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In this paper we study the discrete approximation of a Dirichlet problem on an interval for 
a singularly perturbed parabolic PDE. The highest derivative in the equation is multiplied 
by an arbitrarily small parameter e. If the parameter vanishes, the parabolic equation 
degenerates to a first-order equation, in which only the time derivative remains. For small 
values of the parameter, boundary layers may appear that give rise to difficulties when 
classical discretization methods are applied. Then the error in the approximate solution 
depends on the value of e. An adapted placement of the nodes is needed to ensure that the 
error is independent of the parameter value and depends only on the number ofnodes in the 
mesh. Special schemes with this property are called &-uniformly convergent. In this paper 
such £-uniformly convergent schemes are studied, which combine a difference scheme and 
a mesh selection criterion for the space discretization. 

Except for a small logarithmic factor, the order of convergence is one and two with 
respect to the time and space variables, respectively. Therefore, it is of interest to develop 
methods for which the order of convergence with respect to the time variable is increased. 
In this paper we develop schemes for which the order of convergence in time can be 
arbitrarily large if the solution is sufficiently smooth. To obtain uniform convergence, we 
use a mesh with nodes that are condensed in the neighbourhood of the boundary layers. 
To obtain a better approximation in time, we use auxiliary discrete problems on the same 
time-mesh to correct the difference approx.imations. In this sense, the present algorithm is 
an improvement over a previously published one. To validate the theoretical results, some 
numerical results for the new schemes are presented. 
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I. Introduction 

In this paper we study £-uniform schemes for time-dependent singular perturbation 
problems. For a general discussion of £-uniform schemes for singular perturbation 
problems we refer to Doolan et al. ( 1980), Shishkin ( 1992), Hemker et al. ( 1997), Morton 
(1996), Roos et al. (1996). In earlier papers (Farrell et al., 1996a, b, c; Hemker et al., 1997) 
we have introduced and analysed £-uniformly convergent difference schemes for singularly 
perturbed boundary value problems for elliptic and parabolic equations. If the problem 
data are sufficiently smooth, for the parabolic equations without convection terms, the 
order of &-uniform convergence for the scheme that was studied is O(N-2 ln2 N + K-1), 

where N and K denote, respectively, the number of intervals in the space and time 
discretization. For this scheme the amount of computational work is primarily determined 
by the time discretization, which is of first-order accuracy only. The difficulty for the 
singular perturbation problem, however, lies essentially in the space direction where we 
have second-order accuracy. Therefore, it is natural to search for a method that has the same 
order of accuracy for both variables. To this end, we want to improve the accuracy with 
respect to the time step, without essentially increasing the amount of computational work. 
The improvement of the accuracy in time, maintaining c-:uniform convergence, by means 
of a defect correction technique was also studied in Hemker et al. (1997). In that paper, 
higher-order backward differences were used to obtain a better approximation of the time 
derivative. To determine the derivatives, finite difference schemes on a sequence of finer 
time-meshes were used. Therefore, the implementation of the schemes in Hemker et al. 
(1997) appeared somewhat cumbersome. In the present paper we develop a new approach, 
also based on the defect correction principle, but which is easier to implement and analyse, 
as it only uses a single time-mesh, which is the same for all auxiliary problems. 

By this method we are able to achieve the same order of accuracy in both variables. 
Moreover, we present a method which can achieve a higher order of accuracy with respect 
to the time variable. Thus, the accuracy of this method is restricted essentially by the 
second-order accuracy in space, which is the natural limit set by the character of the 
problem. 

2. The class of boundary value problems studied 

On the domain G = (0, I) x (0, T], with boundary S = G \ G we consider the following 
singularly perturbed parabolic equation with Dirichlet boundary conditions t: 

? a ( au ) L(2.l)u(x,t)==.e- Bx a(x,t)ax(x,t) -c(x,t)u(x,t) (2. la) 

au 
-p(x, t)-(x, t) = f(x, t), (x, t) EC, 

at 
u(x,t)=<p(x,t), (x,t)ES. (2.lb) 

For S = So U S l , we distinguish the lateral boundary S 1 = { (x, t) : x = 0 or x = 1, 
0 ~ t :( T}, and the initial boundary So= {(x, t): x E [0, l], t = 0). In (2.lb), a(x,t), 

t The notation is such that the operator l(a.b) is first introduced in equation (a.b). 



c-UNIFORM SCHEMES 101 

c(.x, t), p(x, t), f(x, t), (x, t) E G, and <p(x, t), (x, t) E Sare sufficiently smooth and 
bounded functions which satisfy 

0 < ao ~ a(x, t), 0 <PO::::;: p(x,t), c(x, t) ;?: 0, (x, t) E G. (2.lc) 

The real parameters may take any small positive value, say 

8 E (0, l]. (2.ld) 

When the parameter s tends to zero in (2. la), layers appear in the solution in the 
neighbourhood of the lateral boundary, which are described by an equation of parabolic 
type (parabolic boundary layers). If an additional first-order tenn b(x, t)(ou(x)/ax) was 
present in (2. la) then we would see a boundary layer at the outflow boundary, that would 
be described by an ordinary differential equation (an ordinary boundary layer). 

3. An arbitrary non-uniform mesh 

To solve problem (2.1) we first consider a classical finite difference method on a (possibly) 
non-uniform mesh. On the set G we introduce the rectangular mesh 

(3.1) 

where w is the (possibly) non-uniform mesh of nodal points, xi, in [0, 1 ], wo is a unifonn 
mesh on the interval [0, T]; N and K are the numbers of intervals in the meshes w and wo 
respectively. We definer = T / K, hi = xi+l -x;, h = max; hi, h ~ M/ N, Gh = G nGh, 
Sh=SnGh. 

Here and below we denote by M (or m) sufficiently large (or small) positive constants 
which do not depend on the value of the parameters or on the difference operators. 

For problem (2.1) we use the difference scheme (Samarski, 1989) 

Here 

A(3.2)Z(X, t) = f(x, t), 

z(x, t) = ifJ(x, t), 

(x, t) E Gh, 

(x, t) E Sh. 

Ac~.2)Z(x, t) = s28;; (ah(x, t)8:xz(x, t))- c(x, t)z(x, t) - p(x, t)81z(x, t), 

ah (xi, t) =a ( (xi-I + x 1 )/2, t) , 
r ( i ) (I i-1 )-1 ( ( i ) ( i-1 )) oyZ X , t = l Z X , t - Z X , t , 

oxz(x;,t)=(hi)- 1 (z(x;+i,t)-z(xi,t)), 

81z(x;, t) = r- 1 ( z(x1, t) - z(x;, t - r)), 

(3.2a) 

(3.2b) 
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8xz(x, t) and 8xz(x, t), 81z(x, t) are the forward and backward differences, and the 
difference operator and 8x(ah(x, t)o:xz(x, t)) is an approximation of the operator 
~~ (a(x, t) aaxu(x, t)) on the non-uniform mesh. 

From Samarski (1989) we know that the difference scheme (3.2), (3.1) is monotone. 
By means of the maximum principle and taking into account estimates of the derivatives 
(see Theorem 5 in the Appendix) we find that the solution of the difference scheme (3.2), 
(3.1) converges for a fixed value of the parameter e: 

lu(x,t)-z(x,t)I ~ M(e-1N-1 +r), (x,t) E Gh. (3.3) 

This error bound for the classical difference scheme is clearly not e-uniform. 
The proof of (3.3) follows the lines of the classical convergence proof for monotone 

difference schemes (cf. Samarski, 1989; Shishkin, 1992). Taking into account an a priori 
estimate for the solution (Appendix, Section A. I), this results in the following theorem. 

THEOREM 1 Let the estimate (A.2) hold for the solution of (2.1). Then, for a fixed value 
of the parameter e, the solution of (3.2), (3.1) converges to the solution of (2.1) with an 
error bound given by (3.3). 

4. The e-uniformly convergent method 

In this section we discuss an e-uniformly convergent method for (2.1) by taking a special 
mesh, condensed in the neighbourhood of the boundary layers. The location of the nodes 
is derived from a priori estimates of the solution and its derivatives. The way to construct 
the mesh for problem (2.1) is the same as in Shishkin (1992) and Hemker et al. (1997). 
Specifically, we take 

G~ = w*(a) x wo, (4.1) 

where wo is the uniform mesh with step-size 'l' = TI K' i.e. wo = WQ(3.J). and w* = w*(cr) 
is a special piecewise uniform mesh depending on the parameter a E JR, which depends 
one and N. We take a = CT(4.J)(E, N) = min(l/4, melnN), where m = m(4.l) is an 
arbitrary positive number. The mesh w*(a) is constructed as follows. The interval [0, l] 
is divided into three parts [ 0, a], [a, 1 -a], [ 1-a, 1], 0 < a ~ 1/4. In each part we use 
a uniform mesh, with N /2 subintervals in [a, 1 - a ] and with N / 4 subintervals in each 
interval [O, a] and [I - a, I]. 

THEOREM 2 If the solution of problem (2.1) satisfies the conditions of Theorem 5 
(Appendix), then the solution of (3.2), (4.1) converges e-uniformly to the solution of (2.1) 
and the following estimate holds: 

lu(x, t) - z(x, t)I ~ M(N-2 In2 N + r), (x, t) E c;;. (4.2) 

The proof of this theorem can be found in Shishkin ( 1992). 

5. Numerical results 

To see the effect of the special mesh in practice, we take the model problem 

2 82u OU 
Lcs.J)U(X, t) = e ox2 (x, t) - at(x, t) = f(x, t), (x,t) E G, (5.1) 
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u(x, t) = <p(x, t), (x,t) ES, 

where 
j(x, t) = 4t3, (x,t) E G, rp(x,t)=O, (x,t)ES. 

In Hemker et al. (1997) we compared the numerical results for scheme (3.2) on the 
uniform mesh G~ = Gh (3.1), where w = wu is a uniform mesh, and on the special mesh 
(4.1), adapted to the value c. For T = 1 we presented the error E(N, K, c), defined by 

E(N, K, c) = max lz(x, t) - u*(x, t)I. 
(x,t)EGh 

(5.2) 

Here u*(x, t) is the piecewise linear interpolation obtained from the numerical solution 
z(x, t) on an adapted mesh with parameters a = min(l/4, 2c In N), N = K = 512. 
Notice that no special interpolation is needed for the time variable. 

In Hemker et al. (1997) we compared results for the uniform and adapted mesh, and 
we showed the errors E (N, N, c ), for N = 2k, K = 3, ... , 8, for various values of c. 
From the results in Hemker et al. (1997), c-uniform convergence can be observed but it 
is difficult to analyse the order of c-uniform convergence in space and in time. Therefore, 
here we want to supplement these numerical results with values for E(N, N 2, c), for the 
adapted mesh, for the same N and for the same values of c. 

In Table 1 we give the results for the same scheme (3.2), (4.1) but with K = N 2 . 

Here we can clearly see that, in accordance with estimate (4.2), the order of convergence 
is O(N-2 ln2 N + K- 1 ). For large N the order of convergence 2 (resp. 1) with respect to 
the space and time variable corresponds with the theoretical results. 

TABLE 1 
Errors E(N, N 2, £)for the special method (3.2), (4.1). In this table the function E(N, N 2• £)is 
defined by (5.2), but now z(x, t) in (5.2) is the solution of (3.2), (4.1) with m = 2, ah= a;. 

N = 512. In the last row E(N) gives the maximum over each column. 

£ \ N 8 16 32 64 128 256 
1 ·0 7·41 lE-04 1·843E-04 4·588E-05 1·133E-05 2·698E-06 5·395E-07 
2-l 7·305E-03 l ·821E-03 4·538E-04 1·121E-04 2·669E-05 5·338E-06 
i-2 2·184E-02 5-459E-03 1·361E-03 3·362E-04 8·005E-05 1·601E-05 
i-3 3·086E-02 l · 150E-02 3-064E-03 7·699E-04 1·844E-04 3-699E-05 
r4 3·148E-02 3·433E-02 1·391E-02 3·630E-03 8·764E-04 1·760E-04 
2-5 3·149E-02 3-827E-02 3·325E-02 1·434E-02 3·597E-03 7·292E-04 

2-6-2-12 3·149E-02 3·796E-02 3·275E-02 1 ·358E-02 4·015E-03 1·683E-03 

E(N) 3· 149E-02 3-827E-02 3·325E-02 1·434E-02 4·0!5E-03 1·683E-03 

6. Improved time accuracy 

6.1 A scheme based on defect correction 

In this section we construct a new discrete method based on defect correction, which also 
converges c-uniformly to the solution of the boundary value problem, but with an order of 
accuracy (with respect to r) higher than in (4.2). 
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The idea is similar to that in Hemker et al. ( 1997). For the difference scheme (3.2), 
(4.1) the error in the approximation of the partial derivative ea /at) u(x' t) is caused by the 
divided difference oy z(x, t) and is associated with the truncation error given by the relation 

au a2u a3u 
-(x, t) -oyu(x, t) =T1 r-2 (x, t) - 6- 1 r 2 - 3 (x, t - iJ), (6.1) at at at-

where iJ E [O, r]. Therefore, with the notation from Section 3, we now use for the 
approximation of ca;at) u(x, t) the expression 

oyu(x, t) + ronu(x, t)/2, 

where on u(x, t) = O(i u(x, t - r). Notice that o1r u(x, t) is the second central divided 
difference. We can evaluate a better approximation than (3.2a) by defect correction 

c I B2u 
A(3.2)Z (x, t) = f(x, t) - T p(x, t)r Bt 2 (x, t), (6.2) 

with x E w and t E wo, where w and wo are as in (3.1 ); r is the step-size of the mesh 
wo; zc(x, t) is the 'corrected' solution. Instead of (B 2/ot2) u(x, t) we shall use oyyz(x,t), 
where z(x, t), (x, t) E Gh(4.I) is the solution of the difference scheme (3.2), (4.1). We 
may expect that the new solution zc(x, t) has an accuracy of 0(r2) with respect to the 
time variable. This is true, as will be shown in Section 6.3. 

Moreover, in a similar way we can construct a difference approximation with a 
convergence order higher than two (with respect to the time variable) and O(N-2 ln2 N) 
with respect to the space variable s-uniformly (see Section 6.2). 

6.2 Modified difference schemes of second-order accuracy in r 

We denote by oklz(x, t) the backward difference of order k: 

801 z(x, t) = z(x, t), 

okl z(x, t) = (ok-I T z(x, t) - ok-I 1 z(x, t - r) )/r, 

t ~ kr, 

When constructing difference schemes of second-order accuracy in r in (6.2), instead 
of (82 /ot2)u(x' t) we use 021 z(x, t), which is the second divided difference of the solution 
to the discrete problem (3.2), (4.1). On the mesh Gh we consider the finite difference 
scheme (3.2), writing 

A(3.2)Z(Il(x, t) = f(x, t), 

zO>cx, t) =rp(x, t), 

(x, t) E Gh, 

(x, t) E Sh. 

(6.3) 

Then for the boundary value problem (2.1) we now get for the difference equations for 
t =rand t ~ 2r respectively: 

(2) p(x,t) a2u 
A(3.2)Z (x, t) = f(x, t) + - 2- r atT(x, 0), t = r, (6.4) 
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Ac3.2)Z<2l(x, t) = f(x, t) + p(~, t) r821zOl(x, t), t ~ 2r:, (x, t) E Gh, 

zC2l(x, t) = cp(x, t), (x, t) E Sh. 

Here zO>(x, t) is the solution of the discrete problem (6.3), (4.1), and the derivative 
(a 2u/at2 )(x, 0) is obtained from equation (2.la). We shall call z<2>(x, t) the solution of 
difference scheme (6.4), (6.3), (4.1) (or in short, (6.4), (4.1)). 

For simplicity, in the remainder of this section we take a homogeneous initial condition: 

cp(x, 0) = 0, X E [0, l]. (6.5) 

Under the homogeneous initial condition (6.5), the following estimate holds for the 
solution of problem ( 6.4 ), ( 4.1) 

lu(x,t)-z<2>(x,t)l~M[N-2 ln2 N+r:2], (x,t)EGh. (6.6) 

THEOREM 3 Let condition (6.5) hold and assume in equation (2.1) that a E 
H(a+2n-l)(G), c, p, f E H(a+Zn-2l(G), <p E HCa+2nl(G), a > 4, n = 1 and let 

condition (A. l) be satisfied for n = I. Then for the solution of difference scheme (6.4), 
(4.1) the estimate (6.6) holds. · 

The proof of this theorem is found in Section A.2 of the Appendix. 

6.3 A difference scheme of third-order accuracy in time 

Analogously we construct a difference scheme with third-order accuracy in r:. On the mesh 
G h we consider the difference scheme 

( 
a2 a3u ) 

Ac3 2)ZC3l(x, t) = f(x, t) + p(x, t) C11 r:-2 u(x, 0) + C12r:2- 3 (x, 0) , 
· at at 

A(3.2)Z<3> (x, t) = f (x, t) + p(x, t) ( C21 r: ~:~ (x, 0) + C22r:2 ~:~ (x, 0)) , 

A(3.2)Z<3J (x, t) = f (x, t)+ p(x, t) ( C31 r:827z<2l (x, t) + C32r:283 7Z(l)(x, t)), 

(x, t) E Gh, 

z<3l(x, t) = cp(x, t), (x, t) E Sh. 

t = r:, 

(6.7a) 

t = 2T, 

t ~ 3r:, 

Here zOl(x, t) and z<2l(x, t) are the solutions of problems (6.3), (4.1) and (6.4), (4.1) 
respectively, the derivatives (a2 /at 2)u(x, 0), (83 /Bt 3)u (x, 0) are obtained from equation 
(2. la), and the coefficients Cij are determined below. They are chosen such that the 
following conditions are satisfied 

OU o2u 2 o3u 3 
at(x,t)=o-u(x,t)+C11r: ot2 (x,t- r:)+C12r: a13(x,t- r:)+V(r: ), 

OU o2u zo3u 3 
at(x, t) =o;u(x, t) + C21 r: Bt2 (x, t - 2r) + C22< ot3 (x, t - 2r:) + V(T ), 

au 2 3 
-(x, t) =o;u(x, t) + C31 r:827u(x, t) + C32r: 83ru(x, t) + V(r:· ). 
at 
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It follows that 

C11 = C21 = C31 = 1/2, C12 = C32 = 1/3, C22 = 5/6. (6.7b) 

We shall call z(3l(x, t) the solution of the difference scheme (6.7), (6.4), (6.3), (4.1) (or 

in short, (6.7), (4.1)). 

Again we assume the homogeneous initial condition 

<p(x, 0) = 0, f(x, 0) = 0, xE[O,l]. (6.8) 

Under condition (6.8) the following estimate holds for the solution of difference 
scheme (6.7), (4.1) 

lu(x, t) - z<3l(x, t)I :S; M [N- 2 ln2 N + r 3], (x, t) E Gh. (6.9) 

THEOREM 4 Let conditions (6.8) hold and assume in equation (2.1) that a E 

H (a+Zn-l)(G), c, p, f E H (a+Zn-Zl(G), <p E H (a+Zn)(G), a > 4, n = 2 and let 

condition (A. I) be satisfied with n = 2. Then for the solution of scheme (6.7), (4.1) the 
estimate (6.9) is valid. 

The proof of Theorem 4 is given in Section A.3 of the Appendix. 

In a similar way we could construct difference schemes with an arbitrary high order of 
accuracy 

n > 2. 

7. Numerical results for the time-accurate schemes 

The solution of the problem in the half-strip, 

L(5.ll V(x, t) = 0, 0 < x < 00, 0 < t :S; T, (7.1) 

V(O, t) = t 4 , 0 < t :S; T, V(x, 0) = 0, 0 :S; x < 00, 

is given by 

( x ) ( x8 x6 x4 2x2 ) 
V(x, t)=erfc r. --8 + --6 t + 4 t 2 + - 2 t 3 + t 4 

2c v t l 680c 30£ 2c c 
(7.2) 

I (-x2 ) ( x 7 l/? 9x5 31? 37x3 51? 93x 712) --exp -- ---t -+--t· -+--t· -+--t 
fi 4c-2t 840£7 140c5 42c3 35c · 

We consider the model problem 

L(s.i)u(x, t) = 0, (x, t) E G, 

u(x, t) = v(7.2)(X, t), (x, t) ES. 
(7.3) 

Then the function V(7.2)(X, t) is the Solution of problem (7.3). 
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The solution has a boundary layer character, and at the point x = 1, V(x, t) is 
exponentially small in e fore ~ 0. 

According to Theorems 3 and 4, the difference schemes (6.4), (4.1) and (6.7), (4.1) 
converge respectively with order 2 and 3 with respect to r. To demonstrate this effect 
numerically, we consider the schemes (6.3), (4.1); (6.4), (4.1) and (6.7), (4.l) for problem 
(7.3). We solve problem (5.1), using the schemes (6.3), (4.1); (6.4), (4.1) and (6.7), (4.1) 
for various values of N, K and e. 

As the solution of the boundary value problem (7.3) has a boundary layer on the left
hand side, for its solution we use the locally condensed mesh 

(7.4) 

where w<*l = w<*l (a) is a special mesh, condensed in the neighbourhood of the left-hand 
side of the interval [ 0, 1 ]; a is a parameter depending one and N. The mesh w<*l(a) is 
constructed as in Section 4, with the understanding that there is now only one boundary 
layer. We take a = min[ I /2, me In N ], where m is an arbitrary positive number. Then 
for the solution z of the discrete problem (3.2), (7.4) we have the estimate: 

-(*) 
(x,t) E Gh . (7.5) 

For the solution zOl of the problem (6.3), ( bneq.7.4) we have the following estimate: 

(7.6) 

For the solution z<2l of the problem (6.4 ), (7.4), where z (I) (x, t) is the solution of 
problem (6.3), (7.4), the following estimate holds: 

Ju(x, t) - z <2l(x, t)J ~ M ( N-2 ln2 N + r 2), (7.7) 

For the solution z<3l of the discrete problem (6.7), (7.4), where z <2l(x, t) and z <1l(x, t) 
are the solutions of problems (6.4), (7.4) and (6.3), (7.4) respectively, the following 
estimate holds: 

(7.8) 

The results from numerical experiments for the above model problem are given in Tables 
2-5. 

We know that the error consists of two contributions: one caused by the discretization 
of the time derivative and the other by the space derivative (put briefly, the time and space 
errors). From theory we know that the order of convergence is one for r, and two for h. 
This dependence can be observed from the error tables, in regions where one component 
of error is negligible compared with the other. Thus, to see first-order convergence in r, 
we should consider the errors where the contribution from the discretization of the space 
derivative is relatively small. Referring to Table 2, these errors are in the upper-right corner 
of the table. 
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TABLE 2 
Table of errors E(N, K, £) for scheme (6.3), (7.4 ). E(N, K, s) is defined by (5.2), where 

(I) * - -(*) 
z(x, t) = z(6.3)(x, t), u (x, t) = Vo.2i(x, t), Gh = G h(7.4)· 

N 

f. K 8 16 32 64 128 256 512 1024 2048 

1 8 3·36-2 3-34-2 3·33-2 3·33-2 3·33-2 3-33-2 3·33-2 3·33-2 3-33-2 
16 l ·79-2 l ·75-2 1·74-2 l ·74-2 l ·74-2 l ·74-2 1 ·74-2 l ·74-2 1 ·74-2 
32 9·49-3 9·02-3 8·90-3 8·87-3 8·87-3 8·86-3 8·86-3 8·86-3 8·86-3 
64 5· 17-3 4·65-3 4·52-3 4·49-3 4·48-3 4-48-3 4·48-3 4·48-3 4-48-3 
128 2·97-3 2-43-3 z.30-3 2·26-3 2-25-3 2·25-3 2-25-3 2-25-3 2·25-3 
256 1·86-3 l ·31-3 l · 17-3 1·14-3 l · 13-3 l ·13-3 1 ·13-3 1 ·13-3 1·13-3 
512 l ·30-3 7·51-4 6·12-4 5·77-4 5-68-4 5·66-4 5-65-4 5-66-4 5·65-4 
1024 1·02-3 4-70-4 3-30-4 2·94-4 2-86-4 2-83-4 2-83-4 2·83-4 2·83-4 
2048 8·85-4 3-29-4 1'88-4 l ·53-4 1 ·44-4 1·42-4 l ·42-4 l ·41-4 I -41-4 

2-2 8 5·76-2 4-87-2 4-65-2 4·61-2 4·60-2 4·59-2 4·59-2 4·59-2 4·59-2 
16 3·66-2 z.68-2 2-42-2 2·37-2 2·35-2 2·34-2 2·34-2 2-34-2 2·34-2 
32 2-58-2 1·55-2 1·27-2 1·21-2 1-19-2 l ·18-2 1 ·18-2 1·18-2 1·18-2 
64 2·03-2 9·70-3 6·87-3 fr 19-3 fr00-3 5·96-3 5·95-3 5·95-3 5·94-3 
128 1-76-2 6·81-3 3·94-3 3·22-3 3·04-3 2·99-3 2·98-3 2·98-3 2·98-3 
256 1·62-2 5·35-3 2-46-3 1 ·74-3 1 ·55-3 l ·51-3 l ·50-3 1 ·49-3 1 ·49-3 
512 1-55-2 4-62-3 1·73-3 9·94-4 8·08-4 7-62-4 7·50-4 7·47-4 7·47-4 
1024 l ·51-2 4·26-3 l ·36-3 6-21-4 4·35-4 3-89-4 3·77-4 3·74-4 3·74-4 
2048 1-50-2 4·07-3 l ·17-3 4·35-4 2-49-4 2·02-4 I ·91-4 l ·88-4 1 ·87-4 

2 4 8 7-24-2 6·68-2 5-32-2 4·87-2 4·65-2 4·61-2 4·60-2 4·59-2 4·59-2 
16 5·66-2 4-67-2 3·26-2 2-68-2 2·42-2 2-37-2 z.35-2 2·34-2 2·34-2 
32 4·87-2 3'65-2 2·19-2 l ·55-2 1-27-2 1-21-2 1 ·19-2 l ·18-2 1·18-2 
64 4-48-2 3·14-2 l ·65-2 9·70-3 6·87-3 6·19-3 6·00-3 5·96-3 5·95-3 
128 4·28-2 2-88-2 l ·38-2 6·81-3 3·94-3 3·22-3 3-04-3 2·99-3 2·98-3 
256 4· 19-2 2-75-2 1·24-2 5·35-3 2·46-3 l ·74-3 l ·55-3 I ·51-3 l ·50-3 
512 4·14-2 2-68-2 l ·17-2 4-62-3 1 ·73-3 9·94-4 8·08-4 7-62-4 7·50-4 
1024 4·11-2 2-65-2 1·14-2 4·26-3 l ·36-3 6·21-4 4·35-4 3-89-4 3·77-4 
2048 4·10-2 2-63-2 l · 12-2 4·07-3 l · 17-3 4·35-4 2·49-4 2·02-4 l ·91-4 

2 6 8 7·24-2 6·68-2 5-32-2 4·92-2 4·70-2 4·62-2 4·60-2 4-60-2 4·59-2 
& 16 5·66-2 4-67-2 3·26-2 2·72-2 2-47-2 2·38-2 2-35-2 z.35-2 2·34-2 

z-8 32 4·87-2 3-65-2 2·19-2 l ·58-2 1 ·32-2 l ·23-2 l ·20-2 l ·19-2 1'18-2 
64 4·48-2 3-14-2 1 ·65-2 I ·00-2 7-33-3 6·40-3 6·09-3 5·99-3 5·96-3 
128 4·28-2 2-88-2 l ·38-2 7· 13-3 4·40-3 3·44-3 3·13-3 3-02-3 2·99-3 
256 4·19-2 2-75-2 1·24-2 5-68-3 2·92-3 l ·96-3 1·64-3 l ·54-3 1 ·51-3 
512 4·14-2 2-68-2 l · 17-2 4·95-3 2· 19-3 I ·22-3 8·97-4 7·93-4 7·60-4 
1024 4·11-2 2-65-2 1·14-2 4·58-3 1 ·82-3 8·48-4 5·24-4 4·20-4 3·87-4 
2048 4·10-2 2-63-2 l ·12-2 4·40-3 l ·63-3 6·62-4 3-38-4 2·33-4 2·01-4 

We say that the global error has the correct behaviour with respect to time if, by 
doubling K for fixed N, we obtain the ratio of the errors not less than some fixed number 
mo. If e.g., for Table 2 we take mo = l ·7, which is sufficiently close to two, the domains 
with correct and incorrect behaviour of the errors are separated by diagonals going in the 
direction from upper left to lower right. 

From Table 2 we see that, fore = 1, the domain with the correct behaviour of the error 
is almost the whole table, except for a few values in the lower-left corner. Ass decreases, 
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TABLE 3 
Table of errors E(N, K, e) for scheme (6.4), (7.4). E(N, K, e) is defined by (5.2), where 

z(x, t) = z~~~4) (x' t), u*(x, t) = v(7.2)(X, t), Gh -(*) = Gh(7.4)· 

N 
E K 8 16 32 64 128 256 512 1024 2048 
1 8 6·64-3 6·18-3 6·04-3 6-01-3 6·00-3 6·00-3 6-00-3 6·00-3 6·00-3 

16 2·33-3 1·80-3 l ·66-3 1·63-3 l ·62-3 1·62-3 1·61-3 1·61-3 I ·61-3 
32 l ·16-3 6-06-4 4·64-4 4·30-4 4·21-4 4·19-4 4·19-4 4·18-4 4·18-4 
64 8·50-4 2·94-4 l ·53-4 1·18-4 1·09-4 l ·07-4 1·07-4 1·06-4 1·06-4 
128 7·71-4 2·15-4 7-38-5 3·86-5 2-97-5 2·75-5 2·70-5 2·68-5 2·68-5 
256 7·52-4 l ·95-4 5·38-5 l ·85-5 9·64-6 7·43-6 6-88-6 6·74-6 6-70-6 
512 7·47-4 1·90-4 4·87-5 1·34-5 4·58-6 2·38-6 1·82-6 1·69-6 1·65-6 
1024 7·45-4 1·88-4 4·75-5 1·22-5 3·32-6 1·11-6 5·65-7 4·33-7 4·01-7 
2048 7·45-4 l ·88-4 4·72-5 1·18-5 3·00-6 7·93-7 2·67-7 1·56-7 1-35-7 

2 2 8 2·13-2 1·08-2 7-98-3 7·27-3 7·09-3 7·05-3 7·04-3 7·04-3 7·04-3 
16 l ·65-2 5·72-3 2·84-3 2·11-3 1·92-3 1 ·88-3 1·87-3 1·86-3 1·86-3 
32 1·52-2 4·36-3 l ·46-3 7·26-4 5·41-4 4·95-4 4·83-4 4·80-4 4·80-4 
64 1·49-2 4·01-3 1 ·11-3 3·70-4 1·84-4 1·37-4 1·25-4 1·23-4 1·22-4 
128 l ·48-2 3·92-3 1·02-3 2·79-4 9·28-5 4·62-5 3-45-5 3·16-5 3·09-5 
256 l ·48-2 3-90-3 9·94-4 2-50-4 6·99-5 2-32-5 1·16-6 8·66-6 7·93-6 
512 1 ·48-2 3·89-3 9·88-4 2·51-4 6-41-5 1·75-5 5-83-6 2·92-6 2·19-6 
1024 l ·48-2 3-89-3 9·87-4 2-49-4 6-27-5 1·61-5 4·40-6 1·49-6 7-80-7 
2048 l ·48-2 3·89-3 9·86-4 2·49-4 6·23-5 1·57-5 4·04-6 1-15-6 4·50-7 

r4 8 4·49-2 3·21-2 1·76-2 1·08-2 7·98-3 7·27-3 7·09-3 7·05-3 7·04-3 
16 4·19-2 2·77-2 1·28-2 5·72-3 2·84-3 2·19-3 1·92-3 1·88-3 I-87-3 
32 4·12-2 2·66-2 1·15-2 4·36-3 1·46-3 7·26-4 5-41-4 4·95-4 4·83-4 
64 4·10-2 2·63-2 1·11-2 4·01-3 1·11-3 3·70-4 1·84-4 1·37-4 1·25-4 
128 4·09-2 2·62-2 1·10-2 3-92-3 1·02-3 2-79-4 9·28-5 4-62-5 3·45-5 
256 4·09-2 2·62-2 1 ·10-2 3·90-3 9·94-4 2·56-4 6·99-5 2·32-5 1·16-5 
512 4·09-2 2·62-2 1·10-2 3-89-3 9·88-4 2·51-4 6-41-5 1·75-5 5·83-6 
1024 4·09-2 2·62-2 I ·10-2 3-89-3 9·87-4 2·49-4 6-27-5 1·61-5 4·40-6 
2048 4·09-2 2·62-2 1·10-2 3-89-3 9·86-4 2·49-4 6-23-5 1·57-5 4·04-6 

2 6 8 4·49-2 3·21-2 I ·76-2 1·11-3 8·34-3 7·50-3 7·18-3 7·08-3 7·05-3 
& 16 4·19-2 2·77-2 1·28-2 6·04-3 3·27-3 2·34-3 2·01-3 1·91-3 1·88-3 

rS 32 4·12-2 2·66-2 1 ·15-2 4-69-3 1·92-3 9·55-4 6·30-4 5·26-4 4·93-4 
64 4·10-2 2·63-2 1·11-2 4-33-3 1·57-3 5-98-4 2·73-4 1·68-4 1·36-4 
128 4·09-2 2·62-2 1·10-2 4·25-3 1·48-3 5·07-4 1·82-4 7·73-5 4·47-5 
256 4·09-2 2·62-2 1·10-2 4·22-3 1-46-3 4·84-4 1·59-4 5·44-5 2·18-5 
512 4·09-2 2·62-2 1·10-2 4·22-3 1·45-3 4·78-4 1·53-4 4·86-5 1·61-5 
1024 4·09-2 2·62-2 1·10-2 4·22-3 1·45-3 4·77-4 1 ·52-4 4·72-S 1 ·46-5 
2048 4·09-2 2·62-2 I ·10-2 4·22-3 1·45-3 4·77-4 I ·51-4 4·68-5 1·43-5 

the domain of correct behaviour of the error tends to decrease. This can be explained by 
the relative increasing influence of the space error for smaller e. In the case of e ~ 2-6 

the domain of correct behaviour of the error no longer changes. Thus, we can observe 
e-uniform convergence, of order (approximately) one with respect to time. 

Now we consider Table 3, which gives the errors for z<2> (x, t), that is the corrected 
solution. Note that, in principle, the time correction does not improve the accuracy with 
respect to the space variable. By the correction we improve only the part of the error that 
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is caused by the approximation of the time derivative, depending on -r, and we observe 
the improvement only when the space-dependent contribution of the error is small in 
comparison with the time-dependent part. For e = I the space error is relatively small, 
and the improvement in accuracy can be seen immediately. 

Analysing Table 3, we define the domain where the error behaviour is correct, e.g., 
by the value mo = 3 (see above). This number is larger than 2 and smaller than 4, 
corresponding to the second-order convergence in -r. When the parameter s decreases, 
the domain with correct behaviour of the error decreases. Note that, for small e, the part 
of Table 3 with the correct behaviour of the error is much reduced because the effect 
of the space error is relatively large for the corrected solution. Again, for e ~ 2-6 the 
errors for the same N, K do not change. Consequently, we see the e-uniform effect of the 
improvement of accuracy, and the order of convergence with respect to the time-step size 
is about two. 

In Table 4 we recognize the third-order time-accuracy described in Section 6.3. We 
define the domain of correct behaviour of the error by mo = 5 (for third-order convergence 
we should take 4 < mo < 8). For e = 1 we see that the errors for the same N, K in 
Table 4 are smaller than those in Tables 2 and 3. (In the same way that the errors in 
Table 3 are smaller than those in Table 2.) 

Therefore, the time error in Table 4 is much smaller than in Tables 2 and 3. With 
decreasing e the domain of correct behaviour of the error decreases and, for given N and 
K, practically disappears if e ~ 2-6. Note that the errors in Table 4 for e ~ 2-6 are 
close to the errors in Table 3 in that part of the table where the errors almost do not vary 
with doubling K. In the remainder the errors in Table 4 are smaller than the corresponding 
errors in Table 3. 

Comparing Tables 2, 3 and 4, we see that: (i) for all s and N, by K = 16 the errors 
for zC3l(x, t) are smaller than those for zO>(x, t) at K = 2048; (ii) the order of £-uniform 
convergence with respect to -r is higher for scheme (6.4), (7.4) than that for scheme (6.3), 
(7.4), and the order for scheme (6.7), (7.4) is higher than for scheme (6.4), (7.4); (iii) the 
order of convergence with respect to -r increases for the functions zCk) (x, t) with increasing 
k; (iv) for sufficiently large N the order of convergence with respect to the space variable 
is nearly two, uniformly ins. 

Because the space error is smaller fore = 1, this case shows more clearly the effect 
of the defect correction in time. Hence, for illustration, Table 5 is derived from the values 
E (N;, Kj, s) shown in Tables 2, 3 and 4, for s = I. In Table 5 we give the ratios 

r = E(N;, Kj. 1)/E(N;, Kj+I· 1) > mo, 

where the value mo is chosen as above. From Table 5 we see that the function E(N, K, s) 
for N = 2048 for zOl decreases by a factor 2, when K is doubled, for zC2l it decreases by 
a factor 4, and for zC3l by a factor of 8 for not too large K. 

When the parameter s increases, a similar behaviour of the function E (N, K, s) is 
observed, however for much larger values of the number N. From the tables we can see 
that the order of convergence with respect to the space variable is close to 2, uniformly in 
e, for sufficiently large N. 

Comparing the present results with those in Hemker et al. ( 1997) we can make the 
following remarks: (i) for the model problem (7.3), the errors for the schemes (6.3), (7.4); 
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TABLE4 

Table of errors E(N, K, e) for scheme (6.7), (7.4). E(N, K, e) is defined by (5.2), where 

z(x, t) = z~~~7)(x, t), u*(x, t) = V(7.2)(x, t), Gh -(*) = Gh(7.4)· 

N 
e K 8 16 32 64 128 256 512 1024 2048 
1 8 l ·64-3 I-11-3 9-66-4 9·32-4 9·23-4 9·21-4 9·20-4 9·20-4 9·20-4 

16 8·61-4 3·08-4 1-67-4 1·32-4 1·23-4 1 ·21-4 1-21-4 l ·21-4 l ·20-4 
32 7-60-4 2·03-4 6-23-5 1 ·70-5 1·83-5 1 ·61-5 1·55-5 l ·54-5 1 ·53-5 
64 7·47-4 1·90-4 4·90-5 1 ·37-5 4·83-6 2·63-6 2·08-6 1 ·95-6 1·91-6 
128 7·45-4 1 ·88-4 4·73-5 l ·20-5 3·14-6 9·31-7 3·99-7 2-78-7 2·51-7 
256 7·45-4 1·88-4 4·71-5 1·18-5 2-92-6 7-18-7 2·04-7 l ·16-7 l ·01-7 
512 7·45-4 1 ·88-4 4·71-5 1 ·17-5 2·90-6 6·92-7 1·81-7 1 ·06-7 9·24-8 
1024 7·45-4 1·88-4 4·71-5 1·17-5 2·89-6 6-88-7 l ·78-7 l ·05-7 9·13-8 
2048 7·45-4 1 ·88-4 4·71-5 1-17-5 2-89-6 6·88-7 1-78-7 1'05-7 9·11-8 

2 2 8 1 ·59-2 5·01-3 2-13-3 1 ·40-3 l ·21-3 1-17-3 1·16-3 I-15-3 1-15-3 
16 l ·49-2 4·04-3 l ·13-3 3·96-4 2·10-4 1·63-4 1-52-4 1 ·49-4 1 ·48-4 
32 1·48-2 3·91-3 l ·00-3 2-67-4 8·10-5 3-44-5 2-28-5 1 ·99-5 l ·92-5 
64 l ·48-2 3·89-3 9·88-4 2·51-4 6·46-5 l ·80-5 6-31-6 3·41-6 2·69-6 
128 1-48-2 3·89-3 9·86-4 2-49-4 6-25-5 l ·59-5 4·22-6 l ·33-6 6·31-7 
256 1 ·48-2 3·89-3 9·86-4 2·49-4 6-23-5 1·56-5 3·96-6 1·07-6 6-31-7 
512 l ·48-2 3·89-3 9·86-4 2-49-4 6-22-5 l ·56-5 3·93-6 1 ·04-6 3-49-7 
1024 1·48-2 3·89-3 9·86-4 2-49-4 6·22-5 l ·56-5 3·92-6 l ·03-6 3-45-7 
2048 1 ·48-2 3·89-3 9·86-4 2-49-4 6-22-5 l ·56-5 3·92-6 1 ·03-6 3-45-7 

z-4 8 4·16-2 2·72-2 l ·21-2 5·01-3 2·13-3 1·40-3 1·21-3 1 ·17-3 1·16-3 
16 4·10-2 2·63-2 1 ·12-2 4·04-3 I-13-3 3·96-4 2·10-4 1·63-4 1·52-4 
32 4·09-2 2·62-2 1 ·10-2 3·91-3 1·00-3 2-67-4 8·10-5 3·44-5 2-28-5 
64 4·09-2 2·62-2 1-10-2 3·89-3 9·88-4 2·51-4 6·46-5 I ·80-5 6-31-6 
128 4·09-2 2·62-2 1-10-2 3·89-3 9·86-4 2-49-4 6-25-5 l ·59-5 4·22-6 
256 4·09-2 2·62-2 1-10-2 3·89-3 9·86-4 2-49-4 6-23-5 l ·56-5 3-96-6 
512 4·09-2 2·62-2 l ·10-2 3-89-3 9·86-4 2-49-4 6-22-5 1-56-5 3·93-6 
1024 4·09-2 2·62-2 1·10-2 3·89-3 9·86-4 2-49-4 6-22-5 1-56-5 3·92-6 
2048 4·09-2 2·62-2 1-10-2 3·89-3 9·86-4 2-49-4 6-22-5 1-56-5 3·92-6 

2 6 8 4·16-2 2·72-2 l ·21-2 5·34-3 2·59-3 1 ·63-3 l ·30-3 1-20-3 1·17-3 
& 16 4·10-2 2·63-2 1-12-2 4·36-3 1·60-3 6-22-4 2-99-4 1·94-4 l ·62-4 

2-8 32 4·09-2 2·62-2 1·10-2 4·23-3 1·47-3 4·95-4 1 ·70-4 6-55-5 3-30-5 
64 4·09-2 2-62-2 l ·10-2 4·22-3 1·45-3 4·79-4 1·54-4 4·91-5 1·65-5 
128 4·09-2 2·62-2 1·10-2 4·22-3 1·45-3 4·77-4 1·51-4 4·70-5 l ·45-5 
256 4·09-2 2·62-2 1·10-2 4·22-3 1-45-3 4·76-4 l ·51-4 4·68-5 l ·42-5 
512 4·09-2 2·62-2 1·10-2 4·22-3 1·45-3 4·76-4 1 ·51-4 4·67-5 1 ·42-5 
1024 4·09-2 2·62-2 1·10-2 4·22-3 1·45-3 4-76-4 1'51-4 4·67-5 1 ·42-5 
2048 4·09-2 2·62-2 1·10-2 4·22-3 1·45-3 4·76-4 I ·51-4 4·67-5 1 ·42-5 

(6.4), (7.4) and (6.7), (7.4) are comparable with those in Hemker et al. (1997), but now we 
can show results for a wider range of parameters N and K; (ii) in Hemker et al. (1997) 
defect correction schemes were considered for sequences of embedded time-refined meshes 
(meshes that were refined in the time variable). Here we use a single time mesh, both for the 
corrected solution and for the auxiliary solutions. This essentially simplifies the structure 
of the schemes and consequently their computer implementation. Finally: (iii) in Hemker 
et al. (1997) an order of convergence with respect to the space variable of O(N-1 lnN) 
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TABLE 5 
Table of the ratios r = E(Ni, Kj, l)/E(Ni, Kj+l· l) > mo. Here E(Ni, Kj, !) is the 
error in z<k) (x, t), k = 1, 2, 3, as in Tables 2-4; mo is as described in the text. Where the 

space error dominates, r < mo is indicated by *· 

N 
k K 8 16 32 64 128 256 512 1024 2048 

8 l ·88 l ·91 1·92 l ·92 1·92 l ·92 l ·92 1 ·92 1·92 
16 1 ·88 l ·94 1 ·95 l ·96 1·96 1·96 1·96 1·96 1·96 
32 1-84 1·94 l ·97 1·98 1·98 1 ·98 1·98 l ·98 1·98 
64 1·74 l ·91 1 ·97 l ·98 1·99 1·99 1 ·99 1·99 1 ·99 
128 * 1 ·85 1 ·95 1·98 1·99 1·99 1·99 1·99 1·99 
256 * l ·75 1·92 l ·98 1·99 2·00 2·00 2·00 2·00 
512 * * J.86 1·96 1·99 2·00 2·00 2·00 2·00 
1024 * * l ·75 1·92 1 ·98 l ·99 2·00 2·00 2·00 

2 8 * 3-43 3·64 3·70 3·71 3·72 3·72 3·72 3·72 
16 * * 3·57 3·78 3·84 3·85 3·86 3·86 3·86 
32 * * 3·03 3·64 3·85 3·91 3·93 3·93 3·93 
64 * * * 3·06 3·68 3·89 3·95 3·97 3·97 
128 * * * * 3·09 3·71 3·92 3·98 4·00 
256 * * * * * 3·13 3·77 3·99 4·06 
512 * * * * * * 3·23 3·89 4·12 
1024 * * * * * * * * * 

3 8 * * 5·78 7·05 7·48 7·60 7·63 7·64 7·64 
16 * * * * 6·76 7·55 7·78 7·84 7·85 
32 * * * * * 6-11 7-45 7·90 8·02 
64 * * * * * * 5·22 7·00 7·63 
128 * * * * * * * * * 
256 * * * * * * * * * 
512 * * * * * * * * * 
1024 * * * * * * * * * 

could be shown theoretically. Here, with the simpler defect correction schemes, a better 
theoretical order of convergence for the space variable, O(N-2 in2 N), is achieved. 

8. Conclusions 

In this paper we showed a possible defect correction procedure that can easily be 
implemented in order to improve the time accuracy, whilst still retaining &-uniform second
order accuracy in the space discretization, for a parabolic PDE. 

The approximation error consists of two components. One is due to the discretization 
of the space variable and the other is due to the time discretization. The defect correction 
process only improves the accuracy with respect to the time and does not change the 
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approximation with respect to the space variable. Therefore, by application of the defect 
correction, the principal part of the total error becomes that due to the approximation of 
the space variable. 

By using the defect correction we are able to increase the accuracy of the approximate 
solution essentially, i.e. from lst to 2nd and 3rd order in r. In the present paper we use the 
same time mesh for the corrected solution and for the auxiliary solutions. Therefore the 
structure of the present schemes is much simpler than that of those introduced in Hemker 
et al. (1997). Numerical results illustrate that, also in practice, the order of convergence 
with respect to the space variable is close to two. 
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Appendix 

A.1 Estimates of the solution and its derivatives 

In this appendix we rely on the a priori estimates for the solution of problem (2.1) on the 
domain G = D x (0, T], and its derivatives as derived for elliptic and parabolic equations 
in Shishkin ( 1987, 1992). 

We denote by H {a) (G) = H a.a/2( G) the Holder space, where et is an arbitrary positive 
number (Ladyzhenskaya & Ural'tseva, 1973). We suppose that the functions f(x, t) and 
cp(x, t) satisfy compatibility conditions at the comer points, so that the solution of the 
boundary value problem is smooth for every fixed value of the parameter 8. 

For simplicity, we assume that at the corner points So n S 1 the following conditions 
hold 

ak ako 
-kcp(x, t) = -k rp(x, t) = 0, 
ax at {) 

k + 2ko ::;; [et]+ 2n, 

ak+ko 
--f(x t)-0 axk atko ' - , k + 2ko ::;; [et) + 2n - 2, 

(A. I) 

where [a] is the integer part of a number a, et > 0, n ) 0 is an integer. We also suppose 
that [a)+ 2n ) 2. 

Using interior a priori estimates and estimates up to the boundary for the regular 
function u(~, t) (cf. Ladyzhenskaya & Ural'tseva, 1973), where u(~, t) = u(x(O. t), 
~ = x /s, we find for (x, t) E G the estimate 

I ak+ko I 
k k u (x, t) ~ Ms -k, 

ax at ·o 

This estimate holds, for example, for 

k + 2ko ~ 2n + 4, 

u E H (2n+4+v) ( G)' v > 0, 

where v is some small number. 

fl ;:;:: 0. (A.2) 

(A.3) 

For example, (A.3) is guaranteed for the solution of (2.1) if the coefficients satisfy 
a E H (a+2n-l)(G), c, p, f E H (a+ 2n-2l(G), <p E H (a+2n)(G), et > 4, n ) 0 and 
condition (A. l) is fulfilled. 

In fact we need a more accurate estimate than (A.2). Therefore, we represent the 
solution of the boundary value problem (2.1) in the form of the sum 

u(x, t) = U(x, t) + W(x, t), (x,t)EG, (A.4) 

where U (x, t) represents the regular part, and W (x, t) the singular part, i.e. the parabolic 
boundary layer. The function U (x, t) is the smooth solution of equation (2.1 a) satisfying 
condition (2.lb) fort = 0. For example, under suitable assumptions for the data of 
the problem, we can consider the solution of the Dirichlet boundary value problem for 
equation (2.1 a) smoothly extended to the domain G * (where G * is a sufficiently large 
neighbourhood of G).On the domain G the coefficients and the initial value of the extended 
problem are the same as for (2.1 ). Then the function U (x, t) is the restriction (on G) of the 
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solution to the extended problem, and U E H(2n+4+vl(G), v > 0. The function W(x, t) 

is the solution of a boundary value problem for the parabolic equation 

Lc2.I) W(x, t) = 0, (x,t)EG, (A.5) 

W(x, t) = u(x, t) - U(x, t), (x, t) E S. 

If (A.1) is true then W E H(2n+4+v)(G). Now, for the functions U(x, t) and W(x, t) we 
derive the estimates 

I ak+ko j 
axk Btko U(x, t) ~ M, (A.6) 

and 

(A.7) 

(x,t)EG, k + 2ko ~ 2n + 4, 

where r (x, y) is the distance between the point x E [0, I] and the set y which represents 
the endpoints of the segment [0, I], mcA.7) is a sufficiently small, positive number. The 
estimates (A.6) and (A.7) hold, for example, when 

U, W EH <2n+4+v)(G), v > 0. (A.8) 

The inclusions (A.8) are guaranteed if a E H(a+2n-l)(G), c, p, j E H(a+2n-2l(G), 
<p E H Ca+2n) ( G), a > 4, n ~ 0 and condition (A. I) is fulfilled. We summarize these 
results in the following theorem. 

THEOREM 5 Assume in equation (2.1) that a E H Ca+2n-ll(G), c, p, f E 

H Ca+2n-2l(G), <p E H (a+2nl(G), a > 4, n ~ 0 and let condition (A.I) be fulfilled. Then, 
for the solution, u (x, t), of problem (2.1 ), and for its components in the representation 
(A.4), it follows that u, U, W E H<a+2nl(G) and that the estimates (A.2), (A.6), (A.7) 
hold. 

The proof of the theorem is similar to the proof in Shishkin (1992), where the equation 

2 a2u au 
e a(x, t) ax2 (x, t) - c(x, t)u(x, t) - p(x, t)at(x, t) = f(x, t) 

was considered. 

A.2 The proof of Theorem 3 

Let us show that the function 81 z(x, t), where z(x, t) = Z(6.3J(x, t) is the solution of the 
difference problem (6.3), approximates the function 81u(x, t) e-uniformly. For simplicity 
we assume a (x, t) to be constant on G. The function 81 z (x, t) is the solution of the 
difference problem 

A(A.9)D/Z(X, t) = f(A.9)(X, t), 

81z(x, t) = 'P(A.9J(X, t), 

G [I] 
(x, t) E h , 

S [I] 
(x, t) E h . 

(A.9a) 

(A.9b) 
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Here 

Slkl _ G !kl \ alkl 
h - h h ' k ~ 1, 

A(A.9)0/Z(X, t) = { s2a 8-x:x - c(x' t) - JJt(X, t) - p(x, t) or} orz(x, t), 

f(A.9)(x, t) = ft(x, t) + c;-(x, t)z(x, t), 

'P(A.9)(X, t) = <pr(X, t), x =0, d, 

'PCA.9) (x, t) ='Pc~.9) (x) = T-I [ z(x, T) - <p(x, 0)], 

v(x, t) = v(x, t - r). 

[!] 
(x, t) E Sh , 

t = T, 
[!] 

(x, t) E Sh , 

The function oru(x, t) = [u(x, t) - u(x, t - T)]/r, (x, t) E G, t ~ r is the solution 
of the differential problem 

Here 

L(A.10)0/U(X, t) = f(A.IO)(X, t), 

81u(x, t) = 'P(A.IOJ(X, t), 

(x, t) E al1l, 

(x, t) E s1 11. 

-[kl -
G =Cn{t~h}, clkl=cn{t>h}. 

2 a2 
v v a 

LcA.JO)O"fU(X, t) = 8 a ax2 - c(x, t) - JJt(X, t) - p(x, t) at O/U(X' t), 

(A.lOa) 

(A.lOb) 

f(A.IO)(X, t)= fT(X, t) + C((X, t)u(x, t) + P/(X, t) ( ~: (x, t) - O(U(X, t)) , 
'P(A.IO)(X, t) = <p/(X, t), X = 0, d, (X, t) E sill, 

'PCA.10) (x, t) ='Pc~.!Ol(x) = .-1 [ u(x, r) - rp(x, 0)], 

Let us estimate 

where 
w(x, t) = u(x, t) - z(x, t), 

The function w (x, t) is the solution of the problem 

11.(6.3) w(x, t) = (Ac6.3l - Lc2.1i) u(x, t), 

w(x, t) = 0, (x, t) E Sh. 

t = r, (x, t) E Sill. 

The above assumptions and Theorem 5 lead to the estimate of the truncation error 

(x, t) E Gh-

I 
j 
! 
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Using the maximum principle we estimate w(x, t) 

lw(x, t) I ~ M [ N- 1 In N + r] t, (x, t) E Gh. 

Further, for the derivatives we proceed similarly. On the boundary we have 

l81u(x, r) - 81z(x, r)I = lr;oc~.IO)(x) - 'Pc~.9)(x)I ~ M [ N-1 ln N + T J, 
(X t) E sill 

' h ' t = T, 

i.e. the function 81z(x, r) approximates 81u(x, r) 8-uniforrnly. Now, it is easy to see that 
the difference problem (A.9) approximates the solution of the differential equation for the 
divided difference (A. I 0). Thus, using the same argument as above, we derive the estimate 

-(!] 
(x,t) E Gh . 

Now, for the 2nd difference derivative we show that under condition (6.5) the function 

821 z(x, t) approximates the function 821 u (x, t) 8-uniforrnly on the set G !21 . So, the 
functions 82rz(x, t) and o21u(x, t) are solutions of the equations 

A(A.IJJ821z(x, t) = f(A.llJ(X, t), 

L(A.I2)821u(x, t) = f(A.!2)(X, t), 

G(2] 
(x,t)E h, 

G [2] 
(x, t) E h • 

(A.I la) 

(A.12a) 

The equations are found by applying the operator 81 to equations (A.9a), (A. lOa). At the 
left and right boundary the following conditions are satisfied: 

821z(x, t) = 'P(A.11J(x, t), 

where 
'P(A.llj{X, t) = 'P21(X, t), x =0, d, 

'P(A.llj(X, t) = 'P(~.ll)(X) =: 02iZ(6.3)(X, t), 

'P(A.!2J(X, t) = 'P2I(X, t), x = 0, d, 

'P(A.!2J(X, t) = 'P(~.l2)(x) = 821 u (x, t), 

First we estimate 

[2] 
(x, t) E Sh , 

S[2] 
(x, t) E h , 

[2] 
(x, t) E Sh , 

(A.llb) 

(A.12b) 

(A.I le) 

( ) S[2] 
t=2r, x,t Eh, 

(x, t) E sl2l, (A.12c) 

t = 2r, (x, t) E sl2l. 

t = 2r. 

For this purpose we write the function u(x, t) in a Taylor expansion fort 

(x, t) E G, (A.13) 
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where the coefficients aO)(x), aC2)(x) should be determined. Inserting u(x, t), in its form 
(A.13), into equation (2. la) we come to the systems 

-p(x, O)a(l)(x) = f(x, 0), 

-2p(x, O)a<2l(x) +e2a 02
2 a<O(x)-(c(x, 0) - !_p(x, 0)) a<1)(x)= 3

3 f(x, 0), 
ax ot t 

from which the functions aOl(x), a<2)(x) are found successively. The function v2(x, t) is 
the solution of the boundary value problem 

Lc2.1)v2(x, t) = /(A.14J(x, t) = f(x, t) - L(2.J)U[2l(x, t), 

v2(x, t) = cp(A.14J(X, t) = cp(x, t) - u l2l(x, t), 

(x,t)EG, 

(x, t) E S. 

(A.14) 

Estimating fcA.14) (x, t) and 'P(A.14) (x, t ), and using the maximum principle we derive the 
estimate 

(x,t)EG. (A.15) 

Further, we have to construct the function z(x, t) in the form 

z(x, t) = (bJ1\x) + bp>(x)r)t + bJ2>(x)t2 + v;(x, t) 

=zl2l(x, t) + v;(x, t), (x, t) E Gh, 

i.e. as an expansion in powers of rand t. Inserting z(x, t) into equation (6.3), we arrive 
at the equations 

-p(x, O)bJ 0 <x) = f(x, 0), 

-2p(x, 0)bJ2) (x) + e2a 02
2 bJ1>(x) - (c(x, 0) + !._ p(x, 0)) bJ1) (x) = : f (x, 0), 

ax ot vt 

bJ2\x) +hi°) (x) = 0. 
So, we have 

(x, t) E Gh. (A.16) 

The function v;(x, t) is the solution of the discrete boundary value problem 

A(6.3)V;(x, t) = /(A.17)(X, t) = f(x, t) -Ac6.3)Z[21 (x, t), 

v; (x, t) = cp(A.!7)(X, t) = cp(x, t) - z l2l(x, t), 

(x, t) E Gh, (A.17) 

(x, t) E Sh. 

Taking into account estimates of the functions fcA.17)(X, t) and 'P(A.17)(X, t), we derive the 
estimate 

(x, t) E Gh. (A.18) 

By virtue of relations (A.15), (A.16), (A.18) the following inequality is valid: 

I 'P(~.!2) (x) - 'Pc~.ll) (x) I = i 021u(x, t) - 821z(x, t) I (A.19) 

~M[N-1 lnN+r], (x,t)EGh, t = 2-r. 
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We continue by estimating 827u(x, t) - 821z(x, t) fort > 2r. Note that the functions 
821u(x, t) and 827z(x, t) are solutions of differential and difference equations, obtained 
from equations (2.1) and (6.3) respectively by applying the operator 827. Moreover, the 
difference equation for 821z(x, t) approximates the differential equation for 821u(x, t) s
uniformly. On the boundary Sh, for x = 0 or x = I, we have 821u (x, t) = 821z(x, t). 
Taking into account estimate (A.19) we find 

J827u(x,t)-827z(x,t)j ~M[N- 1 1nN+r], 

(x, t) E eh, 
Taking into account (6.5) we easily see 

t ~ 2-r. 

J (A(6.3) - L(2.l)) u(x, t) I~ M [N-2 In2 N + r], x ::fa a, d - a, 

J (A(6.3) - L(2.l)) u(x, t) j ~ M [min (t, l)N-1 ln N + r], x =a, d - a, 

(x, t) E eh. 
Proceeding in the same way as we did to obtain (A.20), we obtain the estimates 

(A.20) 

Joru(x,t)-8rz0\x,t)j~M[N-2 1n2 N+r], (x,t)EGh, t~r. 

J827u(x,t)-821z< 1l(x,t)j~M[N-2 1nN+r], (x,t)EGh, t~2r. (A.21) 

(x, t) E eh. 

This completes the proof. 
Now, as a direct consequence of the theorem, we make two remarks to prepare the 

proof of Theorem 4 

REMARK 6 In the above we have found (A.22) fork = I. In completely the same way 
we derive this bound for k = 2, so that we obtain 

(A.22) 

t ~ 2-r, k ~ 2. 

REMARK 7 Making use of (A.22), similar to the derivation of estimate (A.21 ), we also 
find 

(A.23) 

t ~ 3-r. 

We briefly indicate the differences with the proof given above for (A.21 ). To estimate the 
difference between 837 u (x, t) and 837 z(x, t) fort = 3-r we represent the function u(x, t) 
(with condition (6.8)) in the form 

u(x, t) =a<2l(x)t2 + a<3l (x)t3 + v3(x, t) = u [3l(x, t) + v3 (x, t), (x, t) E e, 
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and the function z(x, t) in the fonn 

z(x, t) = uC3l(x, t) + (b\1)(x)r + hil)(x)r2)t + hi2)(x)rt2 + v;(x, t) 

The coefficients of these expansions are found using equations (2.1) and ( 6.3) respectively. 
For the coefficients we have the system 

a 
-p(x,O)a<2>(x) = a/(x,O), 

-3p(x, O)a<3>(x) + s 2a 02
2 a<2>(x) - (c(x, 0) + 2~p(x, 0)) a<2\x) = 2 -t ~ f(x, 0), ax at at 

-bt°l(x)+a<2>(x) =0, 

-2p(x, O)b 1(
2)(x) + :tp(x, O)a <2>(x) + 3p(x, O)a <3>(x) 

+ (-:t p(x, 0) - c(x, 0)) hi°)(x) + s 2a a~2 bi°)(x) = 0, 

-bil) (x) - a <3> (x) + b1<2> (x) = 0. 

The unknown functions a<2>, a(3), b\1l, b\2>, hil) can be found successively. For the 

functions v3 (x, t) and v; (x, t) the following estimates are derived 

I v3(x, t) I~ Mt4, (x, t) E G, 

I v~(x, t) I~ M [ N-2 ln2 N + t J t3, 

For these inequalities and the expression for z!3l(x, t) it follows that (A.23) holds s
uniformly for t = 3r. The remainder of the proof of the estimate (A.23) repeats, with 
small variations, the proof of the estimate (A.21). 

A.3 The proof of Theorem 4 

Notice that, if for the functions z (I) (x, t ), z (Z) (x, t) the following relations hold 

I 83iu(x, t) -83iZ(I)(x, t) I~ M [ N-2 ln2 N + r], 

I 827u(x, t) - 827z<2>(x, t) I :::;: M [ N-2 ln2 N + r 2], 

t ~ 3r, 

(A.24) 

t ~ 2r, 

then for the difference u(x, t) - z <3>(x, t) = w(3)(x, t) we have the following 

(x, t) E Gh, 
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ci/3)(x, t) = 0, (x, t) E Sh. 

Hence we have 

j u(x, t) - zC3)(x, t) I~ M [ N-2 1n2 N + r 3J, (x, t) E Gh. 

Thus, for the proof of the theorem it is sufficient to show inequalities (A.24). These 
inequalities follow from (A.22), (A.23). Thus we have proved Theorem 4. 


