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In the monomer-dimer model on a graph, each matching (collection of nonover
lapping edges) M has a probability proportional to x_IMI, where X.>O is the model 

parameter, and IMI denotes the number of edges in M. An approximate random 

sample from the monomer-dimer distribution can be obtained by running an ap

propriate Markov chain (each step of which involves an elementary local change in 

the configuration) sufficiently long. Jerrum and Sinclair have shown (roughly 

speaking) that for an arbitrary graph and fixed A. and E (the maximal allowed 

variational distance from the desired distribution), O(IAl 2JEJ) steps suffice, where 

!El is the number of edges and I A I the number of vertices of the graph. For 

sufficiently nice subgraphs (e.g., cubes) of the d-dimensional cubic lattice we give 

an explicit recipe to generate approximate random samples in (asymptotically) 

significantly fewer steps, namely (for fixed A. and c) 0(JAJ(ln1Al)2). © 2000 
American Institute of Physics. [S0022-2488(00)01403-l] 

I. INTRODUCTION 

The monomer-dimer model, described below, originates from Statistical Physics, where it has 

been used to study the absorption of oxygen molecules on a surface, and the properties of a binary 

mixture. See Heilmann and Lieb8 for further background and references. More recently, the model 

has also drawn much attention in Operations Research, Combinatorics, and Graph Theory (see 
Refs. 9 and 10). 

Throughout this paper, the size (number of elements) of a finite set A will be denoted by !Al. 

Consider a finite, undirected graph G = (A, E), where A is the set of vertices of G and E is the 

set of edges. A matching on G is a subset MC E such that no two edges in M have a common end 

point. Let X.>O (this is the model parameter). Now assign to each matching Ma probability 

proportional to x_IMI. 
Alternatively, define the state space !l={O,l}E. Elements of !l (called configurations on E) 

are typically denoted by w= (w, ,e e E). The monomer-dimer distribution for G (with parameter 

l\) is then defined as 

A. lwl/( w is allowable) 
µ(w)= Z(X.) ' (1.1) 

where '' w is allowable'' means that the set { e: w. =I} is a matching, I wl denotes the size of that 

set, and Z(X.) is the normalization factor (partition function). It is clear that the two descriptions 

(one with state space the set of all matchings, the other with state space {O,l}E), are equivalent, 

and both descriptions will be used in this paper. 
To continue, we need some more terminology and notation: 
If two vertices i and j are adjacent, we write i ~ j. The degree deg(v) of a vertex v is defined 

as the number of edges that have v as an end point. If two edges ei and e2 share a common end 

point, we write e 1 -e 2 . Let, in the rest of this subsection, .:l be a subset of E. We denote the set 

{ 0, 1 }A by a A . Similarly, if w En, then w A denotes the "restriction" of (I) to a, i.e., the element 

(We :e E ii,) of {lA. If W, W 1 E {lA We call an edge e E ii, an edge of disagreement (w.r.t. the pair 

0022-2488/2000/41 (3)/1585/13/$17.00 1585 © 2000 American Institute of Physics 



1586 J. Math. Phys., Vol. 41, No. 3, March 2000 J. v. d. Berg and R. Brouwer 

(w, w')) if w,.=Fw;, and we denote the set of all such edges by V(w,w'). The boundary of !l, 
denoted by atJ.., consists of all elements e e E\!l such that e - e' for some e' e !l. 

Let a e Dai, (so a is a configuration on the boundary of !l). The monomer-dimer distribu
tion for D.. with boundary condition a is defined as follows: 

A. lwl/( w) is allowable w.r.t. a) 
µ~(w)= Z4(A.) ' (1.2) 

where allowable with respect to a means that the set { e e D..: we= 1} U { e e all: ae = I} is a match
ing. 

It is easy to check that the monomer-dimer model satisfies the following Markov property: 
Let er denote a random configuration on E and let D.. C E. Then the conditional distribution of er 4 , 

given erE\4 , equals µ~"I!. (and hence depends only on era4). 

The paper by van den Berg (1999) shows that the monomer-dimer model on a lattice has 
certain very strong spatial mixing properties. In the present paper (see Sec. III) we show explicitly 
how this can be used to improve, for "nice" subgraphs of a lattice, earlier results in the literature 
concerning the generation of (approximate) random samples. Apart from a theorem by Jerrum and 
Sinclair, which is stated without proof in Sec. II, and some easy to verify results on variational 
distance and coupling (see also Sec. II), this paper is practically self-contained. 

II. PRELIMINARIES 

In this section we give the background needed in Sec. III. First, we present some general and 
quite well-known results on coupling and variational distance. Then we will state the earlier 
mentioned result by Jerrum and Sinclair. Finally, we will present and prove a result which is very 
similar (but more convenient for our purpose) to a result in van den Berg.5 

Throughout this section D denotes an arbitrary finite set. 

A. Coupling and variational distance 

Suppose we have two probability distributions µ 1 and µ 2 on D. The variational distance 
dv(µ 1,µ 2) is defined by 

(2.1) 

Another (but equivalent) definition of variational distance is the following: 

dv(µ, ,µ2) =maxlµ 1 (A)- µ 2(A )j. (2.2) 
AC[} 

This equivalence is quite easy to check. 
Suppose we have two probability distributions µ 1 and µ 2 on D. A coupling P of µ 1 and µ 2 

is a distribution on n x n which has the following properties: 

and 

(2.4) 
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i.e., the marginal distributions of Pare µ 1 and µ 2 • Similarly, one can define couplings of more 
than two probability distributions. A trivial example of a coupling is the product coupling µ 1 
Xµz. 

Define the event ''unequal'' as the set { ( w 1 'Wz) E n x n: w I* Wz}. Likewise, we define the 
event "equal" as the set {(w 1,w2)eilXD:w 1=w2}. The following results, Proposition 2.1, 
Lemma 2.2, and Proposition 2.3, are quite standard and not difficult to prove. 

Proposition 2.1: Let µ 1 , µ 2 , and µ 3 be probability distributions on a, and let P1,2 and P2,3 

be couplings of µ1 and µz, and of µ 2 and µ 3 respectively. Then there exists a coupling P1,3 of µ 1 

and µ 3 with the following property: 

P1,3(' 'unequal'' )os:;P1,2(' 'unequal'') +P2,3(' 'unequal''). 

We proceed with a lemma that states some basic properties of variational distance. 

Lemma 2.2: Letµ,µ', and v be probability distributions on a. We have 

(1) dv(µ, v)?!:O, 

(2) dv(µ,v)=dv(v,µ), 
(3) dv(µ, v)os;dv(µ,µ') +dv(µ', v), 
(4) dv( y· µ+(1- y) · µ', v)os; y· dv(µ,v) +(I - y) · dv(µ', v) for all ye [0,1]. 

(2.5) 

The following proposition relates the two notions of variational distance and couplings. Recall 
the notions "equal" and "unequal" defined earlier. 

Proposition 2.3: For all probability distributions µand v on il, 

d vCu, v) = min P ("unequal"), 
p 

where the minimum is taken over all couplings P ofµ and v. 

(2.6) 

A coupling that reaches the minimum in Proposition (2.3) is called optimal. For an extensive 
treatment of coupling methods, see Ref. 11. 

B. Mixing times and the Jerrum-Sinclair result 

Suppose we have an ergodic Markov chain on il. Let 1T be the stationary distribution of this 
chain and let x En. Let µx.t denote the distribution of the Markov chain at time t, when it has 
started in initial state x. Let e->0. Define the mixing time with respect to initial state x of the 
Markov chain as follows: 

(2.7) 

The (total) mixing time of the Markov chain is defined by 

-r(e)=max -rx{e-). (2.8) 
xen 

Jerrum and Sinclair9 have studied the mixing time of a suitable Markov chain for the monomer
dimer model. More precisely, they have proved the following: Let G= (A,E) be a finite graph, 
and let D = {all matchings on G}. Consider the monomer-dimer distribution with parameter A. 
>0 on D. Denote this distribution by 1TA. To sample from this distribution, they study a specific 
Markov chain me>.. whose stationary distribution is 1T>.. . A transition M ~ M' in the Markov chain 
me>.. is described as follows: 

(1) With probability t let M' =M; otherwise 
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(2) Choose uniformly at random an edge e=(u,v) EE. 
Define M' as follows: 

M+e if u,v unmatched in M, 

M-e if e EM, 

M' = M + e - e' if either u or v (but noth both) is matched. 

and e' is the matching edge, 

M otherwise 

(3) Move to M' with probability min{l,[ 7T;.,.(M')/7T>.(M)J}. 

Note that me>- is aperiodic because P(M,M)';3; !>O for all matchings M. It is also clear that mci.. 
is irreducible (because all matchings communicate via the empty matching), and easy to check that 
mc>- satisfies the detailed balance condition, 

7T>.(M)P(M,M') = 1ri._(M')P(M' ,M). (2.9) 

We conclude that me>- has stationary distribution 1T;.,. and that, for any initial state, the distribution 
of the chain converges to 7T>. . By a clever application of the so-called canonical path method, 
Jerrum and Sinclair,9 obtained the following bound for the mixing time of me>-. 

Theorem 2.4: The mixing time of me>- satisfies 

r( e)'''AIElnA.' (n ln4n + n In A.')+ ln( e- 1 )), 

where A.' =max{l,A.}, and n=[IAl/2]. 

[In fact, Proposition 12.4 of Jerrum and Sinclair,9 states 

r( c):;;;41ElnA.' (n(ln n + ln A.')+ ln( e- 1) ). 

(2.10) 

(2.11) 

However, we could only verify the proof when the factor Inn is replaced by ln4n, in (2.11).J 

C. A result on the spatial dependencies of the monomer-dimer model 

The following theorem is very similar to a result in Sec. III of Ref. 5 (the ideas in which go 
back (Refs. 2-4), but slightly stronger and more convenient for our purpose. Therefore, and for 
completeness, we give a fairly detailed proof. Recall the definitions of V( w, w ') and deg( v) in 
Sec. I. 

Theorem 2.5: Let, for a given value of A., µ be the monomer-dimer distribution on a graph 
G= (V,E). Let ACE and let a,{3 E Oat.. Then a coupling Pti,a,fJ ofµ'!, andµ~ exists such that 

Eti.a,fJ(l{e E A:e edge of disagreement}l):;;;2cA.· IV(a,,B)I, (2.12) 

where Eti,a,fJ denotes the expectation with respect to Pti.,a,(3 and c equals maxvr:A{deg(v)}-1. 
Proof" Let A, a, and f3 be as in the statement of the theorem. We construct the desired 

coupling p A,a,(3 on n Ax n A as follows: Let x and y be independent configurations with distribu
tion µ~ and µ~ respectively. Modify these configurations in the following way. For every e 
E V( a,/3), define the set 

edifb,y) ={ e E V(x,y ): 3a sequence e-e I -e2-·. ·-en= e of distinct edges in A, with Vi 

E{l···n}:xe *Ye· 
I l 

(2.13) 

We call such a sequence a path of disagreement of length n from v to e, where v is the common 
end point of e and e I. Let the set DIFFx,y,a,(3 be the union of paths of disagreement leaving from 
V(a,(3) 
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DIFF.1 • .1.a1:1=== U edin<x.y). 
eE Vi a.{31 

The modified configurations .t and y are defined by 

- {x, x,.= 
v . ' 

if e E DIFF,,y.a./:I• 

else, 

Ye=Ye for all eeki. 

1589 

(2.14) 

(2.15) 

Note that the configurations x and y only differ from each other on DIFF- ~ and that this set 
1 DIF >.).a,(J 

equa s F.,,y,a.,B. We define P:!;.,a,/3 as the distribution of the pair ct .. v) constructed as above. 
Lemma ~.6: The distribut~on of P ::...a.,B defined above is indeed a coupling ofµ l and µ~. 
Proof" Smee we have defined 'Pi.a,/3 as the distribution of (.t,Y) it is sufficient to prove that 

x has distribution µ~ and .v has distributionµ~. Clearly. since .v equals y it has distribution µf1. 
It remains to show that x has distribution µ !,, . To do this first introduce configurations x and v ~s 
follows: In words, (x,y) is the pair of configurations obtained from (x,y) by exchanging x and~· on 
the set of edges that do not have a path of disagreement to V( a.,B). More precisely, 

, {Xe 
x = e Ye 

, {Ye v = • e x, 

if e E DIFFx.v.a,f:l • 
else, 

if e E DIFFx,y,a,,8' 

else. 
(2.16) 

By an appropriate use of the Markov property (see the proof of Lemma 1 in Ref. 5), the pair (x ,y) 
has the same distribution as the pair (x,y). Finally, from the definitions of .f and;, it follows that 
x=x. Hence x has distributionµ!,,. 0 

We now show that this coupling P:!;.,a,f3 has property (2.12). First recall (see the note before 
Lemma 2.6) that the left-hand side of (2.12) is equal to the expected size of DIFFx.v,a./3, where x 
and y are drawn independently from µ~ and µ~, respectively. Therefore we study the paths of 
disagreement for the pair (x,y). So consider an edge e E V(a,{3), say e=(v 1.V2). Observe that if 
a path of disagreement of length k from v 1 exists, then this path is unique. (Otherwise, as one can 
easily check, there would be three distinct edges, which share a common endpoint, and on each of 
which x ::/= y. But then at least two of these edges have x = 1, or at least two of these edges have 
y = 1, which contradicts the fact that that x and y are allowable.) For v2 a similar statement holds. 
Define l 1 ( e) U 2 ( e)) as the path of disagreement of maximal length, starting from v I (v 2 ' respec
tively). From the above observations we conclude that the left-hand side of (2.12) is at most 

2: E[jz, ( 'i) I+ II 2( 'i)j J = 2: 2: P( II, ('i)i ;;.:k) + P( lt2( e) J;;;.k). (2. t7l 
e E V( a./3) e E V(a./3) k= l 

To complete the proof of Theorem 2.5 we must, in view of Eq. (2.17). bound the probability 

P(l 1 ( 'i) has length;;. k), (2.18) 

and its analog for I2('i). Before we do this, we first state a simple general lemma. Consider the 
monomer-dimer model on the very special "star-shape" graph, which consists of n edges and 
n + I vertices, one of which (the "center of the star") has one edge to each of the other n vertices. 
It is clear that each allowable configuration has either 0 or 1 edge with value 1, and that the latter 
has probability A.n/(1 +X.n). Note that this is increasing inn. This observation, together with the 
Markov property mentioned in Sec. I (below (1.2)) implies immediately the following: 



1590 J. Math. Phys., Vol. 41, No. 3, March 2000 J. v. d. Berg and R. Brouwer 

Lemma 2.7: Consider the monomer-dimer model with parameter A. on an arbitrary finite 
graph G. Let v be a vertex of G and let A be a subset of the edges of v. Then the conditional 
probability that there exists an edge in A with value J, given the values of all edges outside A, is 
at most 

We now proceed with the proof of Theorem 2.5. Suppose a path of disagreement of length k 
exists. What is the conditional probability that a path of disagreement of length k+ 1 exists? Let 
e I - ... - e k = e be the (unique) path of length k leaving from v I ' so that e - e I . By the uniqueness 
property mentioned before, we have that the path of disagreement of length k + 1 (if it exists) is an 
extension of the path of length k. Define 

Adj(e) ={b E A:b-e and b+ek-1}. (2.19) 

Note that jAdj(e)j.;o;c, with c as in the statement of the theorem. 
By assumption xe=O and Ye= 1 or vice versa. Without loss of generality we assume the 

former. Since y is a matching, we have y b = 0 for every edge b E Adj( e). Hence we have a path 
of disagreement of length k+ 1, if and only if an edge a E Adj(e) exists with Xa = 1. By Lemma 
2.7 above, the (conditional) probability of this event is at most A.c/A.c + 1. Iterating the above we 
get 

(2.20) 

The same result holds for 12(-e). 
Combining (2.20) with (2.17), it follows that the left-hand side of (2.12) is at most 

00 
( A.c ) k 2 L L ~l =2A.c·IV(a,,B)j. 

eeV(a,,8) k=I /\.C+ 
(2.21) 

This completes the proof of Theorem 2.5. 
Remark 2.8: In Sec. III A and IIIB, we will only work with d-dimensional hypercubes A. For 

such sets A, each edge on the boundary aA has exactly one vertex in common with an edge in the 
box A. For these special cases, the above result is improved by a factor 2, so that 

Ea,a,,s(#{eeA:e edge of disagreement}).;o;A.(2d-l)·IV(a,,B)j, (2.22) 

for every hypercube A. 

Ill. RANDOM SAMPLING ON SUBGRAPHS OF THE d-DIMENSIONAL LATTICE 

A. Description and motivation of the method 

In Sec. III B we stated the Jerrum-Sinclair result. This result holds for general graphs. In the 
present section we study certain specifically "nice" graphs, say a d-dimensional torus (described 
more precisely below). Suppose we want to sample (approximately) from the monomer-dimer 
model for such a graph. According to the Jerrum-Sinclair result (Theorem 2.4) we can do this by 
running the Markov chain me>-. (described in Sec. II B) a number of steps given by (2.11). For the 
torus this is, for fixed A. and e, asymptotically oforder (Volume) 3 X log(Volume). Here Volume is 
the number of edges in the graph (or the number of vertices, which for these graphs differs a 
constant factor from the number of edges). 

Can this, for these special graphs, be improved? There are several possibilities. One approach 
is to use logarithmic Sobolev inequalities: the results on spatial dependencies in Sec. II C imply a 
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mixing condition which, in turn, following a quite general theory developed by Stroock and 
Zegarlinski (see Ref. 15), could lead to a bound on the mixing time of order Volume 
X log(Volume). (We write could because there is an extra. quite subtle, condition which has to be 
checked to obtain such a bound from the Stroock-Zegarlinski theory; see Theorem t in the survey 
paper,7 by Frigessi, Martinelli, and Stander.) This result would be very interesting. but when one 
really wants to generate random samples, one not only wants to know the asymptotic order of the 
mixing time, but one needs an explicit upper bound to carry out the algorithm. To get (reasonable) 
explicit bounds from the Stroock-Zegarlinski theory is probably a lot of work which (in our 
opinion) is certainly worth the effort. 

However, in the present paper we follow a somewhat different approach, which is based on a 
small modification of coupling and rescaling arguments which have become quite standard (see 
Aizenman and Holley, 1 and Martinelli and Olivieri.13 This approach has the advantage that it 
gives, with relatively simple and few computations, an explicit bound whose asymptotic order is 
"only a little worse" than the above mentioned VolumeXlog(Volume). (We get an extra factor of 
order log(Volume).) 

Our approach is to combine (using rescaling and coupling arguments) the result of Jerrum and 
Sinclair (Theorem 2.4) with the result on spatial dependencies in Sec. Il C. Although this approach 
applies to a larger class of graphs (see Remark 2 Sec. Ill C). we concentrate for simplicity on a 
graph f, which corresponds to a d-dimensional torus. More precisely, let N be a positive integer. 
and define r as the pair (Ar ,Er) where the set of vertices Ar is defined as 

(3.1) 

and the set of edges Er is 

(3.2) 

where J · J denotes the I 1 distance. We would like to sample from the monomer-dimer distribution 
?Tr with parameter A. on this graph. 

One way of approximate sampling from this distribution on r is the follo:wing: Let 8>~. Let 
.6. be a d-dimensional cube of length l. (Here l depends on A. and d; a smtable value will be 
determined later.) More precisely, .6. is the following set of edges: 

(3.3) 

Let X(t), t= 0,1, ... be the Markov chain with state space {O,l}Er, which starts in some xoe f. and 
of which the transitions are described as follows: Suppose X (t) = x. Choose u.a.r. a vertex i 

e Ar . Let LS: be the box .6. shifted over i in the torus, i.e., 

.6. ={((v 1 + i)(modN),(v 2+ i)(modN)):(v 1,V2) e .6.}. (3.4) 

Consider the monomer-dimer distribution on:& with boundary condition xaX (and parameter A.), 

denoted by µ ~aA.. Now sample a configuration x from this distribution. At time t + l the state 

becomes 

A -(X(t), if e e :&. 
X(t+ 1),- - "f :r 

Xe 1 e E l..l.. 

(3.5) 

It can be proved, using the spatial mixing properties .mentioned before, that for l s_ufficiently 
large, the mixing time of this Markov chain for fixed>.. 1~ of ~rder V<JA_rJ · logJ~r\), 1.e., of the 
same order we mentioned above in connection with loganthm1c Sobolev mequabties. 
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However, a problem arises when one actually tries to execute this algorithm. How to compute 

the above mentioned distribution µ ~aA? Even for relatively small Li, this is a ~uge problem. For 

example, if d = 2 and the length l of the hypercube is 10, the state space of µ·~1:,. has already more 

than 2 100 elements. In practice, this algorithm cannot be used. 
One way to proceed now would be to use certain comparison theorems to obtain a bound on 

the mixing time of the Markov chain me,_ for this model from the bound on the mixing time of the 
above "block dynamics" (see Diaconis and Saloff-Coste,6 Randall and Tetali, 14 and Martinelli 12). 

However, these comparison arguments do not involve the two mixing times directly but indirectly 
(via the spectral gap or logarithmic Sobolev constant). Since the relation between the mixing time 
(2.7)-(2.8) and these quantities is not tight, this method would introduce a factor of order Volume, 
so the final result would be of order (Volume) 2 log(Volume). 

Therefore we do the following: Instead of drawing a configuration exactly from the distribu-

tion µ,~A mentioned before, we will sample approximately from this distribution. In other words, 

we replace each (macro) step in the Markov chain by a number of micro steps where each micro 

step corresponds with a transition of the Markov chain me,_ (on K, with boundary condition xa.~J 
studied by Jerrum and Sinclair. It will tum out that (for fixed t5 and A.), the total number of micro 
steps needed to obtain a "8-close" approximate sample from 7Tr is at most of order Volume 
(log(Volume))2 (see Corollary 3.3 at the end of this section). 

More precisely, the modified Markov chain, which we denote by X(t), t= 0,1, ... , has the same 

state space and initial state as X(t), but the transitions are now as follows: Suppose X(t) =x. As 

before, choose u.a.r. a vertex i e f; determine the box K, and consider the monomer-dimer 

distribution µ, ~aA. We will approximate this distribution. To do this, first define 

=(ltil-A.(2d-l)latil)!. 
E IEr\lti\ 2 · (3.6) 

The choice of this value will become clear later. Now consider the (auxiliary) Markov chain me,, 

(with respect to the monomer-dimer model on K, with boundary condition xilA) described in Sec. 
II B. Although the initial state does not matter in the computations below, it is natural to take it 

equal to x,l. Denote the distribution of this chain at time t by vfx. Let Li* be the set of vertices 

which are endpoints of edges of Li. From Theorem 2.4 it follows that vfx converges to µ7A, and 

that, if the number of steps made by that Markov chain is at least T, given by 

T==ltil lti *\A.'[ lti *lln(2IA *I)+ (IA *\)ln A.'+ 2 ln( E- 1) ], (3.7) 

then 

( ?:_,x xa"S.) :< 
dv Vil ,µA ~E. (3.8) 

Let x be the configuration on K after T transitions; this is a sample from vI'x. Now take 

-( X ( t) e if e $ E 
X(t+l)e- _ . _ . 

Xe tf e EA 
(3.9) 

This completes our description of a (macro) step in the Markov chain X. 
In the next section we will give an upper bound for the number of macro steps after which the 

variational distance between µ 1 (the distribution of X(t) at time t) and 'lTr becomes smaller than 
t5. The total number of micro steps needed then simply follows from multiplying this by the 
number Tin (3.7). 
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B. A bound on the number of steps 

In this section we will bound the number of steps of the Markov chain to approximately 
reach the stationary distribution 'lTr. First. we define a suitably coupled system (X(t). I), t 
=0,1, ... , where X(t) is the Markov chain introduced in the previous subsection, and is a 
Markov chain with the same transition probabilities as X (which was also introduced in the 
previous subsection), but which starts with the stationary distribution ;rr (and hence keeps this 
distribution). Using the results in Sec. II, we will obtain an upper bound for the variational 
distance between the distributions of X(t) and Y(t) for every time t. This is done by studying the 
number of edges of disagreement jV(X(t).Y(t))\. 

More precisely, let X(O)=x 0 and let Y(O) be drawn from the distribution '1Tr. Suppose at 
time t ,X(t) = x and Y(t) = y. Now we follow the description of a transition of X(t) given in the 
previous subsection. However, instead of sampling a single configuration ."ion K. we now sample 
a pair (.Y',Y) as follows. First consider the following three distributions on Hs.: . µ~1~ and 

YaS. L t µ'ii. . e 

. 1. f T,x d xaK d be an optimal coup mg o v S. an µ S. , an 

be a coupling of µ'!S. and µ"!S. which satisfies Theorem 2.5. Finally, let 
il il 

(3.lil 

(3.12 l 

be a coupling of v!.·" and µv_aK obtained from the two previous couplings as described in the proof il il . 
of Proposition 2.1. The expectation with respect to the distribution. (~. l 0) is. denoted by 
[. T,x 'ii~. The expectations for the other two couplings are denoted s1m1larly. Now, sample a opt,vS. ,µK 
pair (x,Y) from this last coupling (3.12). Now take 

(
X(t)e if e $ .&', 

X(t+ I)e= _ 'f A' 
Xe I e E /..l.. 

. (YU)eife$K, 
Y(t+ I),= _ . - . 

V If e E 6, • e 

(3.13) 

This completes the description of the transitions of the pair (X(t),Y(t)). Note that -~.~as be~n 
drawn from v~,x so that the Markov chain X(t) has indeed the same transition probab1ht1es as m 
Sec. III A. Similarly, note that Y(t) has indeed distribution 'lTr for each r._ . , , . . 1 Let µ 1 denote the distribution of X (t). Let E (t) denote the expectation of I H X (I), Y (t) J 1 • 

Using Proposition 2.3 we have 

(3.14) 

Therefore we will study E(t). In particular, we study the change in this quantity after one (macro) 
step of the coupled Markov chain. . . . ,, 0 Using a property analogous to Eq. (2.5) m Propos1t1on ... 1 we 0 et 
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ev~·x.µ)!a(\{eEK:e edge of disagreement}\) 
LI LI 

~£ ~.x xaa(\{eEK:e edge of disagreement}\) opt,vLI ,µ'ii 

+E x,.A .v,,.1(\{eEK:e edge of disagreement}\). µ'ii ,µ'ii (3.15) 

So we need upper bounds for the expectations in the right-hand side of (3.15). By Theorem 2.5 
(and Eq. (2.22)), 

Because the coupling Papt,v~.x ,µ'!A is optimal, we have 
A LI 

Eapt,v~.x ,µ'_r1.1(\{ e E K:e edge of disagreement}\) ~\Kl· P r.x x,,,I( "unequal") 
A ll opt,v'ii ,µ'ii 

= \LS.\ · d v( V ~,x , µ~'ii) 

~€·\Kl. 

The last inequality follows from (3.8). Together, Eqs. (3.15)-(3.17) yield 

We now state and prove the following Lemma: 

Lemma 3.1: 

E(t+ I)~b·E(t)+ €\Li\, 

where 

\Li\-A(2d-I)\aLi\ 
b==l- \Erl 

(3.17) 

(3.19) 

(3.20) 

Proof: Let M(t)=\V(X(t),Y(t))\. Note that the expectation of M(t) is equal to E(t). Sup

pose that X(t), Y(t), i and hence K are known. Consider the conditional expectation of the 
number of edges of disagreement that disappear during the transition t--+t+ 1, 

E[M(t)- M(t+ 1) \X(t) =x, Y(t) =y,iS. =A]= \V(xA ,y A)\- Evr,x µYaA(\ V(x,Y)\ ). (3.21) 
A ' A 

By (3.18) this is larger than or equal to 

(3.22) 

Averaging over A we get 

E[M(t)- M(t+ 1 )\X(t) =x,Y(t) = y ];;;.£(\ V(xK ,y K)\)- E\Li\- A(2d- l )E(\ V(xaa ,Yaa)\), 
(3.23) 
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w~ere the_ex?ect~tion in the right-hand side refers to the distribution of K. Recall that this is the 

uniform d1~tnb~t1~n, so that by symmetry each edge of Er has the same probability, JAj/)Erl. to 

belo~g to Ll. S1~Ilarl~, the probability that a given edge belongs to r1S. equals oilJ!IErl- Hence 

the nght-hand side of (3.23) equals 

IL11 ja:il 
!Er! ·IV(x,y)j-el:il->d2d-1) IErl jV(x.y)i. 

So we have 

E[M(t)- M(t+ 1) IX( t), Y(t) ]~M(t) (!Kl- A.(!2d- l )jail. ill_ el.:li'. 
. Erl (3.24) 

Taking expectations in (3.24), we get 

( IL1!-t..('d- l)jaAI) 
E(t)-E(t+ l )~E(t) l~rl - clAI. (3.25) 

from which the lemma follows immediately. 

For the moment we assume that the following inequalities: 
0 

IL11-t..(2d- I)ja.:lj 
O<l- IErl <l (3.26) 

hold, and will come back to this later. 

Iterating Eq. (3.19) we get 

Here we use the definition of E and b (see Eqs. (3.6) and (3.20)), and the fact that E(Q),;;;j£rl

With (3.14) this gives 

(3.28) 

If we want to find t, such that the above mentioned variational distance is smaller than 0, it suffices 

to solve 

(3.29} 

Taking logarithms on both sides of (3.29) and using that ln(l-x):E;-x for O<x< l, we find that 

(3.29) holds if 

(ln(21Eri) + ln( g-i )) ·!Er! 

t~ 1111-t..c2d-1J!aL1! 
(3.30) 

Recall that every step of the Markov chain X(t) is in fact a macro step which corresponds 

with T micro steps in some box K, where T is given by (3.7). Hence the total number of micro 

steps 1(0) after which the distribution of X(t) has variational distance :;;;J from 7Tr is at most T 

times the right-hand side of (3.30), i.e., 



1596 J. Math. Phys., Vol. 41, No. 3, March 2000 J. v. d. Berg and R. Brouwer 

7(8)~ IAllA *I>..'· [\A *\ln(2\A *i)+ \A*lln(>..') + 2 ln( e- 1)] x ( (lnf~\:r~~~~~~~1 1]~~rt), 
(3.31) 

where e= e( 8) is defined as in (3.6). Optimization considerations on a simplified modification of 
the right-hand side of (3.31) lead to the following choice of the length l of A: 

l:=[>..(4d+2)]. (3.32) 

Note that \A*l=(l+l)d, \Al=dl(l+l)d-I, and laAl::::2d(l+l)d-I, so that, with l given by 
(3.32), 

IA*l=U>..(4d+2)1+ l)d, 

\Al =df>..(4d+2)1U>..(4d+2)1+ 1 )d- 1, 

\aAl=2d(f>..(4d+2)l+ l)d- 1• 

(3.33) 

(3.34) 

(3.35) 

Using (3.33)-(3.35), it is easy to check that, for every >..>O and every d~2, the above choice of 
l implies the upper bound in (3.26). The lower bound in (3.26) is satisfied if \Erl>\A\, i.e. (in 
terms of A. and d) if \Er\ is larger than the right-hand side of (3.34). Using (3.33), (3.34), (3.35), 
and (3.6), we can now express the upper bound (3.31) on 7(b) completely in terms of 8, >.., d, and 

\Er\. 
Summary of the algorithm and the main result. Concluding, we can state the following: Let 

0< 8< 1 and >.. >0. Consider the monomer-dimer distribution 7Tr with parameter >.. on the 
d-dimensional torus f, as described in Sec. III A. Take l = f ( 4d + 2) >.. l and let 6. be the hypercube 
of length l as described in Sec. IIIA. Compute E from (3.6). Finally, compute T for the above 
choice of l, as in (3.7). Consider the Markov chain X(t) with state space {O,l}Er, with transitions 

described as follows: Choose u.a.r. a vertex i E r and consider the box K = ( i + 6.). On this box 
(with the current X(t) values on the boundary fixed) run the Markov chain me}... (described in Sec. 
II B) for T steps. These steps are called micro steps. This completes one transition (macro step) in 
the Markov chain X(t). 

Theorem 3.2: In the algorithm described above, the number of micro steps 7( b) after which 
the distribution of X(t) has variational distance smaller than or equal to 8 from the stationary 
distribution Trr satisfies 

(ln(21Er\) +In( 0- 1)) \Er\ 
7( 8)~T· l6.l-A.(2d-l)\aA\ 

=\A\ IA*!>..'· [IA *\ln(2\A *!)+IA *!In(>..')+ 2 ln( e- 1)] 

( (In(21Erl) +In( s- 1)) IErl) 

x \Al->..(2d-l)la6.I ' 
(3.36) 

where IA* I. IAI, laAI and E are given by (3.33), (3.34), (3.35), and (3.6), respectively, and >..' 
=max(>..,1). 

This result gives immediately (note the dependence of e on \Er!) 
Corollary 3.3: For the algorithm above, if>.., d and 8 are fixed, 7(b) satisfies 

7( 8) = O(IEr\ (In(!Erl) )2). (3.37) 

Remark 3.4: From (3.37) it follows that, for fixed >.. and 8, on a large torus our bound is 
considerably better than the bound of Jerrum and Sinclair (Theorem 2.4). (Note that on a torus, the 
number of edges equals the dimension times the number of vertices, so !Erl =di Ar!.) However, 
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our bound (3.31) involves a factor A 2dA. ', while the bound of Jerrum and Sinclair is linear in A.', 
which is important for certain applications (see Ref. 9). Hence if the size of the torus is relatively 
small with respect to A, their bound is better than ours. 

C. Remarks 

(1) Since the definition of the Markov chain X(t) depends on 8, it is, strictly speaking, not correct 
to call 7(8) in (3.31) its mixing time. 

(2) The algorithm in the previous section, was described for a torus f. A similar result is still 
valid when the algorithm is applied to a sufficiently nice finite subset of zd, for instance a 
hypercube f =(Ar ,Er). where Ar={O, ... ,m}d and Er={(v 1 ,v 2):v 1 ,v2 e Ar and lv 1 -vz 
I = 1}. Since r is not a torus, the box & must now be defined as E = ( i + A) n Er , where the 

vertex i is now the center of the box E. The fact that in some cases E consists of roughly 
I A I /2d elements leads to an increase of the size of a suitable A. This in turn leads to a number 
of micro steps needed in the procedure which is a constant (depending on the dimension cl) 
larger than that for our torus. 

(3) One may think of several modifications of our computations to improve (decrease) the right
hand side of (3.36). For instance it would be interesting and worth trying to improve Theorem 
2.5. As to alternative methods, see the remark about logarithmic Sobolev inequalities in the 
beginning of this Section. 
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