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ABSTRACT. We propose new summary statistics quantifying several forms of dependence 
between points of different types in a multi-type spatial point pattern. These statistics are the 
multivariate counterparts of the J-function for point processes of a single type, introduced 
by Lieshout & Baddeley (1996). They are based on comparing distances from a type i point 
to either the nearest type j point or to the nearest point in the pattern regardless of type to 
these distances seen from an arbitrary point in space. Information about the range of 
interaction can also be inferred. Our statistics can be computed explicitly for a range of well
known multivariate point process models. Some applications to bivariate and trivariate data 
sets are presented as well. 
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1. Introduction 

A multivariate point pattern is a spatial pattern of points, each point belonging to one of a 
finite number of distinct types (Cox & Lewis, 1972). Bivariate or two-type patterns in 
particular have often been reported and analysed. Examples considered in section 5 are a 
map of trees identified as healthy or diseased, a microscope image of retinal ganglion cells 
identified as "on" or "off", and a map of plants classified into three types according to 
age. 

To investigate dependence between the different types of points, the usual approach (see e.g. 
Bartlett, 1975; Ripley, 1977; Diggle & Cox, 1981; Lotwick & Silverman, 1982; Diggle, 1983; 
Vincent & Jeulin, 1989; Cressie, 1991; Stoyan et al., 1995) begins by estimating "cross-type" 
versions of the standard summary functions G and K. The purpose of this paper is to pursue an 
alternative. 

In a previous paper (Lieshout & Baddeley, 1996), we introduced a new summary function J 
for univariate (single-type) point patterns X as 

J(t) = I - G(t) 
1 - F(t) 

(I) 

defined for all t,.., O with F(t) =!= 1. Here the "empty space function" F is the distribution 
function of the distance from an arbitrary fixed point 0 to the nearest point of the pattern 
X, and the "nearest neighbour distance function" G is the distribution function of the 
distance from a typical point of X to the nearest other point of X. The J-function is an 
index of spatial interaction, identically equal to 1 for a Poisson process, and generally takes 
values less than 1 for clustered patterns and greater than 1 for ordered patterns. An 
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appealing property is that the superposition X. = X 1 U X2 of two independent point 
processes X 1, X2 has J-function 

A., A.2 
J(t) = ..,-----,J1(t) +-,---,h(t) 

JI.I +11.2 JI.I +11.2 
(2) 

where J 1, h are the J-functions of X 1, X 2 respectively and A.i, A.2 are their intensities. A 
similar statement holds for the superposition of m independent point processes. 

In the present paper we extend these ideas to multivariate point patterns. Let X; be the process 
of type i points and X. = X1 U · · · U Xm the process of all points regardless of type. Three 
approaches are proposed, which correspond to investigating three different forms of indepen
dence between types. First we may compare the left and right hand sides of (2) or its analogue 
for m types. These two expressions are equal if X1, .•• , X,,, are independent. Secondly we may 
construct an "inter-type" J-function JiJ for each pair of types i and j. This function is 
identically equal to l if X; and Xj are (marginally) independent. Thirdly we may construct a 
function J;. for each i summarizing the dependence of X. on X;. This reduces to a simple form 
if X; is independent of (Xj, j f. i), and to another simple form if the "random labelling" 
property holds. 

Section 2 contains preliminaries and the main definitions of the J-functions; in section 3 a 
selection of basic properties including mixture formulas, representations in terms of conditional 
intensities and their importance to the interaction range, and behaviour under various indepen
dence assumptions are considered. In section 4 we calculate the ]-functions for a wide variety 
of stochastic models and section 5 contains applications to bivariate and trivariate point pattern 
data. 

2. Definitions and notation 

2.1. Univariate J-jimction 

First we recall some definitions from Lieshout & Baddeley (1996 ). Throughout this paper 
we will assume that X is a stationary point process in [Rd with finite positive intensity A., 
in order to allow for non-parametric inference based on a single observation of X. Then, 
the empty .1pace junction F of X is the cumulative distribution function of the distance 
from a fixed point (say, the origin) to the nearest point of X. Thus for t .,,, 0 

F(t) = IJl>{X n B(O, t) f. 0} 

where B(O, t) is the closed ball of radius t centred at the origin 0. The nearest neighbour 
distance junction G is the distribution of the distance from a typical point of X to the 
nearest other point of X. For t ;,,, 0 

G(t) = P0 {X n B(O, t)\{O} f. 0} 

= P10 {X n 8(0, t) f. 0} 

where po is the Palm distribution (Kallenberg, 1984; Daley & Vere-Jones, 1988; Stoyan et 
al., 1995) of X at 0, which can be interpreted as the conditional distribution of X given 
that there is a point of X at 0. On the last line P10 is the reduced Palm distribution, 
defined as the Palm distribution of the process with the point at 0 removed, i.e. ? 10 is the 
distribution of X\ { 0} under P.>. 

In an earlier paper (Lieshout & Baddeley, 1996) we introduced 

I - G(t) 
J(t) =I - F(t) 

l(J Board of the Foundation of the Scandinavian Journal of Statistics 1999. 
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defined for all t;;;. 0 with F(t) < 1. If X is a Poisson process then J = 1. We found several 
representations of J derived from the Nguyen-Zessin formula (Nguyen & Zessin, 1979) 

.rn'0[f(X)] = IE[A.(O; X)f(X)] (3) 

where f is any non-negative measurable function on the space of realizations of X, E 10 

denotes the expectation with respect to P10, and A.(O; X) is the conditional intensity of X at 
0 assuming this exists. 

2.2. Multivariate J-functions 

Throughout the present paper we consider a stationary multivariate point pattern Y in [Rd, 

each point belonging to one of m types. Formally Y is a stationary marked point process in 
JRd with marks in {l, 2, ... , m}. Equivalently Y = (Xi. .. . , Xm) is an m-tuple of jointly 
stationary point processes in [Rd, where X; is the process consisting of points of type i. 
Write A; for the intensity of X;. Define 

m 

X. = LJx; 
i=l 

the point process consisting of all random points regardless of type. 
Henceforth i and j denote indices from the set { 1, ... , m}. Let F; and F. be the empty space 

functions of X; and X. respectively; thus for t ;;;. 0 

F;(t) = IP{X; n B(O, t) =f. 0}, 

F.(t) = IP{X. n B(O, t) =f. 0}. 

Let p<O,iJ be the Palm distribution of Y conditional on a point at 0 with mark i, and p!(O,i) 

the corresponding reduced Palm distribution, i.e. the distribution of Y\{(O, i)} under p.o.il. 
Then define the "i-to-j" nearest neighbour distance function 

Gij(t) = p!(O,i){Xj n B(O, t) =f. 0} 

and the "i-to-any" nearest neighbour distance function 

G;.(t) = p!(O,iJ{X. n B(O, t) '/= 0}. 

Thus Gij is the distribution function of the distance from a typical point of type i to the 
nearest point of type j, and G;. from a typical point of type i to the nearest point of any 
type. To keep notation uniform we write G .. for the ordinary G function of X .. 

Definition 1 
For a stationary multivariate point process (X1, ... , Xm) on JRd define (for i, j = 1, · · ., m) 

1 - Gij(t) 
Jij(t) = 1 - Fj(t) 

J (t) _ I - G;.(t) 
'· - 1 - F.(t) 

(4) 

(5) 

for all t;;;. o for which Fj(t) <I or F.(t) < 1 respectively. For uniformity of notation we 

will also write 

1 - G .. (t) 
J .. (t) = I - F.(t) 

for the J-function of X. 

© Board of the Foundation of the Scandinavian Journal of Statistics 1999 · 
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In particular Ju is the J-function of the univariate process X;. Note that the definition of 
Jij is not synunetric in i and j. While this may be undesirable for inference on processes 
appearing on an equal footing, it may be easier to interpret, especially when considering 
qualitatively different patterns. 

Intuitively 1 ij is a comparison between the distributions of the distances to the nearest type j 
point, measured from (a) an arbitrary fixed point in !Rd, and (b) a typical type i point. The 
denominator of (4) is the unconditional probability of the event that there is no type j point 
within a distance t of 0. The numerator is the "conditional probability" of the same event given 
that there is a type i point at 0. 

As in the univariate case (Lieshout & Baddeley, 1996) the value 1 is obtained when there is 
no spatial interaction: if X; and Xj are independent processes, then standard calculations give 
J ij = 1. However, having a Jij-function taking value I everywhere should not be seen as a 
characterization of independence. In particular J;; = I is not a sufficient condition for X; to be 
a Poisson process (Bedford & van den Berg, 1997). Similar remarks apply to the other statistics 
introduced in definition 1. 

Values Jij > 1 can be interpreted as indicating inhibition (of type j points by type i points) 
since this is equivalent to Gy < Fj, i.e. the presence of a type i point decreases the probability of 
finding a type j point nearby. Similarly, values less than 1 suggest positive association. 

The statistic 1;. is a comparison between the distributions of the distances to the nearest 
random point of any type, measured from the origin and from a type i point. An interpretation 
of the values of J;. analogous to that of ly applies. If (X1, •• ., Xm) are independent then 
1;.(t) = lu(t), the marginal ]-function. If furthermore X; is a Poisson process, then l;.(t) = 1. 

With equation (2) in mind we introduce the following function /. 

Definition 2 
For a stationary multivariate point process (X 1, .•• , X m) on [R;d define 

m k 
I(t) = L f Ju(t) - J (t) 

i=l . 

(6) 

for all t;;;, 0 with F.(t) < 1 and where A; is the intensity of X; and A.= :Z:::7~ 1 A.; is the 
intensity of X.. 

If X 1, ••• , Xm are independent then I= 0 by th. 2 in Lieshout & Baddeley (1996). Note 
that in the definition of I all component processes appear on an equal footing. 

At least for bivariate processes Y = (X1, X2), the sign of /(t) should indicate the type of 
association between the two components X1, X2 with a positive value being suggestive of posi
tive dependence. This definition is similar to Lotwick & Silverman's (1982) suggestion of 
studying the sign of 

T(t) =log(! - F,(t)) - log(! - F 1(t)) - log(! - F2(t)) 

(t;;;, 0) for a bivariate point process, since T is identically zero when X 1 and X2 are 
independent point processes. 

3. Basic properties 

3.1. Mixture formulas 

Lemma 1 
For any stationary multivariate point process Y = (X1, .. ., Xm) 

(g Board of the Foundation of the Scandinavian Journal of Statistics 1999. 
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m A.; 
G .. (t) = L f G;.(t) 

i=l . 

m A.; 
J .. (t) = 2: rJ;.(t) 

i=l . 

m A.; 
/(t) = 2: r[Ju(t)- J;.(t)] 

i=l . 

for all t ""' 0 with F.(t) < 1. 

Proof The reduced Palm distribution at 0 of Y with respect to X. is 

t~p!(O,i) 
i=l A.. . 

This yields the expression for G .. · The remaining identities follow by substitution. 

515 

(7) 

(8) 

(9) 

(10) 

Mixture formulas are useful from a computational point of view when dealing with patterns 
consisting of a large number of points, since they offer a natural way of breaking up the 
necessary distance calculations needed for G .. , J .. or I in more manageable parts. 

3.2. Case of independence 

Here we calculate the multivariate J-functions when some form of independence holds 
between types. In particular, full independence and pairwise independence are considered, 
as well as independence between one of the components and the vector or union of the 
other components of Y. Finally, a random labelling property is considered, which may be 
more appropriate in cases where the type labels are assigned after the locations have been 
occupied (see the examples discussed in section 5). 

Lemma2 
Let i =f. j. If X; and }(_j are (marginally) independent then Jij = 1 where defined. 

Proof Clearly Jij depends only on the marginal joint distribution of (X;, X1). If .X;, }(_j are 
independent then the distribution of Xj under pl(O,il is the same as its ordinary marginal 
distribution, so Gij = Fj (see e.g. Diggle, 1983, p. 92; or Cressie, 1991, p. 700) hence JiJ = 1. 

Lemma3 
If X; is independent of (X1, j =f. i), then J;. = Ju where defined. More generally this holds 
if X; is independent of X -i = LJ 11;X1, the univariate process consisting of points of all 
types except i. 

Proof Let F_; be the empty space function of X _;. If X; and X _;are independent, then 

1 - F.(t) = (1 - F;(t))(l - F_;(t)) 

and under p!(O,il, X; and X_; are also independent with X; governed by its reduced Palm 
distribution at 0, and X _; by its ordinary marginal distribution. Thus 

1 - G;.(t) = (1 - Gu(t))(l - F_;(t)) 

and division by 1 - F.(t) yields the result. 

© Board of the Foundation of the Scandinavian Journal of Statistics 1999. 
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Definition 3 
The marked point process Y has the random labelling property if the marks (types) of the 

points are conditionally i.i.d. given the locations of the points. 

For example, if Y = (Xi. ... , Xm) for independent Poisson processes X;, i = 1, ... , m, then 

Y has the random labelling property. In general, however, independence and random labelling 

are not equivalent. An informal treatment of the distinction between these two types of 

independence assumptions with particular attention to their implications in practice is given by 

Diggle (1983, sect. 6.3). 

Lemma4 
Under the random labelling assumption with label probabilities p; (i = 1, ... , m), for all 

t""' o with F(t)< 1 

J;.(t) = J (t) 

while whenever F1( t) < 1 

_ [10[(1 _ PJ)N'] 
Jij(t) - [((1 - PJ)N'] 

(11) 

(12) 

where N1 = N(X. n B(O, I)) is the number of points of any type in B(O, t), and [ 10 denotes 

expectation with respect to the reduced Palm distribution of X .. 

Proof If Q is the distribution of any univariate point process Z, let p(Q) denote the 

distribution of the multivariate point process obtained by assigning i.i.d. random marks to the 

points of Z. 
The random labelling assumption is that P = p(P) where P is the distribution of 

(X1, .. ., Xm) and P. is the distribution of X.. It can easily be shown that under random 

labelling, 

p!(O,i) = p(P!O) (I 3) 

i.e. the reduced Palm distribution of (X1, ... , Xml given a point of type i at 0 is equivalent 

to applying random labelling to the reduced Palm distribution of X.. Thus 

G; (t) = p!(O.i){X. n B(O, t) -=f. 0} 

= p(F'0){X. n B(O, t) -=f. 0} 

= P 10{X. n B(O, t) -=f. 0} 

= G.(t) 

and substituting in the definition of J;. yields (11 ). The second result (12) follows from 

( 13) and the representation of the ]-function for an independent thinning (Lieshout & 

Baddeley, 1996, th. 3). 

3.3. Representations 

Here we investigate explicit representations for the various J- and /-functions in terms of 

conditional intensities, analogous to the univariate case (Lie shout & Baddeley, 1996, th. l ). 

Write il.1(0; X;) for the conditional intensity of X 1 at 0, and il..(O; X.) for that of X, defined to 

satisfy the analogues of the Nguyen-Zessin formula (3), if they exist. Let il.((O, i); Y) be the 

(0 Board of the Foundation of the Scandinavian Journal of Statistics 1999. 
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conditional intensity (if it exists) of the multivariate process Y = (X x ) "' · t t o • . • • 1 •••• , m 1or a pom a with type 1, defined to satisfy the multivariate counterpart of (3) 
..1.;IE1<0.iJ /(Y) = IE[A.((O, i); Y)f(Y)] (14) 

for any non-negative measurable function f on the space of realizations of Y. In particular 
taking f = l 

A.; = IEA.((O, i); Y). 

The existence of ..1.((0, i); Y) implies that of A.;(O; X;) and A,(O; X.) and indeed 
IE[..1.((0, i); Y)\X;] = A.;(O; X;) a.s. (15) 

IE [t A.((O, i); n\x] = A..(O; X.) a.s. (16) 

by (3) and (14). 

Lemma5 
Let Y = (Xi. ... , Xm) be any stationary multivariate point process for which the condi-tional intensity ..1.((0, i); Y) exists and satisfies (14). 

Then G;j( t) < l implies Fj(t) < l and 

J ij(t) = IE [A((O,:;; Y) \xj n B(O, t) = 0] (17) 

= (IE!(O,i) [ A; \x n B(O t) = 0] )-I (18) A.((0, i); Y) 1 ' 

Similarly G;.(t) <I implies F(t) < 1 and 

1;.(t) = IE[A((O,:;; Y) \x n B(O, t) = 0] 

= (IE(!(O,I) [ A., \x n B(O t) = 0] )-I A.((0, i); Y) . • 

Expressions for /(t) can be obtained by substituting (17)-(20) in (9). 

(19) 

(20) 

These results should be compared to similar expressions in the univariate case, see Lieshout 
& Baddeley, 1996, th. 1. 

Proof For (17)-(18), use the Nguyen-Zessin formula (14) taking /(Y) = l{Xj n B(O, t) = 0} or /(Y) = l{Xj n B(O, t) = 0}/A.((O, i); Y). For (19)-(20) take f(Y) = l{X. n B(O, t) = 0} or f(Y) = t{X. n B(O, t) = 0}/A.((O, i); Y). 

The following corollary describes how Jij and J;. may be interpreted as indicating positive or negative correlation between types, cf. Lieshout & Baddeley, 1996, coral!. 1, eq. (3.7). 

Lemma6 
Let Y = (X 1, .•. , X,..) be any stationary multivariate point process for which the condi-
tional intensity ..1.((0, i); Y) exists and satisfies (14). Then l;j(t) ~ 1 if! 

cov(A.((O, i); Y), 1 { Xj n B(O, t) = 0}) ~ 0 

© Board of the Foundation of the Scandinavian Journal of Statistics 1999. 
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and J; (t) ""' 1 ifJ 

cov(A.((O, i); Y), I { X n B(O, t) = 0}) ""' 0. 

Proof Rewriting (17) as 

J·( _ cov(A.((0, i); Y), 1 { Xj n B(O, t) = 0}) 1 
'1 t) - Jc;IP'(Xj n B(O, t) = 0) + 

we obtain the first result. Similarly for the second. 

Using lemma 5 and the decomposition (9) we find that a sufficient condition for I(t) ""'0 is 

that for all i, 

IE[A;(O; X;)IX; n B(O, t) = 0]""' IE[Jc((O, i); nix n B(O, t) = 0]. 

Reversing the signs gives a similar, sufficient condition for l(t) ~ 0. 

3.4. Finite interaction range 

Here we derive multivariate versions of th. l (b) in Lieshout & Baddeley ( 1996) stating that 

the J-function is constant for all t""' s if the process has finite interaction range s. 
As in that paper, a univariate point process X has interaction range s, 0 < s < oo (or strictly 

speaking interaction range less than or equal to s), if its conditional intensity Jcx(O; X) is 

constant for all patterns X which contain no points in B(O, s). That is, X n B(O, s) = 0 implies 

A.x(O; X) = Jcx(O; 0). 

Definition 4 
A multivariate point process Y = (X1, ••• , Xm) has joint interaction range s if for each i, its 

multivariate conditional intensity Jc((O, i); Y) is constant for all realizations which contain 

no points in 8(0, s). That is, X; n B(O, s) = 0 for all i implies Jc((O, i); Y) = Jc((O, i); 0). 

A sufficient condition is that A((O, i); Y) depend only on Y n B(O, s), the restriction of Y to 

B(O, s). 

Lemma 7 

If Y has joint interaction range s, 0 < s < CXJ, then J;. ( t) is constant for t ""' s. 

J (t) = Jc((O, i); 0) 
'· A; , t""' s. (21) 

If additiona!Zv the marginal processes X; each have interaction range s, then l(t) is 

constant for t ""' .s; 

I m 

1uJ = r L[A;(o; 0) - Jccco, i); 0)1, t ""' s 
. i=l 

(22) 

or equivalently 
m 

LA;(O; 0) 
l(t) =: _i=_l _m __ __ Jc.(_O_; 0_) 

LA; A. 
t ""'s. (23) 

i=l 

An analogous statement for Jij does not hold in general. 

© Board of the Foundation of the Scandinavian Journal of Statistics 1999. 
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Proof In (19) observe that X n B(O, t) = 0 for t ;i. s implies X; n B(O, s) = 0 for all i so 
that A((O, i); Y) is conditionally constant and equal to A((O, i); 0). The first result (21) follows. 
The second result is proved by combining (21) with (9) and th. l(b) in Lieshout & Baddeley, 
( 1996). The third result follows using (16) and the fact that A((O, i); Y) is conditionally constant. 

4. Theoretical examples 

In this section we calculate the multivariate J functions for a variety of multivariate point 
pattern models. 

4.1. Multitype cluster processes 

By a multivariate cluster process in ~d we mean a general cluster process (Daley & Vere
Jones, 1988) constructed from a univariate point process in ~d (of "parent" points) by 
associating with each parent a cluster (of "offspring" points) which is a finite multivariate 
point process, i.e. a finite point process in ~d X {l, .. ., m}. Only the offspring points are 
observed, but note that this is no restriction, since parents can be regarded as their own 
offspring. 

We shall consider only the stationary multivariate Poisson cluster process in which the parents 
are a stationary Poisson process in ~d and, for a parent located at x E (Rd, the cluster Zx of 
offspring of x is distributed as Z + x, the vector translation by x of a given, a.s. finite, 
multivariate point process Z. Offspring clusters from different parents x1 are independent. Thus 
Y = LJ;Zx;· 

4.1.1. General result 
We need the multivariate version of a basic identity for cluster processes, see Bartlett 
(1975, pp. 8-9) as well as Daley & Vere-Jones (1988) or Stoyan et al. (1995, p. 143). The 
functional form of the Palm distribution involved for a variety of univariate cluster 
processes is studied by Saxl & Rataj (I 996). 

Lemmas 
Let Y = (X1, .. ., Xm) be a stationary multivariate Poisson cluster process in ~d. Then the 
Palm distribution of Y with respect to a point of type i at 0 can be written 

pO.i) = c<O.i) * p (24) 

where p is the distribution of Y. * denotes convolution and c<O,i) is the Palm distribution 
of the typical cluster with respect to a point of type i at 0. Similarly for the reduced Palm 
distributions, 

p'<o.1> = c'<o.1> * P. 

The following is a trivial corollary. 

Lemma9 
For a stationary multivariate Poisson cluster process, 

J ij( t) = c'<OJ) { Zj n B(O, t) = 0} 

J;. ( t) = c'<O.i) { Z. n B(O, t) = 0} 

(25) 

(26) 

(27) 

where 2.i denotes the finite point process of points of type j in the cluster, and Z. the 
process of all points in the cluster regardless of type. 

((J Board of the Foundation of the Scandinavian Jownal of Statistics 1999. 
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Thus, all Jij- and J;.-functions are decreasing and bounded above by 1. Moreover J;. :;;;; J;;, 

suggesting clustered behaviour. 
Regarding the range of interaction, if all clusters have maximum diameter s then J ij(t) and 

J;.(t) are constant for all t"" s. 

4.1.2. Two-type Gauss-Poisson process 
A Gauss-Poisson process (Bol'shakov, 1969; Newman, 1970; Milne & Westcott, 1972) is a 
(univariate) Poisson cluster process in which each cluster consists either of one point (with 
probability 1 - p) or two points (with probability p). If a cluster has two points, they are 
separated by a random vector displacement V which has probability density h on !Rd. 

Here we study the associated bivariate point process in which parent points are labelled as 
being of type l and daughter points, type 2. This is a multivariate Poisson cluster process. 

Lemma 10 
For the two-type Gauss-Poisson process as described above. 

l11(t) = Jiz(t) = l 
J!2(t) = Ji.(t) = 1 - pH(t) 

Jz1(t) = Jz.(t) = 1 - H(t) 

J .. (t) = 1 - l ~ p H(t) 

l(t)= 1
2P H(t) 
+p 

where 

H(t) = J h(x)dx. 
B(O,t) 

Thus, the types 1 and 2 in this process are positively associated, in the senses measured by Ju, 
Jij, J .. and I. All the }-functions are decreasing and less than or equal to 1 (since h is a 
probability density); I is increasing and non-negative. 

Furthermore, J; . ..:: J;;, suggesting positive association as well. However, regarding associa
tion between labels, for p ~ { 0, l } , 

p-l 
Jz.(t) - J .. (t) = p + l H(t) < 0 

and decreasing, suggesting that the 2 to any distances appear more clustered than if the 
type is disregarded, while 

Ji.(t)- J .. (t) = p~; t H(t) > 0 

and increasing, indicating that distances from a type 1 point appear more regular. A 
possible explanation is that any type 2 point will have a parent type l point, while a type 
l point may not have an associated type 2 point. 

If we assume that h is concentrated on a ball B(O, R), then Jij(t), J;.(t), J .. (t) and I(t) are 
constant for all t ;;;., R, mirroring the results for a univariate Poisson cluster process of Lieshout 
& Baddeley (1996). 

Proof Both X1 and X2 are stationary Poisson processes, so Ju = 1. 

(i".i Board of the Foundation of the Scandinavian Journal of Statistics 1999. 
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Under the Palm distribution c<0.1> ·th b b·1· 
. . . : WI _pro a l 1ty 1 - p the cluster Z has only a single point 

(of type l at ~), while wit~ proba~1hty p it has two points (one of type 1 at O and one of type 2 

at V, where V 1s random with density h).Applying lemma 9, 

J12(t) = C!(O,l){Z2 n B(O, t) = 0} 

=(I - p) + plP'{ V ~ B(O, t)} 

=(I - p)+ p(l - H(t)) 

= 1 - pH(t). 

The calculation for J 1. produces the same result since z, = z under cl(o.11 
w~ . .. - . . 

Un~er C · , with probab1hty 1 the cluster has two points (of type 2 at O and of type I at - ~). 
Applymg lemma 9, 

J21(t) = c'10·2l{z1 n B(O, t) = 0} 

= IP{ - V ~ B(O, t)} 

=I - H(t). 

Again the calculation for Ji. is identical. 

Regarding J., we apply the univariate version of lemma 8. Now C° is number weighted, 

hence 

J (t) = C0 {Z n B(O, t) = {O}} 
1 - p 2p 

= 1 + p + 1 + p (I - H(t)). 

The result for I follows using lemma I. 

4.2. Bivariate Poisson processes 

A bivariate Poisson process is a two-type process in which the marginal distribution of 

each of the components is that of a stationary Poisson process (Griffiths & Milne, 1978; 

Diggle, 1983; Cressie, 1991). 

A linked Poisson process (Diggle & Cox, 1981) is a bivariate Poisson cluster process in which 

every cluster consists of exactly two points, a type 1 point and a type 2 point, separated by a 

random displacement V where V has density h on [Rd. This is the special case p = I of our two

type Gauss-Poisson process, so lemma 10 can be applied and we obtain 111 = h2 = l, 
J12(t) = h1U) = Ji(t) = h(t) = J.(t) = 1 - H(t) and /(t) = H(t). In particular, J 1 = J 

(i = 1, 2), so the model is consistent with a random labelling assumption. However, in general. 

a randomly labelled linked Poisson process is not a linked Poisson process which can be seen 

easily ifthe displacement Vis taken to be deterministic. 

Clearly, linked Poisson models exhibit positive dependence between the components, as 

confirmed by the expressions of the various J- and /-functions computed above. For bivariate 

Poisson processes with negative dependence, see for instance Brown et al. ( 1981 ). 

4.3. Bivariate Cox processes 

A bivariate Cox process (Cox & Lewis, 1972; Diggle & Milne, 1983) is formed as follows. 

We start with two random measures A 1, A 2 on [Rd which are typically dependent. Con

ditional on (/1 1, /1 2) = (A. 1, ,1,2), let X1 and X 2 be independent inhomogeneous Poisson pro 

cesses with intensity measures ,1,1 and A.2 respectively. Then the unconditional model Y 

(X1, X 2 ) is a bivariate Cox process. 
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4.3.1. Linked bivariate Cox process 
As an example of positive dependence consider the case where A 1 = vA2 for some fixed 
positive constant v; the resulting Y is called a linked bivariate Cox process (Cox & Lewis, 

1972). 

Lemma 11 
Let (X1, X2) be a linked Cox process where the intensity measures are "mixed Poisson", 
A2 = Arn, for some non-negative random variable A with finite positive expectation and 
where rn is Lebesgue measure. Write L(s) = IE exp(-sA) for the moment generating function 
of A. Then IE[Aexp(-sA)] = -L'(s) and 

lu(t) = Ji1(t) = L'(vKdtd)j(L'(O)L(VKdtd)) 

Ji2(t) = l12(t) = L'(KJtd)j(L'(O)L(Kdtd)) 

J .. (t) = Ji.(t) = Ji.(t) = L'((l + v)Kdtd)j(L'(O)L((l + v)Kdtd)) 

-v [-L'(vKdtd) L'((l + v)Kdtd)] 
!(t) = L'(O)(l + v) L(VKdtd) + L((l + v)KJtd) 

-1 [-L'(Kdtd) L'((l + v)Kdtd)] 
+ L'(O)(l + v) L(Kdtd) + L((l + v)Kdtd) 

where Kd = m(B(O, l)) is the volume of the unit ball in fRd. 

In the general case where (A 1, A 2) are stationary random measures, this result holds true 
with A-weighted means replaced by expectations under the Palm distribution at 0 of A2. 

Proof Since X1, X2 and X. are mixed Poisson processes with random intensity measures 
vArn, Am and (I + v)Am respectively, the equations for J1 i. 122 and J .. follow from theorem 6 
in (Lieshout & Baddeley, 1996) and the discussion therein. The expression for I follows easily. 

The reduced Palm distributions p!(O,l), p!(0,2) are both bivariate Cox processes with A 1 

(respectively A2) replaced by its A-weighted distribution, IEweightedf(A) = IE[Af(A)]/IE[A]. The 
remaining identities follow. 

By Lieshout & Baddeley, 1996, th. 6, Jij ~ 1 (with equality only if A is constant a.s.), 
suggesting positive correlation between the component processes. Moreover, J ij is decreasing 
with 

. essinf A 
hm Jij(t) = -IE--. 
1-00 A 

By the same argument, J;. and J .. are bounded above by I, decreasing to essinf A/IEA. 
Hence, J(t) converges to 0 as t -+ oo. Since the function 

L'(s) 
Sf-+ ---

L'(Q)L(s) 

is monotonically decreasing, the terms in brackets in the expression for I are both non
negative. Thus I is non-negative, confirming the positive dependence between the compo
nents. Finally, J;. ...;; Jii, confirming the positive dependence. Note that given A, the 
conditional distribution of (X1, X 2) given X. is that of a random labelling with 

I 
(p1, Pi)= v + l (v, I). 
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Since this distribution does not depend on A, Y has the random labelling property. This is 
reflected in the fact that J;. = J ... 

4.3.2. Balanced Cox 

An example of negative dependence is the class of balanced Cox processes (Diggle & 
Milne, 1983) where 

A1 +A2 = vm, 

m again denoting Lebesgue measure. Note that the superposition is always distributed as a 
Poisson process with intensity v. 

Lemma 12 
Let (Xi. X2) be a balanced Cox process on !Rd with A2 =Am, for a random variable A 
concentrated on (0, v) with 0 < IEA < v. Then, writing L for the moment generating 
function of v - A, 

l11(t) = l'(Kdtd)j(l'(O)L(Kdtd)) 

fi2(t) = L'(Kdtd)j(L'(O)L(Kdtd)) 

J () _ IE[(v -A)exp(-AKdtd)] 
12 t - ---'--..;:,_, __ ___;_:o 

IE[v- A]IEexp(-AKdtd) 

IE[A exp(-(v - A)Kdtd)J 
iii (t) = IE[A]IE exp(-(v - A)Kd td) 

J .. = Ji.(t) = Ji.(t) = 1 

It=- +----() 1 {-L'(Kdtd) L'(Kdtd)} 
v L(Kdtd) L(Kdtd) 

as before writing Kd = m( B(O, I)) for the volume of the unit ball in !Rd. 

Proof As the superposition is a Poisson process, J .. = 1. Again applying th. 6 of Lieshout & 
Baddeley ( 1996), the formulae for J 11 and h 2 follow, yielding the expression for /. 

The reduced Palm distribution p!(0,2> is that of a bivariate Cox process with A 2 replaced by its 
A-weighted distribution, while p!(O,l) is similar with A 1 governed by its (v - A)-weighted 
distribution. The other results follow. 

Using 

-L'(Kdtd) ~ -L'(O)L(Kdtd) 

and a similar inequality with A replaced by (v - A), it is easily seen that I ~ 0, indicating 
negative dependence. By the discussion following Lieshout & Baddeley (1996, th. 6), /(!) 
decreases to (essinf A - essup A)/v as t--+ oo. 

We can verify that J iJ ;;;.: I, suggesting negative correlation between the component processes. 
For example consider ]i1. Then 

IE[A exp(-(v - A)Kdtd)] IE[(v - A)exp(-(v - A)Kdtd)] v 
IEAIEexp(-(v-A)Kdtd) = - IEAIEexp(-(v- A)Kdtd) + IEA 

;;;.: _ (v - IEA)IEexp(-(v - A)Kdfd) + ~ = 1. 
IEAIE exp(-(v - A)Kdtd) IEA 

Moreover, both J 12(t) and J 21 (t) are monotonically increasing with limits (v -
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essinf A)/(IE(v - A) and esssupA/IEA respectively (t-+ oo). From our previous work 

(Lieshout & Baddeley, 1996), 1 = J;. ~ l;;, again suggesting negative dependence between 

the component processes. 

Turning attention to the label association, note that given A, the conditional distribution of 

(X1, X2) given X. is that of a random labelling with probabilities 

(p1, P2) = (v ~A,~). 
Thus the allocation probabilities are random, and in general Y does not satisfy the random 

labelling property. (This could also have been seen more directly by noting that X. is a 

Poisson process and therefore its random labelling is a bivariate Poisson process with 

independent components rather than the balanced Cox model we started with.) However 

J; - J .. = 0, which is in accordance with a random label allocation. 

4.4. Pairwise interaction Gibbs processes 

Consider a multi-type point process Y with conditional intensity of the form 

A((u, i); Y) = /3; IT yij([[xj - ujj) 
(Xj,})E Y 

where /3 1, •. ., f3m are non-negative constants and yij are non-negative real functions. 

Without loss of generality y,1 = Yii· In general, terms y;; appear. This might be called a 

stationary pairwise interaction Gibbs process, cf. Ripley & Kelly (1977 ). Baddeley & 

M0ller ( 1989), Ripley (1989). 

Lemma 5 and equation (8) immediately yield the following. 

Lemma 13 
For a pairwise-interaction Gibbs process as above, 

J (t) = t~IE [ IT Y;k(j[x[IJ/x n B(O, t) = 0] 
i=l · (x,k)E Y 

(28) 

Jij(t) = ~IE [ IT Y;k(J[x[f)/xj n B(O, t) = 0] 
1 (x,k)EY 

(29) 

l; (t) = ~ 1E [ IT Y;k([!xl!l[x n B(O, t) = 0] 
1 (x,k)EY 

(30) 

wherever defined. {l there is finite range interaction in the sense that y iJ( [[x[[) = 1 for 

[[xii> rij. the formulae above reduce to J.(t) = 2:.,{J;/A f(1r t ;3 r = max rij and J; (t) 

= {J;/A; for t;,, r; =maxi riJ. Since in (29) the conditioning is only un no point of type j 

in a ball around the origin, a similar reduction for Jij in general will nut hold. 

5. Applications 

In this section we analyse two bivariate data sets and a trivariate one with a variety of 

correlation structures between the component processes, using empirical /- and )-functions 

and Monte Carlo inference. None of the examples exhibits any obvious departures from 

stationarity, hence the summary statistics proposed in this paper may be used. 

We consider two different null hypotheses: random labelling as described in definition 3, and 
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independence of the components X;. To test the random labelling null hypothesis we condition 
on the locations and the relative frequency of the types, more specifically given a data set 
consisting of n; type i events (i = l, ... , m ), the labels are permuted randomly, leaving the 
locations unchanged. Alternatively, we could condition on the location of the events only and 
sample the labels with replacement. A disadvantage of the latter is that the label probabilities 
are unknown-although they can be estimated by p; = n; / n where n; is the number of observed 
i-events and n the total number of events-and that the relative frequency of the labels is 
variable. 

In general, non-parametric sampling from the unconditional null hypothesis of independent 
components is hard. For rectangular windows however, Lotwick & Silverman (1982) proposed 
identifying opposite sides of the window to obtain a torus, and then translating the type 1 pattern 
randomly over the torus. Hence this approach is conditional on the within-component patterns 
rather than on the superposition locations. 

Estimates of the various F- and G-functions were computed using the Kaplan-Meier 
estimators of Baddeley & Gill (1997). The corresponding J-functions were derived by substitu
tion. In the case of F, the windows were discretized into (subsets of) rectangular pixel arrays and 
the distances from each pixel to the nearest data point were computed using the distance 
transform algorithm of Borgefors ( 1986). The algorithms were implemented in Splus and C. 
Since the !-function is only defined at ranges t for which F(t) < 1, and the variance of its 
estimator increases with increasing t, in the examples below we have truncated the range of 
values considered to those t for which F(t) < 0.95. 

Within the scope of this paper we have restricted ourselves to exploratory data analysis. Of 
course a more formal test could be designed quite easily by considering the integrated squared 
difference between observed and simulated values (Besag & Diggle, 1977). A simulation study 
along these lines has been performed by Thonnes and Lieshout ( 1998) for the univariate case, 
indicating that the power of tests based on J is comparable to that of the more powerful of the 
alternatives based on F or G. Computer simulations by Baddeley et al. ( 1997) suggest the 
surprising fact that even if more na"ive and biased estimators for F and G are used, the tests 
based on J retain their power. 

5.1. Beta cells in the cat retina 

Figure l depicts a pattern of beta-type ganglion cells in the retina of a cat recorded by 
Wiissle et al. (1981) and kindly provided by Prof. P. J. Diggle. The window is a rectangle 

+ .. + + 
+ .. + .. A + .. + + A A A .. + A + A 

+ + +A 
+ 

A + .. + A+ A .. + A 

+ + A .. + + 
+ + A 1' 

o.+ 
A A + + .. 

+ A A 
+ + A 

+ + + + 
+ A + + A .. .. A + .. A .... + + + + 

+ .. 
+ + A .. .... .. + A + 

A A + .. A .. + .. .. .. + A + + + 
+ + .. 

+ A + A A 
+A + A .. + + .... A + + + A 

Fig. I. Sixty-five "on"(~) and 70 "off"(+) beta cells in a cat retina. 
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(0, 1) X (0, 0.7533) in units of approximately 1000 µm. Beta cells are associated with the 

resolution of fine detail in the cat's visual system. They can be classified anatomically as 

"on" (X1) or "off" (X2). Analysis of the spatial pattern provides information on the cat's 

visual discrimination. In particular, independence of the "on"- and "off"-components 

would strengthen the assumption that there are two separate channels for "brightness" and 

"darkness" as postulated by Hering in 1874. For details see Wiissle et al. (1981 ). See also 

Diggle ( 1986). 
Wassle et al. ( 1981) investigated this pattern using histograms of nearest-neighbour distances 

(ignoring edge effects). To test independence of the "on" and "off" patterns, a random 

translation of the "off"-cornponent was superimposed upon the "on"-component, and the 

resulting nearest-neighbour histogram compared with the original one by a sign reversal test. 

They concluded that both types of beta cells form a regular lattice, which are superimposed 

independently. 
Our analysis begins by computing estimates of the various summary statistics. The marginal 

nearest-neighbour distribution functions G11 and G22 lie below the graph of G .. (and similarly 

for F) while the cross Gu- and Gi.-functions are similar to G., due to the fact that most cells 

have a nearest neighbour of the opposite type. The functions J .. and Ju (i = 1, 2) are increasing 

and larger than 1, suggesting repulsion between the cells. The cross 1 u-functions are close to or 

above 1, while I shows slight deviations from 0. 

To investigate independence of the components we took the Lotwick-Silverman approach and 

repeatedly translated the first component over the torus. For each simulation, the /-statistic was 

computed. The envelopes for 99 translations and the empirical estimate of I are depicted in Fig. 

2. For t in the range (0, 0.06), data curve lies between the envelopes and hence the null 

hypothesis is accepted. Using the statistics 1 2 - h 2 or112 leads to acceptance of the null hypo

thesis as well, see Fig. 2, as would a test based on 1 1. - 1 11 or ]i1. Summarizing, our results 

confirm conclusions of Wassle et al. ( 1981) thus providing evidence for the Hering postulate. 

A random label allocation of types to beta cells on the other hand does not seem appropriate 

as a null hypothesis for testing the Hering postulate. However, for illustrative purposes we did 

perform the test. Since most points have a nearest neighbour of the opposite type, Ji. - J .. is not 

a suitable test statistic, but both the cross statistics J 12 , 1 21 and/ lead to rejection of the random 

labelling hypothesis for moderate values oft. See Fig. 3. 

A second order analysis (Hanisch & Stoyan, 1979; Stoyan, 1984; Gavrikov & Stoyan, 1995) 

by Stoyan (1995) yielded similar results. At close range, the plot of the mark correlation 

function P12 (Stoyan & Stoyan, 1994, pp. 264-265) is high compared to the plots of p 11 and 
p21, before flattening down. 
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Fig. 2. Envelopes based on 99 torus translations of X1 (dashed) and empirical J12, h. - ]z2 and 1 statistics 
for the cat retina data. 
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Fig. 3. Envelopes based on 99 random labellings (dashed) and empirical J 12, J21 and I statistics for the cat 
retina data. 

5.2. Myrtle trees 

Our second example is a pattern of 221 healthy and 106 diseased myrtles in a 170.5 by 
213.0 metre rectangle, depicted in Fig. 4. The data set was collected by Dr H. J. Elliott and 
colleagues at the Forestry Commission of Tasmania (now Forestry Tasmania) and kindly 
supplied by Dr G. A. Kile and Prof P. J. Diggle. For further information see Packham (1994) 
and the references therein. 

The empty spaces in three comers of the plot suggest that it would not be appropriate to treat 
these data as a realization of a stationary point process viewed through the rectangular frame. 
Instead, we have arbitrarily marked out a smaller window with a polygonal boundary as shown 
in Fig. 4, and computed all statistics with reference to this window. 

Both components have Ju-functions that lie below 1, suggestive of clustered behaviour. The 
function J .. for the superposition is also less than l. The cross statistics Jif are less than 1 and 
the I-statistic takes mostly positive values, suggesting positive dependence between the healthy 
and affected trees. 

tt ++ • :i-... 
+t ~ ++ 

+ ... •+ -t!"+ +-it- :&+ • 
+ + + + • "'!- ++ if 

+ +++ ... ,.+·i;t 
~ .... + ..... 

+ ii- t t -:!+ + +++ + 
+ +'f- ... :\ 

+ ... "" + ·+:f .. 
'!l:+*#~+-1'+ • t + + + 

• +:r+ + + ,,. ++ + .. 
.... 'No + ++A.A.a. • 4 • 

+ ..... + .. lilt. •++ ... 
-t++ +++ +..""° +*-t-+ + .... • + -+" ... ... 

+'+ + ++1-. ... . 
++ + + +o+-+ r·· + * + -1'++ + 
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++ •+ • • • :t ::;.. + .. + + ,. -ti-

.fl°-1" ~ + • 
++ + + + ...... +..+ + + 
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Fig. 4. Two hundred and twenty-one healthy ( +) and 106 diseased (£1) myrtles, reproduced by kind 
permission of Dr J. Packham. 
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Since the disease affects established trees, i.e. affects them after their location is fixed, it is 
not sensible to test for independence of the subpattems of healthy and diseased tree locations. In 
any case, random toroidal shifts could not be applied since the window is not rectangular. 
Rather, it is appropriate to test for random labelling conditional on the tree locations. 

Had we retained the original rectangular window instead of adopting the smaller polygonal 
boundary, the estimate of G(t) for moderate values oft would have remained unchanged while 
the estimated empty space function would have been elevated, so that the various J-functions 
would have been underestimated. However, for testing purposes this ought not to have a 
substantial effect, since the multiplicative bias (for fixed t) will be approximately the same. Our 
results support this interpretation. 

The Monte Carlo envelopes over 99 simulations are given in Fig. 5. The empirical J 12 , 

J 1. - J .. and Jz. - J .. and /-functions lie between the simulation envelopes for almost all values 
of t, hence for most values of t, the observed values of these statistics are not significant. 

5.3. Bramble canes 

Our last example concerns a trivariate pattern of bramble canes in a field 9 metres square, 
depicted in Fig. 6 rescaled to the unit square. The data were recorded and analysed by 
Hutchings (1979) and further analysed by Diggle (1981 a, b, 1983) and Diggle & Milne 
( 1983 ). The canes were classified according to age as either newly emergent, one or two 
years old. We label these types 0, 1 and 2 respectively. 

All previous analyses found that the pattern of newly emergent canes exhibits clustering, 
which Hutchings attributes to "vigorous vegetative reproduction''. Diggle (1983, sect. 7.4) also 
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Fig. 5. Envelopes based on 99 random labellings (dashed) and empirical J12, J1. - J .. , h. - J .. and I 
statistics for the Tasmanian myrtle data. 
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Fig. 6. Three hundred and fifty-nine newly emerging (~), 385 one-year-old ( +) and 79 two-year-old (x) 
bramble canes. 

performed a bivariate analysis of the pattern of newly emerging and one-year-old canes, 
concluding strong positive association between them, and fitted a linked Cox process (see 

section 4.3.1 above). He also (Diggle, 1983, p. 117) fitted a trivariate linked Cox process to the 
full data set, but the fit was less satisfactory. 

It should be noted that the bramble cane date is discretized; in particular there are six 
locations in common between X0 and X 1, while one point contains both a newly emergent and 

two-year-old cane. Hence in the plots below, the estimated I-function for the data and the 

envelopes based on random labelling have an atom at 0. When a test is based on torus 
translations, the common points between the components get separated almost surely, and the 

atom at 0 disappears. 
The estimates of the marginal functions l;; and 1 .. are all below l over the interval of sensible 

values 0 ,,,; t,,,; 0.06, indicating evidence for clustering. Similarly the estimated Jij functions are 

less than 1, suggesting aggregation between the points of different types. The estimates of 
h - J. show slight deviations from 0; on the other hand the estimates of J;. - l;; are 

substantially below 0 throughout the interval. 
Regarding the choice of test statistic, there does not seem any reason to treat the three age 

groups differently and we have opted for the symmetric I-function. Figure 7 shows the estimated 
I-function and the pointwise upper and lower envelopes from 99 simulations, obtained by 

applying uniformly random toroidal shifts independently to each of the three components. The 
!-estimate for the data lies far outside the envelopes for most of the interval, indicating emphatic 

evidence against the hypothesis of independence of the three types. Previous analyses have all 

drawn the same conclusion. 
Diggle (1983, p. 114) fitted a linked Cox process to the bivariate pattern of newly emergent 

and one-year-old canes. The linked Cox processes envisaged (Diggle, 1983, p. 97) are more 
general than those treated in section 4.3.1 above, in the sense that the realized intensity functions 
may be non-homogeneous, but are still required to be proportional. Nevertheless, it can easily 

be shown that all such processes have the random labelling property ( cf. Kingman, 1993). Hence 
it may be convenient to use a test for random labelling to assess the suitability of a linked Cox 

process model for these data in general, without needing to consider the specific model fitted by 

Diggle. 
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Fig. 7. Envelopes based on 99 random toroidal shifts (dashed) and empirical I statistic for the bramble 
canes data. 
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8 shows the estimated I-function and the pointwise upper and lower envelopes of the 
es from 99 simulations obtained by randomly permuting the age labels of the points 
'lding the locations fixed. The estimate of I now lies mostly within the simulation 
,s, but exceeds or lies close to the upper envelope for a considerable range of smaller t 

suggesting that a linked Cox model does not explain the small-scale interactions 
torily (see Diggle, 1983, p. 117). 
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