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We investigate the frequency of complete sets for various complexity
classes within &.#'# under several polynomial-time reductions in the sense of
resource-bounded measure. We show that these sets are scarce: The sets that
are <P, -complete for . 172, the levels of the polynomial-time hierarchy,
and 29 2.c/%6 have py-measure zero for any constant a < 1; The <P._ -
complete sets for &.4°.2 have p,-measure zero for any constant ¢; Assuming
Aof £84F, the <P -complete sets for .42 have p-measure zero. A key
ingredient is the Small Span Theorem, which states that for any set 4 in
&.4°# at least one of its lower span (i.e., the sets that reduce to A) or its upper
span (ie., the sets that A reduces to) has p,-measure zero. Previous to our
work, the best published theorem along these lines held for <§, -reductions.
We establish it for <P -reductions. € 1999 Academic Press

I. INTRODUCTION

Lutz introduced resource-bounded measure [16] to formalize the notions of
scarceness and abundance in complexity theory. His approach makes it possible to
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express statements like “only a few™ or “most” sets in a complexity class % have
property P. Many papers investigate resource-bounded measure in relation with
complexity theory [ 14, 20, 22, 1. 21, 25, 19, 2].

We can also use resource-bounded measure as a tool for separating complexity
classes. For example, if we could show that the complete sets in complexity class %
have measure zero and the complete sets in Z do not, we would have separated %
from <.

In this paper we follow that line of research. We investigate complete and hard
sets for . 1.2, the levels of the polynomial-time hierarchy, 2 .2.</% &, and 6472,
and give some evidence that they have p,-measure zero. On the other hand, the
results of Bennett and Gill [8] imply that the <F-hard sets for .4.2.# do not have
po-measure zero; Allender and Strauss [ 1] even showed they have p,-measure 1 in
4P,

We use three different approaches to obtain our results. Two of them yield
unhypothesized statements on the border of what is provable by relativizable
techniques. First, we significantly improve the Small Span Theorem of Juedes and
Lutz [14]. The Small Span Theorem for a reducibility <P states that for any set
A in 644, either the class of sets that <P-reduce to 4 (called the lower span of 4),
or the class of sets that 4 <P-reduces to (the upper span of A4), or both have
po-measure 0. Since the degree of a set is the intersection of its lower and upper
spans, it implies that every <P-degree has p,-measure zero, and in particular the
<P-complete degree of any complexity class within &.2°#. The strongest Small
Span Theorem previous to our work was due to Ambos-Spies, Neis, and Terwijn
[4], who proved it for <E -reductions. The extension to reductions with a non-
constant number of queries was a notorious open problem in the area. We establish
the Small Span Theorem for <P.,-reductions, i.e., for nonadaptive reductions
that make a subpolynomial number of queries. Longpré [15] informed us that he
obtained a Small Span Theorem for <{, ), -reductions at the end of 1995 using
the compressibility method [9].

Lutz [18] obtained a Small Span Theorem for nonuniform reductions w.r.t.
pspace-measure. Similar to his proof, our Small Span Theorem follows from the fact
that most sets in &.2.2 have a <Py, ,-upper span with p,-measure zero. We
actually establish this fact for <P, -reductions for any constant o« < 1. This way,
we get stronger results on the scarceness of complete sets than the ones that follow
from the Small Span Theorem: Any <P._, -degree within &.7°# has p,-measure
zero. Previously, it was only known for <P, -reductions that the p,-measure of the
complete sets for &.4.# have p,-measure zero [4, 10]. We also obtain that the
p->-measure of the <P, | -hard sets for & and &4 is zero.

Then we take a look at &£.4.#, in particular, and use an ad hoc technique to
improve the results of the first approach for this particular case. We show that the
<P -complete sets for 4.4 have p,-measure zero for any constant ¢. Our proofs
relativize and are on the edge of the scope of relativizable techniques: Showing the
last theorem for unbounded growing exponent ¢ would separate .4.2.2 from & .4.2.

Therefore, we next look at what we can show under a nonrelativizing reasonable,
but yet unproven, complexity theoretic hypothesis, namely the assumption that
M of # XS, Babai, Fortnow, Nisan, and Wigderson [5] established the existence
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of a pseudo-random generator that can be used to simulate 4.#.# in subexponential
time for infinitely many input lengths, unless ../ =¢&.4'.#. Using this pseudo-
random generator, Buhrman, Van Melkebeek., Regan, Sivakumar, and Strauss [12]
showed that the class of <P -complete sets for each of the 4-levels of the polyno-
mial-time hierarchy has p-measure zero, unless &.4°2=./.</. Combining our
second approach with theirs and some new ingredients, we are able to prove that
the complete sets for £4.# under <%-reductions that make their queries in
lexicographic order, have p-measure zero unless £.4.# =.//.</. In particular, the
<P-complete sets for £.4.# have p-measure zero unless 642 = ./ .</.
Summarizing our results:

o We prove a Small Span Theorem for <P, -reductions.

o We show that the <P,_ -complete sets for . 1.2, the levels of the polyno-
mial-time hierarchy, and 2.9 .2.</%& have p,-measure zero for any « < 1.

o We show that the <P, | -hard sets for & and &£.#.# have p,-measure zero
for any a < 1.

o We show that the <P.__-complete sets for §.4.# have p,-measure zero for
any constant c.

o We show that the <P -complete sets for £.4°# have p-measure zero unless
Mo/ = &4 (and the polynomial-time hierarchy collapses).

The organization of this paper is as follows. We first give the necessary back-
ground on resource-bounded measure and on pseudo-random generators. Section 3
describes our results for arbitrary subclasses of &.4.#. Then we discuss our results
particular to &.4.2. Section 4 contains those without any complexity theoretic
assumption: Section 5 contains those using the hypothesis . /.«/ # &.2".#. Finally, we
give some comments and mention remaining open problems.

2. NOTATION AND PRELIMINARIES

Most of our complexity theoretic notation is standard. We refer the reader to the
textbooks by Balcazar, Diaz, and Gabarrd [7,6]. and by Papadimitriou [24].

A reduction of a set A to a set B is a polynomial-time oracle Turing machine M
such that M®=4. We say that 4 reduces to B and we write A<SE B (“T” for
Turing). The reduction M is nonaduptive if the oracle queries M makes on any
input are independent of the oracle. In that case we write 4 <{ B (“tt” for truth-
table). If, in addition, the number of queries on an input of length n is bounded by
g(n), we write 4 <P, B. For a reducibility <7. we define the lower span of a set
Aas A(A)={B|B<P Al and the upper span of A as #7'(A)={B|A<? B}. The
<Podegree of A equals 2A(A)n .27 (A).

An autoreduction M is a reduction that never queries its own input; ie., for any
input x and any oracle B, M# with input x does not query x. A set A is auto-
reducible if there is an autoreduction of A to itself.
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2.1. Background on Resource-Bounded Meuasure

For our purposes, we only have to define what it means to have resource-bounded
measure zero.

DeriNITION 2.1, A supermartingale is a function ot Z* — [0, o) satisfying

dow0) +d(wl)
9

diw) = (1)

for every we X*. If equality holds in (1) for all w, dis called a martingule. A super-
martingale succeeds on a sequence we X* if dlw)=lmsup,, -, oo dw) =0, It
corers a class ¢ of sequences if it succeeds on every sequence in 4.

A martingale « describes a strategy for an infinite one-person betting game. At
the beginning of the game, an infinite bit sequence w is fixed but not revealed. The
player starts with initial capital d(4), and in each round guesses the next bit of w
and bets some of his capital on that outcome. Then the actual value of the bit is
revealed. On a correct guess, the player earns the amount of money he bet;
otherwise he loses it. The value of d(w) equals the capital of the player after being
revealed the bit sequence w. The player wins on w if he manages to make his capital
arbitrarily high during the game. A supermartingale describes a similar game, but
now the player is allowed to throw away some of his capital in every round.

Martingales yield the following characterization.

THEOREM 2.2. A class € € X has Lebesgue measure zero iff it can be covered by
a martingale iff it can be covered by ua supermartingale.

We obtain a resource bounded variant by putting resource bounds on the
martingales.

DerINITION 2.3 [17]. A (super)martingale  is a p-(super)martingale (resp.
p2-(super)martingale) if we can compute d(w) in time polynomial in || (resp. in
time 2'e”" M) A system d; of (super)martingales is p-uniform (resp. p,-uniform) if
we can compute d;(w) in time polynomial in |w|+/ (resp. in time 28" (Il +0)
A class € €X' has p-measure (resp. py-measure) zero if it can be covered by a
p-supermartingale (resp. pp-supermartingale). We denote this by u A6)=0 (resp.
Up,(6)=0).

As in the unbounded case, the resource-bounded measure-zero relations are
monotone and closed under union. The following resource bounded version of
closure under countable unions holds.

THEOREM 2.4 [17].  Let d; be a p-uniform (resp. py-uniform) system of supermear-
tingales such that d; covers the class 6,. Then \);6; has p-measure (resp. p,-measure)
zero.

Characteristic sequences provide the link between resource-bounded measure and
complexity theory: We associate with a set 4 < 2* its characteristic sequence 4=
Alsg) Alsy) A(sz) -+ -, where ¢, 51, 55, ... is the enumeration of £'* in lexicographical
order.
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The crucial property of the resource-bounded measure-zero concepts not shared
with the Lebesgue measure-zero concept, is that (&) #0 and W, (EL2Y#0 [17].

2.2, Background on Pseudo-Random Generators

DerINITION 2.5 [23]. The hardness H 4(n) of a set 4 at length n is the largest
integer s such that for any circuit C of size at most s with » inputs

5 s

PrC(x)=A4(x)] . Sl
X S

where v is uniformly distributed over 2. A pseudo-randoni generator is a function
G that, for each n, maps 2" into X", where r(1n) >n. The security Sg(n) of G at
length n is the largest integer s such that for any circuit C of size at most s with
F(n) inputs

P [Clx)=1]=Pr [C(G(y) =1]] <i

where x is uniformly distributed over 2" and y over X"

For our purposes, we will need a pseudo-random generator computable in & that
stretches seeds superpolynomially and has superpolynomial security at infinitely
many lengths. We will use the one provided by the following theorem.

THEOREM 2.6. If . //.</ # 842, there is a pseudo-random generator G computable
in & with r(n)en®" such that for any integer k, Sg(n) = n* for infinitely many n.

The proof follows directly from the next results of Babai, Fortnow, Nisan, and
Wigderson [5], and Nisan and Wigderson [23], combined with some padding.

THEOREM 2.7 [5]. If . Hof #ELP, there is a set A€ AP such that for any
integer k. H (n)=n* for infinitely many n.

THEOREM 2.8 [23].  Given any set A e 842, there is a pseudo-random generator
G computable in 642 with rin)en® 8" such that S(;(}1)6Q(HA(ﬂ)/}z).

3. COMPLETE SETS UNDER NON-ADAPTIVE REDUCTIONS WITH
n®* QUERIES AND A SMALL SPAN THEOREM

In this section, we establish our results on the measure of complete and hard sets
for complexity classes within &.#.#. The following theorem forms the main
ingredient. It states that most sets in &.2°# have a small upper span under <%._,-
reductions for constant « < 1. Later we also show a strong connection with the
Small Span Theorem.

THEOREM 3.1.  For any x <1,

UL AEELP |1, (P 7k (A) #£0})=0.
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FIG. 1. Betting strategies at stage /.

We first give an outline of the proof. Fix a <!._ -reduction M running in time
n* for some constant ¢ >0, and a set 4ed.4.2. We would like to construct a
p.-martingale that succeeds on any set B for which M# = 4. Suppose we are given
the initial segment 1v; of y, corresponding to all strings of length less than m;. See
Fig. 1. We can select an input x of length n;=m]" for some constant &¢>0 and
divide the available capital uniformly among the extensions ., of w, correspond-
ing to all strings of length less than i, | (m,, =n¢) for which M+ 1(x)= A(x).
This way, our capital at the end of stage /i is definitely not smaller than at the
beginning, and in case only half or fewer of the extensions pass the consistency test
on x, we actually double it or better. In order to be able to bet on the sets 4 € &.4°.#
for which this strategy fails on some set B such that M %= A, we will perform the
consistency check, not for a single input x of length #,, but for a certain collection
Iy of nf +1 inputs x of length n,. We distribute the available capital uniformly
over all extensions w} | for which M"i+1(x) = A(x) for every x eI, ;. If there is an
input xe I, , for which only half or fewer of the extensions ', | satisfy M "“+1(x) =
A(x), we gain a factor of 2 or more in stage / while betting on B. We will try this
strategy at every stage i, and we succeed on B if the latter situation occurs for
infinitely many of them.

Now, suppose that for some B to which M reduces A, this situation only occurs
for finitely many stages. So for almost all stages i, on any input xe/,,, more
than half of the extensions v, of w; satisfy M "+1(x)= A(x). We would like to
construct a p-martingale that succeeds on any such 4 € §.4°.# by betting on these
X's according to the majority vote of the extensions. We do not know the prefix v,
of y» we need for that, but we can guess the values of the bits in this prefix which
M queries on inputs xe/,, ;. Le., we divide our capital uniformly over all possible
corresponding strategies. In order for this to work, we will make sure that the set
I, consists of nj + 1 strings of length n, on which M makes the sume queries of
length less than m;. This implies we have to distribute our capital among no more
than 2"/ strategies, and at least one of them will realize a relative gain of 2w =
2+ =2.2% So, if we do this at every stage with 3 of the capital available at the
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beginning of that stage, and leave the other § intact, we succeed on A; at almost
all stages, we increase our capital with a factor of 5-2=1, and at the finitely many
other stages, we do not lose all of it.

We define the stages as follows:

mo=
My =2 (2)
n;=mj*.

Note that. no matter for what constant ¢ the reduction M runs in time »¢, the
stages do not interfere at sufficiently high levels, ie. m;,, <nj for i sufficiently
large.

Next, we show that for sufficiently large i, the sets [, , exist for any <P._ -
reduction M, and that we can construct them efficiently. Here we need the fact
that x < 1.

LEMMA 3.2, Let o<, ¢€(0, 1 —a), and m; and n; defined by (2). There is un
integer iy such that for any iz iy and for any <P._-reduction M, there is a set of
strings Qg ; such that

e 2% Qpdx) N Z =M= 0y} [ 203+ 1,

where Q y(x) denotes the set of queries M makes on input x. Moreover, we can find
the lexicographically first set Q . ; and the lexicographically first subset 1y of

IXEZM| Qpd )N Z == 0y i}

with |1y ;| =n%+1 in time 2.

Proof of Lemma3.2. For sufficiently large i, the number of possible values of
0,,(x) X =™ for xe X" is bounded by

2’”’— 1 2 1+ 2”’
< [ ><(2"“:)"r‘=2”: gn"“-l—]’ (3

i=0 i

from which the existence of Q,, ,; follows. A brute force search does the job.
We now formalize the above outline.
Proof of Theorem 3.1. We use the notation from Lemma 3.2. Fix 4 € DTIME[2"].

Let

I, i w] < 2",
T = .
AMTNPr, L[N E Ly s MU(x)=A(X)], i 272w <2
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We define the martingale d, ,, as

(lA‘A[(/“'): 1,

274 4 Wh) ) .
Ay _ . , ) ‘b Oq
g, ad WD) 47 4 p(0D) g, aal0), i 7 pwb) + 7 p0h) 5

d g 4w, otherwise.

dy awb)=

This means that for any sufficiently large 7 (such that i = i, and stage i+ 1 does not
interfere with stage /) and for any prefix w; of length 2"~ 1, the martingale  ,,
distributes 227! =" ./, ,,(w;) uniformly over all extensions w’, ; of w; with |/}, |
=2"+1— 1 for which M"i+1 and A agree on the membership of every string in /,, ;.

The defining predicate of 7, ,, depends on at most |/, ;|- n? € O((log [w])**)
positions of w not fixed by w. It follows that 7, ,, and d, ,, can be computed in
time 20108 DR

We distinguish between two cases for the behavior of M and A: Either there are
infinitely many stages / such that no matter what the prefix w; is, there is always
an input in [,, , on which only half or fewer of the extensions pass the consistency
check between M and A; or else for almost all stages i, there is a prefix w, such that
for any input from 7, ;, a strict majority of the extensions of w, make M and A
agree on that input.

Case 1. 370, Ywe X! 3xel,, ;1 Pr, o, [ M“(x)=A(x)]<j. Then for any
w =y g such that M reduces A4 to B, and for any sufficiently large stage / for which
the Case | condition holds,

A 004 1) 2 2d 4 pf00w)),

where 1; represents the prefix of w of length 2" — 1. This is because at least half of
the extensions wj,., of w, with |}, |=2"+ —1 fail some consistency test. It
follows that ¢, s(w) = o and that

Hp({ B| M reduces 4 to B})=0. (5)

Case 2. Y™ i, IweX®" ' Vxely ,:Pr, [M®“x)=A(x)]>% For any
stage [ and any he X9l let J,, ,, be the martingale with initial capital 1 that
only bets on strings of /,,;, and for such a string xe/,, ; bets all of its money
according to the majority of M“(x) over all sequences w z1v;, where v, is the
characteristic string of length 2”— 1 in which the bit corresponding to the jth
element of O, , equals the jth bit of b, and all other bits are, say, 0. Ties are broken
arbitrarily. The martingale

1 .
()M‘,»(W) =7—|Qm Zb()M, i b(ll‘)
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has initial capital 1 and is computable in time O(|w|?). It has the property that

. ZII.U.II .
Opt, il alsomn) 2 31011 22=20,(falz<n)

provided i satisfies the Case 2 condition. Since almost all /’s do, the following
p-martingale J,, succeeds on A: During stage /, it uses &,,, as a strategy on % of
the capital it has at the beginning of stage i, and does nothing with the other }

Fix an enumeration M, of all <P, _ -reductions such that we can compute M (x)
in time polynomial in 2! + ;. Then the martingale system ()‘M’ is p-uniform, so there
is a p-martingale J that succeeds on all sets A for which Case 2 applies for some
<P, -reduction M. Consider any set A4e€d&.7.2 not covered by J. Since the
martingale system o M, is p,-uniform, Eq.(5) implies that the p,-measure of
AL (A) is zero. |

Luc Longpré noticed that Theorem 3.1 also holds for <P, p-reductions that make
their queries in lexicographical order. It actually suffices that the queries are made
in length nondecreasing order.

THEOREM 3.3, Let <P denote the reducibility by polynomial-time Turing machines
that query no more than n* strings on inputs of length n for some constant x <1, and
make these queries in length nondecreasing order. Then,

pfAes 2 |, (#71A)#0})=0.

Proof Sketch.  We can extend Lemma 3.2 as follows.

LemMa 34, Let x <1, ee(0, 1 —a), and m; and n; be defined by (2). There is an
integer iy such that for any i = iy, for any <P-reduction M, and for any be X", there
is a set of strings Qi such that

Hxe XM Qui(x) =0 it 207 + 1,

where Q 4, (x) denotes the set of queries of length less than m; which M makes on
input x when the jth-bit of b is given as the answer to the jth query of length less than
m,. Moreover, we can find the lexicographically first set Q ., and the lexicographi-
cally first subset Iy of

(e Q5 i) =0 inl

2
_Hi.

with |1y, 5| =n%+1in time 2

Note that Q,;"’,’;(.\') in Lemma 3.4 is well defined, because the queries of length
less than m, which M makes on input x only depend on the prefix of v of length
27— 1, since M makes its queries in length nondecreasing order. More specifically,
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these queries only depend on the part of the prefix that specifies the answers to
them. ie., on b.

The betting strategy for .2 '(4) is the same as in Theorem 3.1, except that we
use the set I, ; , of Lemma 3.4, instead of the set /,, , of Lemma 3.2 in formula (4),
where b is determined by the prefix of w of length 2" —|.

The martingale d,, , is the average over several strategies. Now there is one
strategy d,, ; , corresponding to every b e 7, namely one with initial capital 1 that
only bets on strings of [, ; ,. On such a string xe/,, ;,. it bets all of its money
according to the majority of M“(x) over all sequences w =1 v; ,, where v, , is the
characteristic string of length 2" —1 in which the bit corresponding to the jth
query of M on input x equals the jth bit of A, and all other bits are say 0.

The rest of the construction and the analysis are essentially the same as in the
proof of Theorem 3.1. §

Our results on the measure of complete sets follow directly from Theorem 3.1. By
Theorem 3.3, they also hold for the more general reducibility introduced in
Theorem 3.3.

COROLLARY 3.5. For any x<1 and Ced& 4.2, the <P.__-degree of C has
) nt— (€8 )

pa-measure zero. In particulur, the clusses of <P._ -complete sets for .12, the levels
of the polynomial-time hicrarchy, 2 P/ 68, and 42 all have py-measure zero.

Proof.  Suppose not, then for any set 4 in the <P, -degree of C, the p,-measure
of .2 2L (4) is not zero, since it contains the <P._ -degree of C. But, by Theorem 3.1

n*—tt

this would imply that the p-measure of the <P, _  -degree of C'is zero. |
For the class of <P._ -hard sets, we get

COROLLARY 3.6 For any o<1 and any complexity cluss 6 such that (6 N &.42)
#0, the cluss of <P._  ~hard sets for € has p,-measure zero. In particular, the
<P _y-havd sets for & and E4°# have p,-measure zero.

Proof. By definition, for any set A € %, the <P._  -hard sets for 4 are contained
in .22} (A). If the class of <P, ,-hard sets for 4 does not have p,-measure zero,
Theorem 3.1 yields that 664 2)=0. |

The <%, _,-hard sets for . 1.2, the levels of the polynomial-time hierarchy, and
AL PSCE also have p,-measure zero, provided these classes themselves do not
have p-measure zero.

From Theorem 3.1, we can also deduce a Small Span Theorem. However, we
have to settle for a more restrictive reducibility than <P. |, because we need trans-
itivity in the proof, and <P._, is in general not transitive for any constant x > 0.
It suffices to keep the number of queries subpolynomial, i.e., asymptotically smaller
than n* for any ¢>0. We write 4 <P, B if there exists a subpolynomial function
S(n) such that 4<%, B.

THEOREM 3.7 (Small Span Theorem). For any set A, at least one of the following
holds: p( A (A) O ELP)=0 or w, (b (A))=0.
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Proof.  We distinguish between two cases:

o PunglA) contains a set B such that /l[,l(%n“,}l._"(B))»:O. Then the trans-
itivity of <P..,,, and the monotonicity of p,-measure imply that ,u,,,(%;,}l,‘"(A })=0.

ntt

o AunglA)n 42 is included in {Bedd2 |u, (2L (B))#0] for any

n-tt

a>0. Then Theorem 3.1 says that s,(-Auy(A)NEL2)=0. |

For any set A € £.4°.#, Theorem 3.7 states that at least one of its lower span or
upper span under <P, -reductions is small.

4. COMPLETE SETS FOR ¢.7°.# UNDER ADAPTIVE REDUCTIONS
WITH »° QUERIES

We now show how, in the case of &.7°.2, we can extend the results of the previous
section on the measure of complete sets from <P._, -reductions for any 2 <1 to
<P, _p-reductions for any constant ¢:

THEOREM 4.1.  For any constant ¢, the cluss of <P._p-complete sets for .42 las

n'—

Pa-INeasure Zero.

The proof technique differs significantly. We exploit the diagonalization power of
EA4# against <P p-reductions to show that all <P._-complete sets for £.4°.7
share a structural property that allows the construction of a p,-martingale succeed-
ing on all of them. We first establish the structural property.

Let M, M,,.. be an enumeration of <P._ i -reductions, where M, runs in

nt—
time n'.
LimMa 4.2, For any constant ¢ and for any <P.o_p-complete set C for 6§42,
there is an index j such that

Va, Vxe X" M (<07, x)) = minority,, 5., .,[ M ({07, x))]. (6)

The right-hand side of (6) denotes the least probable value of M {( {0/, x>) when
w is uniformly distributed over all extensions of the initial segment of y. corre-
sponding to all strings of length up to a. Ties are broken in some fixed way, say
always 0.

Proof of Lemma4.2. Let

D={¢0x>] Pr [MPOLxy)=1]<

@ ey <l

L
K

2

The above probability is a weighted sum of the accepting leaves of the reduction
tree of M, on input (0%, x)>. The weight of a leaf is only nonzero if on its path P
all queries of length less than |x| are answered consistent with C, and in that case
its weight equals 279" where ¢(P) denotes the number of other queries made
along P. W.lo.g. we are assuming here that on no path the reduction asks the same
query more than once. So, we can decide D on instances (0‘, x» of length » in time
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2"(n¢-timeo(n)+n'). Since Ce&.0'#, this implies Deé. 22, and since C is
Sh_r-hard for £.2°2, that there is a <P _p-reduction M, reducing D to C. The
index j satisfies (6), because for any xe X",

MELO, x> =10/ xyeD
= Pr [MP(L0/x))=1]1<3

w Dxely<n

< MINOrity,, — .1, ., [ M <04, x)1=1. i

Lemma 4.2 provides a consistency test that eliminates at least half of the remaining
possibilities. We now use it in a straightforward way to construct a p,-martingale
covering all <P._-complete sets for &.4.2.

n'

Proof of Theorem 4.1. For any index j, we construct a (uniform) p,-martingale
d; that succeeds on any set C for which (6) holds. The martingale ¢, has initial
capital 1, and works in stages defined by

ny =1

oy ={(n;+ j).

The ith stage starts when the martingale has to bet on the string 0. Let w;, denote
the prefix seen up to that moment. During stage i, d; distributes 22"~ 2"/, ()
uniformly over all extensions wi,, of w, with |}, |=2"%+1—1 for which
M1 ({07, 0%y ) = minority,, -, [M({07,0%)].

Note that for any set C satisfying (6), ; at least doubles its capital along C at
every stage, so it succeeds on any such C. Therefore, by Lemma 4.2, the martingale
system (d;) ., covers the class of <§._-complete sets for §.2°2.

Using the approach of Lemmad4.2, we can compute the minority and the
probabilities underlying ;(w) in time O(2"# ™+ (log 1| + /)/). So, the martingale
system (d;);Z | is py-uniform.

In an analogous way, we get the following theorem for &.

THEOREM 4.3.  For any constant ¢, the class of <P _-complete sets for & has
- . «n-T 7 .

p-measure Zero.
Ambos-Spies informed us recently that he and Lempp have a new proof of
Theorems 4.1 and 4.3 [3].

5. COMPLETE SETS FOR £.7.7 UNDER ADAPTIVE REDUCTIONS

Theorem 4.1 cannot be improved using relativizable techniques, since it fails for
unbounded growing exponent ¢ in a world where #4.#2.#2 =4&.4".# and such a world
exists [13]. This follows from the relativizable result of Allender and Strauss [1]
that the class of sets that are not <%-hard for BPP has p-measure zero. In this
section, we will see what results we can get on the measure of the &§.4.2-complete
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sets for polynomial-time reductions without an explicit bound on the number of
queries, under the likely but unrelativizing hypothesis . #.«/ # &.4°.2. We obtain

THEOREM 5.1, The cluss of sets complete for §4.2 (or &) under <5B-reductions
that make their queries in lexicographical order, has p-measure zero unless 84°9 =
e/ In particular, the class of <P -complete sets for §4°2 (or &) has p-measure
zero unless §4° P = . 0./

Buhrman, Van Melkebeek, Regan, Sivakumar, and Strauss [12] used the hypo-
thesis . /.«/ # &§4°# to show that the class of autoreducible sets under the same type
of reductions has p-measure zero. We will use the same idea, namely applying
pseudo-random generators to approximate efficiently the probabilities underlying
the martingales constructed in the previous section, and that way mimic their
behavior by an easier-to-compute martingale. The pseudo-random generators
whose existence is known to follow from the assumption . #.</ # &.4".# by Theorem 2.6,
have superpolynomial security at infinitely many lengths. They will allow us to
approximate the underlying probabilities well enough, but only at infinitely many
lengths. Therefore, in order for the mimicking martingale to succeed, we will make
sure we make a lot of money on these lengths. We will use the following lemma
instead of Lemma 4.1 to do so.

LEMMA 5.2, Fix a pseudo-random generator computable in time 2% for some
constant « > 1, und with stretching v(n). There is an oracle Turing machine T running
in time 22" with the following property: For any set C complete for &A% under
<B-reductions that make their queries in lexicographic order, there is an index j of
such a reduction M; such that for any string x,

cen X 2
Pro 5,0, [Yiel,: MP({07, x,00)) = TENET"(C07, x,00))] SP
) (7)
Viel,: MO x, 07)) = TEO (07 X, 0)),
where n=|x| and 1,=1{1,2,...3logn}, provided r(n), Sq(n)=n'*" and n is

suftficiently large.

Lemma 5.2 also holds if we substitute “length nondecreasing” for “lexicographic.”

Proof of Lemma 5.2. Consider an input xe X" a prefix weX? ™', a string

he X3¢ und an index j such that AM; makes its queries in length nondecreasing
order. Recall that M, runs in time n’/. We can compute the probability

m(xw b= Pr [Viel,: M{({07,x,0))=b;]

w T W

as the fraction of strings fie 27" such that the predicate underlying n; holds when
the oracle queries of length less than n are answered according to w, and the kth
different query of length at least n is answered as f3,. The predicate depends on
o(n’*1) bits of the prefix w in total, because the queries of length less than n made
by M are the same for any f. It follows that the test circuit has size n/*' for suf-
ficiently large n. Therefore, we can approximate 7,(x, w, b) to within an additive
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term of 1/n% using the pseudo-random generator G at length n, provided r(n)=n’*"
and Sg(n)=n’/*1

On input <07, x,0°). the machine 7" will compute these approximations
(s, w, b)) to m(x,w, b) for every he X387 select the lexicographically first value
b for A that minimizes 7, (x,w, h), and output the ith bit of h. T can do this in
time 2%,

Note that there is a setting »* € Z*'°¢” such that 7,(x. w, »*)< 1/n’. Inductively
set b such that at least half of the extensions & = w satisfying M (<07, x, 0%>) =
hiE, for 1 <k <, fail the test M}”((Of'q x,07) =h¥*. Therefore,

~ - 1
T, b)Y (o, h) +—
: : 0
N |
<A (v, b*F) +—
‘ n

5
<X, b*)+—
- n

2

SETE
2

<”—3,

which establishes the first part of (7) for any set C.
Now fix a set C complete for £.4°# under <%-reductions that make their queries
in lexicographic order, and consider the set

D={<0 x, 05 [1<i<3log|x]and TCF (0% x, 07)) accepts ).

Since Ce &.14°2, we can also decide D in £.4.7, and since C is hard for &.4°# under
<R-reductions that make their queries in lexicographic order, there is such a
reduction M, reducing D to C. This establishes the second part of (7). |

Lemma 5.2 gives a consistency test that eliminates a fraction at least 1 —(2/n%)
of the possibilities, and therefore multiplies the capital by a factor of 1*/2. For
Lemma 4.2 these figures are 1 and 2, respectively. We will now see how we can
exploit the larger increase in capital to construct a p-martingale that succeeds on
the complete sets for &£.7°# under <H-reductions that make their queries in
lexicographical order, using the above pseudo-random generator once more.

Proof of Theorem 5.1 for 6.4, Fix a <J-reduction M, running in time 2/ that
makes its queries in lexicographical order. Let T be the oracle Turing machine
given by Lemma 5.2 based on the pseudo-random generator G that follows from
the hypothesis .#.«/ # &.4.2 by Theorem 2.6.

Let

7, 0= Pr o [Viel,: M0, 0" 07))=T""F""({0% 0" 07))].

wZw
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and consider

g/n3 ST ), if | =27,

d; )= i
jom 2 otherwise.

The function d, ,(w) is computable in time 290¢"'I“D and so is ()=
e (1m?) d; ,(w). They are nonnegative and satisfy the supermartingale i11équa1ity
(1) for all strings w, except possibly for those of length 2 — 1. In case of a set C satisfy-
ing (7) for x=0", the inequality also holds for w = y. of length 2" — 1. Moreover,
di lze)=m’ and d,(zc) = 7.

We now want to construct (super)martingales fij‘,,, and c7_, that behave like d, ,,
and d; along y . and are computable uniformly in time || for some constant «, 1.e.,
independent of the running time of M. The key idea is to approximate efficiently
the probability x; ,, using the pseudo-random generator G as we did in the proof

J.m
of Lemma 5.2. Following that approach for some constant «,, we can compute in
time [i]“ an approximation #, () of x; (1) to within ¢; , =m~Y*%, provided

Hm)y=m/+ 1 and Sg(m) = m/+* By Theorem 2.6 (assuming . #./ # &.4°#), infinitely
many 11 satisfy the latter conditions; we call such ar's good.

There are still two technical problems we have to solve in order to make sure
that ¢7, ., is a supermartingale: First, what to do along sets C for which (7) does not
hold for x =07, and what if m is not good? We will deal with that in a moment.
Second, even for a good /1 along a set C satisfying (7) for x = 0", just replacing 7, ,,,
with 7, ,, in the definition of ; ,, might not work. For example, if 7;,, under-
estimates 7, ,, on input w, and overestimates it on input 10 and wl. condition (1)
is violated. Note that such a situation can only occur in case the string correspond-
ing to the position right after w is a query M{ makes on some input of the form
<0/4,0m, 0"y for some iel, and some @ Zw. As the queries are made in
lexicographical order. we can efficiently check the latter condition on i by running
M7 on every input <07,0m 0" for iel,, and there can be no more than 3m’/logm
prefixes 1w satisfying it along any sequence w. Since the limit ¢; ,, on the estimation
error is such that (3m’logm) -¢; ,, remains bounded, we can remedy this problem
by accumulatively subtracting a term 2¢; ,, from the approximation for = . and
adding a constant to the resulting approximation for «; ,,. The former modification
guarantees that condition (1) is met: the latter is needed after the former in order
to keep the values nonnegative. More precisely, we define

S ER e .
i 7y, (0) + 1 —2q; ,,(w) m’e; ., it || =27

dF o) = (8)

otherwise,

where ¢; () denotes the number of positions in w that correspond to a query M}
makes on an input of the form (07, 0™, 0"} for some i€ /,,. Note that 0 < ¢, (1) <
¢ plw) <3m’logm and that we can efficiently compute ¢; ,,(w).

We solve the first problem by explicitly checking for each prefix w that the values
d¥,, proposes for the one-bit extensions w0 and wl satisfy the defining conditions
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of a supermartingale. If they do, we accept them; otherwise. we enforce the condi-
tions by not betting. So, we define the function , ,, as

Jom

Ji. m(/:*’ = 4

d¥ . onh), it d¥,(00)=0 and df,(v1)=0 and
J,‘ mlrh}= df, Oon0)+dfF (wl) < 2171; ) (9)
ij 1), otherwise.

It follows that z7j,,,, is a supermartingale computable in time |ir]“2 for some constant

u, independent of M; and m.

Cram 5.3, If m is good and sufficiently large, 17, mW) =dF () for any w = e,
where C is a set satisfying (7).

Proof of Claim 5.3.  We show that (71-’,,,( w)=d}¥, (w) for any w = y by induc-
tion on |ir]. Clearly, the statement holds for w = 4. So, it suffices to argue for any
string 1 that the conditions on the right-hand side of (9) are met, assuming that
di ) =dF, ().

If | <2™—1, this is true because df,(v)=4 for [o| <2™ If [iw[=2"—1, the
first two conditions on the right-hand side of (9) are satisfied, since for any string
v of length |v] =27,

6 logm

d¥ (v)=1=2q; (v)m’e = 1—6¢ ,m " logm=1-— ,

m

which is positive for sufficiently large m. In case || =2 — 1, the remaining condi-
tion is met, because
d¥, (wO) +d¥, (D) (R, (w0) + 7, ,(wl)) +2
<7y (w0) + 7, (w]) +2¢; ) + 2

= 2/113(75., W) &5, +2

In case [w|>2", the remaining condition certainly holds if d¥,(w0)=d¥, (wl) =
df,(w). Otherwise, ¢; ,,(w0) =¢; ,,(rl)=g¢; ,(w)+ 1, and we have that
dx, (w0) + dF, (wl) = 11'13(7?.,_ mW0) + 7, (01)) +2 = 2(¢; ,,(100) + ¢ p(101)) 11138]‘ m
< 1)13(7Tj_ ml110) + T l) +2¢; ) +2— g )+ 1) I?I3étj' m
=2m (7, (W) =& ) + 2 —4q; ,0v) me,
<207, 00 +2=4q, vy me;
=2d%,,(n)

= 2(7j-, mw). B
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So, for a good and sufficiently large m we get that
(7j. m(z(‘) = (/;‘!.‘m(ZC') 2 (/j. m(Z(") + l - (2‘// m((’)’ + 1 ) ’”3{{/'. m 2 ({j.m(XC) ( 10)

for any set C satisfying (7). Since there are infinitely many good nr’s and
d; (7 c)=mn* this implies that (7,: ;f=l(l,/mz)(7j_,,, is a supermartingale that
succeeds on any such set C. It is computable in time |[w|“ for some constant «
independent of ;.

Since for a standard enumeration M,, including all <%-reductions that make
their queries in lexicographical order and such that M,(x) is computable in time
(21 4+ ) the supermartingale system , is p-uniform, Lemma 5.2 finishes the
proof of the theorem. §

6. DISCUSSION AND OPEN PROBLEMS

The question of whether Theorem 3.1 holds for some constant x> 1, remains
open. A positive answer would be the best result provable by relativizable techni-
ques, just as our results in Section 4 are optimal. By the same token. relativizable
techniques cannot establish the Small Span Theorem for < -reductions.

It seems unlikely that our approach allows one to establish Theorem 3.1 for
x> 1, because of Lemma 3.2. For some constant ¢ >0 and a given <%._ -reduction
M, this would require the construction of a set /,, ; containing n? + 1 strings of
length n; and a set Q,, ; of size n7, such that all queries of length less than »j that
M makes on inputs from /,, ; are in Q,, ;. However, the following argument shows
that for > 1, it is not even possible for |1,, ;| to equal |Q,, ;| when for every input
xe 2% the queries are chosen from 2 <" in a Kolmogorov random way. The con-
catenation ¢ of all these queries is a Kolmogorov random string of length 2%nf**.
Given a listing of the elements of Q,, ;, we can describe the queries for elements of
I,, ; by pointers to that list. Assuming |/, ;| =[Q ;| = ¢. this leads to a descrip-
tion of ¢ of length at most ¢n® + ¢(n; +n¥log ¢) + (2" —¢) n; **+ O(log ¢), which is
asymptotically less than |o]|, as long as log ¢ < cn? for some constant ¢ < 1. Since we
have log ¢ € O(log n;). we get a contradiction to the Kolmogorov randomness of o.

Ambos-Spies, Neis, and Terwijn [4] focused on p-measure, and they established
the equivalent of Theorem 3.1 and the Small Span Theorem within & for <7 -
reductions for any constant k. A similar Kolmogorov argument as above indicates
that our techniques are not powerful enough to extend these results to stronger
reductions. Even the <P -case remains open.

ACKNOWLEDGMENTS

We are grateful to Jack Lutz and Lance Fortnow for very helpful discussions regarding the Small
Span Theorem. We would like to thank Luc Longpré for the extension of Theorem 3.1 he suggested,
Klaus Ambos-Spies for explaining his work in the area, Leen Torenvliet for suggesting the title of the
paper, and the anonymous referees for their comments.



344 BUHRMAN AND VAN MELKEBEEK

(8o

wn

6.

9.

10.

19.

20.

REFERENCES

- EoAllender and M. Strauss, Measure on smull complexity classes, with applications for BPP. in

“Proceedings of the 35th IEEE Symposium on Foundations of Computer Science,” pp. 807 818,
IEEE Press, New York, 1994,

. K. Ambos-Spies and L. Bentzien, Separating NP-completeness notions under strong hypothesis, in

“Proceedings of the [2th IEEE Conlerence on Computational Complexity,” pp. 121-127, IEEE
Press. New York, 1997.

. K. Ambos-Spies, S. Lempp, and G. Mainhardt, Randomness vs. completeness: On the diagonaliza-

tion strength of resource-bounded random sets, manuseript, March 1998,

. K. Ambos-Spies, H.-C. Neis, and S. Terwijn. Genericity and measure for exponential time, Theoret.

Comput. Sei. 168, No. 1 (1996), 3-19.

. L. Babai. L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential time simulations unless

EXPTIME has publishable proofs. Compur. Complexity 3 (1993), 307--318.
J. Balcazar, J. Diaz. and J. Gabarro, “Structural Complexity 11" EATCS Monographs on Theoreti-
cal Computer Science, Vol. 22, Springer-Verlag, New York,Berlin, 1990,

. J. Baleazar, J. Diaz. and J. Gabarrd, “Structural Complexity 1,” EATCS Monographs on Theoretical

Computer Science, Vol. 11, Springer-Verlag, New York,Berlin, 1995.

. C. Bennett and J. Gill, Relative to a random oracle, P NP* s co— NP with probability one,

SIAM J. Compur. 10 (1981), 96-113.

H. Buhrman and L. Longpré, Compressibility and resource bounded measure, in “Proceedings of the
13th Symposium on Theoretical Aspects of Computer Science,” pp. 13 24, Lecture Notes in
Computer Science, Vol. 1046, Springer-Verlag. New York/Berlin, 1996.

H. Buhrman and E. Mayordomo, An excursion to the Kolmogorov random strings, in “Proceedings
of the 10th [EEE Structure in Complexity Theory Conlerence,” pp. 197-205, IEEE Press, New
York, 1995.

. H. Buhrman and D. van Melkebeek, Hard sets are hard to find, in “Proceedings of the 13th I[EEE

Conference on Computational Complexity,” pp. 170-180. IEEE Press, New York, 1998.

. H. Buhrman. D. van Melkebeek, K. Regan, D. Sivakumar, and M. Strauss, A generalization of

resource-bounded measure, with an application, i “Proceedings of the 15th Symposium on
Theoretical Aspects of Computer Science,™ pp. 161 171, Lecture Notes in Computer Science,
Vol. 1373, Springer-Verlag, New York/Berlin, 1998,

. H. Heller, On relativized exponential and probabilistic complexity classes, Inform. and Compur. 71

(1986), 231-243.

. D. Juedes and J. Lutz, The complexity and distribution of hard problems, SIAM J. Compur. 24,

No. 2 (1995), 279 295,

. L. Longpré, personal communication, 1997,
- J. Lutz, Category and measure in complexity classes, SIAM J. Comput. 19, No. 6 (1990), 1100 1131.
. J. Lutz, Almost everywhere high nonuniform complexity, J. Comput. System Sci. 44 (1992), 220-258.

- J. Lutz, A small span theorem for P/poly-Turing reductions, in “Proceedings of the 10th IEEE

Structure in Complexity Theory Conference,” pp. 324-330, IEEE Press. New York. 1995.

J. Lutz, Observations on measure and lowness for 4%, in “Proceedings of the 13th Symposium on
Theoretical Aspects of Computer Science,” pp. 87-97. Lecture Notes in Computer Science,
Vol. 1046, Springer-Verlag, New York,Berlin, 1996.

J. Lutz and E. Mayordomo, Measure, stochasticity, and the density of hard languages, SIAM J.
Comput. 23 (1994), 762-779.

- J. Lutz and E. Mayordomo, Cook versus Karp-Levin: Separating completeness notions it NP is not

small, Theorer. Comp. Sci. 164 (1996), 141163,

. E. Mayordomo. Almost every set in exponential time is P-bi-immune, Theoret. Comput. Sei. 136

(1994), 487-500.



HARD SETS ARE HARD TO FIND 345

3. N. Nisan and A. Wigderson, Hardness vs. randomness. J. Comput. System Sci. 49 (1994),

149-167.

. C. Papadimitriou, “Computational Complexity.” Addison-Wesley, Reading. MA, 1994.

. K. Regan. D. Sivakumar, and J. Cai. Pscudorandom generators, measure theory, and natural proofs,
in “Proceedings of the 36th IEEE Symposium on Foundations of Computer Science,” pp. 26-35,
IEEE Press. New York, 1995.



