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By simplifying the Newton process needed to solve the nonlinear equations associated with the 2-stage Radau IIA 
method, we come up with an efficient solver that needs only one LU-decomposition of the dimension of the problem per 
time step. 
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1. Introduction 

Suppose that we want to solve the ODE initial value problem 

y' = f(t,y), y(to) =Yo, (1) 

with the third-order, 2-stage Radau IIA method, which we write in the form 

R(Yn) = 0, (2) 

where Yn :=(g!,yJ)T contains approximations to the solution of (1) at time point tn-1 + th and tn, 
respectively, and where 

R(Yn):=Yn -(l,l)T®Yn-1-h(A®l)F(Yn), 

A:=[* -~1' F(Yn):= (f(tn-1 + th,gn))· 
4 4 f(tn,Yn) 

Furthermore, h is the timestep, ® denotes the Kronecker product, and I is the identity matrix. Here 
and in the sequel, the dimension of I will always be clear from the context. Normally, we solve the 

" E-mail: jacques@cwi.nl. 
1 Supported by Dutch Technology Foundation STW, Grant No. CWl22.2703. 

0377-0427/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved 
Pll 80377-0427(97)00141-6 



278 J.J.B. de Swart/Journal of Computational and Applied Mathematics 84 (1997) 277-280 

system of nonlinear equations (2) by a modified Newton process of the fonn 

(1-hA ®J).dY,;i+l> = -R(fnU>), j = 0, 1,2, ... , (3) 

where LifjH1> is shorthand for Y~j+lJ - ryi and J is the Jacobian off at the approximated solution 
in tn-l· If we use Gaussian elimination to solve the linear systems in (3), then the LU-costs are 
~d3 3 • 

Several attempts have been made to reduce these costs. By means of Butcher transfonnations we 
can rewrite (3) as 

(l-hB®J)(Q®I)LiY!;f+1> = -(Q®l)R(Y,;j>), (4) 

where B = QAQ-1 is such that (4) is easier to solve than (3). In [2] we find the strategy to choose 
Q such that 

B = [ t kJ2] · 
-~v2 k 

Due to this special fonn, ( 4) can be written as one complex system of dimension d, so that the 
LU-costs are reduced to ~d3 • 

The paper [4] proposes to replace the matrix A in (3) by its lower Crout factor L. To make the 
method suitable for parallel implementation, the matrix L is then transformed by a matrix Q such 
that QLQ- 1 is a diagonal matrix. The resulting scheme again has the form ( 4 ), where B is now a 
diagonal matrix. This means that two processors can compute an LU-decomposition of dimension 
d concurrently. The LU-costs are now ~d3 on two processors, and ~d3 , if only one processor is 
available. The price we have to pay for substituting A by L is a slower convergence of the Newton 
process. For the linear test equation y' = A.y, the propagation of the iteration errors of the scheme 
is described by the matrix 

Z(z) =z(l -zL)- 1(A -L), z:=hA.. 

The reason for choosing the Crout decomposition of A is that the spectral radius of Z(z) is zero for 
Z-+00. 

In [3] this approach is refined by approximating QAQ- 1 by a matrix M with real eigenvalues and 
then applying a second transfonnation that diagonalizes M. The resulting scheme has the same form 
as in [4], but its convergence behavior is better. In fact, it is shown that Q and M can be chosen 
such that the maximum of p(Z(z)) is minimized in the left-half complex plane. Here, p( ·) denotes 
the spectral radius function. 

Recently, Amodio and Brugnano [1] suggested to select an upper triangular matrix Q such that 
QAQ-1 has a lower Crout factor with identical diagonal entries, thereby reducing the LU-costs to 
~d3 • This work inspired us to the approach described in the next section. 

2. A new approach 

We advocate a mixture of [l] and [3] by choosing Q lower triangular such that (i) the lower 
Crout factor L of QAQ- 1 has identical diagonal entries and (ii) the minimization property of [3] is 
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Table 1 
Several measures of the matrix Z(z) 

Method 

(4] 
(1] 
Presented here 

max,ec- llZ(z)Jloo 

0.20 
0.20 
0.22 

max,ec- p(Z(z)) 

0.18 
0.18 
0.18 

0.20 
0.20 
0.18 

0.15 
0.15 
0.17 

retained. The advantage of the lower triangular form of Q is that QLQ- 1 is still lower triangular, 
so that the transformation can be omitted. 

The matrix Q can be found by carrying out the recipe in [3, p. 171] with y = l, P = 0 and b = 0, 
thus leading to 

Table 1 compares the convergence behaviour of this approach with that of [4] and [l]. From this 
table it can be seen that the measures of Z(z) do not differ much for the three methods, whereas 
the method presented here is the cheapest to implement. 

The reason that we restrict our considerations to two stages, is that the two aforementioned 
objectives cannot be achieved for more than two stages. However, many applications do not require 
an order higher than 3. 

3. Implementation 

Since the lower-left element of B is nonzero, the value y~j+I) depends on g~i+I) by the formula 

where Ag= g~i+ 1 > - g~i). If J is nonsparse, the matrix-vector multiplication hJ Ag can be expensive. 
Therefore, we rewrite (I - iJ6hJr1(4 - ~J6)hJ Ag as 

(8 - 4.J6) Ag+ (I - tv'6hJr 1(4J6- 8) Ag. __ ,.. .. 

Us~g...first-order Taylor approximations around tn-i as predictor, the resulting iteration scheme, which 
computes Yn given Yn-1 and fy = f(tn-i. Yn-1 ), simply reads: 

gn = Yn-1 + !hfv 
Yn = Yn-1 + hfy 
compute LU =I - i./6hJ 
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until convergence do 

end 

fq = f(tn-1 + ~h,gn) 
fy = f(tn, Yn) 

t::.g = (LU)- 1(Yn-1 - gn + fihfg - t_hfy) 

f::.y = (LU)- 1((4v'6 - 8) tlg + Yn-1 - Yn + ~hfq + ~hfy) 
9n = 9n + f::.g 

Yn = Yn + (8 - 4J6) f::.g + f::.y 
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