C(IIA,P) 2: logn!

Hence, m ~ log n!. D

The above proof in fact also implies a lower bound of logn! - 2logn on
the average number of comparisons required for sorting.

Corollary 1. Any comparison based sorting algorithm requireslogn!-2logn
comparisons to sort an array of n elements, on the averoge.

Proof. In the above proof, let I have Kolmogorov complexity:

G(IIA,P)::::: logn! - logn

Then we obtain that the (arbitrary) algorithm A requires

m ~ logn!- logn

comparisons on the permutation I. It follows from the Incompressibility
Lemma that on the average, A requires at least

n-1 1
-n- · (logn! - logn) +;;: · (n - 1) 2: logn! - 2 logn

comparisons. 0

254 T. Jiang, M. Li, and P. Vit!.'1yi

4 Average Time for Boolean Matrix ?vf ultiplication

We begin 'Jl.i.th a simple (a.I.most trivia.I) illustration of average-case analy
sis using the incompressibility method. Consider the well-known problem of
multiplying two n x n. booiea.n matrices A = (a>,j) and B = Efficient
algorithms for this problem have always be€n a. very popular topic in the the
oretical computer science literature due to the wide range of applications of
boolean matrix multiplication. The best worst-case time complexity obtained
so far is O(n2·:576) due to Coppersmith and Winograd [7]. In 1973, O'Neil and
O'Neil devised a simple algorithm described below which runs in O(n3) time
in the worst case but achieves an average time r.omplexity of O(n2) [16].

Algorithm QuickMultiply(.4, B)

L Let G = (c.;,j) denote the result of multiplying .4 and B.
2. For i : = l to n do
3. Let Ji < · · · < jm be the indices such that ai,jk = 1, l :S k $ m.
4. For j := 1 to n do
5. Search the list bji,j, ... , bj,,,,J sequentially for a bit l.
6. Set Ci,i = 1 if a bit 1 is found, or C;J = 0 otherwise.

An analysis of the average-case time complexity of QuickMultiply is given
in [16] using simple probabilitistic arguments. Here we give an analysis using
the incompressibility method, to illustrate some basic ideas.

Theorem 2. Suppose that the elements of A and B are dmw11 uniformly and
independently. Algorithm QuickMultiply runs i11 O('n2) time on the average.

Proof. Let n be a sufficie.ntly large integer. Observe that the average time
of QuickMultiply is trivially bounded between O(n2) and O(n3). By the
Incompressibility Lemma., out of the 22" 2 pairs of n x n boolean matrices,
at least (n - 1)22n~ in of them are logn-incompressible. Hence, it suffices to
consider logn-incompressible boolean matrices.

Take a logn-incompressible binary string x of length 211.2, and form two
n x 11 boolean matrices A and B straightforwardly so that the first half of
z corresponds to the row-major listing of the elements of A and the second
ha.If of x corresponds to the row-major listing of the elements of B. We show
that Quick.Multiply spends O(n2) time on A and B.

Consider an arbitrary i, where 1 :::; i :::; n. It suffices to show that the n
sequential searches done in Steps 4 - 6 of QuickMultiply take a total of O(n)
time. By the statistical results on various blocks in incompressible strings
given in Section 2.6 of [14], we know that at least n/2 - 0(v'n logn) of these
searches find a 1 in the first step, at least n/4-0(./n logn) searches find a 1
in two steps, at least n/8 - 0(v'nlogn) searches find a. 1 in three steps, and
so on. Moreover, we claim that none of these searches take more than 4 log n
steps. To see this, suppose that for some j, 1 :::; j ~ n, b31 .:i = · · · = b1410s ,.,j =
0. Then we can encode x by listing the following items in a self-delimiting
manner:

A verage-ca.se Analysis by the Incompressibility Method 255

1. A description of the above discussion.
2. The value of i.
3. The value of j.
4. All bits of x except the bits b.; .; b. .

.,.1,.,'" • •' J"llogn1J•

This encoding takes at most

0(1) + 2logn + 2n2 - 4logn + O(loglogn) < 2n2 - logn

bits for sufficiently large n, which contradicts the assumption that x is log n
incompressible.

Hence, the n searches take at most a total of

logn

(L (n/2k - 0(Jn log n)) · k) +(log n) · 0(Jn log n) · (4 log n)
k;:l

logn

< (L kn/2k +O(log2 nJnlogn)
k=1

= O(n) + O(log2 nJn logn)

:::: O(n)

steps. This completes the proof. o

5 Expected Length of a Longest Common Subsequence

For two sequences (i.e. strings) s = s1 •. . sm and t = t1 ... tn, we say that
sis a subsequence oft if for some i 1 < ... < im, Sj == tij. A longest common
subsequence (LOS) of sequences s and t is a longest possible sequence u that
is a subsequence of both s and t. For simplicity, we will only consider binary
sequences over the alphabet E = {O, 1}.

Let n be an arbitrary positive integer and consider two random strings s
and t that. are drawn independently from the uniformly distributed space of
all binary string of length n. We are interested in the expected length of an
LCS of s and t. Tight bounds on the expected LOS length for two random
sequences is a well-known open question in statistics [17 ,19]. After a series
of papers, the best result to date is that the length is between 0. 762n and
0.838n [6,8-10]. The proofs are based on intricate probablistic and counting
arguments. Here we give simple proofs of some nontrivial upper and lower
bounds using the incompressibility method.

Theorem 3. The expected length of an LCS of two random sequences of
length n is at most 0.867n + o(n).

Proof. Let n be a sufficiently large integer. Observe that the expected length
of an LOS of two random sequences of length n is trivially bounded between

256 T. Jiang, M. Li, and P. Vitanyi

n/2 and n. By the Incompressibility Lemma, out of the 22n pairs of binary
sequences of length n, at least (n - 1) 22n /n of them are log n-incompressible.
Hence, it suffices to consider logn-incompressible sequences.

Take a. logn-incompressible string x of length 2n, and lets and t be the
first and second halves of x respectively. Suppose that string u is an LOS of s
and t. In order to relate the Kolmogorov complexity of sand t to the length
of u, we re-encode the strings s and t using the string u as follows. (The idea
was first introduced in {12].)

We first describe how to re-encodes. Let the LCS u = u 1u2 ···um, where
m = l(u). We align the bits of u with the corresponding bits of s greedily
from left to right, and rewrite s as follows:

S = 0!1U10!2U2 · · • Cl'.mUms'.

Here a 1 is the longest prefix of s containing no ui, 0:2 is the longest substring
of s following the bit u 1 containing no u2, and so on, and s' is the remaining
part of s after the bit Um. Thus a:.; does not contain bit Ui, for i = 1, ... , m.
In other words, each O:i is a unary string consisting of the bit complementary
to u1• We re-encode s as string:

s(u) = 01(aiJ10!Ca2) 1 ... 01(am)ls'.

Clearly, given u we can uniquely decode the encoding s(u) to obtains.
Similarly, the string t can be rewritten as

t = f31u1f32u2 · · · f3mumt1 ,

where each f3i is a unaxy string consisting of the bit complementary to u;,
and we re-encode t as string:

t(u) = o1Cfl1) 101(fl,) 1 ... oz(.6.,,) It,.

Hence, the string x can be described by the following information in the
self-delimiting form:

1. A description of the above discussion.
2. The LCS u.
3. The new encodings s(u) and t(u) of s and t.

Now we estimate the Kolmogorov complexity of the above description of
x. Items 1 and 2 take m + 0(1) bits. Since s(u) contains at least m l's, it is
easy to see by simple counting and Stirling approximation (see e.g. [14]) that

C(s(u)) $log~ (~) + 0(1)

$log[%(:)] + 0(1)

$ logn+log (:) + 0(1)

$ 2logn + nlogn - mlogm - (n - m) log(n - m) + 0(1)

Average-case Analysis by the Incompressibility Method 257

The second step in the above derivation follows from the trivial fact that
m? n/2. Similarly, we have

C(t(u)) S 2logn + nlogn - mlogm - (n - m) log(n - m) + 0(1)

Hence, the above description requires a total size of

O(logn) + m+ 2nlogn - 2mlogm -2(n - m) log(n - m).

Let p = n/m. Since C(x) :2'.: 2n - logn, we have

2n - logn S O(logn) + m + 2nlogn - 2mlogm - 2(n -m) log(n - m)

= O(logn) + pn- 2nplogp- 2n(l - p)log(l - p)

Dividing both sides of the inequality by n, we obtain

2::; o(l) + p- 2plogp - 2(1 - p) log(l - p)

Solving the inequality numerically we get p $ 0.867 - o(l). D

Next we prove that the expected length of an LCS of two random se
quences of length n is at least 0.66666n - O(../nlogn). To prove the lower
bound, we will need the following greedy algorithm for computing common
subsequences (not necessarily the longest ones).

Algorithm Zero-Major(s = 81 · · · Bn, t = t1 · · · tn)

1. Let u := e: be the empty string.
2. Set i := 1 and j := l;
3. Repeat steps 4-6 until i > n or j > n:
4. Ifs; = tj then begin append bit Si to string u; i := i + l; j := j + 1

end
5. Elseif Si= 0 then j := j + 1
6. Elsei:=i+l
7. Return string u.

Theorem 4. The expected length of an LCS of two random sequences of
length n is at least 0.66666n - 0(./n logn).

Proof. Again, let n be a sufficiently large integer, and take a log n-incom
pressible string x of length 2n. Let s and t be the first and second halves
of x respectively. It suffices to show that the above algorithm Zero-Major
produces a common subsequence u of length at least 0 .66666n - 0 (Jn log n)
for strings s and t.

The idea is to encode s and t (and thus x) using information from the
computation of Zero-Major on strings sand t. We consider the comparisons
made by Zero-Major in the order that they were made, and create a pair of
strings y and z as follows. For each comparison (si> ti) of two complementary

258 T. Jiang, M. I.J., and P. Vitanyi

bits, we simply append a 1 toy. For each comparison (si, tj) of two identical
bits, append a. bit 0 to the string y. Furthermore, if this comparison of iden
tical bits is preceded by a comparison (Si', t;') of two complementary bits,
we then append a bit 0 to the string z if i' = i - 1 and a bit 1 if j' = j - 1.
When one string (s or t) is exhausted by the comparisons, we append the
remaining part (call this w) of the other string to z.

As an example of the encoding, consider strings s = 1001101 and t ==
0110100. Algorithm Zero-Major produces a common subsequence 0010. The
following figure depicts the comparisons made by Zero-Major, where a "*"
indicates a mismatch and a "I" indicates a match.

6 ;

comparisons
t =

10 01101

*I** 11 *I*
01101 0 0

Following the above encoding scheme, we obtain y = 101100101 and z ==
01100.

It is easy to see that the strings y and z uniquely encode s and t and,
moreover, l(y) +l(z) = 2n. Since C(yz) .?: C(x)-2 logn?: 2n-3 Jogn-0(1),
and C(z) :$ l{z) + 0(1), we have

C(y) ?_ l(y) - 3logn- 0(1)

Similarly, we can obtain

C(z) 2: l(z) - 3logn - 0(1)

and
C(w) ?: l(w) - 3 logn - 0(1)

where w is the string appended to z at the end of the above encoding.
Now let us estimate the length of the common subsequence u produced

by Zerc>-Major on strings s and t. Let #zeroes(s) and #zeroes(t) be the
number of O's contained in s and t respectively. Clearly, u contains
min{#zeroes(s),#zeroes(t)} O's. From [14] (page 159), since both sand t
are logn-incompressible, we know

n/2- O(Jnlogn) :'.S #zeroes(s) :'.S n/2 + O(Jniogn)

n/2 - 0(Jnlogn) :-S #zeroes(t) $ n/2 + 0(Jniogn)

Hence, the string w has at most 0(yin logn) O's. Combining with the fact
that C(w) 2: l(w) - 3 logn - 0(1) and the above mentioned result in (14], we
claim

l(~v)::; O(Jnlogn).

Since l(z) - l(w) = l(u), we have a lower bound on l(u):

l(u) 2: l(z) - O(Jniogn).

Average-case Analysis by the Incompressibility Method 259

On the other hand, since every bit 0 in the string y corresponds to a
unique bit in the common subsequence u, we have l(u) ;::: #zeroes(y). Since
C(y) 2: l(y) - 2logn - 0(1),

l(u) 2: #zeroes(y) 2: l(y)/2- O(y'nlogn).

Hence,

3l(u) 2: l(y) + l(z) - 0(Jnlogn) 2: 2n - O(Jnlogn).

That is,

l(u) 2::: 2n/3 - 0(Jnlogn) ~ 0.66666n - O(Jn logn).

0

Our above upper and lower bounds are not as tight as the ones in [6,8-
10]. Recently, Baeza-Yates and Navarro improved our analysis and obtained
a slightly better upper of 0.860 (4]. It will be interesting to know if stronger
bounds can be obtained using the incompressibility method by more clever
encoding schemes.

6 Average Complexity of Finding the Majority

Let x = x1 · • • Xn be a binary string. The majority bit (or simply, the ma
jority) of x is the bit (0 or 1) that appears more than Ln/2J times in x. The
majority problem is that, given a binary string x, determine the majority of
x. When x has no majority, we must report so.

The time complexity for finding the majority has been well studied in the
literature (see, e.g. [1-3,11,18]). It is known that, in the worst case, n - v(n)
bit comparisons are necessary and sufficient [2,18], where v(n) is the number
of occurrences of bit 1 in the binary representation of number n. Recently,
Alonso, Reingold and Schott [3] studied the average complexity of finding the
majority assuming the uniform probability distribution model. Using quite
sophisticated arguments based on decision trees, they showed that on the
average finding the majority requires at most 2n/3 - ..jBn/91r + O(logn)

comparisons and at least 2n/3 - .jBn/9tr + 8(1) comparisons.
In this section, we consider the average complexity of finding the majority

and prove an upper bound tight up to the first major term, using simple
incompressibility arguments.

The following standard tournament algorithm is needed.

Algorithm Tournament(x = x1 · · • Xn)

1. If n = 1 then return x1 as the majority.
2. Elseif n = 2 then

Z60 T. Jiang, M. Li, a.nd P. Vitanyi

3. If x 1 = x2 then return x1 as the majority.
4. Else return "no majority~.
5. Elseif n = 3 then
6. If x 1 = x2 then return x 1 as the majority.
7. Else return xs as the majority.
8. Let y = €.

9. For i := 1 to ln/2J do
10. If x2;-1 = x2; then append the bit x2i to y.
11. If n is odd and Ln/2J is even then append the bit Xn toy.
12. Call Toumament(y).

Theorem 5. On the average, algorithm Tournament requires at most 2n/3+
0(fo) comparisons.

Proof Let n be a sufficiently large number. Again, since algorithm Tour
nament makes at most n comparisons on any string of length n, by the
Incompressibility Lem.ma, it suffices to consider running time of Tournament
on &-incompressible strings, where 8 $ logn. Consider an arbitrary o $ Iogn
and let x = :Z:1 ••• Xn be a fixed a-incompressible binary string. For any inte
ger m :$ n, let cr(m) denote the maximum number of comparisons required
by algorithm Tournament on any a-incompressible string of length m.

We know from [14] that among the Ln/2 J bit pairs (xi, x2), ... ,

(x2ln/2J-l • x 2 Ln/2J) that are compared in step 10 of Tournament, there are
at least n/4 - O(v'n§) pairs consisting of complementary bits. Clearly, the
new string y obtained at the end of step 11 should satisfy

C(y) ;::: l(y) - o - 0(1)

Hence, we have the following recurrence relation for u(m):

u(m) ::; Lm/2j + r:r(m/4 + O(Jm.6))

By straightforward expansion, we obtain that

cr(n) $ ln/2j + u(n/4 + 0(v'nS))
$ n/2 + u(n/4 + 0(.;;;:8))

:$ n/2 + (n/8 + O(...rr:J)/2) + cr(n/16 + O(N)/4 + O(y'(no)/4))

= n/2 + (n/8 + O(...rr:J)/2) + u(n/16 + (3/4) · O(Jn°5))

<···
$ 2n/3 + 0(vin6)

Using the Incompressibility Lemma, we can calculate the average com-
plexity of algorithm Tuurna.ment as:

logn l l
L 20 (2n/3 + 0(N)) + -n = 2n/3 + 0(fn)
o=l n

D

Average-case Analysis by the Incompressibility Method 261

References

1. L. Alexanderson, L.F. Klosinski and L.C. Larson, The William Lowell Putnam
Mathematical Competition, Problems and Solutions: 1965-1984, Mathematical
Association of America, Washington, DC, 1985.

2. L. Alonso, E. Reingold and R. Schott, Determining the majority, lnf ormation
Processing Letter11 47, 1993, pp. 253-255.

3. L. Alonso, E. Reingold and R. Schott, The average-case complexity of determin
ing the majority, SIAM Journal on Computing 26-1, 1997, pp. 1-14.

4. R. Baeza-Yates and G. Navarro, Bounding the expected length of longest com
mon subsequences and forests, Manuscript, 1997.

5. H. Buhnna.n, T. Jiang, M. Li, and P.M.B. Vitanyj, New applications of the
incompressibility method: Part II, accepted to Theoret. Comput. Sci. (Special
Issue for "lnt'l Conf. Theoret. Comput. Sci.", Hong Kong, April, 1998).

6. V. Chvatal and D. Sankoff. Longest common subsequences of two random se
quences. J. Appl. Probab. 12, 1975, 306-315.

7. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres
sions. Proc. of 19th ACM Symp. on Theory of Computing, 1987, pp. 1-6.

8. V. Danc'k and M. Paterson, Upper bounds for the expected length of a. longest
common subsequence of two binary sequences, Proc. 11th Annual Symposium
on Theoretical Aspects of Compt1ter Science, LNCS 775, Springer, pp. 669-678,
Caen, France, 1994.

9. J.G. Deken, Some limit results for longest common subsequences, Discrete Math·
ematics 26, 1979, pp. 17-31.

10. J.G. Deken, Probabilistic beha.vior of longest-common-subsequence length,
Time Warps, String Edits, and Macromolecules: The Theory and Practice of
Sequence Comparison. (D. Sankoff and J. Kruskall, Eds.) , Addison-Wesley,
Reading, MA., 1983, pp. 359-362.

11. D.H. Greene and D.E. Knuth, Mathematics for the Analym of Algorithm11, 3rd
ed., Birkhauser, Boston, MA, 1990.

12. T. Jiang and M. Li, On the approximation of shortest common supersequences
and longest common subsequences, SIAM Journal on Computing 24-5, 1122-
1139, 1995.

13. T. Jiang, M. Li, and P.M.B. Vitanyi, New applications of the incompressibility
method, accepted to The Computer Journal, 1998.

14. M. Li and P.M.B. Vitanyj, An Introduction to KolmogorO!J Complexity and its
Applications, Springer-Verlag, New York, 2nd Edition, 1997.

15. A.N. Kolmogorov, Three approaches to the quantitative definition of informa
tion. Problems Inform. '.lransmission, 1(1):1-7, 1965.

16. P. O'Neil and E. O'Neil. A fast expected time algorithm for boolean matrix
multiplication and transitive closure. Information and Oontrol 22, 1973, pp. 132-
138.

17. M. Paterson and V. Danc!k, Longest common subsequences, Proc. 19th Inter
national Symposium on Mathematica.I Foundations of Computer Science, LNCS
841, Springer, pp. 127-142, Kosice, Slovakia., 1994.

18. M.E. Saks and M. Warman, On computing majority by comparisons, Oombi·
natorica 11, 1991, pp. 383-387.

19. D. Sankoff and J. Kruska.11 (Eds.) Time Warps, String Edits, and Macro
molecule11: The Thoory and Practice of Sequence Comparison. Addison-Wesley,
Reading, MA., 1983.

