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We construct A-stable and L-stable diagonally implicit Runge-Kutta methods of which 
the diagonal vector in the Butcher matrix has a minimal maximum norm. If the implicit 
Runge-Kutta relations are iteratively solved by means of the approximately factorized New
ton process, then such iterated Runge-Kutta methods are suitable methods for integrating 
shallow water problems in the sense that the stability boundary is relatively large and that 
the usually quite fine vertical resolution of the discretized spatial domain is not involved in 
the stability condition. 
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1. Introduction 

If the hydrodynamical equations modelling shallow water flow or the transport 
equations modelling transport of pollutants in shallow water are discretized in space, 
then the resulting system of ordinary differential equations (ODEs) is highly stiff due 
to the relatively fine vertical resolution usually needed in the spatial discretization of 
the physical domain. This requires an implicit time integrator in order to cope with 
the stiff vertical terms. We shall focus on the family of A-stable and L-stable diag
onally implicit Runge-Kutta (DIRK) methods. The implicit relations will be solved 
by modified Newton where the system matrix in the linear Newton system is replaced 
by an approximate factorization tuned to the shallow water application. The result
ing approximately factorized Newton iteration method (AFN iteration) was analysed 
in [4,6]. In these papers it was shown that for three-dimensional problems a conver
gence condition has to be satisfied. Hence, the stability region of AFN iterated DIRK 
methods is the intersection of the AFN convergence region and the DIRK stability 
region. Thus, even if the underlying DIRK method is A-stable or L-stable, we have 
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to satisfy a stability condition on the time step At. This condition is of the form 
!::.t ::( ,Bcmin{Ax1,Ax2}, where !::.x1 and !::.x2 denote the horizontal mesh sizes in the 
spatial grid, c is a constant determined by the problem and the spatial discretization 
formulas, and f3 is the stability boundary determined by the AFN-DIRK method. Note 
that this stability condition does not contain the usually quite small vertical mesh size 
!::.x3. Furthermore, AFN iteration is highly parallel and vectorizable, so that it pro
vides an attractive approach for integrating the large systems of shallow water ODEs 
on parallel supercomputers. 

It turns out that the stability boundary is given by /3 ~ 0.65p-1(T), where p(T) 
is the spectral radius of the (lower triangular) Butcher matrix T of the DIRK method. 
Hence, the maximal stable time step increases as p(T) is smaller. This motivated us 
to look for A- and L-stable DIRK methods with minimal p(T). 

2. Shallow water applications 

We briefly describe two shallow water applications, viz. the hydrodynamical 
equations modelling shallow water flow and the transport equations modelling transport 
of pollutants in shallow water. 

2.1. Shallow water equations 

The mathematical model describing the hydrodynamics in shallow water is de
fined by an initial-boundary value problem for the system of three-dimensional partial 
differential equations (PDEs) 

au a "";'.) = L(u, v, w)u + wv - g~( + T1, 
ui uX1 

av a 
~ =L(u,v,w)v-wu-g~( +T2, 
ui uX2 

a 1( a 1( a 
!:)( = - -a u(t, X1, X2, X3) dx3 - ~v(t, Xi, X2, X3) dx3, 
ut -d X1 -d uX2 

(2.1) 

( a a a ) ac1a ac2a 8c38 
L(u,v,w):=- u-8 +v~+w-8 +~+~+-8 2 · 

X1 ux2 X3 uX1 uX2 X3 

Here (u, v, w) represent the fluid velocities in the x1, x2, x 3 directions (x3 denotes the 
vertical direction), w is defined by requiring that the velocity field is divergence free, 
( represents the water elevation, ( TJ, r2) external forcing terms, (c1, c2, c3) diffusion 
coefficients in the x1, x2 , x3 directions, g denotes the acceleration due to gravity, w the 
Coriolis parameter, and d the depth function. 

The boundary is assumed to consist of coastal and ocean parts which are both 
assumed to be vertical. The boundary conditions prescribe the water elevation at 
ocean boundaries and require the velocity field to be normal to the coastal boundaries. 
Furthermore, at the sea surface and at sea bed, we impose the usual free surface and 
bottom friction conditions (see [13]). 
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2.2. Shallow water transport equations 

The mathematical model describing transport processes of salinity, pollutants, etc., 
combined with their bio-chemical interactions, is defined by an initial-boundary value 
problem for the system of three-dimensional advection-diffusion-reaction equations 

OCµ 
&t = L(u,v,w)cµ + gµ(x1,x2,x3,t,c1 •... • Cm), µ = 1, ... ,m, (2.2) 

where L(u, v, w) is the same operator as defined in (2.1) with (u, v, w) denoting the 
velocities (assumed to be divergence free) and the cµ represent the concentrations of 
the contaminants. The terms 9µ describe chemical reactions, emissions from sources, 
etc., and, therefore, depend on the concentrations. In shallow water applications, the 
9µ are nonstiff. The mutual coupling of the equations in the system (2.2) is due to 
these functions 9µ- The boundary conditions are either of Dirichlet type or of Neumann 
type. Both the velocities (u, v, w) and diffusion coefficients (ci. c2, c3) are assumed to 
be known in advance. 

3. Time integration 

First, the physical domain on which the PDEs are defined is replaced by a set 
of N 1N2N3 Cartesian grid points with mesh sizes Ax1, .Ax2, and .Ax3. On this grid, 
the spatial derivative terms can be discretized by finite differences or finite element 
approximations. For the shallow water equations (2.1) this results in a semidiscrete, 
N1 N2(2N3 +I)-dimensional initial value problem (briefly IVP) for the system of OD Es 

dU dt = A(U, V, W)U + wV - gB1Z + T1(t), U(to) =Vo, 

dV dt = A(U, V, W)V - wV - gBzZ + T2(t), V(to) =Vo, (3.1) 

dZ dt = -C1 (Z)U - C2(Z)V, Z(to) = Zo, 

where W is defined by W = -E1 U - E2 V. Here U, V contain the horizontal velocity 
components at all Ni N2N3 grid points, Z contains the elevation at the Ni N2 horizontal 
grid points, T1 and T2 represent the external forces at the grid points including the 
inhomogeneous parts of the boundary conditions, A, C1, and C2 are matrices depending 
on the velocity or elevation values, and B1, B2, E1 and E2 are constant matrices. The 
matrices A, C1, and C2 also take the coastal, free surface and bottom friction conditions 
into account. 

In a similar way the transport equations (2.2) can be approximated by the system 
of ODEs (cf. [6]) 

d~~t) = F(t,C(t)) + G(t,C(t)), C(to) =Co, (3.2) 
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where C contains them concentrations cµ at all N1N2N3 grid points, F(t, C(t)) con
tains the discretization of the operator L, and G(t, C(t)) contains the reaction terms 
and emissions from sources. 

In the description of methods for integrating the IVPs (3.1) and (3.2) it is con
venient to write them in the compact form 

dy 
dt = f(t, y), f(t, y) := f1 (t, y) + f2(t, y) + f3(t, y) + [i(t, y), 

y(to) =Yo. y, fk E JRN, 
(3.3) 

where y contains the N = N 1 N2 (2N3 + 1) components of (U, V, Z) in the case (3 .1) 
or the N = mN1N2N3 concentrations C in the case (3.2). In both cases, f1, f2 and 
f3 contain the spatial derivative terms with respect to the x1, x2 and x 3 directions, 
respectively, f4 represents the forcing terms (T1, T2) or the reaction/emission term G. 
Hence, the function [i is nonstiff. Furthermore, the function f 3 corresponding with the 
vertical spatial direction is highly stiff, whereas the functions f 1 and f2 corresponding 
with the horizontal spatial directions are less stiff. As a consequence, the spectral 
radius of the Jacobian matrix 8f3 / f)y is much larger than the spectral radius of Of i/ f)y 
and &f2/ f)y. The reason is that in shallow seas the grid size in the vertical direction 
is several orders of magnitude smaller than in the horizontal directions. 

3.1. Implicit integration methods 

In order to cope with the stiffness of the IVP (3.3), we shall use for the time 
discretization an implicit integration formula. Since the PDEs (2.1) and (2.2) are 
convection dominated, this implicit formula should at least be A-stable and preferably 
L-stable. 

Our approach is based on the iterative solution of the implicit relations by the 
approximately factorized Newton (AFN) method analysed in [4,6]. This approach 
applies to a large class of implicit integration methods. In this paper, we shall consider 
methods that can be written in the form 

Rn(D..t, Y n+l) = 0, (3.4) 

where Rn and <Pn are given functions depending on D..t and Yn+l• and where Rn is 
such that its Jacobian satisfies the relation 

8Rn =I _ D..t (r ® af(tn, Yn)) + O ( (D..t)2). 
8Yn+I Oyn 

(3.5) 

Here, D..t denotes the time step tn+I - tn and 

y n+l = (Y;;+l,1 • · · ·, Y~+1,s) T 

is the so-called stage vector with s components Yn+I,i representing approximations to 
the solution y(t) of (3.3) at the points tn + ciD..t, where the ci, i = I, ... , s, are given 
numbers. Furthermore, ®denotes the Kronecker product (direct matrix product), T is 
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an arbitrary diagonal or lower triangular s-by-s matrix with nonnegative diagonal 
entries, and I is the sN-by-sN identity matrix (in the sequel, identity matrices of 
arbitrary order will be denoted by I, but its order will always be clear from the 
context). The class of methods { (3 .4 ), (3 .5)} contains all linear multistep and all 
diagonally implicit Runge-Kutta methods, and many other useful integration methods. 

In applying (3.4), the main effort goes into the iterative solution of the equation 
Rn(~t, Yn+1) = 0 (note that the formula for the step point value Yn+l is explicit). In 
the AFN method used in this paper, the matrix T, and in particular its spectral radius, 
plays a crucial role. For future reference, we present this matrix for a few methods 
from the literature which are suitable for the time integration of shallow water PDEs. 

3.1.1. IM method 
We start with a one-parameter family of zero-stable and L-stable linear multistep 

(LM) methods, 

Yn+l - bo~t f(tn+I• Yn+1) = (2 - bo)Yn + (bo - l)Yn-1, 
2 
3 :;:;; bo < 2. (3.6) 

Evidently, this method is of the form {(3.4), (3.5)} with Yn+l = Yn+l and T = bo. 
For ~ < bo < 2, these methods have order of accuracy p = 1. For bo = ~ the second
order accurate backward differentiation formula (BDF) is obtained. In practice, the 
BDF is the recommended method, but in section 3.3 we shall use (3.6) with b0 =f. ~ in 
order to illustrate the effect of bo = p(T) on the stability of the iterated LM method. 

3.1.2. Nt/Jrsett method 
Another example of a second-order, L-stable method is provided by the DIRK 

method of N!zlrsett [9], 

Yn+c - ci1t f(tn+c.Yn+c) = Yn. 

Yn+l-c - (1 - 2c)L1tf(tn+c.Yn+c)- ci1tf(tn+1-c.Yn+1-c) = Yn. 

1 
c = 1±2'/2, 

1 1 
Yn+l = Yn + 2Mf(tn+c.Yn+c) + 2L1tf(tn+l-c.Yn+l-c). 

This method is of the form {(3.4), (3.5)} with 

Y _ ( Yn+c ) n+l - , 
Yn+l-c 

T- ( c 0) - 1-2c c · 

3.1.3. DIM method 

(3.7) 

A method designed for integrating stiff IVPs on parallel computers [12] is the 
third-order, strongly A-stable, diagonally implicit (DIM) method, 
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21 
c=-

10' 
(3.8) 

y _ (Yn+c) n+I - y , 
n+l 

C= (~), T = _l_ ( 462 0 ) 
660 0 1430 . 

3.1.4. EBDF method 
The third-order, L-stable method from the family of so-called extended backward 

differentiation formulas (EBDFs) proposed by Cash [3] is given by 

2 4 1 
Un+l - 3Atf(tn+I. Dn+I) = 3Yn - 3Yn-l• 

2 4 1 
Un+2 - 3Atf(tn+2• Dn+2) - 3Un+l = -3Yn, (3.9) 

4 22 28 5 
Yn+I + 23 Atf(tn+2• Dn+2)- 23 Atf(tn+l.Yn+1) = 23 Yn - 23 Yn-l· 

This method can be cast into the form { (3.4), (3.5)} with 

(
Un+!) 

Yn+I = Un+2 , 
Yn+l 

3.2. Iterative solution of the implicit relations 

2 
3 

T= 8 
9 

0 

0 

2 
-
3 
4 
23 

0 

0 

22 
23 

Our starting point for solving Yn+l from (3.4) is the modified Newton process 

(3.10) 

where yo is an initial approximation to be provided by some predictor formula. Due to 
the multidimensional structure of the underlying PDEs, a direct solution of the linear 
Newton systems in (3.10) is extremely costly. Therefore, we replace (3.10) by 

IT(Yj - yj-l) = -Rn(At, yj-1), j? 1, 
!'.:).e (t )(3.11) 

J ,...., Ulk n•Yn 
k,...., &yn ' 
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where D := diag(d1, ••. ,d8 ), di denoting the diagonal entries ofT. The matrix TI is an 
approximate factorization of the matrix I - !:::.tT@ 8f(tn, Yn)/8yn. Since the function 
f4 in (3.3) is either independent of y or nonstiff, we have ignored its contribution to 
the approximate factorization. The iteration method (3.11) defines the approximately 
factorized Newton (AFN) iteration method. 

Although AFN iteration requires the solution of three linear systems instead of 
the single linear Newton system in (3.10), the block structure of the system matrices 
I - !:::.tD @ Jk, k = 1, 2, 3, is such that solving these linear systems is not costly. 
Moreover, there is much scope for parallelism and vectorization. For example, for the 
transport problem (3.2), we have 

where the di are the diagonal entries of D, the matrices Ki are of dimension Nk. 
and M(l) := mN2N3, M(2) := mN1N3, M(3) := mN1N2. The matrices Ki corre
sponding with Jk only depend on the coordinate direction Xk, so that they can all be 
reduced to band matrices with small band width. Hence there is a considerable amount 
of intrinsic parallelism in the AFN algorithm (for details, we refer to [11]). Finally, 
note that intrinsic parallelism is due to the fact that we used the matrix D rather than 
the full matrix T in the definition of the matrix TI. 

The AFN iteration process (3.11) was used in [6] and analysed in [4,7], where a 
number of convergence results have been derived for the test model 

dy 
dt = J1y + Jzy + J3y, Jk commuting. (3.12) 

This test model is commonly used in the normal mode analysis of the stability of PDE 
methods. For our purpose, the following two results are important (eigenvalues and 
the spectral radius of matrices will be denoted by A(·) and p(-), respectively). 

Theorem 3.1. The iteration error of the AFN iteration process (3.11) applied to the 
model problem (3.12) satisfies the relations 

yi - Yn+I = 0((!:::.t)2i), j ~ 1, if T is diagonal, 

yi _ y - { O((.M)i) for 1 :::;; j :::;; s - l, if T is lower triangular. 
n+I - 0((!:::.t)2Hl-s) for j ~ s, 
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Theorem 3.2. The AFN iteration process (3.11) applied to (3.12) converges in the 
region 

C := { ( ,\(J1 ), ,\(Jz), ,\(J3)): Re (>.(Jk)) ( 0, k = 1, 2, 3; 

l>.(Jk)I ( At;(T)' k = 1.2}. 

T= ~ ( 2 + (26 + 6J33)113 - 8(26 + 6v1J3)-l/3) ~ 0.65. 

From this second result we immediately have the convergence condition 

"( 
At ( , 'Y ~ 0.65. 

p(T) max{p(J1), p(Jz)} 
(3.13) 

If the underlying integration method is A-stable (as we shall always assume), then this 
convergence condition also ensures the linear stability of the method. In such cases, 
the quantity f3imag := "(p- 1(T) may be considered as the imaginary stability boundary 
of the AFN iterated method. 

Let us apply (3.13) to convection dominated shallow water problems where 
p(Jk) = O((Axk)- 1). 

Then, we obtain the convergence/stability condition 

"( 
f3imag := p(T), 'Y ~ 0.65, (3.14) 

where c is a constant determined by the problem and the spatial discretization formulas. 
Note that this time step condition does not depend on the vertical resolution Ax3 . 

The numerical experiments in section 3.3 and in [6,11] show that condition (3.13) 
is determining the maximal stepsize, rather than the accuracy of the numerical solution. 
This aspect will be analysed in [8], where we consider the effect of AFN iteration on 
the global error after a finite number of iterations, and in particular, the phenomenon 
of order reduction caused by the splitting errors. 

3.3. Numerical illustration 

In order to illustrate the effect of p(T) on the stability of AFN iterated integration 
methods, we have applied the LM method (3.6) for various values of p(T) = bo 
to a three-dimensional transport test problem of the form (2.2) with two pollutants. 
A detailed description of this problem and its spatial discretization can be found in [11]. 
Here, we only mention that the vertical grid size Ax3 ~ 3 .2 m and that the horizontal 
grid sizes Ax1 and Ax2 varied from about 220 m to 110 m. The resulting ODE system 
(3.2) consists of 922000 equations. We integrated this system by the LM method (3.6) 
with bo = ~, bo = ~, and bo = ~ from t = 0 to t = 10 h. 

We first tried a fixed number of AFN iterations per step. For three iterations 
per step, table 1 presents the endpoint accuracies of the two pollutants expressed 
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Table 1 
Values of scd for 3 AFN iterations per step at t = 10 h. 

flt in min. bo = ~ bo = ~ bo = ~ 
120 0.910.6 1.5/0.9 1.5/0.9 
60 2.5/1.7 2.7/1.9 2.8/2.0 
30 2.9/2.1 3.5/2.3 3.6/2.4 

Table 2 
Values of scd at t = 10 h and t = 100 h when iterated until convergence. 

!:.t in min. bo = ~ bo = ~ bo = ~ bo = ~ bo = ~ bo = ~ 

15 * * * * * * 
12 * 1.912.0 4.6/4.l * * 2.8/1.4 
10 * 4.113.6 4.7/4.4 * 4.7/3.8 5.414.5 
6 * 4.3/3.9 5.014.7 * 
5 3.7/3.2 4.3/3.9 5.0/4.7 4.4/3.5 

in terms of significant correct digits (that is, the endpoint accuracy is written as 
scd := - log(absolute error)). These results show that all three methods produce 
quite reasonable results for stepsizes that are extremely large with respect to the spa
tial discretization (the higher accuracies obtained as bo is smaller is due to a smaller 
error constant). However, these results are misleading. In fact, for larger stepsizes, a 
fixed-number-of-iterations strategy gradually becomes unstable as more steps are per
formed. The reason is that the resulting integration method is a (complicated) splitting 
method and, like many non-iterative time integration methods based on splitting, in
stabilities develop quite slowly, because the error amplification factors are often only 
slightly greater than 1. To illustrate this we continued the integration until negative 
scd-values were produced. For !lt = 2 h this happened at t = 26 h for bo = ~ and at 

t = 36 h for bo = i and bo = ~-
A remedy for this unsatisfactory situation is a dynamic iteration strategy guar

anteeing that the implicit relations in the underlying integration method are solved 
within a given tolerance. With such a strategy, we may rely on the stability condition 
(3.14). In the case of the LM method (3.6) with bo = ~. bo = i and b0 = ~' the 
imaginary stability boundary /3imag in (3.14) is approximately given by 0.43, 0.86 and 
0.97, respectively. Thus, our stability theory predicts that the methods { (3.6), bo = i} 
and { (3.6), bo = ~} will become stable for time steps of comparable size, whereas 

{ (3 .6), bo = ~} is predicted to require time steps that are twice as small. Table 2 (left 
hand part) presents the scd-values obtained at t = 10 h in the case of iteration until 
convergence (negative scd-values are indicated by * ). The results in this table show 
that the methods with bo = ~' bo = i and bo = ~ produce about 90% of the attainable 
accuracy for steps of 5, 10 and 12 min., respectively. This is in full agreement with 
the theory; that is, the maximal stable stepsize is proportional with p- 1(T) = b01. 

In order to show that these stepsizes are more or less "safe", we again continued the 
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integration over a ten times longer integration interval. The right hand part of table 2 
presents the results. 

4. Stability functions with minimal p(T) values 

The preceding considerations strongly suggest the use of A-stable or L-stable 
integration methods of the fonn { (3 .4 ), (3 .5)} with minimal p(T), so that f3imag is 
maximized. We shall focus on one-step methods. The linear stability of these methods 
is determined by their stability function. Here, we consider stability functions of the 
form 

P(z) 
R(z) = Q(z)' 

s 

Q(z) := rro -diz), 
i=l 

(4.1) 

where P is a polynomial of degree ::;; s and where the di are the diagonal entries of the 
matrix T in (3.5). Stability functions of this type have been extensively analysed by 
N~rsett [9] and by N~rsett and Wolfbrandt [10]. Before discussing the special stability 
functions with minimal p(T), we first summarize the relevant definitions and results 
from the literature. 

4.1. Results from the literature 

The most important class of methods with a stability function of the form (4.1) 
are the DIRK methods. These methods are of the form (3 .4) and are generated by the 
Butcher tableau 

where c := Te with e denoting the s-dimensional vector with unit entries, b is a given 
s-dimensional vector and where the Butcher matrix T is a lower triangular s-by-s 
matrix with nonnegative diagonal entries. If in ( 4.1) the di are all equal, then the 
corresponding DIRK method is often called semi-explicit or singly-diagonal implicit 
and semi-implicit, otherwise. 

N!1Srsett and Wolfbrandt [10] showed that the maximum order of ans-stage semi
explicit DIRK is s + 1 and that for any semi-implicit DIRK of order s with stability 
function R(z) of the form (4.1) where P is of degree s, the principal error is mini
mized if the di all equal d. This function can be expressed in terms of the Laguerre 
polynomials L 8 (x) and its derivatives L~i)(x), viz. 

(-1)8 °EJ=O L1s-j)(d-1 )(dzY 
R(z) = (1 - dz)s ' 

For our purposes, the stability functions with minimal d which are still A-stable or 
L-stable are of interest (recall that the shallow water applications (2.1) and (2.2) are 
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convection dominated). Such stability functions will be called optimal. One can find 
in [2] and in [5, p. 103 ff.] the range of d-values for which A-stability or L-stability 
is preserved. 

For future reference, we give a few of these optimal stability functions in explicit 
form. Since in shallow water problems we do not need more than second-order or 
third-order accuracy, we restrict our considerations to second-order and third-order 
consistent stability functions (R is called consistent of order p if diR(O)/dzi = 1 for 
i = 0, ... ,p). A comparison of the values of p(T) = d and f3imag is given in table 3 
in section 6. 

The optimal, A-acceptable stability functions with s = p - 1, p and p = 2, 3 are 
given by 

1 + lz 1 
R(z) = i , p(T) = -2, p = 2, (4.2) 

1- 2z 

1 + (1 - 2d)z + <! - 2d + d2)z2 
R(z) = (1 _ dz)2 , (4.3) 

1 1 1 
p(T) = d = Li * p = 2, p(T) = d = l + 6 J3 * p = 3, 

1-lz2 -lz3 1 
R(z) = 6 1 ;1 , p(T) = -3, p = 3, (4.4) 

(1 - 3z) 

and the optimal, L-acceptable stability functions with s = p, p + 1 and p = 2, 3 are 
given by 

R(z) = 1 71 (~ ~z~~z, p(T) = d = 1 - ~J2 ~ p = 2. (4.5) 

1 + (1 - 3d)z + <! - 3d + 3d2)z2 
R(z) = (1 _ dz)3 , (4.6) 

p(T)=d= /2 (9+3v13-Jn+42v'3) *P=2, 

p(T) = d = 1 - ~J2( cos(<P) - J3 sin(cP)), cP := ~ arctan ( ~J2) ~ p = 3, 

I+ (1 -4d)z + C! -4d + 6d2)z2 + <! - 2d + 6d2 - 4d3)z3 

R(z) = (1 - dz)4 , (4.7) 

p(T) = d ~ 0.223648 * p = 3. 

4.2. Distinct diagonal entries di 

The question arises whether we can decrease the value of p(T) by using distinct 
diagonal entries in the matrix T. We consider the cases s = 2 and s = 3. 
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If s = 2 and if R has order of consistency p ~ 2, then 

1 + (1 - d1 - d2)z + !O - 2d1 - 2d2 + 2d1 d2)z2 
mzj= • 

(1 - d1z)(l - d2z) 

so that the A-acceptability condition IR(z)I ~ 1 requires that the so-called 
E-polynomial E(y) := IQ(iy)j2 - jP(iy)j2 ~ 0 for all real values of y (cf., e.g., 
[5, p. 43]). Hence, 

E(y) = l ( 4dicii - (1 - 2d1 - 2d2 + 2d1 d2)2)y4 ~ O 

for all y. This leads to the condition d1 + d1 ~ ! A 2(d1 + d2) - 4d1 d2 - 1 ~ 0. 
By plotting in the (d1, d2)-plane the region where this condition is satisfied, it can be 
verified numerically that the value of p(T) = max { d1, d2 } is minimized for d1 = d2 • 

This yields the stability functions ( 4.3) and ( 4.5). 
Likewise, we find for s = 3 and p ~ 2, 

R 1 + (1 - 0"1)z + !O - 2cr1 + 2cr2)z2 + p3z3 
(z)=~~~~~~~~~~~~~~ 

(1 - d1z)(l - d1z)(l - d3z) ' 
(4.8) 

where cr1 :=di+ d2 + d3, cr2 := d1d2 + d1d3 + d2d3 and p3 is a free parameter. This 
leads to the E-polynomial 

E(y) = y4 (cr4y2 -lN(d1,d2,d3)+2p3(1-cr1)} 

N(d1, d2, d3) := (1 - 20"1 + 20"2)2 - 4crs, 

where 0"4 := (d1d2d3)2 - p~ and 0"5 := di<Pi +did~+ d~d~. Thus, the parameter p3 
should be such that 0"4 ~ 0 and N(d1, d1, d3) ~ 8p3(1 - cr1). Assuming that O"J ~ 1, 
we find for p3 the inequalities 

(4.9) 

This leads to the condition 

(4.10) 

Again, it can be verified that p(T) = max { d1, d2, d3} with d1, d2 and d3 satisfying 
(4.10) is minimized for d1 = d1 = d3. 

In the following, we restrict our considerations to stability functions with d1 = 

·· · = d8 =d. 

4.3. Stability functions with still smaller p(T) 

Among the stability functions listed in section 4.1, we miss the A-acceptable 
stability functions with (s,p) = (3, 2), (4, 2), (4, 3) and the L-acceptable stability func-
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tion with (s,p) = (4, 2). These functions possess still smaller p(T)-values and will be 
derived in the present section. 

4.3.1. The A-acceptable case (s,p) = (3, 2) 
If s = 3, then the stability function is of the form (4.8) for which the 

A-acceptability condition was shown to be given by (4.9) and (4.10). Setting 
di = d2 = d3 = d, condition (4.10) becomes 

N(d, d, d) - 8d3(1 - 3d) = (6d - 1)(2d - 1)3 ~ 0, (4.11) 

Hence, we have A-acceptability if i ~ d ~ ~ and if p3 satisfies (4.9) with ~ = d. 
This yields p3 = 2~6 and d = !. leading to the A-acceptable, optimal stability function 

1 1 l 2 l 3 
R( ) - + 2z + uz + mz 

z - 3 ' 
(1- iz) 

4.3.2. The A-acceptable cases (s,p) = (4, 2) and (s,p) = (4, 3) 
For s = 4, p ;;<: 2 we have 

p=2. (4.12) 

1 + (1 - 4d)z + (! - 4d + 6d2)z2 + p3z3 + p4z4 
R(z) = (l _ dz)4 , (4.13) 

where p3 and p4 are free parameters. The £-polynomial takes the form 

E(y) = y4 ((d8 - Pi)Y4 + eiy2 + e2), 

e1 := 4,{J - p~ + 12p4d2 - 8p4d + p4, 

T4 3 2 1 e2 := -30a · + 48d - 22d + 4(1 - 2p3)d + 2p3 - 2p4 - 4. (4.14) 

Hence, we have A-acceptability if one of the following two conditions is satisfied: 

IP41 < d4 and g(d,p3,p4) := ei - 4e2(d8 - Pi) ~ 0, 

IP41 = d4 and ei ;;<: 0 /\ e2 ~ 0. 

(4.15a) 

(4.15b) 

For a given value of d, (4.15a) determines a region in the (p3,p4)-plane. We verified 
numerically that this region converges to a single point in the (p3,p4)-plane as d t ~
Ford= k· this point is determined by the equation g(k,p3,p4) = 0, which is satisfied 
if jp4j - d4 = ei = e2 = 0 (note that these equations imply that (4.15b) is fulfilled). 
From (4.14) it follows that d = k is obtained if p3 = 1J8 and p4 = 4c16, leading to 
the A-acceptable, optimal stability function 

1 + !z + ]2z2 + iJsz3 + 4c16z4 
R(z) = --~(--1 ~)"""""4 -~-. 

1- gZ 

1 
p(T) = 8' p=2. (4.16) 
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Third-order consistent stability functions are obtained by setting p3 = !-2d+6d2-4d3• 

Substitution into (4.15a) and plotting the region of admissible (d,p4)-values reveals 
that d becomes smaller as IP41 approaches d4• This leads us to use condition (4.15b). 
This straightforwardly yields that d = ! - ! J3, resulting in the A-acceptable, optimal 
stability function 

1 + (1 - 4d)z + (! - 4d + 6d2)z2 + (! - 2d + 6d2 -4d3)z3 - d4z4 
R(z) = (1 - dz)4 , 

1 1 (4.17) 
p(T) = d = 2: - 6v'3, p = 3. 

4.3.3. The L-acceptable case (s,p) = (4, 2) 
The corresponding stability function is given by (4.13) with p4 = 0, so that 

the conditions (4.15) should be imposed with p4 = 0. Since now only (4.15a) is 
relevant, we obtain the condition g(d,p3, 0) ~ 0. The smallest value of d for which this 
inequality is fulfilled should satisfy the equations g(d,p3, 0) = 0 and og(d,p3, O)/op3 = 
0, leading to 1 - l6d + 80d2 - 128d3 + 32d4 = 0, p3 = i - ~d + 5d2 - 4d3. The 
solution (d,p3) with minimal d yields the L-acceptable, optimal stability function: 

_ 1 + (1 - 4d)z + (! - 4d + 6d2)z2 + (! - ~d + 5d2 - 4d3)z3 
R(z) - (1 - dz)4 , 

(4.18) 

p(T) = d = 1 +~Ji- ~J20+14v'2, p = 2. 

This d-value <~ 0.13) is only slightly larger than the lower bound d = i obtained in 
( 4.16), but ( 4.18) is L-acceptable and ( 4.16) is only A-acceptable. 

4.4. Conjecture 

The stability functions (4.2), (4.3), (4.12) and (4.16) are second-order consistent 
and A-acceptable with the property that IR(iy)I = 1 for all y. More generally, we 
have: 

Theorem 4.1. Let 

R(z) = P(z) = 1 + P1Z + p2z2 + p3z3 + · · · + p 8 z8
, p :;t Q, 8 :;;:: 1. 

Q(z) (1 - dz)8 
(4.19) 

Then, 

(a) IR(iy)I = 1 for all real y and d:;;:: 0, if and only if Pi= (j)di. 

(b) The A-acceptable stability function R*(z) defined by {(4.19), Pi:= (j)di, d:;;:: 0} 

is second-order consistent for d = 1 / (2s ). 
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Proof. Evidently, 

P(iy) = (1- P2Y2 + p4y4 - · · ·) + iy(p1 - P3Y2 + PsY4 - · · · ), 

Q(iy) = (1 - idy)8 = (1 - qzy2 + q4y4 - · · ·) + iy(q1 - q3y2 + qsy4 - · · · ), 

qj == (;)c-dY. 
Hence, Pi := (j)dJ implies that IP(iy)I = IQ(iy)i, or equivalently IR(iy)I = 1, for all 
real y and d ;;::: 0, and all positive integers s. Conversely, if IP(iy)I = IQ(iy)i for all 
y, then because P ;j:. Q it follows that PJ = qj for j even and Pj = -qj for j odd, so 
that Pi:= (j)di. This proves part (a). 

From part (a) it follows that the functions {(4.19), Pi:= (j)di} are A-acceptable 
for all d ;;::: 0. Furthermore, from the definition of consistency ( cf. section 4.1) it 
follows that these functions are second-order consistent if P' (0) = PI = 1 - 8d, 
P"(O) = 2'P2 = 1 - 2sd + 8(s - l)d2, s;;::: 1. On substitution of 

PI= G)d = 8d and pz = (~)d2 = ~s(s - l)d2, 

we find d = 1/(2s), proving part (b). D 

The question now arises whether the functions R*(z) defined in this theorem 
are optimal, that is, do there exist A-acceptable and second-order consistent stability 
functions of the form ( 4.19) with still smaller values for d? In fact, the functions ( 4.2), 
(4.3), (4.12) and (4.16), which are special cases of R*(z) for s ~ 4, show that R*(z) 
is optimal for 8 ~ 4. Since the functions R*(z) possess the weakest possible form of 
A-acceptability for all 8, we conjecture that R*(z) is also optimal for all s ;;::: 5. 

5. Construction of DIRK methods with prescribed stability function 

Having available a number of optimal stability functions, we can construct corre
sponding families of one-step methods like the methods of Runge-Kutta, Rosenbrock, 
Obreschkov, etc. In this paper, we consider DIRK methods. Any DIRK method 
is second-order accurate if its stability function R(z) is second-order consistent and 
third-order accurate if R(z) is third-order consistent and if T satisfies 

(5.1) 

For a given optimal stability function R(z), we shall construct DIRK methods with a 
minimal number of stages 8. Furthermore, in view of the shallow water applications we 
have in mind, we shall try to construct DIRK methods with a storage saving Butcher 
tableau. DIRK methods with an optimal stability functions will also be called optimal. 
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5.1. L-stable methods with s = 2 

For two-stage L-stable methods, T, b and the stability function are given by 

T = (d 0) 
a d ' b= (~)' R(z) = 1 +(a - d)z 

(1 - dz)2 

Hence, we can only identify this function with the function ( 4.5). This yields 

1 
a= -h 

2 ' 
1 

d= 1- -h. 
2 

(5.2a) 

(5.2b) 

The method { (5 .2a), (5 .2b)} defines a second-order accurate, L-stable optimal method. 

5.2. A-stable methods with s = 2 

The arrays T, b and the stability function are given by 

T = (d 0) 
a d ' b=(~). 

(5.3a) 
R( ) = 1 + (b + c - 2d)z + (ac - bd - cd + d2)z2 

z (1 - dz)2 

Identification with { ( 4.3), d = l} yields a family of second-order accurate, A-stable 
optimal methods 

a= 4c, b= 1-c, d= ~ (5.3b) 

with free parameter c (note that in this case there is no storage saving value for free 
parameter). Likewise, we can identify R(z) with { (4.3), d = ~ + i.J3}, to obtain 
a = -(l/6c).J3 and b = 1 - c, again with free parameter c. In order to make the 
method third-order accurate, we have to impose condition (5.1). This yields c = ~· 
Hence, (5.3a) with 

1 
a= --v'3 

3 ' 
1 

b= C= -
2' 

1 1 
d = - + -v'3 

2 6 
(5.3c) 

defines a third-order accurate, strongly A-stable, optimal method. In fact, this method 
is identical with one of one third-order DIRK methods of N!<:!rsett [9]. 

5.3. L-stable methods with s = 3 

If we allow an s = 3 method to have three implicit stages, then 

(d 0 0) 
T= a d 0 , 

b c d 

R(z) = 1 + (b + c - 2d)z + (ac - bd - cd + d2)z2 

(1 - dz)3 

(5.4a) 
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so that we can identify R(z) with (4.6). This leads to a one-parameter family of 
second-order accurate, L-stable, optimal DIRK methods define by 

a= 
1 -4d +2d2 

2c 
b = 1-c-d, d= 1~(9+3v'3-Jn+42v'3). (5.4b) 

The choice c = 1 - d (i.e., b = 0) saves storage in an actual implementation. 
For third-order accuracy, we impose condition (5.1). This determines the free 

parameter c and leads to a third-order accurate, L-stable, optimal method defined by 

1 - 4d + 1d2 3( 1 - 4d + 1d2 )2 

a= 2c b = 1 - c - d, c = 4(1 - 6d + 9d2 - 3d3)' 
(5.4c) 

d = 1 - ~J2( cos(rj>) - J3 sin(rj>)), <P := ~ arctan ( ~J2). 

5.4. A-stable methods with s = 3 

To construct methods with the stability functions (4.4) and (4.12), we consider 

(
d 0 0) 

T= a d O , 
b c d 

(5.5a) 

a1 := e+ f +g, a2 := af + g(b + c), a3 := acg. (5.6a) 

We write the numerator of the prescribed stability function in the form P(z) = 1 + 
p1 z + p2z2 + p3z3• Identification with the numerator of R(z) in (5.5a) leads to 

a1=PI+3d, a2 = P2 + 2p1d + 3d2, a3 = p3 + P2d + P1d2 + d3, (5.6b) 

so that the quantities ai are completely determined by the prescribed stability function. 
Thus, if this stability function is second-order consistent, then { (5.5a), (5.6)} defines 
a three-parameter family of second-order methods whose stability function is given in 
(5.5a). 

If the given stability function is third-order consistent, then we can make the 
method (5.5a) third-order accurate by imposing the condition (5.1). Using (5.6a), this 
additional condition becomes 

Solving (5.6a) and (5.7) for e = 0, we obtain 

0:3 
c=

ag' 
e = 0, 

(5.7) 

(5.8) 
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The formulas {(5.5a), (5.8)} define a one-parameter family of third-order methods 
with stability function R(z) as is given in (5.5a). We are now ready to identify R(z) 
with (4.12) and (4.4). 

In the case (4.12) we have a1 = 1, 0:2 = t and a3 = 2~. We propose to choose 
b = e = f = 0 yielding a storage saving method. Then, it follows from (5.6a) that 

l 
a= 9' g = 1, b = e = f = 0. (5.5b) 

The formulas { (5.5a), (5.5b)} define a second-order accurate, A-stable, optimal 
method. 

For the third-order consistent stability function (4.4), we have a 1 = 1, o:2 = i 
and a3 = - 1~. On substitution into (5. 8) we obtain a family of third-order accurate, 

A-stable, optimal methods with free parameter a. For example, a = -t yields the 
method 

1 1 2 1 
a= -- b= 9' c= 9' d= 3' 3' 

(5.5c) 1 3 
e = 0, f = 4' g =-. 

4 

5.5. L-stable methods with s = 4 

To construct methods with the stability functions (4.7) and (4.18) we consider 

T=c;~D· b=G). 
R( ) = 1 + r1z + r2z2 + r3z3 (5_9a) 

z (1 - dz)4 ' 

r1 = a1 - 3d, r2 = 0:2 - 20:1d + 3d2, r3 = 0:3 - a2d + 0:1d2 - d3 , 

where o:1, o:2 and o:3 are defined in (5.6a). Writing the numerator of the prescribed 
stability functions in the form P(z) = l + p1z + p2z2 + p3z3 and identifying P with 
the numerator of R(z) in (5.9a) again leads to the equations (5.6b). Thus, if the 
prescribed stability function is second-order consistent, then { (5.9a), (5.6)} defines a 
three-parameter family of second-order methods whose stability function is given in 
(5.9a). If the prescribed stability function is third-order consistent, then we achieve 
third-order accuracy by imposing the condition (5.1 ), i.e., 

f a2 + g(b + c)2 = 0:4, 
1 2 2 

a4 := 3 - a1d - 20:2d - d(o:1 + d) . (5.10) 
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Solving (5.6a) and (5.10) for e = 0 yields the relations (5.8), so that the formulas 
{ (5.9a), (5.8)} define a one-parameter family of third-order methods with the stability 
function R(z) of (5.9a). 

In the case (4.18) we have o:1 = l-d, o:2 = !-2d+d2 and o:3 = !-d+2d2+d3, 
so that solving (5.6a) with b = e = f = 0 leads to 

- !-d+2d2 +d3 
a - ~-1 ---.:r?-, 

2 -2d +a-

_!-2d+d2 

c - --1---d-, d= 1 + ~h- ~J20+ 14v'2, 

(5.9b) 
g = 1 - d, b = e = f = 0. 

The method {(5.9a), (5.9b)} defines a second-order accurate, L-stable, optimal method. 
In the case (4.7), where d ~ 0.223648, o: 1 = 1 - d, 0:2 = ! - 2d + d2 and 

0:3 = i - ~d + 3d2 - d3 , we find on substitution into (5.8) a family of third-order 
accurate, L-stable, optimal methods with free parameter a. For example, a = ! and 
d = ~~ (which is only slightly greater than d = 0.223648) yields 

e = 0, 

12589505881 
b = 70677472392' 

6039885655 
C= 

70677472392' 
8157603 11552 

f = 153145' g = 11639020. 

17 
d= 76' 

(5.9c) 

The method {(5.9a), (5.9c)} defines a third-order accurate, L-stable, optimal method. 

5.6. A-stable methods with s = 4 

Finally, we construct methods with the stability functions ( 4.16) and ( 4.17). Con
sider the method 

(
d 0 0 0) 
a d 0 0 

T= 0 b d O ' 
0 0 c d 

( 
0 ) b= 0 

l~e ' 

R( ) = 1 + r1z + r2z2 + r3z3 + r4z4 (5.lla) 
z (1 - dz)4 , 

r1:=1-4d, r2 :=be+c(l-e)-3d+6d2, 

r3 := bc(l - e) + abe - 2(be + c(l - e))d + 3d2 - 4d3, 

r4 := abc(l - e) - (abe + bc(l - e))d +(be+ c(l - e))d2 - d3 +a:". 

Identification of R(z) with ( 4.16) and setting e = 0 yields a second-order accurate, 
A-stable, optimal method of the form (5.lla) with 

1 
a= 16' 

3 
C= S' e=O. (5.llb) 
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Table 3 
Characteristics of implicit integration methods. 

Order Method s Stability function Stability p(T)~ f3imag ~ 

2 BDF { (3.6), bo = ~} I L-stable 0.67 0.97 
NS')rsett (3. 7) 2 (4.5) L-stable 0.29 2.21 

{ (5.2a), (5.2b)} 2 (4.5) L-stable 0.29 2.21 
{ (5.3a), (5.3b)} 2 (4.3) A-stable 0.25 2.59 
{(5.4a), (5.4b)} 3 (4.6) L-stable 0.18 3.59 
{(5.5a), (5.5b)} 3 (4.12) A-stable 0.17 3.88 
{ (5.9a), (5.9b)} 4 (4.18) L-stable 0.13 4.98 

{(5.lla), (5.llb)} 4 (4.16) A-stable 0.13 5.18 

3 DIM (3.8) 2 strongly A-stable 2.17 0.29 
Cash (3.9) 3 L-stable 0.96 0.67 

NS')rsett { (5.3a), (5.3c)} 2 (4.3) strongly A-stable 0.79 0.82 
{(5.4a), (5.4c)} 3 (4.6) L-stable 0.44 1.48 
{(5.5a), (5.5c)} 3 (4.4) A-stable 0.33 1.94 
{(5.9a), (5.9c)} 4 (4.7) L-stable 0.22 2.89 

{(5.lla), (5.llc), (5.lld)} 4 (4.17) A-stable 0.21 3.06 

Similarly, identification of R(z) with (4.17) yields a third-order accurate, A-stable, 
optimal method of the form (5.1 la) with 

-c 
a=------

1 - 4cV3 + 12c2 ' 

1 1 

b _ v'3 - 9c + 6c2 V3 
- 3(1 - 4cv'3 + 12c2)' 

1 - 4cv'3 + 12c2 d=---V3 2 6 ' 
e=---=---

2 - 4cv'3 + 12c2' 

where c is a real zero of the equation 

(5.llc) 

432c5 - 360c4 V3 + 18(25 + 2V3)c3 - 12(3 + 8v'3)c2 + 24c - J3 = 0. (5.lld) 

This equation possesses one real root, which is approximately given by c :::::::: 0.545717. 

6. Summary of results 

In this paper, we considered A-stable and L-stable DIRK methods of which the 
diagonal vector in the Butcher matrix has a minimal maximum norm. If the im
plicit relations are iteratively solved by means of the approximately factorized Newton 
process (3.11), then such DIRK methods possess stability properties which enable us 
to solve shallow water problems with relatively large time steps. Table 3 lists the main 
characteristics of all methods discussed in this paper. In particular, this table presents 
the value of p(T) and the resulting imaginary stability boundary /3imag occurring in the 
stability condition (3.14). For the DIRK methods in this table, we see that for fixed 
order, the value of /3imag increases strongly with the number of stages s, the order 2 
values being substantially larger than the order 3 values. Also note that for given 
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order p and number of stages s, f3irnag decreases only slightly when changing from 
A-stability to L-stability, so that the maximal stable stepsize is mainly determined by 
p and s. 

Thus, we may conclude that A- and L-stable DIRK methods with minimal p(T) 
are attractive candidates for integrating shallow water problems. In particular, the 
higher-stage methods with their relatively small p(T), and therefore large imaginary 
stability boundaries, are suitable on parallel computer systems (we recall that theo
rem 4.1 implies the existence of second-order, A-stable methods with p(T) = (2s)-1). 

Since the AFN process (3.11) is fully parallel over the stages (see the discussion of 
(3.11) in section 3.2), the number of stages is mainly determined by the number of 
processors available. The actual application of the methods proposed in this paper is 
subject of future research. 

Finally, as observed by one of the referees of this paper, in the case of parabolic 
problems, where we need only Ao-stability or Lo-stability, some of the results of Bales 
et al. [1] are relevant. In fact, since for parabolic problems one is often satisfied with 
order 2 or 3 accuracy, it would be of interest to investigate whether the p(T)-values 
of table 3 can be improved. 
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