The Excluded Minors for GF(4)-Representable Matroids ${ }^{1}$

J. F. Geelen
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

and
A. M. H. Gerards and A. Kapoor

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Received August 19, 1997

There are exactly seven excluded minors for the class of $G F(4)$-representable matroids. © 2000 Academic Press

1. INTRODUCTION

We prove the following theorem.
Theorem 1.1. A matroid M is $G F(4)$-representable if and only if M has no minor isomorphic to any of $U_{2,6}, U_{4,6}, P_{6}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}, P_{8}$, and $P_{8}^{\prime \prime}$.

The definitions of these matroids, with a summary of their interesting properties, can be found in the Appendix. Except for $P_{8}^{\prime \prime}$, they were all known to be excluded minors for $G F(4)$-representability (see Oxley $[15,17])$. The matroid $P_{8}^{\prime \prime}$ is obtained by relaxing the unique pair of disjoint circuit-hyperplanes of P_{8}.

Ever since Whitney's introductory paper [28] on matroid theory, researchers have sought ways to distinguish the representable matroids. For any field \mathbf{F}, the class of \mathbf{F}-representable matroids is closed under taking minors. Thus, it is natural to characterize the minor-minimal matroids that are not F -representable; we refer to such matroids as excluded minors. Tutte [27] showed that $U_{2,4}$ is the only excluded minor for the class of binary matroids. Tutte also showed that the excluded minors for the class

[^0]of regular matroids (the matroids representable over all fields) are $U_{2,4}$, F_{7}, and F_{7}^{*}. Reid [20] announced that the excluded minors for the class of ternary matroids are $U_{2,5}, U_{3,5}, F_{7}$ and F_{7}^{*}; this result was later published by Bixby [2] and Seymour [23]. (See also Kahn and Seymour [11], Kahn [9], and Truemper [25].) Following these results, Rota [21] conjectured that, for every finite field $G F(q)$, there are just finitely many excluded minors for the class of $G F(q)$-representable matroids. This conjecture is in stark contrast with the result of Lazarson [14] that, for fields of characteristic zero, there are infinitely many excluded minors.

Rota's conjecture is one of the more important open problems in matroid theory. So far, it has only been proven for the fields $G F(2), G F(3)$, and, in the present paper, for $G F(4)$. The current approach for each of these cases relies heavily on unique representability (see Section 2 for the exact meaning of "unique"). Representations over $G F(2)$ and $G F(3)$ are unique. Although this is no longer the case for $G F(4)$, Kahn [10] proved that $G F(4)$-representations are unique under certain connectivity assumptions (3-connectivity, essentially). This result allows us to extend the existing approach for $G F(3)$ to $G F(4)$. The fact that the proof in the present paper is so much longer than the current proofs for $G F(3)$ lies entirely in the fact that 3-connectivity becomes an issue here.

The next case, $G F(5)$, is still open and is of great interest because there much of the uniqueness is lost: Oxley, Vertigan, and Whittle [19] showed that 3 -connected matroids may have up to six inequivalent representations over $G F(5)$. Oxley, Vertigan, and Whittle [19] also showed that for larger fields no such bound exists. This seems to indicate that current approaches are doomed for all fields with more than five elements. We fear that Rota's conjecture may fail for those fields.

The matroids $U_{2,6}, U_{4,6}, P_{6}$, and $P_{8}^{\prime \prime}$ and \mathbf{F}-representable if and only if $|\mathbf{F}| \geqslant 5$, while the matroids $F_{7}^{-},\left(F_{7}^{-}\right)^{*}$, and P_{8} are F-representable if and only if \mathbf{F} has characteristic different from 2. Hence the following result of Whittle [29] is an immediate consequence of Theorem 1.1.

Corollary 1.2. If M is a ternary matroid that is representable over some field of characteristic 2, then M is $G F(4)$-representable.

Whittle [29] has characterized the ternary matroids that are representable over some field of characteristic different from 3. The class of matroids that are representable over both $G F(3)$ and $G F(4)$ play a significant role in Whittle's characterization; he calls such matroids $\sqrt[6]{1}$-matroids or sixth-root-of-unity matroids.

Theorem 1.3 (Whittle [29]). The following are equivalent for a matroid M.

- M is representable over both $G F(3)$ and $G F(4)$.
- M is representable over all finite fields $G F(q)$ where q is not congruent to $2 \bmod 3$.
- M can be represented over the complex numbers by a matrix whose nonzero subdeterminants are all sixth-roots of unity.

By combining Theorem 1.1 with Reid's characterization of ternary matroids, we get the excluded minors for the class of $\sqrt[6]{1}$-matroids. The excluded minors are exactly those conjectured by Oxley, Vertigan, and Whittle [18]. (In the same paper Oxley, Vertigan, and Whittle conjecture a list of excluded minors for the class of dyadic matroids. That list is incomplete, as the matroid T_{8}, see Oxley [17, p. 511], is also an excluded minor.)

Corollary 1.4. M is a $\sqrt[6]{1}$-matroid if and only if M has no minor isomorphic to any of $U_{2,5}, U_{3,5}, F_{7}, F_{7}^{*}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}$, and P_{8}.

We assume that the reader is familiar with elementary notions in matroid theory, including representability, minors, duality, connectivity, direct sums, and 2 -sums. For an excellent introduction to the subject see Oxley [17].

2. UNIQUE REPRESENTABILITY

As is the case with many excluded-minor characterizations, we rely heavily on unique representability. Two F-representations of a matroid are equivalent if they can be obtained, one from the other, by elementary row operations, column scaling, and applying automorphisms of \mathbf{F}. We say that a matroid M is uniquely representable over a field \mathbf{F} if any two representations of M over \mathbf{F} are equivalent. The 2-sum of two copies of $U_{2,4}$ has inequivalent representations over $G F(4)$. However, this is, in some sense, the only way to obtain matroids with inequivalent representations over $G F(4)$. We call a matroid stable if it cannot be expressed as the direct sum or the 2 -sum of two nonbinary matroids.

Theorem 2.1 (Kahn [10]). A GF(4)-representable matroid is uniquely $G F(4)$-representable if and only if it is stable.

Whittle [30] has recently developed techniques that enable results like Theorem 2.1 to be proven by elementary case checking.

The following proposition demonstrates the importance of unique representability in obtaining an excluded-minor characterization. Similar ideas led to an elementary proof of Tutte's excluded-minor characterization of regular matroids [8].

Lemma 2.2. Let M be a matroid, and let u, v be a coindependent pair of elements of M such that $M \backslash u, M \backslash v$, and $M \backslash u$, v are all stable, and $M \backslash u, v$ is connected and nonbinary. If $M \backslash u$ and $M \backslash v$ are both $G F(4)$-representable, then there exists a unique GF(4)-representable matroid N such that $N \backslash u=M \backslash u$ and $N \backslash v=M \backslash v$.

Proof. Let B be a basis of M containing neither u nor v. Consider $G F(4)$-representations A_{1} and A_{2} of $M \backslash u$ and $M \backslash v$. By row operations we can put these representations into the following forms:

$$
A_{1}=\left(\begin{array}{lll}
B & & u \\
I & C_{1} & x
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{lll}
B & & v \\
I & C_{2} & y
\end{array}\right)
$$

Then $\left(I, C_{1}\right)$ and $\left(I, C_{2}\right)$ are both $G F(4)$-representations of $M \backslash u, v$. By Theorem 2.1, we may assume, by possibly scaling and applying an automorphism of $G F(4)$ to A_{2}, that $C_{2}=C_{1}$. Now let N be the matroid represented over $G F(4)$ by the following matrix:

$$
\left(\begin{array}{cccc}
B & & u & v \\
I & C_{1} & x & y
\end{array}\right)
$$

Certainly $N \backslash u=M \backslash u$ and $N \backslash v=M \backslash v$. We are required to prove that N is the only $G F(4)$-representable matroid having these properties. Let N^{\prime} be another $G F(4)$-representable matroid such that $N^{\prime} \backslash u=M \backslash u$ and $N^{\prime} \backslash v=M \backslash v$. Consider a $G F(4)$-representation of N^{\prime} of the following form:

$$
A^{\prime}=\left(\begin{array}{cccc}
B & & u & v \\
I & C^{\prime} & x^{\prime} & y^{\prime}
\end{array}\right) .
$$

Then $\left(I, C^{\prime}, x^{\prime}\right)$ and $\left(I, C_{1}, x\right)$ both represent $M \backslash v$. By Theorem 2.1, we may assume, by possibly scaling and applying an automorphism of $G F(4)$ to A^{\prime}, that $C^{\prime}=C_{1}$ and $x^{\prime}=x$. So we may assume that $A^{\prime}=\left(I, C_{1}, x, y^{\prime}\right)$. Now we have two representations (I, C_{1}, y) and (I, C_{1}, y^{\prime}) of $M \backslash u$. By Theorem 2.1 these representations are equivalent. Consider the operations required to transform $\left(I, C_{1}, y^{\prime}\right)$ into (I, C_{1}, y). We have at our disposal elementary row operations, column scaling, and applying an automorphism of $G F(4)$. The common identity matrix in the representations limits the row operations to row scaling. Since $M \backslash u, v$ is nonbinary, we cannot apply a nontrivial automorphism of $G F(4)$, because otherwise we would be unable to recover the matrix (I, C_{1}) using scaling. However, since $M \backslash u, v$ is connected, the only scalings that we can apply to (I, C_{1}) without changing it are trivial (that is, we may multiply all rows by a constant α and divide
all columns by α). Therefore, y^{\prime} is just a scaling of y. Consequently, $N^{\prime}=N$, as required.

Remark. If in Lemma 2.2 we replace the condition that $M \backslash u, v$ is nonbinary by the condition that $M \backslash u$ is binary, the conclusion of Lemma 2.2 remains true. The proof, left to the reader, is a slight modification of the one above.

An intermediate consequence of Lemma 2.2 is the following result.
Lemma 2.3. Let M and N be matroids on a common ground set S, where N is GF(4)-representable, and let u and v be distinct elements of S such that $M \backslash u=N \backslash u$ and $M \backslash v=N \backslash v$. Suppose that there exists disjoint sets X, $Y \subseteq S-\{u, v\}$ such that:
(1) $(M \backslash X / Y) \backslash u$ and $(M \backslash X / Y) \backslash v$ are stable,
(2) $(M \backslash X / Y) \backslash u, v$ is connected, stable, and nonbinary, and
(3) $M \backslash X / Y \neq N \backslash X / Y$.

Then $M \backslash X / Y$ is not $G F(4)$-representable.
Proof. It follows from (1), (2) and Lemma 2.2 that $N \backslash X / Y$ is the only $G F(4)$-representable matroid \tilde{N} with $\widetilde{N} \backslash u=(M \backslash X / Y) \backslash u$ and $\tilde{N} \backslash v=$ ($M \backslash X / Y) \backslash v$. Hence, as $M \backslash X / Y \neq N \backslash X / Y$, the matroid $M \backslash X / Y$ is not $G F(4)$-representable.

Lemmas 2.2 and 2.3 summarize the strategy employed in the proof of Theorem 1.1. We begin with a "large" minor-minimal non- $G F(4)$-representable matroid M. (Smaller matroids are deferred to the case analysis in Section 6.) In Section 3 we show that, by possibly dualizing, we can find elements u and v satisfying the conditions of Theorem 2.2. Then, by Theorem 2.2, there is a $G F(4)$-representable matroid N such that $M \backslash u=N \backslash u$ and $M \backslash v=N \backslash v$. Next we "build" a proper minor $M^{\prime}:=M \backslash X / Y$ of M that satisfies conditions (1), (2), and (3) of Lemma 2.3. By Lemma 2.3, M^{\prime} is not $G F(4)$-representable. As M^{\prime} is a proper minor of M this yields a contradiction. So no minor-minimal non-GF(4)-representable matroid is "large." Actually, it is relatively easy to find a minor M^{\prime} that satisfies (2) and (3); most of the work is in introducing property (1) without losing (2) or (3).

3. DELETING A PAIR

We now seek the elements required to invoke Lemma 2.2. A pair $\{a, b\}$ of elements of a matroid M is a deletion pair of M if $M \backslash a, b$ is connected, and each of $M \backslash a, M \backslash b$, and $M \backslash a, b$ is a 0 -, 1-, or 2-element coextension
of a 3-connected nonbinary matroid. (Matroid N_{1} is a k-element coextension of matroid N_{2}, if the ground set of N_{1} has a k-element subset Y such that $N_{2}=N_{1} / Y$; if $N_{2}=N_{1} \backslash Y$ for some k-element subset Y of the ground set of N_{1}, then we say that N_{1} is a k-element extension of N_{2}.) A contraction pair is a deletion pair for the dual matroid.

In this section we prove the following result.
Theorem 3.1. A 3-connected matroid has a deletion pair or a contraction pair if and only if it is nonbinary and has rank or corank at least 4 .

This theorem has been derived independently by Whittle [29]. We include our proof for the sake of completeness. Whittle's result is more general than Theorem 3.1. However, our proof techniques provide a shorter proof of his result. One of our main tools is the following theorem of Seymour [24].

Theorem 3.2 (Splitter Theorem). Let N be a 3 -connected proper minor of a 3 -connected matroid M. If M is not a wheel or a whirl, then it contains an element x such that either $M \backslash x$ or M / x is 3-connected and has a minor isomorphic to N.

Let \mathscr{L} denote the collection of matroids $\left\{U_{2,5}, F_{7}^{-}, P_{7}, O_{7}\right\}$ (see Fig. 1) and $\mathscr{L}^{*}:=\left\{M^{*}: M \in \mathscr{L}\right\}$. The next lemma is helpful in proving Theorem 3.1.

Lemma 3.3. Each 3-connected nonbinary matroid that is not a whirl has a minor in $\mathscr{L} \cup \mathscr{L}^{*}$.

Proof. It has been proven by Coullard [5] (cf. Coullard and Oxley [6], Oxley [17, p. 370]) that each 3-connected nonbinary matroid that is not a whirl has a 3-connected 1-element extension or coextension of $U_{2,4}$ or \mathscr{V}^{3} as a minor. The only 3 -connected 1 -element extension of $U_{2,4}$ is $U_{2,5}$. So, by duality, we need only prove that any 3 -connected 1 -element

FIG. 1. The three 7 -element members of \mathscr{L}.
extension M of $\mathscr{y}^{\cdot 3}$ without $U_{2,5^{-}}$or $U_{3,5}$-minors is in \mathscr{L}. As M is nonbinary, it is neither F_{7} nor F_{7}^{*}. Hence, as M has seven elements, it is ternary. From this it is easy to check that M is isomorphic to F_{7}^{-}, P_{7}, or O_{7}.

Before we turn to the proof of Theorem 3.1, we first give some preliminary results. The first one is well known and easy.

Proposition 3.4. Let M be a connected matroid not isomorphic to $U_{1,4}$ and with ground set S. If $x \in S$ such that $M \backslash x$ is 3-connected, then either M is 3 -connected or there exists a unique element p_{x} in S such that $\left\{x, p_{x}\right\}$ is a circuit. Moreover, if M is not 3-connected, then $\left(\left\{x, p_{x}\right\}, S \backslash\left\{x, p_{x}\right\}\right)$ is the unique 2 -separation in M.

The next one is only a little bit more involved.

Proposition 3.5. Let N be a matroid with at least six elements and let x and y be two elements of the ground set S of N such that $N \backslash x / y$ is 3-connected and such that $N \backslash x$ and N / y are connected, and $N, N \backslash x$, and N / y are not 3 -connected. Let p_{x} be the unique element such that $\left\{x, p_{x}\right\}$ is a circuit in N / y and p_{y} be the unique element such that $\left\{y, p_{y}\right\}$ is a cocircuit in $N \backslash x$.

If $p_{x} \neq p_{y}$, then x is parallel to p_{x} in N and y is in series with p_{y} in N; moreover, there are no 2-separations in N other than ($\left\{x, p_{x}\right\}, S \backslash\left\{x, p_{x}\right\}$) and $\left(\left\{y, p_{y}\right\}, S \backslash\left\{y, p_{y}\right\}\right)$.

If $p_{x}=p_{y}$, then $\left(\left\{x, y, p_{x}\right\}, S \backslash\left\{x, y, p_{x}\right\}\right)$ is a 2 -separation of N and there exists at most one other 2-separation, which, if it exists, is either $\left(\left\{x, p_{x}\right\}, S \backslash\left\{x, p_{x}\right\}\right)$ or $\left(\left\{y, p_{y}\right\}, S \backslash\left\{y, p_{y}\right\}\right)$.

Proof. Let (X, Y) be a 2-separation of N, such that X and Y both have at least three elements. Assuming $y \in X$, the partition $(X \backslash\{y\}, Y)$ is a 2-separation of N / y. As N has at least six elements, N / y is not isomorphic to $U_{1,4}$. Hence, by Proposition 3.4, $X \backslash\{y\}=\left\{x, p_{x}\right\}$. So, $x \in X$, and by symmetry between x and y (under duality), $X \backslash\{x\}=\left\{y, p_{y}\right\}$. Hence, $p_{x}=p_{y}$ and $X=\left\{x, y, p_{x}\right\}$.

On the other hand, if $p_{x}=p_{y}$, then both the rank and corank of $\left\{x, y, p_{x}\right\}$ are at most 2 , so $\left(\left\{x, y, p_{x}\right\}, S \backslash\left\{x, y, p_{x}\right\}\right)$ is a 2 -separation.

It remains to check the 2 -separations (X, Y) with $|X| \leqslant 2$. As $N \backslash x$ and N / y are connected, so is N. Hence, X is a pair of series or parallel elements in N. By duality, we may assume that X is a parallel pair. Then $X \backslash\{y\}$ is dependent in N / y. Hence $X=\left\{x, p_{x}\right\}$. As $\left\{y, p_{y}\right\}$ is a cocircuit in $N \backslash x$, exactly one of $\left\{y, p_{y}\right\}$ and $\left\{x, y, p_{y}\right\}$ is a cocircuit in N. The intersection of a circuit and a cocircuit cannot consist of exactly one element. So, if
$p_{x} \neq p_{y},\left\{y, p_{y}\right\}$ is a cocircuit in N and if $p_{x}=p_{y}$, then $\left\{y, p_{y}\right\}$ is not a cocircuit in N.

Now we get to the proof of Theorem 3.1.
Proof of Theorem 3.1. Clearly, 3-connected matroid with a contraction pair are nonbinary and have rank at least 4 . So assume that there exists a 3-connected nonbinary matroid M with rank or corank at least 4 that has no deletion or contraction pair. It is easy to check that M is not a whirl. Hence, by Lemma 3.3, M has a minor in $\mathscr{L} \cup \mathscr{L}^{*}$.

For a matroid N, we define $\Lambda(N)$ as the set of elements q in N such that $N \backslash q$ is 3-connected and nonbinary; $\Lambda^{*}(N):=\Lambda\left(N^{*}\right)$. In this proof we will repeatedly use the following three facts:
(1) If N is 3-connected and $q \in \Lambda(N)$, then $\Lambda(N \backslash q) \subseteq \Lambda(N) \backslash q$.
(2) Each $L \in \mathscr{L}$ satisfies $|\Lambda(L)| \geqslant 3$ and $\Lambda^{*}(L)=\varnothing$.
(3) If N is 3-connected and $\Lambda(N)=\{q\}$, then $\Lambda^{*}(N \backslash q) \neq \varnothing$.

Assertion (1) is an obvious consequence of Proposition 3.4 and (2) is easily checked. We prove (3) by contradiction. Assume that N is 3 -connected, that $\Lambda(N)=\{q\}$, and that $\Lambda^{*}(N \backslash q)=\varnothing$. Then, by (1), $\Lambda(N \backslash q)=\varnothing$. So it follows from the Splitter Theorem that $N \backslash q$ is a whirl. Hence N is not a whirl and thus, by Lemma 3.3, it has a minor in $\mathscr{L} \cup \mathscr{L}^{*}$. As $|\Lambda(N)|=1$, it follows from (2) that this minor is proper. Because $\Lambda(N)=\{q\}$ and the whirl $N \backslash q$ has no minor in $\mathscr{L} \cup \mathscr{L}^{*}$, it now follows from the Splitter Theorem that $\Lambda^{*}(N) \neq \varnothing$. In fact, $\Lambda^{*}(N)=\{q\}$, as for each element x of the whirl $N \backslash q$, the matroid $N \backslash q / x$, and therefore also N / x, has parallel elements. As the rank and corank of N / q differ by exactly 2 , it follows from Lemma 3.3 that N / q has a proper minor in $\mathscr{L} \cup \mathscr{L}^{*}$. So, as $\Lambda^{*}(N / q)=\varnothing$, there exists an element $y \neq q$ in N such that $N / q \backslash y$ is 3-connected. As $y \notin\{q\}=\Lambda(N)$, there exists an element z that is in series with q in $N \backslash y$. So $\{y, z, q\}$ is a cocircuit in N. As this contradicts the 3-connectivity of $N \backslash q$, (3) follows.

$$
\text { (4) } M \notin \mathscr{L} \cup \mathscr{L}^{*} \text {. }
$$

As the rank or corank of M is at least $4, M \notin\left\{U_{2,5}, U_{2,5}^{*}\right\}$. So, to prove (4), it suffices to prove that each of F_{7}^{-}, P_{7}, and O_{7} has a deletion pair. Therefore, consider the geometric representations of these three matroids depicted in Fig. 1. It is easy to check that, in each of these pictures, the indicated elements a and b form a deletion pair.

By duality, the Splitter Theorem, and (4), we may assume that, for some element e_{1} of $M, M_{1}:=M / e_{1}$ is 3-connected and has a minor in $\mathscr{L} \cup \mathscr{L}^{*}$.

As M has no contraction pair, it follows from (1) that $\Lambda^{*}\left(M_{1}\right)=\varnothing$. So $M_{1} \notin \mathscr{L}^{*}$. Hence, $M_{1} \in \mathscr{L}$ or M_{1} has a proper minor in $\mathscr{L} \cup \mathscr{L}^{*}$. In either case, $\Lambda\left(M_{1}\right) \neq \varnothing$. If $M_{1} \notin \mathscr{L}$, choose $e_{2} \in \Lambda\left(M_{1}\right)$ such that $M_{1} \backslash e_{2}$ contains
a minor in $\mathscr{L}^{*} \cup \mathscr{\not}^{*}$. If $M_{1} \in \mathscr{H}^{\prime}$, choose e_{2} arbitrarily in $A\left(M_{1}\right)$. In either case, we define $M_{2}:=M_{1} \backslash e_{2}$. (Soon we will see that, in fact, M_{2} will have a minor in $\Psi^{\prime} \cup \Psi^{*}$.)

A subset X of the ground set S of M is deletable if $M \backslash X$ is a 0 -, $1-$, or 2-element coextension of a 3-connected nonbinary matroid. A subset X of S is contractible if M / X is a $0-, 1-$, or 2-element extension of a 3-connected nonbinary matroid.
(5) If $M_{2} \backslash f$ is a 0 - or 1-element coextension of a 3-connected nonbinary matroid and $M_{1} \backslash f$ is 3 -connected, then $\left\{e_{1}, e_{2}, f\right\}$ is a cocircuit in M.
Indeed, as $\{f\},\left\{e_{2}\right\}$, and $\left\{e_{2}, f\right\}$ are deletable and M has no deletion pair, $M \backslash e_{2}, f$ is not connected. Hence, e_{1} is a coloop in $M \backslash e_{2}, f$ (it cannot be a loop in that matroid as M is connected). So $\left\{e_{1}, e_{2}, f\right\}$ is a cocircuit in M.
(6) M_{2} has a minor in $\mathscr{L}^{\mathscr{L}} \cup \mathscr{\Psi}^{*}$.

If not, $M_{1} \in \mathcal{Z}^{\prime}$. As M has rank or corank at least $4, M_{1} \in\left\{F_{7}^{-}, P_{7}, O_{7}\right\}$. As $e_{2} \in A\left(M_{1}\right)$, we may assume, by symmetry, that e_{2} is the element denoted by a in the geometric representation of M_{1} in Fig. 1. It is easy to check that $M_{1} \backslash b \cong M_{1} \backslash c \cong w^{3}$ and $M_{1} \backslash a, b$ and $M_{1} \backslash a, c$ are connected 1 -element coextensions of $U_{2,4}$. From (5) it follows that $\left\{e_{1}, e_{2}, b\right\}$ and $\left\{e_{1}, e_{2}, c\right\}$ are cocircuits in M. Then, by the circuit exchange axiom, $\{a, b, c\}=\left\{e_{2}, b, c\right\}$ is a cocircuit of M, and, hence, also of M_{1}. By Fig. 1, this is nonsense. So (6) follows.
(7) $e_{2} \notin \Lambda(M)$.

Suppose $e_{2} \in A(M)$. Then $e_{2} \in A^{*}\left(M^{*}\right), e_{1} \in A^{*}\left(M \backslash e_{2}\right)=A\left(M^{*} / e_{2}\right)$, and, by (6), $M^{*} / e_{2} \backslash e_{1}$ has a minor in $\not \psi^{\prime} \cup \chi^{*}$. So, if we turn from M to M^{*}, e_{1} and e_{2} switch roles. Hence, by duality and (6), we may assume that, for some $f, M_{2} \backslash f$ is 3-connected and nonbinary. Then, $M_{1} \backslash f$ is 3-connected (because M_{1} and $M_{1} \backslash e_{2}, f=M_{2} \backslash f$ are 3-connected). Hence, by (5), $\left\{e_{1}, e_{2}, f\right\}$ is a cocircuit. But then e_{1} and f are in series in the 3 -connected matroid $M \backslash e_{2}$. As this is absurd, (7) follows.

So there exists an element $e_{12} \in S \backslash\left\{e_{1}, e_{2}\right\}$ such that e_{12} is in series with e_{1} in $M \backslash e_{2}$; in other words, such that $\left\{e_{1}, e_{2}, e_{12}\right\}$ is a cocircuit in M. As M_{2} is 3 -connected, the element e_{12} is unique and it follows from (5) that $A\left(M_{2}\right) \subseteq\left\{e_{12}\right\}$. The following fact will be used repeatedly throughout the rest of this proof.
(8) If $q, p \in S \backslash\left\{e_{1}, e_{2}, e_{12}\right\}$, then $M_{2} / q \backslash p$ is binary or has a 2 -separation. Suppose this is false, so that $M_{2} / q \backslash p$ is 3 -connected and nonbinary. We first argue that
(8.1) The matroids $M \backslash p, e_{2} / e_{1}, M \backslash p / q, e_{1}$, and $M \backslash p, e_{2} / q$ are connected.
As M_{2} is 3-connected, $M \backslash p, e_{2} / e_{1}=M_{2} \backslash p$ has no loops or coloops. As M_{1} is 3-connected, $M \backslash p / q, e_{1}=M_{1} \backslash p / q$ has no loops or coloops. So, as $M \backslash p, e_{2} / e_{1}, q=M_{2} \backslash p / q$ is 3-connected, both $M \backslash p, e_{2} / e_{1}$ and $M \backslash p / q, e_{1}$ are connected.

As M is 3-connected, e_{1} is not a loop in $M \backslash p, e_{2} / q$. Moreover, e_{1} is not a coloop in $M \backslash p, e_{2} / q$, because $\left\{e_{1}, e_{2}, e_{12}\right\}$ is the unique 3-element cocircuit in M containing $\left\{e_{1}, e_{2}\right\}$. So, as $M_{2} / q \backslash p$ is 3-connected, $M \backslash p, e_{2} / q$ is connected. Thus (8.1) holds.
(8.2) Each of $M \backslash p, e_{2} / e_{1}, M \backslash p / q, e_{1}, M \backslash p, e_{2} / q, M \backslash p / q$, and $M \backslash p / e_{1}$ has a 2-separation.
The sets $\left\{e_{1}\right\}$ and $\left\{e_{1}, q\right\}$ are both contractible. As M_{1} is 3 -connected, $M / e_{1}, q$ has no loops or coloops. Hence, as $M \backslash p / q, e_{1}$ is connected, so is $M / e_{1}, q$. So we see that $\{q\}$ is not contractible, since otherwise $\left\{e_{1}, q\right\}$ would be a contraction pair. Hence, as $M \backslash p, e_{2} / q$ and $M \backslash p / q$ are nonbinary, neither of the two is 3 -connected.
The sets $\left\{e_{2}\right\}$ and $\left\{e_{2}, p\right\}$ are both deletable. As $M \backslash p, e_{2} / q$ and $M \backslash p$, e_{2} / e_{1} are connected, so is $M \backslash p, e_{2}$. Hence, as $\left\{e_{2}, p\right\}$ is not a deletion pair, the set $\{p\}$ is not deletable. So, as $M \backslash p / q, e_{1}$ and $M \backslash p / e_{1}$ are nonbinary, neither of the two is 3 -connected.
Finally, as $\Lambda\left(M_{2}\right) \subseteq\left\{e_{12}\right\}, M \backslash p, e_{2} / e_{1}=M_{2} \backslash p$ is not 3-connected. Thus (8.2) holds.
(8.3) The elements q and e_{12} are in series in $M \backslash e_{2}, p$.

To see this, apply Proposition 3.5 to the two triples

$$
\left\{\begin{array} { l }
{ N _ { 1 } : = M / e _ { 1 } \backslash p } \\
{ x _ { 1 } : = e _ { 2 } } \\
{ y _ { 1 } : = q }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
N_{2}:=M / q \backslash p \\
x_{2}:=e_{2} \\
y_{2}:=e_{1}
\end{array} .\right.\right.
$$

As M_{1} is 3-connected, N_{1} has no parallel elements. So by Proposition 3.5, $p_{x_{1}}=p_{y_{1}}$. As $\left\{e_{1}, e_{2}, e_{12}\right\}$ is a cocircuit in M, it is a cocircuit in N_{2} as well. Hence, $p_{y_{2}}=e_{12}$ and y_{2} and $p_{y_{2}}$ are not in series in N_{2}. So by Proposition 3.5, $p_{x_{2}}=p_{y_{2}}=e_{12}$. Finally, as $N_{1} / y_{1}=N_{2} / y_{2}$ and $x_{1}=x_{2}$, we have that $p_{x_{1}}=p_{x_{2}}$. So we conclude that $p_{y_{1}}=e_{12}$. In other words, $q\left(=y_{1}\right)$ and e_{12} are in series in $N_{1} \backslash x_{1}=M_{1} \backslash e_{2}, p$, hence also in $M \backslash e_{2}, p$. So (8.3) follows.

By (8.3), $\left(M / e_{1}, e_{12}\right) \backslash p, e_{2}$ is isomorphic to the 3 -connected matroid $\left(M / e_{1}, q\right) \backslash p, e_{2}$. Hence $\left\{e_{1}, e_{12}\right\}$ is contractible. Moreover, as M / e_{1} is 3 -connected, $M / e_{1}, e_{12}$ is connected. As $M / e_{12} \backslash e_{2} \cong M / e_{1} \backslash e_{2}$ is 3-connected,
$\left\{e_{12}\right\}$ and $\left\{e_{1}\right\}$ are contractible as well. So $\left\{e_{1}, e_{12}\right\}$ is a contraction pair. As M has no such pair, (8) follows.
(9) If $e_{12} \in \Lambda\left(M_{2}\right)$, then $M_{2} \backslash e_{12}$ is a whirl.

If not, then by Lemma 3.3, $M_{2} \backslash e_{12}$ is 3-connected and has a minor in $\mathscr{L} \cup \mathscr{L}^{*}$. Hence, e_{12} satisfies the properties required from e_{2} when it was defined. So there is a symmetry between e_{2} and e_{12}. As $\Lambda\left(M_{2}\right)=\left\{e_{12}\right\}$, it follows from (3) that $\Lambda^{*}\left(M_{2} \backslash e_{12}\right) \neq \varnothing$. Let $q \in \Lambda^{*}\left(M_{2} \backslash e_{12}\right)$.
(9.1) $\left\{e_{2}, e_{12}\right\}$ is the unique parallel pair in $M / e_{1}, q$.

Indeed, as $\left\{e_{1}, q\right\}$ is not a contraction pair, $M / e_{1}, q$ is not 3-connected. As $M / e_{1}, q$ is connected and $M / e_{1}, q \backslash e_{2}, e_{12}$ is 3-connected, there exist parallel pairs in $M / e_{1}, q$; moreover, each of those involve at least one of e_{2} and e_{12}. By the symmetry between e_{2} and e_{12} noted above, we may assume that e_{12} is parallel in $M / e_{1}, q$ with an another element p. If p were different from e_{2}, then $M_{2} \backslash p / q$ would be isomorphic to the 3-connected nonbinary matroid $M_{2} \backslash e_{12} / q$, contradicting (8). So $p=e_{2}$, which proves (9.1).

By (9.1), M_{2} / q is 3-connected. Now $\Lambda\left(M_{2} / q\right)=\left\{e_{12}\right\}$, as if $p \in$ $\Lambda\left(M_{2} / q\right) \backslash\left\{e_{12}\right\}$, then p and q would falsify (8). So, by (3), $\Lambda^{*}\left(M_{2} / q \backslash e_{12}\right) \neq$ \varnothing. Then, by (1), $\Lambda^{*}\left(M_{2} \backslash e_{12}\right) \neq\{q\}$; let $q^{\prime} \in \Lambda^{*}\left(M_{2} \backslash e_{12}\right) \backslash\{q\}$. By (9.1), $\left\{e_{2}, e_{12}, q\right\}$ and $\left\{e_{2}, e_{12}, q^{\prime}\right\}$, hence also $\left\{e_{12}, q, q^{\prime}\right\}$, are circuits in M_{1}. However, that means that e_{12} and q^{\prime} are parallel in M_{1} / q, contradicting (9.1). This proves (9).

Recall that $\Lambda\left(M_{2}\right) \subseteq\left\{e_{12}\right\}$. Hence, by (2), the matroid M_{2} is not in \mathscr{L}; and, by (9), M_{2} has no 3-connected proper deletion minor with a minor in $\mathscr{L} \cup \mathscr{L}^{*}$. Hence, as M_{2} has a minor in $\mathscr{L} \cup \mathscr{L}^{*}$, it follows from the Splitter Theorem that M_{2} is a member of \mathscr{L}^{*} or has a 3-connected proper contraction minor with a minor in $\mathscr{L} \cup \mathscr{L}^{*}$. In either case, $\Lambda^{*}\left(M_{2}\right)$ is not empty; let q be one of its members.

As $\left\{e_{1}, q\right\},\left\{e_{1}\right\}$ are contractible and $M / e_{1}, q$ is connected, $\{q\}$ is not contractible. Hence M / q is not 3-connected. Moreover, as $M / e_{12} \backslash e_{2} \cong$ $M / e_{1} \backslash e_{2}$, the set $\left\{e_{12}\right\}$ is contractible, so $q \neq e_{12}$.

Apply Proposition 3.5 to the triple

$$
\left\{\begin{aligned}
N & :=M / q \\
x & :=e_{2} \\
y & :=e_{1}
\end{aligned}\right.
$$

As M is 3-connected, N has no series elements. So by Proposition 3.5, $p_{x}=p_{y}$. As $\left\{y, x, e_{12}\right\}=\left\{e_{1}, e_{2}, e_{12}\right\}$ is a cocircuit in $M, p_{y}=e_{12}$. Hence, e_{2} and e_{12} are parallel in M_{1} / q. Suppose, there existed a second element q^{\prime} in $\Lambda^{*}\left(M_{2}\right)$. Then e_{2} and e_{12} would be parallel in M_{1} / q^{\prime} as well. So $\left\{e_{2}, e_{12}, q\right\}$ and $\left\{e_{2}, e_{12}, q^{\prime}\right\}$, hence also $\left\{e_{12}, q^{\prime}, q\right\}$, would be circuits
in M_{1}. This implies that e_{12} and q^{\prime} would be parallel in M_{2} / q, which is absurd. So we see that $\Lambda^{*}\left(M_{2}\right)=\{q\}$.

Hence, by (3) and (8), $\Lambda\left(M_{2} / q\right)=\left\{e_{12}\right\}$. As $M_{2} \backslash e_{12} / q$ is 3-connected, it follows from (9), that $e_{12} \notin \Lambda\left(M_{2}\right)$. Hence q is in series in $M_{2} \backslash e_{12}$ with some other element $q^{\prime \prime}$. The matroid $M_{2} / q^{\prime \prime} \backslash e_{12} \cong M_{2} / q \backslash e_{12}$ is 3-connected. As $q^{\prime \prime} \notin \Lambda^{*}\left(M_{2}\right), e_{12}$ is parallel in $M_{2} / q^{\prime \prime}$ to an element $e_{12}^{\prime \prime}$. As $M_{2} / q^{\prime \prime} \backslash e_{12}^{\prime \prime} \cong M_{2} / q^{\prime \prime} \backslash e_{12}=M_{2} \backslash e_{12} / q^{\prime \prime} \cong M_{2} \backslash e_{12} / q$, the two elements $q^{\prime \prime}$ and $e_{12}^{\prime \prime}$ contradict (8). So Theorem 3.1 follows.

4. TWISTED MATROIDS AND BLOCKING SEQUENCES

This section provides notions and preliminaries needed in our proof of Theorem 1.1. The most important notions are "twisted matroids" and "blocking sequences."

Twisted Matroids and Fundamental Graphs

Let \mathscr{B} be the set of bases of a matroid M with ground set S. For $B \in \mathscr{B}$, define $M_{B}:=\left(S, \mathscr{F}_{B}\right)$, where $\mathscr{F}_{B}:=\left\{B \Delta B^{\prime}: B^{\prime} \in \mathscr{B}\right\}$. Members of \mathscr{F}_{B} are called feasible sets of the twisted matroid M_{B}. We endow M_{B} with a rank function r_{B} : if $X \subseteq S$, then $r_{B}(X)$ is half the size of the largest feasible set in X. Equivalently, $r_{B}(X):=r(X \Delta B)-|B \backslash X|$. Note that duality is absorbed in the definition of a twisted matroid, since $M_{B}=\left(M^{*}\right)_{S \backslash B}$.

The notion of a twisted matroid is not new. Twisted matroids are essentially the same as "linking systems" (Schrijver [22]), "bimatroids" (Kung [13]), or "abstract matrices" (Truemper [26]). The notion of a twisted matroid as a matroid viewed with respect to a fixed basis resembles that of a fundamental graph. In fact, fundamental graphs are easily defined in terms of twisted matroids. The fundamental graph of M_{B} is the bipartite graph $G_{B}=\left(S, E_{B}\right)$, where $E_{B}:=\left\{i j:\{i, j\} \in \mathscr{F}_{B}\right\}$. We denote by nigh ${ }_{B}(x)$ the neighbour set of vertex x in G_{B}. Equivalently, $\operatorname{nigh}_{B}(x):=\{y \in S$: $B \Delta\{x, y\} \in \mathscr{B}\}$. For $X \subseteq S, G_{B}[X]$ denotes the subgraph of G_{B} induced by X. Our proof techniques in the subsequent sections are mainly graphic, acting on fundamental graphs. One reason to use fundamental graphs is that they reveal a lot about the connectivity of the matroid. However, on the other hand, they also suppress much information about the matroid, also regarding connectivity. The reason to work with twisted matroids is to allow graph-theoretical reasoning without losing contact with the actual matroid.

Representability is quite natural for twisted matroids. An X by Y matrix over a field \mathbf{F} is a matrix in $\mathbf{F}^{X \times Y}$. If A is an X by Y matrix, $X^{\prime} \subseteq X$, and $Y^{\prime} \subseteq Y$, then we denote the X^{\prime} by Y^{\prime} submatrix of A by $A\left[X^{\prime}, Y^{\prime}\right]$. A B by $S \backslash B$ matrix A over \mathbf{F} is an \mathbf{F}-representation of M_{B} if the rank of the matrix
$A[X, Y]$ is equal to $r_{B}(X \cup Y)$ for each $X \subseteq B$ and $Y \subseteq S \backslash B$. Equivalently, A is an \mathbf{F}-representation of M_{B} if and only if (I, A) is an \mathbf{F}-representation of M. So we see that twisted matroids match very well with the common practice in matroid theory of considering standard representations with respect to a fixed basis; these are representations of the form (I, A), where I represents the fixed basis. A subset X of S is a feasible set X of M_{B} if and only if the submatrix $A[X \cap B, X \backslash B]$ is nonsingular. One way to visualize an F-representation of a twisted matroid is as a labeling of the edges of the fundamental graph with nonzero elements from \mathbf{F}.

The following propositions are well-known and straightforward to prove; in fact, they are trivial for representable matroids.

Proposition 4.1 (Brualdi [4]). If X is a feasible set of M_{B}, then $G_{B}[X]$ has a perfect matching.

Proposition 4.2 (Krogdahl [12]). If $G_{B}[X]$ has a unique perfect matching, then X is feasible in M_{B}.

Restrictions and Minors

Given $X \subseteq S$, we define the restriction of M_{B} to X as $M_{B}[X]:=\left(X, \mathscr{F}^{\prime}\right)$, where $\mathscr{F}^{\prime}:=\left\{F \subseteq X: F \in \mathscr{\mathscr { F }}_{B}\right\}$. It is easy to prove that $M_{B}[X]$ is a twisted matroid again, namely, the twisted matroid $M_{B^{\prime}}^{\prime}$ with $B^{\prime}:=B \cap X$ and with M^{\prime} the minor of M obtained by deleting ($S \backslash B$) \X and contracting $B \backslash X$. We stress that we never have to specify the actual restriction when we write that some set is feasible or not; a set is feasible in a restriction if and only if it is feasible in the original matroid. Also note that "restriction of a twisted matroid" is not the same as "restriction of a matroid"; the latter is just a deletion minor.

Clearly, the rank function of the restriction of M_{B} to X is the restriction of the rank function of M_{B} to subsets of X. Moreover, if A is an F-representation of M_{B}, then the submatrix $A[X \cup B, X \backslash B]$ is an F-representation of $M_{B}[X]$. We denote by $M_{B}-X$ the twisted matroid $M_{B}[S \backslash X]$.

Finally, note that, although restrictions of a twisted matroid are twisted minors, it is not true that each minor of M corresponds to a restriction of M_{B}. To make a minor "visible" as a restriction we might have to change the basis.

Pivoting

Usually we work with a fixed basis B, but sometimes it will be necessary to change bases, for instance to make a minor "visible" as a restriction. It is straightforward to see that, for any feasible set $X, \mathscr{F}_{B \Delta X}=\left\{F \Delta X: F \in \mathscr{F}_{B}\right\}$. Typically we will change to a basis $B \Delta\{x, y\}$ for an edge $x y$ of G_{B}. We call such a shift from M_{B} to $M_{B \Delta\{x, y\}}$ a pivot on $x y$. Let B^{\prime} denote $B \Delta\{x, y\}$.

A pivot is also a matrix operation. Indeed, if M_{B} is represented by a matrix A over \mathbf{F}, then pivoting on $x y$ in A yields an \mathbf{F}-representation A^{\prime} of $M_{B^{\prime}}$, where

$$
A=\begin{array}{cc}
y \\
x
\end{array}\left(\begin{array}{cc}
\alpha & v^{T} \\
w & D
\end{array}\right) \quad \text { and } \quad A^{\prime}={ }^{y}\left(\begin{array}{cc}
-\alpha & v^{T} \\
w & D-\alpha^{1} w v^{T}
\end{array}\right) .
$$

Much of the structure of $G_{B^{\prime}}$ is determined by G_{B}. The following observations are trivial for represented twisted matroids. For general twisted matroids, representable or not, they are easy consequences of Propositions 4.1 and 4.2.
(i) $\operatorname{nigh}_{B^{\prime}}(x)=\operatorname{nigh}_{B}(y) \Delta\{x, y\}$ and $\operatorname{nigh}_{B^{\prime}}(y)=\operatorname{nigh}_{B}(x) \Delta\{x, y\}$,
(ii) if $v \notin \operatorname{nigh}_{B}(x) \cup \operatorname{nigh}_{B}(y)$, then $\operatorname{nigh}_{B^{\prime}}(v)=\operatorname{nigh}_{B}(v)$, and
(iii) if $v \in \operatorname{nigh}_{B}(x), w \in \operatorname{nigh}_{B}(y) \backslash \operatorname{nigh}_{B}(v)$, then $v w$ is an edge of $G_{B^{\prime}}$.

Thus we can account for most edges of $G_{B^{\prime}}$. The only pairs $\{v, w\}$ for which G_{B} does not reveal whether or not $v w$ is an edge of $G_{B^{\prime}}$ are the ones for which $\{x, y, v, w\}$ induces a circuit in G_{B}. In that case, $v w$ is an edge in $G_{B^{\prime}}$ whenever $\{x, y, v, w\}$ is feasible in M_{B}.

Twirls

A twisted matroid M_{B} is a twirl if G_{B} is an induced circuit and S is feasible. Note that a twirl is a twisted whirl, for an appropriate choice of the distinguished basis. (Consider a whirl constructed from a wheel in the usual way and take the set of spokes as the distinguished basis.)

As mentioned before we will often work with fundamental graphs. One major disadvantage of these graphs is that they do not reveal whether the matroid is binary or not. The following lemma says that, for $G F(4)-$ representable matroids, the fundamental graph plus a list of the twirls provide all the information we need to determine which restrictions of a twisted matroid are nonbinary. The lemma is crucial to our proof of Theorem 1.1.

Lemma 4.3. Let B be a basis in a GF(4)-representable matroid M. Then M is nonbinary if and only if some restriction of M_{B} is a twirl.

Proof. As the "if"-direction is trivial, we only prove the "only if"-direction. Let A be a representation of M_{B} over $G F(4)$, and let T be a spanning forest of G_{B}. We interpret the entries of A as edge-weights for G_{B}. By scaling rows and columns of A, we may assume each edge $i j$ of T has weight one. Since M is not binary, A is not a (0,1)-matrix. Therefore there exists a circuit in G_{B} having exactly one edge of weight different from one. Let C be such a
circuit having minimum length, and let X be the set of vertices of C. Then C is an induced circuit, and $M_{B}[X]$ is a twirl.

The following lemma is proven in much the same way; the details are left to the reader.

Lemma 4.4. Let B be a basis of a GF(4)-representable matroid M. Suppose, for $X \subseteq S$, that $M_{B}[X]$ is a twirl, and $x \in S \backslash X$ such that $\left|\operatorname{nigh}_{B}(x) \cap X\right| \geqslant 2$. Then, there exists a twirl $M_{B}\left[X^{\prime}\right]$ with $x \in X^{\prime} \subset$ $X \cup\{x\}$.

The previous two lemmas are interesting in that they hold for $G F(4)$ representable matroids, but they fail in general. Indeed, Lemma 4.4 fails for the non-Fano (F_{7}^{-}), and Lemma 4.3 fails for some 8 -element matroids. It can in fact be shown that both results hold for all matroids that contain neither the non-Fano nor its dual as a minor (Geelen [7]).

The following proposition describes the effect of pivoting on twirls.
Proposition 4.5. Let M_{B} be a twirl, and let xy be an edge of G_{B}.
(i) If $|S|=4$, then $M_{B \Delta\{x, y\}}$ is a twirl.
(ii) If $|S|>4$, then $M_{B \Delta\{x, y\}}[S \backslash\{x, y\}]$ is a twirl.

A consequence of Proposition 4.5 is that the fundamental graph resulting from a pivot on $x y \in E_{B}$ is completely determined by G_{B} and all the 4-element twirls through $x y$.

Connectivity

Next we extend the connectivity function of M. Given subsets X and Y of S, we define

$$
\lambda_{B}(X, Y):=r_{B}((X \cap B) \cup(Y \backslash B))+r_{B}((Y \cap B) \cup(X \backslash B)) .
$$

We call λ_{B} the connectivity function of M_{B}. (The function $\lambda(X):=$ $\lambda_{B}(X, S \backslash X)$ is the usual connectivity function of a matroid.) Note that the restriction of the connectivity function of M_{B} to the subsets of $S^{\prime} \subseteq S$ is the connectivity function of $M_{B}\left[S^{\prime}\right]$.

For representable matroids there is an easy description of λ_{B}. Suppose that A is a representation of M_{B}. Let T denote the skew-symmetric matrix

$$
\left.\begin{array}{l}
\\
B \\
S \backslash B
\end{array} \begin{array}{cc}
B & S \backslash B \\
0 & A \\
-A^{t} & 0
\end{array}\right) .
$$

Then $\lambda_{B}(X, Y)=\operatorname{rank} T[X, Y]$. For represented matroids, many of the results in this section can easily be verified using T.

The connectivity function has the following properties:
Symmetry. For subsets X, Y of $S, \lambda_{B}(X, Y)=\lambda_{B}(Y, X)$.
Monotonicity. For subsets X, X^{\prime}, Y of S, where $X \subseteq X^{\prime}, \lambda_{B}(X, Y) \leqslant$ $\lambda_{B}\left(X^{\prime}, Y\right)$.

Unit-Increase. For subsets X, X^{\prime}, Y of S, where $X \subseteq X^{\prime}, \lambda_{B}(X, Y) \geqslant$ $\lambda_{B}\left(X^{\prime}, Y\right)-\left|X^{\prime} \backslash X\right|$.

Linking-Submodularity. For subsets $X_{1}, X_{2}, Y_{1}, Y_{2}$ of S,

$$
\lambda_{B}\left(X_{1}, Y_{1}\right)+\lambda_{B}\left(X_{2}, Y_{2}\right) \geqslant \lambda_{B}\left(X_{1} \cap X_{2}, Y_{1} \cup Y_{2}\right)+\lambda_{B}\left(X_{1} \cup X_{2}, Y_{1} \cap Y_{2}\right) .
$$

The edges of G_{B} are easily characterized in terms of λ_{B}.
Proposition 4.6. If $x, y \in S$, then $\lambda_{B}(\{x\},\{y\}) \leqslant 1$. Moreover, $\lambda_{B}(\{x\},\{y\})$ $=1$ if and only if $x y$ is an edge of G_{B}.
The following proposition explicitly describes the effect that pivoting has on the connectivity function. Again, the calculation is left to the reader.

Proposition 4.7. Let F be a feasible set of M_{B}, and let X, Y be subsets of S. Now let $X^{\prime}:=(X \backslash F) \cup(F \backslash Y)$, and $Y^{\prime}:=(Y \backslash F) \cup(F \backslash X)$. Then

$$
\lambda_{B A F}(X, Y)=\lambda_{B}\left(X^{\prime}, Y^{\prime}\right)-\left|X^{\prime}\right|+|X| .
$$

Let (X, Y) be a partition of S such that $|X|,|Y| \geqslant k$. If $\lambda_{B}(X, Y) \leqslant k-1$, then we call (X, Y) a k-separation of M_{B}; if $\lambda_{B}(X, Y)=k-1$ we call the k-separation exact. Note that (X, Y) is a k-separation of M_{B} if and only if (X, Y) is a k-separation of M, in the usual sense. We call a twisted matroid k-connected if it has no ($k-1$)-separation, in other words, if the underlying matroid is k-connected.

Proposition 4.8. Let X, Y be subsets of S, and let $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ be such that $\lambda_{B}\left(X^{\prime}, Y^{\prime}\right)=k-1$. Then, $\lambda_{B}(X, Y) \geqslant k$ if and only if there exist $x \in X$ and $y \in Y$ such that $\lambda_{B}\left(X^{\prime} \cup\{x\}, Y^{\prime} \cup\{y\}\right)=k$.

Proof. Firstly, it is clear that if $\lambda_{B}(X, Y)=k-1$, then, for each $x \in X$ and $y \in Y$, we have $\lambda_{B}\left(X^{\prime} \cup\{x\}, Y^{\prime} \cup\{y\}\right)=k-1$. Conversely, suppose that $\lambda_{B}(X, Y) \geqslant k$. Choose minimal sets $X^{\prime \prime}, Y^{\prime \prime}$ such that $X^{\prime} \subseteq X^{\prime \prime} \subseteq X$, $Y^{\prime} \subseteq Y^{\prime \prime} \subseteq Y$, and $\lambda_{B}\left(X^{\prime \prime}, Y^{\prime \prime}\right) \geqslant k$. We are required to prove that $\left|X^{\prime \prime}\right| \leqslant$ $\left|X^{\prime}\right|+1$ and $\left|Y^{\prime \prime}\right| \leqslant\left|Y^{\prime}\right|+1$. Suppose not. By the symmetry between X and Y,
we may assume that $\left|X^{\prime \prime}\right| \geqslant\left|X^{\prime}\right|+2$. Let x_{1}, x_{2} be distinct elements in $X^{\prime \prime} \backslash X^{\prime}$. By our choice of $X^{\prime \prime}$, we have

$$
\lambda_{B}\left(X^{\prime \prime}-x_{1}, Y^{\prime \prime}\right)=\lambda_{B}\left(X^{\prime \prime}-x_{2}, Y^{\prime \prime}\right)=\lambda_{B}\left(X^{\prime \prime}-x_{1}-x_{2}, Y^{\prime \prime}\right)=k-1 .
$$

However, by the submodularity of λ_{B}, we have

$$
\lambda_{B}\left(X^{\prime \prime}-x_{1}, Y^{\prime \prime}\right)+\lambda_{B}\left(X^{\prime \prime}-x_{2}, Y^{\prime \prime}\right) \geqslant \lambda_{B}\left(X^{\prime \prime}-x_{1}-x_{2}, Y^{\prime \prime}\right)+\lambda_{B}\left(X^{\prime \prime}, Y^{\prime \prime}\right),
$$

which is a contradiction.
Proposition 4.9. Let X and Y be subsets of S and let $x \in S \backslash X$ such that $\lambda(X \cup\{x\}, Y)>\lambda(X, Y)$. Then, in G_{B}, x is adjacent to a node in Y.

Proof. By submodularity: $\lambda(X, Y)+\lambda(\{x\}, Y) \geqslant \lambda(X \cup\{x\}, Y)+$ $\lambda(\varnothing, Y)$. Hence, $\lambda(\{x\}, Y)>0=\lambda(\varnothing, \varnothing)$. So, by Propositions 4.6 and 4.8, x is adjacent to a node in Y in G_{B}.

We are primarily interested in 1- and 2-separations. We now consider how such separations can be identified in the fundamental graph. The following propositions are straightforward corollaries of Propositions 4.6 and 4.8.

Proposition 4.10. Let (X, Y) be a partition of S with $|X|,|Y| \geqslant 1$. Then (X, Y) is a 1-separation of M_{B} if and only if there are no edges from X to Y in G_{B}.

For the next proposition we need some more definitions. A partition (X, Y) of S is called a split of G_{B} if $|X|,|Y| \geqslant 2$ and the edges from X to Y induce a complete bipartite graph. (A vertex in X need not be adjacent to each vertex in Y; in fact, if there are no edges from X to Y, then (X, Y) is a split.)

Proposition 4.11. If (X, Y) is a 2-separation of M_{B}, then (X, Y) is a split in G_{B}.

The converse is not true. As stated below, the only splits that actually yield 2 -separations are the ones without twirls.

Proposition 4.12. Let (X, Y) be a split in G_{B} and let $x_{1} y_{1}$ be an edge of G_{B} with $x_{1} \in X$ and $y_{1} \in Y$. Then, (X, Y) is not a 2 -separation of M_{B} if and only if there exist $x_{2} \in X$ and $y_{2} \in Y$ such that $M_{B}\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a twirl.

Consider a 2-separation (X, Y) of M_{B} with $|X|=2$. Let x_{1}, x_{2} be the elements of X. By Proposition 4.11, in the graph G_{B} either x_{1} and x_{2} have the same neighbours, or one of x_{1}, x_{2} has no neighbours in Y. Elements
$a, b \in S$ are called twins of M_{B} if they have the same neighbours in G_{B} and ($\{a, b\}, S \backslash\{a, b\}$) is a 2-separation. An element $a \in S$ is said to be pendant to an element $b \in S$ if b is the only neighbour of a in G_{B}. If a is pendant to b, then, by Proposition 4.8, $(\{a, b\}, S \backslash\{a, b\})$ is a 2-separation of M_{B}. The following proposition is straightforward; its proof is left to the reader.

Proposition 4.13. Suppose that a is pendant to b in $M_{B}[X]$. Then X is feasible if and only if $X \backslash\{a, b\}$ is feasible.

Suppose (X, Y) is an exact 2-separation of M_{B}. It is well known that in that case the matroid M is a 2 -sum of two proper minors of M. In fact, the parts of this 2 -sum are easily recognized from M_{B} and (X, Y). Indeed, let $x \in X$ and $y \in Y$ be adjacent members of G_{B}. Then M is a 2-sum of the matroids underlying the twisted matroids $M_{B}[X \cup\{y\}]$ and $M_{B}[Y \cup\{x\}]$. (Note that the particular choice of x and y is irrelevant modulo isomorphism.)

Note that because of the previous observations, the fundamental graph and the twirls of a twisted matroid exhibit all the 1 - and 2 -separations and all the nonbinary restrictions. Moreover, they show whether or not the underlying matroid is stable (in which case we call the twisted matroid stable as well).

Blocking Sequence

In proving Theorem 1.1 we will frequently encounter 2 -separations of minors of 3-connected matroids and nonstable minors of stable matroids. Intuitively, one might expect that in such a situation the parts of the 2-separation of the minors are connected one way or another by a certain structure that establishes that the 2 -separation does not extend to the whole matroid. Such structures indeed exist, namely "blocking sequences." Blocking sequences were initially used in the study of delta-matroids [3].

Let $X, Y \subseteq S$ be disjoint sets. We call (X, Y) a k-subseparation of M_{B} if (X, Y) is a k-separation of $M_{B}[X \cup Y]$, in other words: if $|X|,|Y| \geqslant k$ and $\lambda_{B}(X, Y)<k$. A k-subseparation (X, Y) is exact if $\lambda_{B}(X, Y)=k-1$, and (X, Y) is induced if there exists a k-separation (X^{\prime}, Y^{\prime}) with $X \subseteq X^{\prime}$ and $Y \subseteq Y^{\prime}$. A "blocking sequence" is a certificate proving that an exact k-subseparation is not induced. Specifically, let (X, Y) be an exact k-subseparation of M_{B}; a sequence v_{1}, \ldots, v_{p} of elements in $S \backslash(X \cup Y)$ is a blocking sequence for (X, Y) if
(i) (a) $\lambda_{B}\left(X, Y \cup\left\{v_{1}\right\}\right)=k$,
(b) $\lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y \cup\left\{v_{i+1}\right\}\right)=k$, for $i=1, \ldots, p-1$,
(c) $\lambda_{B}\left(X \cup\left\{v_{p}\right\}, Y\right)=k$, and
(ii) no proper subsequence of v_{1}, \ldots, v_{p} satisfies (i).

There is a natural directed graph $D(X, Y)$ associated with the problem of finding a blocking sequence for (X, Y). Fix some $x \in X$ and some $y \in Y$; the particular choices are irrelevant. Then $D(X, Y)$ has vertex set $\{x, y\} \cup(S \backslash(X \cup Y))$ and arc set

$$
\left\{u v: \lambda_{B}(X \cup\{u\}, Y \cup\{v\})=k\right\} .
$$

Clearly, v_{1}, \ldots, v_{p} is a blocking sequence for (X, Y) if and only if x, v_{1}, \ldots, v_{p}, y is a minimal directed (x, y)-path in $D(X, Y)$.

Theorem 4.14. Let (X, Y) be an exact k-subseparation of M_{B}. Then there exists a blocking sequence for (X, Y) if and only if (X, Y) is not induced.

Proof. Suppose that (X, Y) is induced, and let $\left(X^{\prime}, Y^{\prime}\right)$ be a k-separation in M_{B} with $X \subseteq X^{\prime}$ and $Y \subseteq Y^{\prime}$. Then, for all $x^{\prime} \in X^{\prime}$ and $y^{\prime} \in Y^{\prime}, \lambda_{B}\left(X \cup\left\{x^{\prime}\right\}\right.$, $\left.Y \cup\left\{y^{\prime}\right\}\right)=k-1$. Consequently there exists no blocking sequence.

Conversely, suppose there exists no blocking sequence. Then there is no directed $x y$-path in $D(X, Y)$. Hence, there exists a partition $\left(X^{\prime}, Y^{\prime}\right)$ of S such that, for all $x^{\prime} \in X^{\prime}$ and $y^{\prime} \in Y^{\prime}, \lambda_{B}\left(X \cup\left\{x^{\prime}\right\}, Y \cup\left\{y^{\prime}\right\}\right)=k-1$. By Proposition 4.8, $\left(X^{\prime}, Y^{\prime}\right)$ is a k-separation.

The following proposition summarizes some nice properties of blocking sequences.

Proposition 4.15. Let v_{1}, \ldots, v_{p} be a blocking sequence for an exact k-subseparation (X, Y) of M_{B}. Then the following properties hold.
(i) For $1 \leqslant i \leqslant j \leqslant p, v_{i}, \ldots, v_{j}$ is a blocking sequence for the exact k-subseparation $\left(X \cup\left\{v_{1}, \ldots, v_{i-1}\right\}, Y \cup\left\{v_{j+1}, \ldots, v_{p}\right\}\right)$.
(ii) If $x_{1} x_{2}$ is an edge of G_{B}, and $x_{1}, x_{2} \in X \cup Y$, then v_{1}, \ldots, v_{p} is a blocking sequence for the exact k-subseparation (X, Y) of $M_{B \Delta\left\{x_{1}, x_{2}\right\}}$.
(iii) If Y^{\prime} is a subset of Y such that $\left|Y^{\prime}\right| \geqslant k$ and $\lambda_{B}\left(X, Y^{\prime}\right)=k-1$ and $\lambda_{B}\left(X \cup\left\{v_{p}\right\}, Y^{\prime}\right)>k-1$, then v_{1}, \ldots, v_{p} is a blocking sequence for the k-subseparation (X, Y^{\prime}) in M_{B}.
(iv) The sequence $v_{1}, v_{2}, \ldots, v_{p}$ alternates between elements of B and $S \backslash B$.

Proof. For all assertions we may assume that S (the ground set of M) is equal to $X \cup Y \cup\left\{v_{1}, \ldots, v_{p}\right\}$.

Part (i). This follows immediately from definitions and Proposition 4.8.
Part (ii). Let X^{\prime}, Y^{\prime} be disjoint subsets of S such that $X \subseteq X^{\prime}$ and $Y \subseteq Y^{\prime}$. By Proposition 4.7, we have $\lambda_{B A\left\{x_{1}, x_{2}\right\}}\left(X^{\prime}, Y^{\prime}\right)=\lambda_{B}\left(X^{\prime}, Y^{\prime}\right)$. Then the result follows immediately from definitions.

Part (iii). Choose $v_{0} \in X$. Then, for $i=0, \ldots, p-1$, we have $\lambda_{B}\left(X \cup\left\{v_{i}\right\}\right.$, $\left.Y \cup\left\{v_{i+1}\right\}\right)=k$. Hence, as $\lambda_{B}\left(X, Y^{\prime}\right)=\lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y\right)=\lambda_{B}\left(X, Y \cup\left\{v_{i+1}\right\}\right)$ $=k-1$, it follows from Proposition 4.8 that $\lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y^{\prime} \cup\left\{v_{i+1}\right\}\right) \geqslant k$. Therefore, some subsequence of v_{1}, \ldots, v_{p} is a blocking sequence for $\left(X, Y^{\prime}\right)$. By monotonicity, v_{1}, \ldots, v_{p} is the blocking sequence, as required.

Part (iv). Suppose that the claim is false. Then, by part (i) and duality, we may assume that $p=2$ and that v_{1} and v_{2} are both in B. We have $\lambda_{B}\left(X \cup\left\{v_{1}\right\}, Y \cup\left\{v_{2}\right\}\right)>\lambda_{B}(X, Y)$. By definition,

$$
\lambda_{B}(X, Y)=r_{B}((X \cap B) \cup(Y \backslash B))+r_{B}((Y \cap B) \cup(X \backslash B)),
$$

and

$$
\begin{aligned}
& \lambda_{B}\left(X \cup\left\{v_{1}\right\}, Y \cup\left\{v_{2}\right\}\right) \\
& \quad=r_{B}\left(\left(\left(X \cup\left\{v_{1}\right\}\right) \cap B\right) \cup(Y \backslash B)\right)+r_{B}\left(\left(\left(Y \cup\left\{v_{2}\right\}\right) \cap B\right) \cup(X \backslash B)\right) .
\end{aligned}
$$

Therefore, either

$$
r_{B}\left(\left(\left(X \cup\left\{v_{1}\right\}\right) \cap B\right) \cup(Y \backslash B)\right)>r_{B}((X \cap B) \cup(Y \backslash B)),
$$

or

$$
r_{B}\left(\left(\left(Y \cup\left\{v_{2}\right\}\right) \cap B\right) \cup(X \backslash B)\right)>r_{B}((Y \cap B) \cup(X \backslash B)) .
$$

By symmetry, we assume that

$$
r_{B}\left(\left(\left(X \cup\left\{v_{1}\right\}\right) \cap B\right) \cup(Y \backslash B)\right)>r_{B}((X \cap B) \cup(Y \backslash B)) .
$$

Therefore,

$$
\begin{aligned}
\lambda_{B}(X & \left.\cup\left\{v_{1}\right\}, Y\right) \\
& =r_{B}\left(\left(\left(X \cup\left\{v_{1}\right\}\right) \cap B\right) \cup(Y \backslash B)\right)+r_{B}((Y \cap B) \cup(X \backslash B)) \\
& >r_{B}((X \cap B) \cup(Y \backslash B))+r_{B}((Y \cap B) \cup(X \backslash B)) \\
& =\lambda_{B}(X, Y) .
\end{aligned}
$$

However, this contradicts the minimality of the blocking sequence.
It is obviously desirable to find short blocking sequences. The following proposition describes ways to reduce the length of blocking sequences. Using these reductions it is often possible to reduce blocking sequences to length 1 or 2 .

Proposition 4.16. Let v_{1}, \ldots, v_{p} be a blocking sequence for an exact k-subseparation (X, Y) of M_{B}. Then the following properties hold.
(i) Let $Y^{\prime \prime}$ be a subset of Y such that $\left|Y^{\prime \prime}\right| \geqslant k$ and $\lambda_{B}\left(X, Y^{\prime}\right)=k-1$. If $p>1$, then r_{1}, \ldots, r_{p} is a blocking sequence for the exact k-subseparation $\left(X, Y^{\prime} \cup\left\{c_{p}\right\}\right)$.
(ii) Let $y \in Y$ be a neighbour in G_{B} of v_{p} such that $\lambda_{B}(X \cup\{y\}, Y)=$ k. If $p>1$, then v_{1}, \ldots, v_{p-1} is a blocking sequence for the exact k-subseparation ($X, Y \mathcal{A}\left\{r_{p}, y\right\}$) in $M_{B A\left\{y, r_{p}\right\}}$.
(iii) If r_{i} has no neighbours in $X \cup Y$ in G_{B}, then $1<i<p, r_{i} v_{i-1}$ is an edge, and $v_{1}, \ldots, v_{i}, v_{i+1}, \ldots, v_{p}$ is a blocking sequence for the exact k-subseparation (X, Y) in $M_{B A\left\{v_{i}, \ldots, r_{i}\right\}}$.

Proof. For all assertions we may assume that S (the ground set of M) is equal to $X \cup Y \cup\left\{r_{1}, \ldots, r_{p}\right\}$.

Part (i). By Proposition 4.15 (part (i)), $v_{1}, \ldots v_{p-1}$ is a blocking sequence for $\left(X, Y \cup\left\{v_{p}\right\}\right)$. Furthermore, $k-1=i_{B}\left(X, Y \cup\left\{v_{p}\right\}\right) \geqslant i_{B}\left(X, Y^{\prime} \cup\left\{v_{p}\right\}\right)$ $\geqslant i_{B}\left(X, Y^{\prime}\right)=k-1$, so $\lambda_{B}\left(X, Y^{\prime} \cup\left\{c_{p}\right\}\right)=k-1$. Moreover, as $\lambda_{B}(X \cup$ $\left.\left\{v_{p} \quad 1\right\}, Y \cup\left\{v_{p}\right\}\right)=k$ and $\lambda_{B}\left(X, Y^{\prime}\right)=\lambda_{B}\left(X \cup\left\{v_{p-1}\right\}, Y\right)=\lambda_{B}\left(X, Y \cup\left\{v_{p}\right\}\right)$ $=k-1$, it follows from Proposition 4.8 that $\AA_{B}\left(X \cup\left\{v_{p-1}\right\}, Y^{\prime} \cup\left\{v_{p}\right\}\right) \geqslant k$. So, by Proposition 4.15 (part (iii)), we see that v_{1}, \ldots, v_{p-1} is blocking sequence for ($X, Y^{\prime} \cup\left\{c_{p}\right\}$).

Part (ii). By Proposition 4.15 (parts (i) and (ii)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the k-subseparation $\left(X, Y \cup\left\{v_{p}\right\}\right)$ in $M_{B A\left\{y, v_{p}\right\}}$. By Proposition 4.7, $\lambda_{B A\left\{y, v_{p}(\right.}\left(X, Y \Delta\left\{y, r_{p}\right\}\right)=\lambda_{B}\left(X \cup\{y\}, Y \cup\left\{v_{p}\right\}\right)-1$. Hence, as $k=i_{B}(X \cup\{y\}, Y) \leqslant \lambda_{B}\left(X \cup\{y\}, Y \cup\left\{v_{p}\right\}\right) \leqslant \lambda_{B}\left(X, Y \cup\left\{v_{p}\right\}\right)$ $+1=k$, we have that $i_{B A\left\{y, v_{p}\right\}}\left(X, Y \Delta\left\{y, v_{p}\right\}\right)=k-1$. So, by Proposition 4.15 (part (iii)), it suffices to prove that $\lambda_{B A\left\{y, v_{p}\right\}}\left(X \cup\left\{v_{p}, 1\right\}, Y \Delta\left\{v_{p}, y\right\}\right)>k-1$. By Proposition 4.7, $\lambda_{B A\left\{y, v_{p}\right\}}\left(X \cup\left\{v_{p-1}\right\}, Y \Delta\left\{v_{p}, y\right\}\right)=\lambda_{B}\left(X \cup\left\{y, v_{p-1}\right\}\right.$, $\left.Y \cup\left\{c_{p}\right\}\right)-1$. By submodularity, we have

$$
\begin{aligned}
& \lambda_{B}\left(X \cup\left\{y, v_{p}\right\}, Y \cup\left\{v_{p}\right\}\right)+\lambda_{B}\left(X \cup\left\{v_{p-1}\right\}, Y\right) \\
& \quad \geqslant \lambda_{B}\left(X \cup\left\{v_{p-1}\right\}, Y \cup\left\{v_{p}\right\}\right)+\lambda_{B}\left(X \cup\left\{v_{p-1}, y\right\}, Y\right) .
\end{aligned}
$$

However, $\lambda_{B}\left(X \cup\left\{v_{p-1}\right\}, Y\right)=k-1, \lambda_{B}\left(X \cup\left\{v_{p-1}\right\}, Y \cup\left\{v_{p}\right\}\right)=k$, and $\lambda_{B}\left(X \cup\left\{v_{p-1}, y\right\}, Y\right) \geqslant \lambda_{B}(X \cup\{y\}, Y)=k$. Therefore, $\lambda_{B}\left(X \cup\left\{y, v_{p-1}\right\}\right.$, $\left.Y \cup\left\{v_{p}\right\}\right) \geqslant k+1$, as required.

Part (iii). Clearly, by Proposition 4.9, in G_{B} there exists an edge from v_{1} to X and from v_{p} to Y. So, $1<i<p$. As v_{i} has no neighbours in $X \cup Y$ and $\lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y \cup\left\{v_{i+1}\right\}\right)=k>k-1=\lambda_{B}\left(X, Y \cup\left\{v_{i+1}\right\}\right)$, it follows from Proposition 4.9, that $v_{i} v_{i+1}$ is and edge of G_{B}. By symmetry, $v_{i} v_{i-1}$ is also an edge. We denote by B^{\prime} the basis $B \Delta\left\{v_{i}, v_{i-1}\right\}$. Let $X_{0}:=X, Y_{p+1}:=Y$, and, for $j=1, \ldots, p$, we let $X_{j}:=X \cup\left\{v_{1}, \ldots, v_{j}\right\}$ and $Y_{j}:=Y \cup\left\{v_{j}, \ldots, v_{p}\right\}$.

We first prove that $\lambda_{B^{\prime}}\left(X_{i-3}, Y_{i+1}\right)=k-1$ (in case $i>2$). Indeed, by the minimality of the blocking sequence, $\lambda_{B}\left(X_{i-3}, Y_{i-1}\right)=k-1$. Hence, by Proposition 4.7,

$$
\begin{aligned}
\lambda_{B^{\prime}}\left(X_{i-3}, Y_{i+1}\right) & =\lambda_{B}\left(X_{i-3} \cup\left\{v_{i-1}, v_{i}\right\}, Y_{i-1}\right)-2 \\
& \leqslant \lambda_{B}\left(X_{i-3}, Y_{i-1}\right)=k-1 .
\end{aligned}
$$

So our claim follows.
Next we prove that v_{i} has no neighbours in G_{B} other than v_{i-1} and v_{i+1}. By submodularity, we have

$$
\lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y_{i+2}\right)+\lambda_{B}\left(\left\{v_{i}\right\}, Y\right) \geqslant \lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y\right)+\lambda_{B}\left(\left\{v_{i}\right\}, Y_{i+2}\right) .
$$

However, $\quad \lambda_{B}\left(\left\{v_{i}\right\}, Y\right)=0, \quad \lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y\right)=k-1, \quad$ and, by Proposition 4.15, part (i), $\lambda_{B}\left(X \cup\left\{v_{i}\right\}, Y_{i+2}\right)=k-1$, so $\lambda_{B}\left(\left\{v_{i}\right\}, Y_{i+2}\right)=0$. Therefore, v_{i} has no neighbours in Y_{i+2} in G_{B}. By symmetry, v_{i} has no neighbours in X_{i-2}. Hence, as $S=X \cup Y \cup\left\{v_{1}, \ldots, v_{p}\right\}$, node v_{i} is adjacent to only v_{i-1} and v_{i+1}, as claimed.

As v_{i} is pendant to v_{i-1} in $M_{B}-v_{i+1}$, it follows from Proposition 4.7 and 4.13, that $M_{B}-\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ is identical to $M_{B^{\prime}}-\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$. Hence (X, Y) and $\left(X_{i-2}, Y\right)$ are exact k-subseparations of $M_{B^{\prime}}$. Another consequence of $M_{B^{\prime}}-\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ being identical with $M_{B}-$ $\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ and of $\lambda-B^{\prime}\left(X_{i-3}, Y_{i-1}\right)=k-1$ (in case $i>2$), is that (X, Y) is an induced k-subseparation in $M_{B^{\prime}}$ if and only if $\left(X_{i-2}, Y\right)$ is an induced k-subseparation of $M_{B^{\prime}}$, and that the blocking sequences of (X, Y) in M_{B}^{\prime} are exactly the sequences starting with v_{1}, \ldots, v_{i-2}, followed by a blocking sequence of (X_{i-2}, Y) in $M_{B^{\prime}}$. Hence, to prove that v_{1}, \ldots, v_{i-2}, v_{i+1}, \ldots, v_{p} is a blocking sequence for (X, Y) in $M_{B^{\prime}}$, it remains to prove that v_{i+1}, \ldots, v_{p} is a blocking sequence for $\left(X_{i-2}, Y\right)$ in $M_{B^{\prime}}$.

By Proposition 4.15 (part (i)), v_{i}, \ldots, v_{p} is a blocking sequence for the k-subseparation $\left(X_{i-1}, Y\right)$ in M_{B}. As $k \geqslant \lambda_{B}\left(X_{i-1}, Y \cup\left\{v_{i-1}\right\}\right) \geqslant$ $\lambda_{B}\left(X_{i-2}, Y \cup\left\{v_{i-1}\right\}\right) \geqslant k$, we have that $\lambda_{B}\left(X_{i-1}, Y \cup\left\{v_{i-1}\right\}\right)=k$. Hence, by part (ii), v_{i+1}, \ldots, v_{p} is a blocking sequence for the k-subseparation $\left(X_{i-2} \cup\left\{v_{i}\right\}, Y\right)$ in $M_{B^{\prime}}$. Recall that $\lambda_{B^{\prime}}\left(X_{i-2}, Y\right)=k-1$. Hence, by Proposition 4.15 (part (iii)), it suffices to prove that $\lambda_{B^{\prime}}\left(X_{i-2}, Y \cup\left\{v_{i+1}\right\}\right)=k$.

By submodularity, we have

$$
\lambda_{B}\left(X_{i-1}, Y_{i+1}\right)+\lambda_{B}\left(X_{i}, Y_{i}\right) \geqslant \lambda_{B}\left(X_{i}, Y_{i+1}\right)+\lambda_{B}\left(X_{i-1}, Y_{i}\right) .
$$

Hence, as $\lambda_{B}\left(X_{i-1}, Y_{i+1}\right)=k-1, \lambda_{B}\left(X_{i}, Y_{i+1}\right)=k$, and $\lambda_{B}\left(X_{i-1}, Y_{i}\right)=k$, we have that $\lambda_{B}\left(X_{i}, Y_{i}\right) \geqslant k+1$. Similarly, $\lambda_{B}\left(X_{i-1}, Y_{i-1}\right) \geqslant k+1$.

Again, by submodularity, we have

$$
\lambda_{B}\left(X_{i}, Y_{i-1}\right)+\lambda_{B}\left(X_{i-1}, Y_{i}\right) \geqslant \lambda_{B}\left(X_{i}, Y_{i}\right)+\lambda_{B}\left(X_{i-1}, Y_{i-1}\right) \geqslant 2 k+2
$$

Then, since $\lambda_{B}\left(X_{i-1}, Y_{i}\right)=k$, we have $\lambda_{B}\left(X_{i}, Y_{i-1}\right) \geqslant k+2$. Therefore, by Proposition 4.7, $\lambda_{B^{\prime}}\left(X_{i-2}, Y_{i+1}\right) \geqslant k$. So, as $\lambda_{B^{\prime}}\left(X_{i-2}, Y\right)=\lambda_{B^{\prime}}\left(X_{i-2}, Y_{i+2}\right)$ $=k-1$, it follows from Proposition 4.8 that $\lambda_{B^{\prime}}\left(X_{i-2}, Y \cup\left\{v_{i+1}\right\}\right)=k$, as required. Hence, part (iii) follows.

While the previous results are stated for arbitrary values of k, we are interested only in 2 -subseparations. We now introduce a result that is particular to this special case.

Two partitions (X_{1}, X_{2}) and (Y_{1}, Y_{2}) of a common set are said to cross if $X_{i} \cap Y_{j}$ is nonempty for each $i, j \in\{1,2\}$. A 2-subseparation (X_{1}, X_{2}) of M_{B} is crossed (otherwise uncrossed) if there exists a 2-separation (Y_{1}, Y_{2}) of $M_{B}\left[X_{1} \cup X_{2}\right]$ such that the partitions (Y_{1}, Y_{2}) and (X_{1}, X_{2}) cross.

Proposition 4.17. Let v_{1}, \ldots, v_{p} be a blocking sequence for an uncrossed 2-subseparation $\left(X_{1}, X_{2}\right)$ of M_{B}, and let $\left(Y_{1}, Y_{2}\right)$ be a 2-separation of $M_{B}\left[X_{1} \cup X_{2} \cup\left\{v_{1}, \ldots, v_{p}\right\}\right]$. Then, for some $i, j \in\{1,2\}, X_{i} \cup\left\{v_{1}, \ldots, v_{p}\right\} \subseteq$ Y_{j}.

The proof requires the following proposition.

Proposition 4.18. Let $\left(X_{1}, X_{2}\right)$ be an uncrossed 2-subseparation of $M_{B}\left[X_{1} \cup X_{2}\right]$, let $v \in S \backslash\left(X_{1} \cup X_{2}\right)$ be such that $\lambda_{B}\left(X_{1} \cup\{v\}, X_{2}\right)=2$, and let $\left(Y_{1}, Y_{2}\right)$ be a 2-separation of $M_{B}\left[X_{1} \cup X_{2} \cup\{v\}\right]$ such that $X_{2} \subseteq Y_{2}$. Then $v \in Y_{2}$.

Proof. Suppose that $v \in Y_{1}$. By submodularity we have

$$
\lambda_{B}\left(X_{1}, X_{2}\right)+\lambda_{B}\left(Y_{1}, Y_{2}\right) \geqslant \lambda_{B}\left(X_{1} \cap Y_{1}, Y_{2}\right)+\lambda_{B}\left(X_{1} \cup\{v\}, X_{2}\right) .
$$

Hence, $\lambda_{B}\left(X_{1} \cap Y_{1}, Y_{2}\right)=0$. Note that $X_{1} \cap Y_{1}=Y_{1} \backslash\{v\}$, and that Y_{2} strictly contains X_{2}. Fix any $a \in X_{2}$. Then $\left(\left(Y_{1} \backslash\{v\}\right) \cup\{a\}, Y_{2} \backslash\{a\}\right)$ crosses $\left(X_{1}, X_{2}\right)$. However, $\left(\left(Y_{1} \backslash\{v\}\right) \cup\{a\}, Y_{2} \backslash\{a\}\right)$ is a 2-separation of $M_{B}\left[X_{1} \cup X_{2}\right]$, as $\lambda_{B}\left(\left(Y_{1} \backslash\{v\}\right) \cup\{a\}, Y_{2} \backslash\{a\}\right) \leqslant \lambda_{B}\left(Y_{1} \backslash\{v\}, Y_{2}\right)+1=1$. This contradiction completes the proof.

Proof of Proposition 4.17. Note that $\lambda_{B}\left(Y_{1} \cap\left(X_{1} \cup X_{2}\right), Y_{2} \cap\left(X_{1} \cup X_{2}\right)\right)$ $\leqslant 1$. Therefore, $\left(Y_{1} \cap\left(X_{1} \cup X_{2}\right), Y_{2} \cap\left(X_{1} \cup X_{2}\right)\right)$, and $\left(X_{1}, X_{2}\right)$ do not cross. Hence, there exists $i, j \in\{1,2\}$ such that $X_{i} \subseteq Y_{j}$. By swapping X_{1} and X_{2} and swapping Y_{1} and Y_{2}, if necessary, we assume that $X_{2} \subseteq Y_{2}$.

We prove the result by induction on p. The case that $p=1$ is proven in Proposition 4.18. We assume that $p>1$ and that the result holds for all smaller cases. By Proposition 4.18, it follows that ($X_{1}, X_{2} \cup\left\{v_{p}\right\}$) is uncrossed. By Proposition 4.15 (part (i)), v_{1}, \ldots, v_{p-1} is a blocking sequence for $\left(X_{1}, X_{2} \cup\left\{v_{p}\right\}\right)$.

First suppose $v_{p} \in Y_{2}$. Then $X_{2} \cup\left\{v_{p}\right\} \subseteq Y_{2}$, so, by induction and as $\left(Y_{1}, Y_{2}\right) \neq\left(X_{1} \cup\left\{v_{1}, \ldots, v_{p-1}\right\},\left\{v_{p}\right\} \cup X_{2}\right)$, it follows that $v_{1}, \ldots, v_{p-1} \in Y_{2}$. Hence, the conclusion of Proposition 4.17 follows when $v_{p} \in Y_{2}$.

Hence we suppose $v_{p} \in Y_{1}$. Then, since ($X_{1}, X_{2} \cup\left\{v_{p}\right\}$) is uncrossed, either $X_{1} \subseteq Y_{1}$ or $X_{1} \subseteq Y_{2}$. Clearly $X_{1} \nsubseteq Y_{1}$, since $\lambda_{B}\left(X_{1} \cup\left\{v_{p}\right\}, X_{2}\right)=2$. Hence, $X_{1} \subseteq Y_{2}$. Now v_{p-1}, \ldots, v_{1} is a blocking sequence for the 2 -subseparation $\left(X_{2} \cup\left\{v_{p}\right\}, X_{1}\right)$, and $X_{1} \subseteq Y_{2}$. So, by induction, $v_{1}, \ldots, v_{p-1} \in Y_{2}$. However, this implies that $Y_{1}=\left\{v_{p}\right\}$, contradicting that $\left(Y_{1}, Y_{2}\right)$ is a 2-separation.

The following corollary is an easy consequence of Proposition 4.17.
Corollary 4.19. If $\left(X_{1}, X_{2}\right)$ is the unique 2-separation in $M_{B}\left[X_{1} \cup X_{2}\right]$, and v_{1}, \ldots, v_{p} is a blocking sequence for $\left(X_{1}, X_{2}\right)$, then $M_{B}\left[X_{1} \cup X_{2} \cup\left\{v_{1}, \ldots, v_{p}\right\}\right]$ is 3 -connected.

5. REDUCTION TO A FINITE LIST OF EXCLUDED MINORS

Theorem 5.1 below constitutes the main part of the proof of Theorem 1.1. In particular, it says that all excluded minors have at most eight elements. The final case analysis, establishing the excluded minors explicitly, is deferred to Section 6.

Theorem 5.1. Minor-minimal non-GF(4)-representable matroids have rank and corank at most 4.

Proof. Suppose the theorem fails. Let M be a minor-minimal non$G F(4)$-representable matroid with rank or corank at least 5 . Clearly, M is 3 -connected and nonbinary. Hence, by Theorem 3.1, there exists $M^{\prime} \in\left\{M, M^{*}\right\}$ and elements u, v such that $M^{\prime} \backslash u, M^{\prime} \backslash v$ are stable, and $M^{\prime} \backslash u, v$ is connected, stable, and contains a 3-connected nonbinary minor $M^{\prime \prime}$ of size at least $|S|-4$. Our first assumption is that
(1) $M^{\prime}, M^{\prime \prime}, u, v$ are chosen os that $M^{\prime \prime}$ is as large as possible.

By duality, we may also assume that $M=M^{\prime}$. As all proper minors of M are $G F(4)$-representable, it follows from Lemma 2.2, that there exists a unique $G F(4)$-representable matroid N on S such that $N \backslash u=M \backslash u$ and $N \backslash v=M \backslash v$. As M is not $G F(4)$-representable, M and N are not isomorphic. Let B be a basis of M disjoint from $\{u, v\}$. Since, $N_{B} \neq M_{B}$, there exists a set that is feasible in exactly one of M_{B} and N_{B}; such a set is said to distinguish M_{B} from N_{B}. As $M \backslash u, v$ is nonbinary, $M_{B}-u-v$ has a twirl. Our first goal will be to establish that we may choose B such that both this twirl and distinguishing set can be chosen small (of size equal to
four) and close to each other in the fundamental graph G_{B}. (Note that M_{B} and N_{B} have the same fundamental graph.)
(2) M has a basis B and elements a and b such that B avoids $\{u, v\}$ and $\{u, v, a, b\}$ distinguishes M_{B} from N_{B}.
Since M is 3 -connected, there exists a basis disjoint from $\{u, v\}$. Let B^{\prime} be a basis of exactly one of N and M, and choose a basis B of $M \backslash u, v$ minimizing $\left|B \Delta B^{\prime}\right|$. Note that $u, v \in B^{\prime}$ and that B is a basis of N. If $\left|B \Delta B^{\prime}\right|=4$, then (2) follows (with a and b the two elements in $B \backslash B^{\prime}$). If $\left|B \Delta B^{\prime}\right|>4$, take $x \in\left(B^{\prime} \backslash B\right) \backslash\{u, v\}$. By the basis exchange axiom, there exists a $y \in B \backslash B^{\prime}$ such that $B \Delta\{x, y\}$ is a basis of at least one of N and M. However u, $v \notin B \Delta\{x, y\}$, so $B \Delta\{x, y\}$ is a basis in both N and M. In particular, $B \Delta\{x, y\}$ is a basis of $M \backslash u, v$, and $\left|(B \Delta\{x, y\}) \Delta B^{\prime}\right|<\left|B \Delta B^{\prime}\right|$, contradicting our choice of B. This proves (2).

Henceforth we assume that B, a, b are as in (2). To switch between the various choices for B, a, b, we pivot extensively, though we are cautious and make sure that u and v stay out of the basis B and that there is still a distinguishing set of size 4 . To be precise, for an edge $x y$ of $G_{B}-u-v$, the pivot on $x y$ is allowable if either
(i) $x \in\{a, b\}$,
(ii) $y \in\{a, b\}$, or
(iii) $\{u, v, a, b, x, y\}$ distinguishes M_{B} from N_{B}.

Note that $M_{B A\{x, y\}}$ and $N_{B \Delta\{x, y\}}$ are indeed distinguished by a set of size 4; namely, by $\{a, b, u, v\}$ if the pivot is allowable of type (iii) and by $\{a, b, u, v\} \Delta\{x, y\}$ if the pivot is allowable of type (i) or (ii). While allowable pivots of types (i) and (ii) are clear from the fundamental graph, this is not the case for allowable pivots of type (iii). However, from Proposition 4.13, we have the following sufficient conditions:
(i) If $x y$ is an edge of $G_{B}[S \backslash\{u, v, a, b\}]$, and neither x nor y is adjacent to either a or b, then the pivot on $x y$ is allowable.
(ii) If $x y$ is an edge of $G_{B}[S \backslash\{u, v, a, b\}]$ and neither x nor y is adjacent to either u or v, then the pivot on $x y$ is allowable.
Given elements x and y, we denote by $d_{B}(x, y)$, or just $d(x, y)$, the distance between x and y in $G_{B}-u-v$. If U is a set of vertices in $G_{B}-u-v$, then $d(x, U)$ denotes the length of a shortest path from x to a vertex in U.

We now refine our choice of B, a, and b. We choose B, a, b, and C in $S \backslash\{u, v\}$ such that
(3) $(|C|, d(a, C), d(b, C))$ is lexicographically minimal subject to the following conditions: B is a basis of $M \backslash\{u, v\}$, the set $\{u, v, a, b\}$ distinguishes M_{B} from N_{B}, and $M_{B}[C]$ is a twirl.

This choice has the following three consequences.
(4) Let $x \in(S \backslash\{u, v\}) \backslash C$. Then $|\operatorname{nigh}(x) \cap C| \leqslant 2$. Furthermore,
(i) If $a \notin C$, then $|\operatorname{nigh}(a) \cap C| \leqslant 1$,
(ii) If $b \notin C$ and $|\operatorname{nigh}(b) \cap C|=2$, then $a \in C$.

Suppose $x \in(S \backslash\{u, v\}) \backslash C$ and $|\operatorname{nigh}(x) \cap C| \geqslant 2$. We are required to prove that $|\operatorname{nigh}(x) \cap C|=2, x \neq a$, and that $a \in C$ if $x=b$. By Lemma 4.4, there exists a twirl $M_{B}\left[C^{\prime}\right]$ such that $x \in C^{\prime} \subset C \cup\{x\}$. By (3), we must have $\left|C^{\prime}\right|=|C|$, which is only possible if $\left|\operatorname{nigh}_{B}(x) \cap C\right|=2$. Again by (3), $d(a, C) \leqslant d\left(a, C^{\prime}\right)$. Hence, as $d(x, C)=1>0=d\left(x, C^{\prime}\right)$, it follows that $x \neq a$. Finally, if $x=b$, then, by (3), $d(a, C) \leqslant d\left(b, C^{\prime}\right)=d\left(x, C^{\prime}\right)=0$, so $a \in C$. So (4) follows.
(5) $|C|=4$.

Suppose that $|C|>4$. No edge of $G_{B}[C]$ is an allowable pivot, since otherwise, by Proposition 4.5, pivoting on such an edge would yield a shorter twirl, contradicting (3). Therefore, neither a nor b is contained in C. Hence, by (4), both a and b have at most one neighbour in C. However, since $|C| \geqslant 6$, there exists an edge $x y$ of $G_{B}[C]$ such that neither x nor y is adjacent to either a or b. So $x y$ is allowable. This contradiction proves (5).
(6) $\quad d(a, C) \leqslant 1$.

Suppose that $d(a, C)>1$, and let x_{1}, \ldots, x_{k} be the internal vertices of a shortest path from a to C in $G_{B}-u-v$. If x_{k} has at least two neighbours in C, then, by Lemma 4.4, there is a twirl $M_{B}\left[C^{\prime}\right]$ of size 4 that contains x_{k}. As $d\left(a, C^{\prime}\right)<d(a, C)$, this contradicts (3). So x_{k} has exactly one neighbour, say x, in C. Let y a neighbour of x in $G_{B}[C]$ and let z be the neighbour of y in $G_{B}[C]$ different from x. Then, $x y$ is an allowable pivot, since neither x nor y is adjacent to either a or b. If we pivot on $x y$, then C remains a twirl, x_{1}, \ldots, x_{k} remain the internal vertices of a path from a to C, but x_{k} becomes adjacent to y and z. So then we are back in the earlier excluded case that x_{k} has at least two neighbours in C. This proves (6).
(2), (5), and (6) establish our first goal: the existence of a basis B with a small distinguishing set $\{u, v, a, b\}$ and a 4-element twirl $M_{B}[C]$ in $M_{B}-u-v$, that is close to $\{u, v, a, b\}$ in G_{B}. Figure 2 lists the possible subgraphs of G_{B} induced by $\{u, v, a, b\}$ and C. (That $G_{B}[\{u, v, a, b\}]$ is a circuit, follows from Propositions 4.1 and 4.2.)

One of the main tools from now on is Lemma 2.3. In terms of twisted matroids it reads:
(7) Let $X \subseteq S$ such that $M_{B}[X]-u$ and $M_{B}[X]-v$ are stable, $M_{B}[X]-u-v$ is connected, stable, and nonbinary, and there exists $Y \subseteq X$

(a)

(b)

(c)

FIG. 2. The subgraph of G_{B} induced by $\{u, v, a, b\}$ and by C (indicated by bold edges). Dashed edges might or might not exist.
distinguishing M_{B} and N_{B}. Then $M_{B}[X]$ is not $G F(4)$-representable. Consequently $M_{B}=M_{B}[X]$.
By applying (7), we make short work of the first case in Fig. 2a:
(8) $b \notin C$.

Suppose that $b \in C$. Then by (3) also $a \in C$. We define $X:=\{u, v\} \cup C$. Then $M_{B}[X]-u-v$ is 3-connected and nonbinary. Hence, $M_{B}[X]-u$, $M_{B}[X]-v$, and $M_{B}-u-v$ are all stable. So, by (7), $M_{B}=M_{B}[X]$. This contradicts the fact that M has rank or corank at least five. So (8) follows.

Before we proceed with the other cases we derive a simple fact that we will use several times.
(9) If $x \in S \backslash\{u, v, a, b\}$ such that $a, b \in \operatorname{nigh}_{B}(x)$, then $M_{B}[\{u, a, b, x\}]$ and $M_{B}[\{v, a, b, x\}]$ are both twirls.

By Lemma 4.4, if any of $M_{B}[\{u, a, b, x\}], M_{B}[\{v, a, b, x\}]$, and $M_{B}[\{a, b, u, v\}]$ is a twirl, then at least two are. Similarly, if any of $M_{B}[\{u, a, b, x\}]=$ $N_{B}[\{u, a, b, x\}], M_{B}[\{v, a, b, x\}]=N_{B}[\{v, a, b, x\}]$, and $N_{B}[\{a, b, u, v\}]$ is a twirl, then at least two are. However $\{a, b, u, v\}$ distinguishes M_{B} and N_{B}, so exactly one of $M_{B}[\{a, b, u, v\}]$ and $N_{B}[\{a, b, u, v\}]$ is a twirl. Thus $M_{B}[\{u, a, b, x\}]$ and $M_{B}[\{v, a, b, x\}]$ are both twirls, which proves (9).

Next we rule out the possibility in Fig. 2b.
(10) $a \in C$.

Suppose that $a \notin C$. Let the elements of C be sequentially labeled $1,2,3$, 4 , where 1 is a neighbour of a.
(10.1) 3 is adjacent to neither a nor b in G_{B}.

By (4), a is not adjacent to 3 , and b has at most one neighbour in C. Suppose that b is adjacent to 3 , and hence 3 is the only neighbour of b in C. Let $X:=\{u, v, a, b, 1,2,3,4\}$. Then, $M_{B}[X]-u-v$ is connected, stable, and nonbinary. Furthermore, by Proposition 4.11, $M_{B}[X]-u-2$ is 3-connected. Therefore, $M_{B}[X]-u$ is stable. By symmetry, $M_{B}[X]-v$ is
stable as well. So, by (7), $M_{B}=M_{B}[X]$, which contradicts the fact that M has rank or corank at least 5 . This proves (10.1).
(10.2) $(\{a, b, 1\},\{2,3,4\})$ is an induced 2-subseparation of $M_{B}-u-v$.
By (10.1), $(\{a, b, 1\},\{2,3,4\})$ is a 2 -subseparation of M_{B}. Suppose that $(\{a, b, 1\},\{2,3,4\})$ is not induced and let v_{1}, \ldots, v_{p} be a blocking sequence. We prove (10.2) by induction on p. We consider separately the cases given by the colour class of v_{p} in G_{B}; these are depicted in Fig. 3.

We first consider the case where v_{p} is in the same colour class of G_{B} as 3. As v_{p} is the last vertex in the blocking sequence, $\left(\left\{a, b, 1, v_{p}\right\},\{2,3,4\}\right)$ is not a 2 -separation. Consequently, by Proposition 4.12, v_{p} is adjacent to either 2 or 4 in G_{B}. By pivoting on 23 or 34 , if necessary, we may assume that v_{p} is adjacent to both 2 and 4 (cf. Proposition 4.15 (part (ii))). Since $\left(\left\{a, b, 1, v_{p}\right\},\{2,3,4\}\right)$ is a split of G_{B} but not a 2 -subseparation, Proposition 4.12 implies that $M_{B}\left[\left\{1,2, v_{p}, 4\right\}\right]$ is a twirl. Consider replacing 3 by v_{p} (so C by $\left\{1,2, v_{p}, 4\right\}$). If $p=1$, then v_{p} is adjacent to a or b, which contradicts (10.1). If $p>1$, then, by Proposition 4.16 (part (i)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2 -subseparation $\left(\{a, b, 1\},\left\{2, v_{p}, 4\right\}\right.$), and (10.2) follows inductively.

Now we suppose that v_{p} is in the same colour class of G_{B} as 2 . As v_{p} is the last vertex in the blocking sequence, $\left(\left\{a, b, 1, v_{p}\right\},\{2,3,4\}\right)$ is not a 2 -separation. Consequently v_{p} is adjacent to 3 in G_{B}. By pivoting on 23 , if necessary, we may assume that v_{p} is also adjacent to 1 . By Lemma 4.4, either $M_{B}\left[\left\{v_{p}, 1,2,3\right\}\right]$ or $M_{B}\left[\left\{v_{p}, 1,3,4\right\}\right]$ is a twirl. We suppose that $M_{B}\left[\left\{v_{p}, 1,3,4\right\}\right]$ is a twirl. Consider replacing 2 by v_{p}. Since $(\{a, b, 1\}$, $\left\{v_{p}, 2,3,4\right\}$) is a 2 -subseparation, we must have $p>1$. Then, by Proposition 4.16 (part (i)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2 -subseparation ($\{a, b, 1\},\left\{v_{p}, 3,4\right\}$), and (10.2) follows inductively.
(10.3) $M_{B}-\{a, b, u, v\}$ is 3 -connected and a and b are pendant with 1 in $G_{B}-u-v$.

FIG. 3. $G_{B}\left[\left\{a, b, 1,2,3,4, v_{1}, \ldots, v_{p}\right\}\right]$.

By (10.2), there exists a 2-separation (X, Y) of $M_{B}-u-v$ such that a, b, $1 \in X$ and $2,3,4 \in Y$. However, $M_{B}-u-v$ is stable and has a 3-connected nonbinary minor of size at least $|S|-4$, so $X=\{a, b, 1\}$. Then, since (X, Y) is a split in $G_{B}-u-v$, neither a nor b has neighbours in Y. However, $M_{B}-u-v$ is connected, so a and b are pendant with 1 in $G_{B}-u-v$. Moreover, it follows that $M_{B}-\{a, b, u, v\}$ is 3-connected. So (10.3) follows.

Note that both 2 and 4 are adjacent to either u or v. Indeed, if 2 were not adjacent to either u or v, we could pivot on 12, making 3 adjacent to a and b and thus contradicting (10.1).
(10.4) If $b^{\prime} \in\{a, b\}$ and $v^{\prime} \in\{u, v\}$, then $M_{B}-b^{\prime}-v^{\prime}$ is 3-connected.

By symmetry we may assume that $b^{\prime}=b$ and $v^{\prime}=v$. As $M_{B}-\{a, b, u, v\}$ is 3-connected, ($\{a, 1\}, S \backslash\{a, b, u, v, 1\}$) is the unique 2-separation in M_{B} $\{b, u, v\}$.

Now suppose that $(\{u, a, 1\}, S \backslash\{b, v, a, u, 1\})$ is a 2 -separation in $M_{B}-b-v$. Since the only neighbours of b in G_{B} are $u, v, 1$, it follows that $(\{u, a, b, 1\}, S \backslash\{b, v, a, u, 1\})$ is a 2 -separation in $M_{B}-v$. However, $M_{B}[\{1,2,3,4\}]$ is a twirl and, by (9), $M_{B}[\{u, a, b, 1\}]$ is also a twirl. This contradicts the fact that $M_{B}-v$ is stable. Consequently ($\{u, a, 1\}$, $S \backslash\{b, v, a, u, 1\})$ is not a 2-separation in $M_{B}-b-v$. Moreover, as $a u$ is an edge of $G_{B},(\{a, 1\}, S \backslash\{b, v, a, 1\})$ is not a 2-separation in $M_{B}-b-v$. So we may conclude that u is a blocking sequence for the 2 -subseparation $(\{a, 1\}, S \backslash\{a, b, u, v, 1\})$ in M_{B}. Then, by Corollary 4.19, $M_{B}-b-v$ is 3-connected. This proves (10.4).

As $M_{B}-\{u, v, a, b\}$ is 3-connected and nonbinary, $M_{B}-a-b$ is stable and nonbinary. Moreover, by (10.4), $M_{B}-a$ and $M_{B}-b$ are both stable. Also by (10.4), $M_{B}-a-b-u$ and $M_{B}-a-b-v$ are connected, so $M_{B}-a-b$ is connected. Hence, a, b is a contraction pair in M.

Since a is pendant to 1 in $M_{B}-u-v, M_{B}-a-u-v$ is connected and stable. Moreover $M_{B}-a-u-v$ is clearly nonbinary. Furthermore, by (10.4), $M_{B}-a-v$ and $M_{B}-a-u$ are both stable. Therefore, by (7), every set that distinguishes M_{B} and N_{B} must contain a. Hence, $M_{B}-a=N_{B}-a$, and thus, by symmetry, $M_{B}-b=N_{B}-b$.

Recall that 2 and 4 are both adjacent to either u or v. So after replacing M by $M^{*},\{u, v\}$ by $\{a, b\} ;\{a, b\}$ by $\{u, v\}$ and $2,3,4,1$ by $1,2,3,4$, we contradict (10.1). This completes the proof of (10).

It remains to consider the possibility in Fig. 2c. We label the elements of C so that, $C=\{a, 1,2,3\}$, where 1,2 are the vertices adjacent to a. Let x_{0}, \ldots, x_{k+1} be the vertices of a shortest path connecting b to C in $G_{B}-u-v$ with $x_{0}=b$ and $x_{k+1} \in C$. Moreover, we let $A=\left(\alpha_{i j}\right)$ be a $G F(4)$-representation of N_{B}, and we assign to each edge $i j$ of G_{B} the weight $\alpha_{i j}$.
(11) $d(b, C)=k+1$ is odd.

Suppose not. Then x_{k} is in the same colour class as 1 and 2. First assume that x_{k} is adjacent to a. By pivoting on $a 1$, if necessary, we may assume that x_{k} is also adjacent to 3 . By Lemma 4.4, one of $M_{B}\left[\left\{a, 1,3, x_{k}\right\}\right]$ and $M_{B}\left[\left\{a, 2,3, x_{k}\right\}\right]$ is a twirl, contradicting our choice of C. Thus x_{k} is not adjacent to a, and hence is adjacent to 3. Let $X:=\{u, v, a, 1,2,3$, $\left.x_{0}, \ldots, x_{k}\right\}$. By Proposition 4.11, $M_{B}[X]-u-1$ and $M_{B}[X]-v-1$ are both 3-connected. Hence $M_{B}[X]-u$ and $M_{B}[X]-v$ are both stable. Furthermore, $M_{B}[X]-u-v$ is clearly nonbinary, connected, and stable, so, by (7), $M_{B}=M_{B}[X]$. By scaling lines of A, we may assume that

$$
\alpha_{a v}=\alpha_{b v}=\alpha_{a 1}=\alpha_{a 2}=\alpha_{x_{0} x_{1}}=\cdots=\alpha_{x_{k-1} x_{k}}=\alpha_{3 x_{k}}=1 .
$$

Since $M_{B}[C]$ is a twirl, $\alpha_{31} \neq \alpha_{32}$. Then, by interchanging the labels 1 and 2 , if necessary, we may assume that $\alpha_{32} \neq 1$. Hence, $M_{B}-u-1$ is nonbinary. As argued above, $M_{B}-u-1$ is also 3 -connected. However, since $M_{B}-u-v$ is not 3-connected, this contradicts (1). Hence (11) follows.

Since $d(b, C)$ is odd, x_{k} is in the same colour class as b, and hence x_{k} is adjacent to either 1 or 2 . By pivoting on $a 1$ or a_{2}, if necessary, we assume that x_{k} is adjacent to both 1 and 2 . Note that $k \in\{0,2\}$, since otherwise we could reduce $d(b, C)$ by pivoting on $x_{2} x_{3}$. Also note that $M_{B}\left[\left\{a, 1,2, x_{k}\right\}\right]$ is not a twirl, since otherwise we could replace 3 by x_{k}, contradicting (3). $G_{B}\left[\left\{u, v, 1,2,3, a, x_{0}, \ldots, x_{k}\right\}\right]$ is depicted in Fig. 4.
(12) For $w \in\{u, v\}, M_{B}\left[\left\{w, a, 1,2,3, x_{0}, \ldots, x_{k}\right\}\right]$ is 3-connected if and only if w is adjacent to 3. Furthermore, if w is not adjacent to 3, then $\left(\left\{w, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is the only 2-separation of $M_{B}[\{w, a, 1,2,3$, $\left.\left.x_{0}, \ldots, x_{k}\right\}\right]$.

FIG. 4. $G_{B}\left[\left\{u, v, 1,2,3, a, x_{0}, \ldots, x_{k}\right\}\right]$. Dashed edges might or might not exist; the dotted $x_{0} x_{k}$-path denotes $x_{0}, x_{1}, \ldots, x_{k}$.

Let $X:=\left\{w, a, 1,2,3, x_{0}, \ldots, x_{k}\right\} . \operatorname{By}(9)$ and Proposition 4.11, $M_{B}[X]-2-3$ is 3 -connected. Therefore, $\left(\left\{w, a, x_{0}, \ldots, x_{k}\right\},\{1,2\}\right.$) is the unique 2 -separation in $M_{B}[X]-3$. Since $M_{B}[\{a, 1,2,3\}]$ is a twirl, $\left(\left\{3, w, a, x_{0}, \ldots, x_{k}\right\},\{1,2\}\right)$ is not a 2-subseparation. Furthermore, $\left(\left\{w, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is a 2 -subseparation if an only if 3 is not adjacent to w. Therefore if 3 is adjacent to w, then 3 is a blocking sequence for $\left(\left\{w, a, x_{0}, \ldots, x_{k}\right\},\{1,2\}\right)$, and thus, by Corollary $4.19, M_{B}[X]$ is 3 -connected. Otherwise, when 3 is not adjacent to $w,\left(\left\{w, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is a 2 -separation in $M_{B}[X]$. Furthermore, it is straightforward to deduce, from Proposition 4.18, that this is the only 2 -separation of $M_{B}[X]$. This proves (12).
(13) We may assume that v is adjacent to 3 .

Suppose v is not adjacent to 3 . We may also suppose that u is not adjacent to 3 , since otherwise we would swap u and v. Since 3 is adjacent to neither u nor v, for any neighbour x of 3 in $G_{B}, 3 x$ is an allowable pivot. By (12), $\left(\left\{v, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is a 2-subseparation. If $k=0$, then ($\left\{v, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}$) is not induced in $M_{B}-u$, since $M_{B}-u$ is stable and $M_{B}[\{v, a, b, 1\}]$ and $M_{B}[\{a, 1,2,3\}]$ are both twirls. If $k=2$, then $\left(\left\{v, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is not induced in $M_{B}-u$, since $M_{B}-u-v$ contains a 3 -connected nonbinary minor of size at least $|S|-4$. In either case, there exists a blocking sequence v_{1}, \ldots, v_{p} for $\left(\left\{v, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ in $M_{B}-u$. We prove (13) by induction on p.

We first consider the case that v_{p} is in the same colour class as 3. As $\left(\left\{v, a, x_{0}, \ldots, x_{k}, v_{p}\right\},\{1,2,3\}\right)$ is not a 2 -subseparation, v_{p} is adjacent to 1 or 2 . By pivoting on 13 or 23 , if necessary, we may assume that v_{p} is adjacent to both 1 and 2. By Proposition 4.13, since ($\left\{v, a, x_{0}, \ldots, x_{k}, v_{p}\right\}$, $\{1,2,3\})$ is not a 2 -subseparation, $M_{B}\left[\left\{v_{p}, a, 1,2\right\}\right]$ is a twirl. Consider replacing 3 by v_{p}. If $p=1$, then v_{p} is adjacent to either v or x_{1}. If v_{p} is adjacent to v, then we are done. If v_{p} is adjacent to x_{1}, then $d\left(b,\left\{a, 1,2, v_{p}\right\}\right)=2$, contradicting (3). Thus $p>1$. Then, by Proposition 4.16 (part (i)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2 -subseparation ($\left.\left\{v, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2, v_{p}\right\}\right)$. So (13) follows inductively.

We now consider the case that v_{p} is in the same colour class as 1 , and hence $v_{p} 3$ is an edge of G_{B}. By pivoting on 23, if necessary, we may assume that v_{p} is adjacent to a as well. Therefore at least one of $M_{B}\left[\left\{a, 1,3, v_{p}\right\}\right]$ and $M_{B}\left[\left\{a, 2,3, v_{p}\right\}\right]$ is a twirl. By swapping 1 and 2 , if necessary, we may assume that $M_{B}\left[\left\{a, 1,3, v_{p}\right\}\right]$ is a twirl. By pivoting on 13 , if necessary, we may assume that v_{p} is adjacent to x_{k}. Consider replacing 2 by v_{p}. If $p>1$, then, by Proposition 4.16 (part (i)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2-subseparation $\left(\left\{v, a, x_{0}, \ldots, x_{k}\right\},\left\{1,3, v_{p}\right\}\right)$, so (13) follows inductively. Thus we may assume that $p=1$. Recall that $v_{1}=v_{p}$ is adjacent to a and x_{k}. Since $\left(\left\{v, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2,3, v_{1}\right\}\right)$ is not a 2 -subseparation,
$M_{B}\left[\left\{a, 1, x_{k}, v_{1}\right\}\right]$ is a twirl. However $d\left(b,\left\{a, x_{k}, 1, v_{1}\right\}\right)<d(b, C)$ which contradicts (3). This proves (13).
(14) u is not adjacent to 3 .

Suppose u and 3 are adjacent. Let $X:=\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2,3\right\}$. By (12), $M_{B}[X]-u$ and $M_{B}[X]-v$ are both 3 -connected, and, hence, stable. Also $M_{B}[X]-u-v$ is connected, nonbinary, and stable. So, by (7), $M_{B}=M_{B}[X]$. Hence, $k \neq 0$, since M has rank or corank at least 5 . Thus $k=2$, contradicting that $M-u-v$ has a 3-connected nonbinary minor of size at least $|S|-4$. This proves (14).

So, by (12), $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is a 2 -subseparation. If $k=0$, then $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is not induced in $M_{B}-v$, since $M_{B}-v$ is stable and $M_{B}[\{u, a, b, 1\}]$ and $M_{B}[\{a, 1,2,3\}]$ are both twirls. If $k=2$, then $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is not induced in $M_{B}-v$, since $M_{B}-u-v$ contains a 3 -connected nonbinary minor of size at least $|S|-4$. In either case, there exists a blocking sequence v_{1}, \ldots, v_{p} for $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ in $M_{B}-v$. Assume that, subject to everything deduced so far, B, a, b, C, x_{1}, \ldots, x_{k} and v_{1}, \ldots, v_{p} have been chosen so that p is as small as possible.
(15) $p \neq 1$.

Suppose that $p=1$. Let $X:=\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2,3, v_{1}\right\}$. By (13), $M_{B}[X]-u-v_{1}$ is 3 -connected, so $M_{B}[X]-u$ is stable. Since ($\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}$) is the only 2 -separation in $M_{B}[X]-v-v_{1}$, and v_{1} is a blocking sequence, it follows from Corollary 4.19 that $M_{B}[X]-v$ is 3-connected. Furthermore, it is easy to check that $M_{B}[X]-u-v$ is stable, connected, and nonbinary. Hence, by (7), $M_{B}=M_{B}[X]$. (Those readers whose primary interest is seeing that the list of excluded minors is finite may choose to skip the rest of the proof of (15).)

We begin by considering the case that $k=0$. Since M_{B} has rank or corank at least $5, v_{1}$ is in the same colour class of G_{B} as 1 . Since v_{1} is a blocking sequence for the 2 -subseparation ($\{u, a, b\},\{1,2,3\}$), v_{1} is adjacent to 3 , and v_{1} is adjacent to either a or b. Furthermore, if v_{1} is adjacent to both a and b, then, by Proposition 4.12, $M_{B}\left[\left\{a, b, v_{1}, 1\right\}\right]$ is a twirl, which contradicts (3). Therefore v_{1} is adjacent to exactly one of a and b. By relabeling, if necessary, we assume that v_{1} is adjacent to a.

Note that $M_{B}-u-v$ is 3-connected. For this case, we assume that u and v have been chosen such that $M_{B}-u-v$ is 3-connected, nonbinary, and, if possible, $M \backslash u, v$ contains a $U_{2,5}$ or $U_{3,5}$-minor. (Note that such a choice of u, v implies that $M_{B}-u, M_{B}-v$, and $M_{B}-u-v$ are all stable.) We scale lines of A so that all edges of G_{B} that are incident with either a or 1 have weight one. Note that $M_{B}[\{a, b, 1,2\}]$ is not a twirl, so the edge
$2 b$ also has weight one. Let $x:=\alpha_{32}$. Since $M_{B}[\{a, 1,2,3\}]$ is a twirl, $x \notin\{0,1\}$.

Choose $w \in\{1,2\}$ and let w^{\prime} be the remaining element in $\{1,2\} \backslash\{w\}$. Suppose that $M_{B}\left[\left\{a, w, 3, v_{1}\right\}\right]$ and $M_{B}[\{a, w, 3, v\}]$ are both twirls. In this case it is easily checked that $M_{B}-w^{\prime}-u-v$ is stable, connected, and nonbinary, and that $M_{B}-w^{\prime}-u$ and $M_{B}-w^{\prime}-v$ are both stable. Then, by (7), $M_{B}-w^{\prime}$ is not $G F(4)$-representable, which is a contradiction. Therefore, either $M_{B}\left[\left\{a, w, 3, v_{1}\right\}\right]$ or $M_{B}[\{a, w, 3, v\}]$ is not a twirl. Since $M_{B}[\{a, 1,2,3\}]$ is a twirl, then, by Proposition 4.4, either $M_{B}\left[\left\{v_{1}, a, 1,3\right\}\right]$ or $M_{B}\left[\left\{v_{1}, a, 2,3\right\}\right]$ is a twirl. By relabeling, if necessary, we assume that $M_{B}\left[\left\{v_{1}, a, 1,3\right\}\right]$ is a twirl. Then, $M_{B}[\{v, a, 1,3\}]$ is not a twirl, and hence $\alpha_{3 v}=1$. This implies that $M_{B}[\{v, a, 2,3\}]$ is a twirl, and, hence, $M_{B}\left[\left\{v_{1}, a, 2,3\right\}\right]$ is not a twirl. Therefore $\alpha_{3 v_{1}}=x$.

Now that we have an explicit $G F(4)$-representation of $M_{B}-u-v$, it is easily checked that $M \backslash\{u, v\}$ has no $U_{2,5}$ - or $U_{3,5}$-minor. (Indeed, $M \backslash\{u, v\}$ is ternary.) If $M_{B}[\{v, b, 2,3\}]$ is a twirl, then $M_{B}[\{v, a, b, 2,3\}]$ is a twisted $U_{3,5}$ and $M_{B}-1-v_{1}$ is 3-connected, which contradicts our choice of u and v. Therefore, $M_{B}[\{v, b, 2,3\}]$ is not a twirl, and, hence, $\alpha_{b v}=x+1$. By (9), both $M_{B}[\{1, a, b, u\}]$ and $M_{B}[\{1, a, b, v\}]$ are twirls. If, in addition, $M_{B}[\{u, v, a, b\}]$ is a twirl, then $M_{B}[\{u, v, a, b, 1\}]$ is a twisted $U_{2,5}$ and $M_{B}-2-v_{1}$ is 3-connected, which contradicts our choice of u, v. Therefore, $M_{B}[\{u, v, a, b\}]$ is not a twirl, and, hence, $N_{B}[\{u, v, a, b\}]$ is a twirl. Thus $\alpha_{b u} \neq \alpha_{b v}$. Furthermore, since $M_{B}[\{1, a, b, u\}]$ is a twirl, $\alpha_{b u} \notin\{0,1\}$. Hence $\alpha_{b u}=x$.

We now have an explicit $G F(4)$-representation for N_{B}. The graphs G_{B} and $G_{B \Delta\{a, 1\}}$ are depicted in Fig. 5. Then, $M_{B \Delta\{1, a\}}\left[\left\{u, b, 1, v_{1}, 3\right\}\right]$ is a twisted $U_{3,5}$, and $M_{B \Delta\{1, a\}}-2-a$ is 3-connected, which contradicts our choice of u and v. This completes the case where $k=0$.

Now consider the case where $k=2$. We divide this case into two further cases. We first consider the case in which v_{1} is in the same colour class as 1 in G_{B}. Since v_{1} is a blocking sequence for $\left(\left\{u, a, b, x_{1}, x_{2}\right\},\{1,2,3\}\right), v_{1}$ is adjacent to 3 and to at least one of a, b, and x_{2}. However, since $d(b, C)=3, v_{1}$ is not adjacent

FIG. 5. G_{B} and $G_{B \Delta\{a, 1\}}$ (bold edges are labeled 1).
to b. Since $M_{B}[\{a, 1,2,3\}]$ and $M_{B}\left[\left\{x_{2}, 1,2,3\right\}\right]$ are both twirls, by Proposition 4.4, either $M_{B}\left[\left\{a, x_{2}, 1,3, v_{1}\right\}\right]$ or $M_{B}\left[\left\{a, x_{2}, 2,3, v_{1}\right\}\right]$ is nonbinary. By swapping 1 and 2, if necessary, we assume that $M_{B}\left[\left\{a, x_{2}, 2,3, v_{1}\right\}\right]$ is nonbinary. Now $\left(\left\{u, a, b, x_{1}, x_{2}\right\},\{2,3\}\right)$ is the only 2-separation in $M_{B}\left[\left\{u, a, b, x_{1}, x_{2}, 2,3\right\}\right]$, and v_{1} is a blocking sequence for this 2 -subseparation. So, by Corollary 4.19, $M_{B}-v-1$ is 3 -connected. Thus we have that $M_{B}-v, M_{B}-1$, and $M_{B}-1-v$ are all stable, and $M_{B}-1-v$ is connected and nonbinary. As $M_{B}-u-v$ is not 3 -connected, this contradicts (1).

Now we consider the more difficult case that v_{1} is in the same colour class as 3 in G_{B}. Since $M_{B}-u-v$ contains a 3-connected nonbinary minor of size at least $|S|-4, v_{1}$ must be a blocking sequence for the 2 -subseparation $\left(\left\{b, x_{1}, x_{2}, a\right\},\{1,2,3\}\right)$. Hence v_{1} is adjacent to x_{1}. The 2 -subseparation $\left(\left\{a, b, x_{1}, x_{2}\right\},\{1,2\}\right)$ is uncrossed in $M_{B}\left[\left\{a, b, x_{1}, x_{2}, 1,2\right\}\right]$ and v_{1} is a blocking sequence for this 2 -subseparation. Hence, by Proposition 4.17, $\left(\left\{b, x_{1}\right\},\left\{x_{2}, a, 1,2, v_{1}\right\}\right)$ is the only 2-separation of $\left(M_{B}-3\right)-u-v$. So $\left(M_{B}-3\right)-u-v$ is stable. Furthermore, both u and v are blocking sequences for this 2-separation of $M_{B}-3-u-v$. Hence, by Proposition 4.17, $\left(M_{B}-3\right)-u$ and $\left(M_{B}-3\right)-v$ are both stable. Therefore, by (7), $M_{B}-3-u-v$ is binary. Since ($\left\{u, a, b, x_{1}, x_{2}, v_{1}\right\},\{1,2,3\}$) is not a 2 -subseparation, v_{1} is adjacent to either 1 or 2 . If v_{1} is adjacent to both 1 and 2 , then, by Proposition 4.12, $M_{B}\left[\left\{v_{1}, 1,2, a\right\}\right]$ is a twirl, contradicting that $M_{B}-3-u-v$ is binary. Therefore, v_{1} is adjacent to exactly one of 1 and 2 . By relabeling, if necessary, we assume that v_{1} is adjacent to 2 .

Next we show that $M_{B}[\{v, a, 1,3\}]$ is a twirl. Note that $M_{B}-x_{2}-u-v$ is stable, nonbinary, and connected. By Proposition 4.11, $M_{B}-x_{2}-v$ is 3-connected. If $M_{B}[\{v, a, 2,3\}]$ is a twirl, then, by Propositions 4.11 and 4.12, $M_{B}-x_{2}-u$ is 3 -connected. Therefore, by (7), $M_{B}[\{v, a, 2,3\}]$ cannot be a twirl. Since $M_{B}[\{a, 1,2,3\}]$ is a twirl, then, by Proposition 4.4, $M_{B}[\{v, a, 1,3\}]$ is a twirl, as claimed.

We scale lines of A so that all edges in $G_{B}-u-v-3$ have weight one (which is possible since $M_{B}-u-v-3$ is binary). By further scaling we assume that edges $u a, v a$, and 13 also have weight one. Now consider

FIG. 6. G_{B} and $G_{B^{\prime}}$.
pivoting on $1 a$. Let $B^{\prime}:=B \Delta\{a, 1\}$. The graphs G_{B} and $G_{B^{\prime}}$ are depicted in Fig. 6, the bold edges are those whose weight is known to be one. Let $A^{\prime}=\left(\alpha_{i j}^{\prime}\right)$ be the representation of $M_{B^{\prime}}$. Note that $M_{B^{\prime}}[\{a, 1,2,3\}]$ is a twirl, and hence $\alpha_{23}^{\prime} \neq 1$.

If $\alpha_{u x_{2}}^{\prime} \notin\{0,1\}$, then $M_{B^{\prime}}\left[\left\{u, x_{2}, a, 3\right\}\right]$ is a twirl. If $\alpha_{u v_{1}}^{\prime} \notin\left\{0, \alpha_{23}^{\prime}+1\right\}$, then $M_{B^{\prime}}\left[\left\{u, v_{1}, 2,3\right\}\right]$ is a twirl. As $\alpha_{23}^{\prime} \notin\{0,1\}$, this implies that by pivoting on $b x_{1}$ and swapping b and x_{1}, if necessary, we may assume that either $M_{B^{\prime}}\left[\left\{u, x_{2}, a, 3\right\}\right]$ or $M_{B^{\prime}}\left[\left\{u, v_{1}, 2,3\right\}\right]$ is a twirl. Define C^{\prime} to be either $\left\{u, x_{2}, a, 3\right\}$ or $\left\{u, v_{1}, 2,3\right\}$ such that $M_{B^{\prime}}\left[C^{\prime}\right]$ is a twirl. (We will show that we can choose $1, b, u, v, B^{\prime}, C$, in place of u, v, a, b, B, C and that this choice is in fact better.)
Note that $M_{B^{\prime}}-b-u-v$ is 3-connected and nonbinary. Therefore, $M_{B^{\prime}}-b-u$ and $M_{B^{\prime}}-b-v$ are both stable. Hence, by (7), $M_{B^{\prime}}-b=$ $N_{B^{\prime}}-b$. Now consider $M_{B^{\prime}}-1$. $\left(\left\{b, x_{1}\right\},\left\{v_{1}, 2,3, a, x_{2}\right\}\right)$ is the only 2-separation in $M_{B^{\prime}}-1-u-v$. So $M_{B^{\prime}}-1-u-v$ is stable, and, clearly, nonbinary. Furthermore, both u and v are blocking sequences for this 2-separation. So, by Corollary 4.19, both $M_{B^{\prime}}-1-u$ and $M_{B^{\prime}}-1-v$ are 3-connected. Hence, by (7), $M_{B^{\prime}}-1=N_{B^{\prime}}-1$.

Since $M_{B^{\prime}}\left[C^{\prime}\right]$ is a twirl, we have that $M_{B^{\prime}}-1-b-v$ is 3 -connected. Therefore, $M_{B^{\prime}}-1-b$ is stable, connected, and contains a 3 -connected nonbinary matroid of size at least $|S|-3$. Since $M_{B^{\prime}}-1-u$ is 3-connected, $M_{B^{\prime}}-1$ is stable. By Proposition 4.11, $M_{B^{\prime}}-v-b$ is 3-connected, and hence $M_{B^{\prime}}-b$ is stable. Hence, by Lemma 2.2,N is the unique $G F(4)$ representable matroid such that $N_{B^{\prime}}-1=M_{B^{\prime}}-1$ and $N_{B^{\prime}}-b=N_{B^{\prime}}-b$, Moreover, $\{1, b, u, v\}$ distinguishes $M_{B^{\prime}}$ from $N_{B^{\prime}}$. Hence we may choose 1, $b, u, v, B^{\prime}, C^{\prime}$ in place of u, v, a, b, B, C. As $d_{B}(b, C)=3>1=d_{B^{\prime}}\left(v, C^{\prime}\right)$, this contradicts (3). So (15) follows.
(16) $\quad v_{p}$ is in the same colour class of G_{B} as 3.

Suppose not. Then, since ($\left\{u, a, x_{0}, \ldots, x_{k}, v_{p}\right\},\{1,2,3\}$) is not a 2 -subseparation, v_{p} is adjacent to 3 . Since $p>1,\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2,3, v_{p}\right\}\right)$ is a 2 -subseparation. Hence $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2,3, v_{p}\right\}\right)$ is a split in $G_{B}\left[\left\{u, a, x_{0}, \ldots, x_{k}, 1,2,3, v_{p}\right\}\right]$. Consequently, v_{p} is either adjacent to both a and x_{k} or nonadjacent to both a and x_{k}. First, suppose that v_{p} is adjacent to both a and x_{k}. Either $M_{B}\left[\left\{v_{p}, a, 1,3\right\}\right]$ or $M_{B}\left[\left\{v_{P}, a, 2,3\right\}\right]$ is a twirl. By interchanging 1 and 2, if necessary, we assume that $M_{B}\left[\left\{v_{p}, a, 1,3\right\}\right]$ is a twirl. Consider replacing 2 by v_{p}. By Proposition 4.16 (part (i)), v_{1}, \ldots, v_{p-1} is a blocking sequence for $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1, v_{p}, 3\right\}\right)$, which contradicts the minimality of p. Hence, v_{p} is adjacent to neither a nor x_{k}. Then v_{p} is pendant to 3 in $M_{B}\left[\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2,3, v_{p}\right\}\right]$. Consider pivoting on $v_{p} 3$. We have that $M_{B A\left\{3, v_{p}\right\}}\left[\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2, v_{p}\right\}\right]$ is isomorphic to $M_{B}\left[\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2,3\right\}\right]$. Furthermore $\lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}, 3\right\}\right.$, $\{1,2,3\}) \geqslant \lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}, 3\right\},\{1,2\}\right)=2$, so, by Proposition 4.16
(part (ii)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2 -subseparation $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2, v_{p}\right\}\right)$ in $M_{B \Delta\left\{3, v_{p}\right\}}$. As this contradicts the minimality of p, (16) follows.
(17) $p \neq 2$.

Suppose that $p=2$. Then, by (16), v_{2} is in the same colour class as 3 . Hence, by Proposition 4.15 (part (iv)), v_{1} is in the same colour class as 1. Then, the only possible neighbours of v_{1} among $\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2,3\right\}$ are x_{0}, x_{2}, and a. First we suppose that v_{1} is adjacent to just one of x_{0}, x_{2}, and a and let $z \in\left\{x_{0}, x_{2}, a\right\}$ be the neighbour of v_{1}. Consider pivoting on $z v_{1}$. Note that $z v_{1}$ is an allowable pivot. Then $M_{B \Delta\left\{z, v_{1}\right\}}\left[\left\{u, v, a, x_{0}, \ldots\right.\right.$, $\left.\left.x_{k}, 1,2,3\right\} \Delta\left\{z, v_{1}\right\}\right]$ is isomorphic to $M_{B}\left[\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2,3\right\}\right]$. Furthermore $\lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3, z\}\right) \geqslant \lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\} \backslash\{z\}\right.$, $\{1,2,3, z\})=2$, so, by Proposition 4.16 (part (ii)), v_{2} is a blocking sequence for the 2 -subseparation ($\left\{u, a, x_{0}, \ldots, x_{k}\right\} \Delta\left\{z, v_{1}\right\},\{1,2,3\}$) in $M_{B \Delta\left\{, v_{1}\right\}}$. As this contradicts the minimality of p, v_{1} has at least two neighbours among x_{0}, x_{2}, and a. We consider the case where $k=2$ and v_{1} is adjacent to x_{0}. Since $d(b, C)=3, v_{1}$ is not adjacent to a. Hence v_{1} is adjacent to x_{2}. Then, by Proposition 4.16 (part (i)), v_{2} is a blocking sequence for $\left(\left\{u, a, x_{0}, v_{1}, x_{2}\right\},\{1,2,3\}\right)$. Hence, replacing x_{1} by v_{1} yields a contradiction against the minimality of p. Thus, if $k=2$, then v_{1} is not adjacent to x_{0}. Hence, with $k=0$ or $k=2, v_{1}$ is adjacent to both a and x_{k}. Since $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2,3, v_{1}\right\}\right)$ is not a 2-separation, $M_{B}\left[\left\{v_{1}, 1, a, x_{k}\right\}\right]$ is a twirl. However, $d_{B}\left(b,\left\{v_{1}, 1, a, x_{k}\right\}\right)<d_{B}(b, C)$, which contradicts (3). So (17) follows.

Let $X:=\left\{u, v, a, x_{0}, \ldots, x_{k}, 1,2,3, v_{p-1}, v_{p}\right\}$. By (16), v_{p} is in the same colour class as 3. Hence, by Proposition 4.15 (part (iv)), v_{p-1} is in the same colour class as 1 . As v_{p-1} is the next to last element of the blocking sequence, it is adjacent to v_{p} but not to 3 . Since $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2\right.$, $\left.\left.3, v_{p-1}\right\}\right)$ and $\left(\left\{u, a, x_{0}, \ldots, x_{k}, v_{p-1}\right\},\{1,2,3\}\right)$ are both 2-subseparations, the only possible neighbours of v_{p-1} in X are v_{p}, a, and x_{k}; furthermore v_{p-1} is adjacent either to neither or to both of a and x_{k}. Suppose that v_{p} is adjacent to neither a nor x_{k}. Hence v_{p-1} has no neighbours in $X \backslash\left\{v_{p}\right\}$. Consider pivoting on $v_{p-1} v_{p} . M_{B}[X]-v_{p-1}-v_{p}$ is isomorphic to $M_{B \Delta\left\{v_{p-1}, v_{p}\right\}}[X]-v_{p-1}-v_{p}$, and, by Proposition 4.16 (part (iii)), $v_{1}, \ldots, v_{p \ldots 2}$ is a blocking sequence for the 2-subseparation $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\}\right.$, $\{1,2,3\}$) in $M_{B \Delta\left\{v_{p-1}, v_{p}\right\}}$, which contradicts the minimality of p. Therefore, v_{p-1} is adjacent to both a and x_{k}. Since v_{p} is the end of the blocking sequence, it must be adjacent to either 1 or 2 . By interchanging 1 and 2 , if necessary, we assume that v_{p} is adjacent to 1. $G_{B}[X]$ is depicted in Fig. 7.

$$
\begin{equation*}
M_{B}\left[\left\{a, 1, v_{p-1}, v_{p}\right\}\right] \text { is not a twirl. } \tag{18}
\end{equation*}
$$

Suppose $M_{B}\left[\left\{a, 1, v_{p-1}, v_{p}\right\}\right]$ is a twirl.

FIG. 7. $G_{B}[X]$.
By Proposition 4.16 (part (i)), v_{1}, \ldots, v_{p-2} is a blocking sequence for the 2-subseparation ($\left.\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1, v_{p-1}, v_{p}\right\}\right)$. Hence, as $M_{B}[\{a, 1$, $\left.v_{p-1}, v_{p}\right\}$] is a twirl, it follows from the minimality of p that v and v_{p} are not adjacent.

Now, $1 v_{p}$ is an allowable pivot. $G_{B \Delta\left\{1, r_{p}\right\}}[X \backslash\{2\}]$ is depicted in Fig. 8. Since 3 is pendant to 1 in $M_{B}\left[\left\{a, 1,3, v_{p-1}, v_{p}\right\}\right], 1$ and 3 are twins in $M_{B A\left\{1, v_{p}\right\}}\left[\left\{a, 1,3, v_{p-1}, v_{p}\right\}\right]$. Furthermore, as $M_{B}\left[\left\{a, 1, v_{p-1}, v_{p}\right\}\right]$ is a twirl, so is $M_{B A\left\{1, v_{p}\right\}}\left[\left\{a, 1, v_{p-1}, v_{p}\right\}\right]$. Hence, $M_{B \Delta\left\{1, v_{p}\right\}}\left[\left\{a, 3, v_{p-1}, v_{p}\right\}\right]$ is a twirl as well. Since v is adjacent to neither 1 nor v_{p} in G_{B}, v remains adjacent to 3 in $G_{B \Delta\left\{1, v_{p}\right\}}$. By Proposition 4.15 (parts (i) and (ii)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2 -subseparation $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\}\right.$, $\left\{v_{p}, 1,2,3\right\}$) in $M_{B A\left\{1, v_{p}\right\}}$. Then, by Proposition 4.16 (part (i)), v_{1}, \ldots, v_{p-2} is

FIG. 8. $G_{B 4\left\{1, v_{p}\right\}}[X \backslash\{2\}]$.
a blocking sequence for the 2 -subseparation $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{v_{p-1}, v_{p}, 3\right\}\right)$ in $M_{B \Delta\left\{1, v_{p}\right\}}$. Hence, replacing B by $B \Delta\left\{1, v_{p}\right\}$ and C by $\left\{a, v_{p}, v_{p-1}, 3\right\}$ yields a contradiction against the minimality of p. So (18) follows.
(19) v_{p} is not adjacent to 2.

Suppose that v_{p} is adjacent to 2 . Since ($\left\{u, a, x_{0}, \ldots, x_{k}, v_{p}\right\},\{1,2,3\}$) is not a 2-subseparation, $M_{B}\left[\left\{a, 1,2, v_{p}\right\}\right]$ is a twirl. Hence, either $M_{B}\left[\left\{v_{p-1}, v_{p}, a, 1\right\}\right]$ or $M_{B}\left[\left\{v_{p-1}, v_{p}, a, 2\right\}\right]$ is a twirl. By interchanging 1 and 2 , if necessary, we obtain a contradiction to (18). This proves (19).
(20) v is adjacent to v_{p}.

Suppose not. Then v_{p} is pendant to 1 in $M_{B}[X]-v_{p-1}$. Hence $M_{B A\left\{v_{p}, 1\right\}}[X]-v_{p-1}-1$ is isomorphic to $M_{B}[X]-v_{p-1}-v_{p}$. Furthermore $\lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}, 1\right\},\{1,2,3\}\right) \geqslant \lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}, 1\right\},\{2,3\}\right)=2$, so, by Proposition 4.16 (part (ii)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2-subseparation $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{v_{p}, 2,3\right\}\right)$ of $M_{B \Delta\left\{1, v_{p}\right\}}$. As this contradicts the minimality of $p,(20)$ follows.

We scale the columns of A so that $\alpha_{a i}=1$ for each $i \in \operatorname{nigh}_{B}(a)$. Also by scaling we may assume that $\alpha_{x_{k}, 1}=\alpha_{v_{p} 1}=\alpha_{32}=1$, and, if $k=2, \alpha_{x_{0} x_{1}}=$ $\alpha_{x_{2} x_{1}}=1$. Since $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2,3, v_{p-1}\right\}\right)$ is a 2-subseparation, $\alpha_{x_{k} v_{p-1}}=\alpha_{x_{k} 2}=1$, and, by (18), we also have $\alpha_{v_{p} v_{p-1}}=1$. Now $G_{B}[X]$ is depicted in Fig. 9; the bold edges indicate entries in A that are known to be one. Let A^{\prime} be the matrix obtained from A by applying the automorphism of $G F(4)$ to the elements in column u.

FIG. 9. $G_{B}[X]$.
(21) $A^{\prime}[B \cap X, X \backslash B]$ is a $G F(4)$-representation of $M_{B}[X]$.

Since $p>2, S \neq X$, and, hence, $M_{B}[X]$ is $G F(4)$-representable. Let $A^{\prime \prime}=\left(\alpha_{i j}^{\prime \prime}\right)$ be a $G F(4)$-representation of $M_{B}[X]$. By (12) and (13), $M_{B}[X]-u-v_{p-1}-v_{p}$ is 3-connected. Since v_{p-1} has no twin in $M_{B}[X]-u-v_{p}, M_{B}[X]-u-v_{p}$ is also 3-connected. Similarly, since v_{p} has no twin in $M_{B}[X]-u, M_{B}[X]-u$ is 3-connected. Therefore, $M_{B}[X]-u$ is stable. Since $A[X \cap B,(X \backslash B) \backslash\{u\}]$ is a $G F(4)$-representation of $M_{B}[X]-u$, we may assume that $A^{\prime \prime}[X \cap B,(X \backslash B) \backslash\{u\}]=A[X \cap B$, $(X \backslash B) \backslash\{u\}]$. By (12), ($\left.\left\{u, a, x_{0}, \ldots, x_{k}\right\},\{1,2,3\}\right)$ is the only 2-separation of $M_{B}[X]-v-v_{p-1}-v_{p}$. So, by Proposition 4.18, ($\left\{u, a, x_{0}, \ldots, x_{k}\right\}$, $\left.\left\{1,2,3, v_{p-1}, v_{p}\right\}\right)$ is the only 2 -subseparation in $M_{B}[X]-v$. Therefore, there are at most two distinct $G F(4)$-representations of $M_{B}[X]-v$. Hence any $G F(4)$-representation of $M_{B}[X]-v$ is equivalent to $A[X \cap B,(X \backslash B) \backslash\{v\}]$ or $A^{\prime}[X \cap B,(X \backslash B) \backslash\{v\}]$. Therefore, we may assume that $A^{\prime \prime}[X \cap B,(X \backslash B) \backslash\{v\}]$ is one of these two matrices. However, since $M_{B}[X] \neq N_{B}[X]$, it must be the case that $A^{\prime \prime}[X \cap B,(X \backslash B) \backslash\{v\}]=A^{\prime}[X \cap B,(X \backslash V) \backslash\{v\}]$. So $A^{\prime \prime}=$ $A^{\prime}[X \cap B,(X \backslash B)]$, which proves (21).

Let $x:=\alpha_{b v}, y:=\alpha_{b u}$, and let y^{\prime} be the image of y under the automorphism of $G F(4)$. We use (21) to determine subsets of X that distinguish M_{B} and N_{B}. For instance $\{u, v, a, b\}$ distinguishes M_{B} and N_{B}, so $\operatorname{det}\left(A_{B}[\{u, v, a, b\}],\right)=0$ if and only if $\operatorname{det}\left(A_{B}^{\prime}[\{u, v, a, b\}]\right) \neq 0$. Now $\operatorname{det}\left(A_{B}[\{u, v, a, b\}]\right)=x+y$, and $\operatorname{det}\left(A_{B}^{\prime}[\{u, v, a, b\}]\right)=x+y^{\prime}$. Hence $y \neq y^{\prime}$, so neither y nor y^{\prime} is either zero or one. Furthermore, either $x=y$ or $x=y^{\prime}$, so x is neither zero nor one. Hence $\left\{y, y^{\prime}\right\}=\{x, x+1\}$. Let $\varepsilon:=\alpha_{x_{0} 1}$. Thus $\varepsilon \in\{0,1\}$, and $\varepsilon=0$ if and only if $k=2$. Note that $\alpha_{b v_{p-1}}=\alpha_{b 2}=\alpha_{b 1}=\varepsilon$.
(22) Let $z \in\left\{v_{p-1}, 1,2\right\}$, and let $w \in\left\{v_{p}, 3\right\}$ be adjacent to z. If $\alpha_{w v} / \alpha_{w z}=x+\varepsilon$, then $w z$ is an allowable pivot.
We have

$$
\left.A[\{a, b, w\},\{u, v, z\}]=\begin{array}{r}
a \\
b \\
w
\end{array} \begin{array}{ccc}
u & v & z \\
1 & 1 & 1 \\
y & x & \varepsilon \\
0 & \alpha_{v w} & \alpha_{w z}
\end{array}\right) .
$$

Therefore,

$$
\begin{aligned}
\operatorname{det}(A[\{a, b, w\},\{u, v, z\}]) & =\alpha_{w v}(y+\varepsilon)+\alpha_{w z}(x+y) \\
& =\alpha_{w z}((x+\varepsilon+1)(y+\varepsilon+1)+1) .
\end{aligned}
$$

Similarly $\operatorname{det}\left(A^{\prime}[\{a, b, w\},\{u, v, z\}]\right)=\alpha_{w z}\left((x+\varepsilon+1)\left(y^{\prime}+\varepsilon+1\right)+1\right)$. Recall that $\left\{y, y^{\prime}\right\}=\{x, x+1\}$. Now $(x+\varepsilon+1)(x+\varepsilon+1)=x+\varepsilon$, while $(x+\varepsilon+1)((x+1)+\varepsilon+1)=1$. Thus, exactly one of $A[\{a, b, w\},\{u, v, z\}]$ and $A^{\prime}[\{a, b, w\},\{u, v, z\}]$ is nonsingular. So $\{a, b, u, v, w, z\}$ distinguishes M_{B} and N_{B}. Hence, $w z$ is an allowable pivot, which proves (22).
(23) $\alpha_{v_{p} v} \in\{1, x+\varepsilon+1\}$.

By (20), $\alpha_{v_{p} v} \neq 0$. Suppose that $\alpha_{v_{p} v} \notin\{1, x+\varepsilon+1\}$, and, hence, $\alpha_{v_{p} v}=$ $x+\varepsilon$. $\mathrm{By}(22), 1 v_{p}$ is an allowable pivot. Now suppose that $M_{B}\left[\left\{1,3, v, v_{p}\right\}\right]$ is not a twirl. Then $0=\operatorname{det}\left(A\left[\left\{3, v_{p}\right\},\{1, v\}\right]\right)=\alpha_{3 v}+(x+\varepsilon) \alpha_{31}$. Hence, by (22), 31 is an allowable pivot. By pivoting on $31, v_{p}$ becomes adjacent to 2 , which contradicts (19). Hence, $M_{B}\left[\left\{1,3, v, v_{p}\right\}\right]$ is a twirl.

Consider pivoting on $1 v_{p}$ and replacing 1 by v_{p}. Since $M_{B}\left[\left\{1,3, v, v_{p}\right\}\right]$ is a twirl, v remains adjacent to 3 in $G_{B \Delta\left\{1, v_{p}\right\}}, v_{p}$ is pendant to 1 in $M_{B}[X]-v_{p-1}-v$. Hence $M_{B A\left\{v_{p}, 1\right\}}[X]-v_{p-1}-v-1$ is isomorphic to $M_{B}[X]-v_{p-1}-v-v_{p}$. Furthermore $\lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}, 1\right\},\{1,2,3\}\right) \geqslant$ $\lambda_{B}\left(\left\{u, a, x_{0}, \ldots, x_{k}, 1\right\},\{2,3\}\right)=2$, so, by Proposition $4.16, v_{1}, \ldots, v_{p-1}$ is a blocking sequence for the 2 -subseparation ($\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{v_{p}, 2,3\right\}$) of $M_{B \Delta\left\{1, v_{p}\right\}}$. As this contradicts the minimality of p, (23) follows.
(24) $\alpha_{3 v} \in\{1, x+\varepsilon+1\}$.

By (13), $\alpha_{3 v} \neq 0$. Suppose that $\alpha_{3 v} \notin\{1, x+\varepsilon+1\}$, and, hence, $\alpha_{3 v}=x+\varepsilon$. By (22), 23 is an allowable pivot. Consider pivoting on 23 and interchanging 2 and 3 . The pivot changes $\alpha_{a 1}$ from 1 to $1+\alpha_{13}$. Hence $M_{B A\{2,3\}}\left[\left\{1, a, v_{p-1}, v_{p}\right\}\right]$ is a twirl, contradicting (18). This proves (24).
(25) $\left\{u, v, a, b, 2,3, v_{p-1}, v_{p}\right\}$ distinguishes M_{B} and N_{B}.

Let $Y_{1}:=\left\{a, b, 3, v_{p}\right\}$ and $Y_{2}:=\left\{u, v, 2, v_{p-1}\right\}$. We have

$$
A\left[Y_{1}, Y_{2}\right]=\begin{gathered}
u \\
a \\
b \\
3 \\
v_{p}
\end{gathered}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
y & x & \varepsilon & \varepsilon \\
0 & \alpha_{3 v} & 1 & 0 \\
0 & \alpha_{v_{p} v} & 0 & 1
\end{array}\right) .
$$

Therefore $\operatorname{det}\left(A\left[Y_{1}, Y_{2}\right]\right)=(y+\varepsilon)\left(\alpha_{3 v}+\alpha_{v_{p} v}\right)+x+y$, and $\operatorname{det}\left(A^{\prime}\left[Y_{1}, Y_{2}\right]\right)$ $=\left(y^{\prime}+\varepsilon\right)\left(\alpha_{3 v}+\alpha_{v_{p} v}\right)+x+y^{\prime}$. By (23) and (24), $\alpha_{3 v}+\alpha_{v_{p} v}$ is either zero or $x+\varepsilon$. First suppose that $\alpha_{3 v}+\alpha_{v_{p} v}=x+\varepsilon$. Thus $\operatorname{det}\left(A\left[Y_{1}, Y_{2}\right]\right)=$ $(x+\varepsilon+1)(y+\varepsilon+1)+1$, and $\operatorname{det}\left(A^{\prime}\left[Y_{1}, Y_{2}\right]\right)=(x+\varepsilon+1)\left(y^{\prime}+\varepsilon+1\right)+1$. Recall that $\left\{y, y^{\prime}\right\}=\{x, x+1\}$. Now $(x+\varepsilon+1)(x+\varepsilon+1)=x+\varepsilon$, while $(x+\varepsilon+1)((x+1)+\varepsilon+1)=1$. So exactly one of $A\left[Y_{1}, Y_{2}\right]$ an

FIG. 10. $G_{B A X^{\prime}}[X]$.
$A^{\prime}\left[Y_{1}, Y_{2}\right]$ is singular. Hence $Y_{1} \cup Y_{2}$ distinguishes M_{B} and N_{B}, as required. Now suppose that $\alpha_{3 v}+\alpha_{v_{p} v}=0$. Thus $\operatorname{det}\left(A\left[Y_{1}, Y_{2}\right]\right)=x+y$, and $\operatorname{det}\left(A^{\prime}\left[Y_{1}, Y_{2}\right]\right)=x+y^{\prime}$. So exactly one of $A\left[Y_{1}, Y_{2}\right]$ and $A^{\prime}\left[Y_{1}, Y_{2}\right]$ is singular. Hence $Y_{1} \cup Y_{2}$ distinguishes M_{B} and N_{B}, which proves (25).

Let $X^{\prime}:=\left\{2,3, v_{p-1}, v_{p}\right\}$. Consider pivoting on 23 , and pivoting on $v_{p-1} v_{p}$. Figure 10 depicts $G_{B \Delta X^{\prime}}[X]$. The key observations are that v is adjacent to v_{p-1} in $G_{B \Delta X^{\prime}}$ and that $M_{B \Delta X^{\prime}}\left[\left\{a, v_{p}, v_{p-1}, 1\right\}\right]$ is a twirl. Now, by Proposition 4.15 (parts (i) and (ii)), v_{1}, \ldots, v_{p-1} is a blocking sequence for the 2-subseparation ($\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1,2,3, v_{p}\right\}$) in $M_{B \Delta\{2,3\}}$. Then, by Proposition 4.16 (part (i)) and Proposition 4.15 (part (ii)), v_{1}, \ldots, v_{p-2} is a blocking sequence for the 2-subseparation $\left(\left\{u, a, x_{0}, \ldots, x_{k}\right\},\left\{1, v_{p}, v_{p-1}\right\}\right)$ in $M_{B \Delta X^{\prime}}$. Hence, replacing B and C by $B \Delta X^{\prime}$ and $\left\{a, 1, v_{p}, v_{p-1}\right\}$, yields a, final, contradiction to the minimality of p. This completes the proof of Theorem 5.1.

6. CASE ANALYSIS

We now complete the proof of Theorem 1.1 by analyzing the matroids with rank and corank at most 4 . This requires a lot of case checking, much of which we leave to the reader. Figure 11 contains geometric representations of matroids used frequently in the case analysis. Throughout this section, M is a minor-minimal non- $G F(4)$-representable matroid. We have already seen that M has rank and corank at most 4.

FIG. 11. All nonuniform 3-connected matroids with 6 elements.
M is certainly nonbinary and 3-connected. Below we list all small 3-connected nonbinary matroids:

4 elements: $\quad U_{2,4}$,
5 elements: $U_{2,5}$ and $U_{3,5}$,
6 elements: $\quad \mathscr{V}^{3}, U_{3,6}, Q_{6}, P_{6}, U_{2,6}$, and $U_{4,6}$.
Among these matroids, the only non-GF(4)-representable matroids are $U_{2,6}, U_{4,6}$, and P_{6}. In what follows, we assume that M has at least 7 elements. If M has rank or corank 2, then M is uniform and so has a $U_{2,6}$ or $U_{4,6}$-minor. Hence, M has rank and corank at least 3 .

From the above list of matroids, we see that $U_{2,5}$ is a splitter for the family of matroids without $U_{2,6}$ - or $U_{3,5}$-minors. By duality, $U_{3,5}$ is a splitter for the family of matroids without $U_{4,6}$ or $U_{2,5}$-minors. Therefore M contains a $U_{2,5}$-minor if and only if M contains a $U_{3,5}$-minor.

In what follows, we occasionally use assertions from the proof of Theorem 5.1; in particular, we use (7), (2), and (9). (In this section, each time we mention one of (7), (2), and (9), we mean (7), (2), and (9) in Section 5.) Strictly speaking, such assertions are subject to the conditions of Theorem 5.1 and to preceding assumptions in its proof. However, the reader can easily verify the validity of the assertion when it is applied.

Case 1. M contains a $U_{3,5}$-minor. We break this into two further cases.

Case 1.1. $\quad M$ has 7 elements.

The three matroids depicted in Fig. 12 are the only 3-connected 7-element rank-3 matroids having a $U_{3,5}$-minor but no $U_{2,6}$ - for P_{6}-minors. (This is easily checked by trying to add a point to the representations of either $U_{3,6}$ or Q_{6}.)

To save the reader checking that the three matroids in Fig. 12 are $G F(4)-$ representable, we give an alternative proof. By duality, we may assume that M has rank 3 and corank 4. Hence there exist elements u, v such that $M \backslash u, v$ is isomorphic to $U_{3,5}$. Then $M \backslash u, M \backslash v$, and $M \backslash u, v$ are all stable, nonbinary, and connected. Hence, by Lemma 2.2, there exists a unique $G F(4)$-representable matroid N such that $M \backslash u=N \backslash u$ and $M \backslash v=N \backslash v$.

FIG. 12. The only 3-connected 7 -element rank-3 matroids with $U_{3,5}$-minors, but without $U_{2,6}$ - or P_{6}-minors.

Furthermore, as we showed in (2), there exists a basis B of $M \backslash u, v$, and elements a, b such that $\{u, v, a, b\}$ distinguishes M_{B} and N_{B}. Clearly a, $b \in B$; let c be the third element of B. Note that $M \backslash u, v / c$ is isomorphic to $U_{2,4}$. Hence $M_{B}-c-u, M_{B}-c-v$, and $M_{B}-c-u-v$ are all stable. Then, by (7), $M_{B}-c$ is not $G F(4)$-representable, which is a contradiction.

Case 1.2. M has 8 elements.

Note that M must have rank and corank both equal to 4 . We begin by proving that there exist $M^{\prime} \in\left\{M, M^{*}\right\}$ and distinct elements u, v such that $M^{\prime} \backslash u, M^{\prime} \backslash v$, and $M^{\prime} \backslash u, v$ are all stable, connected, and have a $U_{3,5}$-minor. By the Splitter Theorem and duality, we may assume that there exists an element u^{\prime} such that M / u^{\prime} is 3 -connected and has a $U_{2,5}$ - or $U_{3,5}$-minor. In fact, M / u^{\prime} has both $U_{2,5^{-}}$and $U_{3,5}$-minors. Figure 12 depicts all the candidates for M / u^{\prime}. Also depicted in Fig. 12 are elements $v^{\prime}, u^{\prime \prime}, v^{\prime \prime}$ satisfying the following conditions.
(i) $M / u^{\prime}, v^{\prime} \backslash u^{\prime \prime}$ is isomorphic to $U_{2,5}$.
(ii) $M \backslash u^{\prime \prime}, v^{\prime \prime} / u^{\prime}$ is isomorphic to $U_{3,5}$, and
(iii) $u^{\prime \prime}, v^{\prime \prime}$ are not parallel in $M / u^{\prime}, v^{\prime}$.
$M \backslash u^{\prime \prime} / u^{\prime}, M \backslash v^{\prime \prime} / u^{\prime}$, and $M \backslash u^{\prime \prime}, v^{\prime \prime} / u^{\prime}$ are 3-connected, so $M \backslash u^{\prime \prime}, M \backslash v^{\prime \prime}$, and $M \backslash u^{\prime \prime}, v^{\prime \prime}$ are all stable and have $U_{3,5}$-minors. If, in addition, $M \backslash u^{\prime \prime}, v^{\prime \prime}$ is connected, then $u^{\prime \prime}$ and $v^{\prime \prime}$ satisfy the requirements for the two desired elements u and v. Therefore, we may assume that $M \backslash u^{\prime \prime}, v^{\prime \prime}$ is not connected. Thus, u^{\prime} is a coloop of $M \backslash u^{\prime \prime}, v^{\prime \prime}$. Now, M / u^{\prime} and $M / u^{\prime}, v^{\prime}$ are both stable, connected, and have a $U_{2,5}$-minor. If M / v^{\prime} is stable then $u:=u^{\prime}$ and $v:=v^{\prime}$ satisfy the required properties with respect to $M^{\prime}:=M^{*}$. So we may assume that M / v^{\prime} is not stable. Then $M / v^{\prime}, M / v^{\prime} \backslash u^{\prime \prime}$, and $M / v^{\prime}, u^{\prime}$ are not 3-connected. Furthermore, it is straightforward to see that $M / v^{\prime} \backslash u^{\prime \prime}$ and $M / v^{\prime}, u^{\prime}$ are connected, and that $M / v^{\prime}, u^{\prime} \backslash u^{\prime \prime}$ is 3-connected. We now apply Proposition 3.5 to the matroid $N:=M / v^{\prime}$ and the elements $x:=u^{\prime \prime}$ and $y:=u^{\prime}$. Since M is 3 -connected, N has no series pairs. Hence, in the notation of Proposition 3.5, $p_{x}=p_{y}$. Since $y=u^{\prime}$ is a coloop in $M \backslash u^{\prime \prime}, v^{\prime \prime}$, the elements u^{\prime} and $v^{\prime \prime}$ are in series in $M \backslash u^{\prime \prime}$, and hence also in $N \backslash u^{\prime \prime}$.

So $p_{y}=v^{\prime \prime}$. Hence, $u^{\prime \prime}=x$ and $v^{\prime \prime}=p_{y}=p_{x}$ are in parallel in $N / y=N / u^{\prime}$, contradicting (iii).

So we conclude that the desired pair u and v does exist. Replacing M by M^{*}, if necessary, we assume that $M \backslash u, M \backslash v$, and $M \backslash u, v$ are all stable, connected, and have a $U_{3,5}$-minor.

There exists a unique $G F(4)$-representable matroid N such that $M \backslash u=$ $N \backslash u$ and $M \backslash v=N \backslash v$. As we showed in (2), there exists a basis B of $M \backslash u, v$ and elements $a, b \in B$ such that $\{a, b, u, v\}$ distinguishes M_{B} and N_{B}. Let $S \backslash B=\{u, v, 1,2\}$ and $B=\{a, b, 3,4\}$. Let G_{B} be the fundamental graph of M_{B}, and let $A=\left(\alpha_{i j}\right)$ be a representation of N_{B}. By Propositions 4.1 and 4.2, $\{a, b, u, v\}$ induces a 4-circuit in G_{B}. If $M \backslash u, v / 3,4$ is isomorphic to $U_{2,4}$, then $M \backslash u / 3,4, M \backslash v / 3,4$, and $M \backslash u, v / 3,4$ are all stable, nonbinary, and connected. Hence, by (7), $M_{B}-3-4$ is not $G F(4)$-representable. Thus, $M \backslash u, v / 3,4$ is not isomorphic to $U_{2,4} . M \backslash u, v$ has a $U_{3,5}$-minor, but it contains no $U_{3,5}$-minor using both a and b. By possibly interchanging a, b, we may assume that $M \backslash u, v / a$ is isomorphic to $U_{3,5}$. Since $M \backslash u, v / 3,4$ is not isomorphic to $U_{2,4}, a$ is in series with either 1,2 , or b in $M \backslash u, v$. By possibly pivoting on one of $(b, 1)$ or $(b, 2)$ in M_{B} and relabeling, we may assume that a, b are series elements of $M \backslash u, v$. Then, by scaling, we may assume that A has the following form:

$$
\begin{gathered}
u \\
a \\
b \\
b \\
4 \\
4
\end{gathered}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\alpha_{b u} & \alpha_{b v} & 1 & 1 \\
\alpha_{3 u} & \alpha_{3 v} & 1 & x \\
\alpha_{4 u} & \alpha_{4 v} & 1 & x+1
\end{array}\right) .
$$

By (9), we have $\alpha_{b u} \in\{x, x+1\}$ and $\alpha_{b v} \in\{x, x+1\}$. Since $M \backslash v$ is stable, $\alpha_{3 u}$ and $\alpha_{4 u}$ cannot both be zero. Similarly, $\alpha_{3 v}$ and $\alpha_{4 v}$ cannot both be zero. Suppose that $\alpha_{3 u}$ and $\alpha_{3 v}$ are both nonzero. Then $\left(M_{B}-4\right)-u$, $\left(M_{B}-4\right)-v$, and $\left(M_{B}-4\right)-u-v$ are all stable, nonbinary, and connected. By (7), this is a contradiction. Hence one of $\alpha_{3 u}$ and $\alpha_{3 v}$ is zero. Similarly, one of $\alpha_{4 u}$ and $\alpha_{4 v}$ is zero. By possibly interchanging 3,4 , we may assume that $\alpha_{3 v}=\alpha_{4 u}=0$.

We proceed by showing that $\{u, v, a, b\}$ is the only set distinguishing M_{B} and N_{B}. Certainly every distinguishing set contains both u and v. Note that $\left(M_{B}-a\right)-u,\left(M_{B}-a\right)-v$, and $\left(M_{B}-a\right)-u-v$ are all 3 -connected and nonbinary. Hence, by (7), every distinguishing set contains a. Similarly, every distinguishing set contains b. For some $i \in\{3,4\}$ and $j \in\{1,2\}$, suppose that $\{u, v, a, b, i, j\}$ is a distinguishing set. Then the pivot on $i j$ is allowable, and by performing the pivot and interchanging i and j, we
get $\alpha_{i^{\prime} u} \neq 0$ and $\alpha_{i^{\prime} v} \neq 0$ for some $i^{\prime} \in\{3,4\}$. This contradicts an earlier finding, thus $\{u, v, a, b, i, j\}$ is not a distinguishing set. In similar fashion, by pivoting on both 13 and 24 , we can show that S is not a distinguishing set. Hence, as claimed $\{a, b, u, v\}$ is the only set distinguishing M_{B} from N_{B}.

Recall that $M_{B}[\{a, b, u, 1\}]$ is a twirl. Hence, by Lemma 4.4, either $M_{B}[\{a, 3, u, 1\}]$ or $M_{B}[\{b, 3, u, 1\}]$ is a twirl. We claim that exactly one of these is a twirl. Suppose, to the contrary, that $M_{B}[\{a, 3, u, 1\}]$ and $M_{B}[\{b, 3, u, 1\}]$ are both twirls. Then the following matrices are the only two plausible $G F(4)$-representations for either $M_{B}-2-4$ or $N_{B}-2-4$:

$$
\begin{gathered}
a \\
b\left(\begin{array}{ccc}
u & v & 1 \\
1 & 1 & 1 \\
x & x & 1 \\
x+1 & 0 & 1
\end{array}\right),
\end{gathered} \begin{array}{ccc}
u & v & 1 \\
b \\
3
\end{array}\left(\begin{array}{cc}
1 & 1 \\
x & x+1 \\
x+1 & 0
\end{array}\right) .
$$

Since $\{a, b, u, v\}$ distinguishes $M_{B}-2-4$ and $N_{B}-2-4$, one of these matrices represents $M_{B}-2-4$ and the other one represents $N_{B}-2-4$. However, the above matrices have determinants x and 0 respectively. Thus $\{a, b, u, v, 1,3\}$ distinguishes M_{B} and N_{B}. This contradiction verifies that exactly one of $M_{B}[\{a, 3, u, 1\}]$ and $M_{B}[\{b, 3, u, 1\}]$ is a twirl. So, by symmetry, for each $i \in\{3,4\}, j \in\{1,2\}$, and $w \in\{u, v\}$ such that $\alpha_{i w} \neq 0$, exactly one of $M_{B}[\{a, i, w, j\}]$ and $M_{B}[\{b, i, w, j\}]$ is a twirl.

By possible interchanging a and b, we can assume that $M_{B}[\{a, 3, u, 1\}]$ is not a twirl. Hence $\alpha_{3 u}=1$. Then $M_{B}[\{a, 3, u, 2\}]$ is a twirl, and, consequently, $M_{B}[\{b, 3, u, 2\}]$ is not a twirl. Thus $\alpha_{b u}=x+1$. Now exactly one of $M_{B}[\{a, 4, v, 1\}]$ and $M_{B}[\{b, 4, v, 1\}]$ is a twirl. Considering these two cases separately, and using the fact that exactly one of $M_{B}[\{a, 4, v, 2\}]$ and $M_{B}[\{b, 4, v, 2\}]$ is a twirl, we get the following two candidates for A.

$$
A_{1}:=\begin{gathered}
u \\
b \\
b \\
4
\end{gathered}\left(\begin{array}{cccc}
u & 1 & 2 \\
1 & 1 & 1 & 1 \\
x+1 & x & 1 & 1 \\
1 & 0 & 1 & x \\
0 & 1 & 1 & x+1
\end{array}\right), \quad A_{2}:=\begin{gathered}
a \\
b \\
3 \\
4
\end{gathered}\left(\begin{array}{cccc}
u & v & 1 & 2 \\
x+1 & 1 & 1 & 1 \\
1 & x+1 & 1 & 1 \\
0 & x+1 & 1 & x \\
x+1
\end{array}\right) .
$$

We now consider the cases that $A=A_{1}$ and $A=A_{2}$. Note that, in either case, we know N explicitly and, since $\{a, b, u, v\}$ is the only set distinguishing N_{B} and M_{B}, we know M explicitly. If $A=A_{1}$, then M / u is isomorphic to F_{7}^{-}; if $A=A_{2}$, then M is isomorphic to $P_{8}^{\prime \prime}$.

Case 2. M contains no $U_{2,5^{-}}$or $U_{3,5}$-minor.
The matroids depicted in Fig. 13 are the only 3-connected, rank-3 matroids on seven elements without a $U_{3,5}$-minor. (This is easily shown by trying to add a point to the geometric representations of \mathscr{W}^{3} and W_{3}.) Among these, F_{7}^{-}is the only matroid that is not $G F(4)$-representable. Hence the only excluded minors on seven elements are F_{7}^{-}and its dual. In what remains, we assume that M has eight elements. Thus, M has rank and corank both 4.

We begin by showing that M is ternary. Suppose otherwise. Recall that M has no $U_{2,5^{-}}$nor $U_{3,5}$-minors. Thus, by Reid's characterization of $G F(3)$-representable matroids, the only nonternary minors of M are F_{7} and its dual, which are binary. By duality, we may suppose that $M \backslash u=F_{7}^{*}$. Since M is nonbinary there exists an element v such that $M \backslash v$ is not binary. Observe that deleting a single element from a nonstable matroid cannot yield a connected binary matroid. Hence, as $M \backslash u, v=F_{7}^{*} \backslash v$ is binary and connected, each of $M \backslash u, v, M \backslash v$, and $M \backslash u$ is stable. Therefore, as $M \backslash u$ is binary, it follows from the remark just below the proof of Lemma 2.2 that there exists a unique $G F(4)$-representable matroid N such that $M \backslash u=N \backslash u$ and $M \backslash v=N \backslash v$. As we showed in (2), there exists a basis B of $M \backslash u, v$ and elements $a, b \in B$ such that $\{a, b, u, v\}$ distinguishes M_{B} and N_{B}. Choose an element c in $B \backslash\{a, b\} . F_{7}^{*}$ cannot be disconnected by performing one deletion and one contraction; hence, $M / c \backslash u, v$ is connected. As $M / c \backslash u, v$ is also binary, each of $M / c \backslash u, M / c \backslash v$, and $M / c \backslash u, v$ is stable. Hence, as $M / c \backslash u$ is binary, it follows from the remark just below the proof of Lemma 2.2 there exists a unique $G F(4)$-representable matroid N^{\prime} such that $M / c \backslash u=N^{\prime} \backslash u$ and $M / c \backslash v=N^{\prime} \backslash v$. Clearly $N^{\prime}=N / c$. However $\{u, v, a, c\}$ distinguishes $N_{B}-c$ and $M_{B}-c$, so M / c is not $G F(4)$-representable. This contradiction implies that M is ternary.

Case 2.1. M contains a W_{3}-minor.
By the Splitter Theorem, and duality, we may assume that there exists an element x such that M / x is 3 -connected, and contains a W_{3}-minor. Then M / x is one of the matroids in Fig. 13. P_{7} has no W_{3}-minor, F_{7} is not

FIG. 13. Seven-element rank-3 matroids without $U_{3,5}$ or $U_{2,5}$-minors.
$G F(3)$-representable, and F_{7}^{-}is not $G F(4)$-representable. Hence $M / x=O_{7}$. The following matrix is a representation of O_{7} over $G F(3)$:

$$
\begin{gathered}
4 \\
1 \\
2 \\
3
\end{gathered}\left(\begin{array}{cccc}
-1 & 5 & 6 & 7 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 1
\end{array}\right)
$$

$O_{7} \backslash 7=W_{3}$, so either $M \backslash 7$ is isomorphic to O_{7}^{*} or $M \backslash 7$ is not 3-connected. Note that there are automorphisms of O_{7} that realize any permutation of $\{4,5,6\}$. Taking these permutations into account, there are just a few ways to extend our $G F(3)$-representation of O_{7} to a possible representation of M, namely

4	5	6	7	4	5	6	7
x 1 2 3 $\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right.$	1 1 0 -1	1 0 -1 1	$\left.\begin{array}{l}x \\ 1 \\ 1 \\ 1\end{array}\right)$,	x 1 2 3 $\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right.$	0 1 0 -1	1 0 -1 1	$\left.\begin{array}{l}\alpha \\ 1 \\ 1 \\ 1\end{array}\right)$,
4	5	6	7	4	5	6	7
x 1 2 3 $\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right.$	1 1 0 -1	0 0 -1 1	$\left.\begin{array}{l}\alpha \\ 1 \\ 1 \\ 1\end{array}\right)$,	x 1 2 3 $\left(\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right.$	1 1 0 -1	0 0 -1 1	$\left.\begin{array}{l}\alpha \\ 1 \\ 1 \\ 1\end{array}\right)$.

Label the above matrices $A_{1}(\alpha), \ldots, A_{4}(\alpha)$, and let $M_{i}(\alpha)$ be the ternary matroid represented by $A_{i}(\alpha)$.
$M_{3}(-1) \backslash 6$ is isomorphic to $\left(F_{7}^{-}\right)^{*}$. Moreover, for $i=1,2$, or $4, M_{i}(-1)$ is isomorphic to $M_{i}(1)$. Indeed, if $i=1,2$ or 4 , then $A_{i}(1)$ can be obtained from $A_{i}(-1)$ by negating lines $4,5,6, x$ and then interchanging 4 with 6 and 1 with $3 . M_{3}(1)$ and $M_{4}(0)$ are not 3 -connected. So we are left with the cases: $M_{1}(0), M_{1}(1), M_{2}(0), M_{2}(1), M_{3}(0)$, and $M_{4}(1)$. They are all $G F(4)$-representable, with the following $G F(4)$-representations:

$$
\begin{aligned}
M_{2}(0): \begin{array}{cc}
x \\
1 \\
2 \\
3
\end{array}\left(\begin{array}{cccc}
4 & 5 & 6 & 7 \\
z & 0 & 1 & 0 \\
1 & 1 & 0 & z+1 \\
1 & 0 & 1 & z \\
0 & 1 & 1 & 1
\end{array}\right), & \left.M_{2}(1): \begin{array}{cccc}
4 & 5 & 6 & 7 \\
1 \\
2 \\
z+1 & 0 & 1 & 1 \\
1 & 1 & 0 & z+1 \\
1 & 0 & 1 & z \\
0 & 1 & 1 & 1
\end{array}\right), \\
M_{3}(0): \begin{array}{l}
x \\
2 \\
3
\end{array}\left(\begin{array}{cccc}
4 & 5 & 6 & 7 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & z+1 \\
1 & 0 & 1 & z \\
0 & 1 & 1 & 1
\end{array}\right), & M_{4}(1): \begin{array}{ccc}
x \\
2 \\
2
\end{array}\left(\begin{array}{cccc}
0 & 0 & 0 & z+1 \\
1 & 1 & 0 & z+1 \\
1 & 0 & 1 & z \\
0 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Case 2.2. M contains no W_{3}-minors.
(This case follows easily from results of Oxley [16], who gives a complete characterization of the ternary matroids without a W_{3}-minor. However, for completeness, we provide a direct proof.)

We may assume that M is not isomorphic to \mathscr{W}^{4} and has no F_{7}^{-}or O_{7}-minor. (O_{7} has a W_{3}-minor.) So, by Lemma 3.3 and duality, we may assume that M has an element u such that $M / u \cong P_{7}$. Let v be the unique element in M / u such that $M / u \backslash v \cong U_{2,4} \oplus_{2} U_{2,4}$. Consider the ternary matroids $M_{i}(\alpha)$ with the following ternary representations:

$$
\begin{aligned}
M_{1}(\alpha): \begin{array}{cc}
u \\
1 \\
2 \\
3
\end{array}\left(\begin{array}{cccc}
4 & 5 & 6 & v \\
1 & 0 & 0 & \alpha \\
1 & 1 & 0 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right), & M_{2}(\alpha): \begin{array}{cccc}
4 & 5 & 6 & v \\
1 \\
2 \\
3
\end{array}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha \\
1 & 1 & 0 \\
1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
1
\end{array}\right), \\
M_{3}(\alpha): \begin{array}{l}
u \\
2 \\
3
\end{array}\left(\begin{array}{cccc}
4 & 5 & 6 & v \\
1 & 1 & -1 & \alpha \\
1 & 1 & 0 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right), & M_{4}(\alpha): \begin{array}{l}
u \\
1 \\
2
\end{array}\left(\begin{array}{cccc}
1 & 0 & -1 & \alpha \\
1 & 1 & 0 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Then $M \cong M_{i}(\alpha)$ for some $i=1, \ldots, 4$ and $\alpha \in G F(3)$. Indeed, $M \backslash v$ is either a series-extension of $U_{2,4} \oplus_{2} U_{2,4}$ or isomorphic to P_{7}^{*}. As the automorphism group of M / u is transitive on $\{1, \ldots, 6\}$, we may assume that in the first case u is in series with 4 in $M \backslash v$, so that $M \cong M_{1}(\alpha)$ for some α. As the automorphism group of M / u is transitive on pairs of lines through
r. there are, up to symmetry, three possibilities for $M \backslash v$ to be isomorphic to P_{7}^{*}. These lead to $M \cong M_{2}(x), M \cong M_{3}(x)$, or $M \cong M_{4}(x)$.

Now, $M_{1}(0)$ is not 3 -connected, $M_{3}(0) \cong P_{8}$, and $M_{3}(-1) \cong M_{3}(1)^{*}$. Moreover, $M_{1}(1) / 1 \backslash 2, M_{1}(-1) r \backslash 5, M_{2}(0) / 3 \backslash 5, M_{2}(-1) / r \backslash 6, M_{3}(1) / 1 \backslash u$, $M_{4}(0) / 3 \backslash 1, M_{4}(1) 6 \backslash 5$, and $M_{4}(-1) 2 \backslash 4$ are all isomorphic to W_{3}. Finally, $M_{2}(1)$ is $G F(4)$-representable with representation

$$
u\left(\begin{array}{cccc}
4 & 5 & 6 & r \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 \\
3
\end{array}\binom{2}{1}\right.
$$

APPENDIX

Below we describe the excluded minors, as well as some of their interesting properties. The class of excluded minors for \mathbf{F}-representability is closed not only under duality, as observed by Akkari and Oxley [1], also under deltawye (and wye-delta) transformations. The only non-GF(4)-representable matroids that are minimal with respect to taking minors and performing wye-delta transformations are $U_{2,6}, F_{7}, P_{8}$, and $P_{8}^{\prime \prime}$.
$\mathbf{U}_{2,6}, \mathbf{U}_{4,6}$. The 6 -point line and its dual. $U_{2,6}$ has the following (standard) \mathbf{F}-representation, where a, b, c are distinct elements of $\mathbf{F} \backslash\{0,1\}$:

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & a & b & c
\end{array}\right)
$$

- F-representable if and only if $|\mathbf{F}| \geqslant 5$.
- $U_{4,6}$ can be obtained from $U_{2,6}$ by two delta-wye transformations.
\mathbf{P}_{6} has the following \mathbf{F}-representation, where a, b, and c are elements of $\mathbf{F} \backslash\{0,1\}$ and c is not equal to a, b, or $a b$:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & a \\
1 & b & c
\end{array}\right)
$$

- The 6 -element simple rank- 3 matroid with a single 3 -point line (see Fig. 14).
- F-representable if and only if $|\mathbf{F}| \geqslant 5$.

P_{6}

F_{7}

P_{8}

FIG. 14. Some excluded minors.

- P_{6} can be obtained from $U_{2,6}$ by a delta-wye transformation.
- Self-dual.
$\mathbf{F}_{7}^{-},\left(\mathbf{F}_{7}^{-}\right)^{*}$. The non-Fano and its dual. F_{7}^{-}has the following \mathbf{F}-representation, where \mathbf{F} is a field of characteristic different from 2:

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

- See Fig. 14 for a geometric representation of F_{7}^{-}.
- F-representable if and only if \mathbf{F} has characteristic different from two.
- F_{7}^{-}is the unique relaxation of the Fano matroid $\left(F_{7}\right)$.
- $\left(F_{7}^{-}\right)^{*}$ can be obtained from F_{7}^{-}by a delta-wye transformation.
\mathbf{P}_{8} has the following \mathbf{F}-representation, ${ }^{2}$ where \mathbf{F} is a field of characteristic different from 2 :

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}\right)
$$

- To obtain a geometric representation of P_{8} over the reals, take a 3 -dimensional cube and rotate a face of the cube 45° (in its plane); then the vertices become points of P_{8} (see Fig. 14).
- F-representable if and only if \mathbf{F} has characteristic different from 2 (see Oxley [15]).
${ }^{2}$ The $G F(3)$-representation of P_{8} on page 512 of [17] has a misprint.
- Self-dual.
- Transitive automorphism group.
$\mathbf{P}_{8}^{\prime \prime}$ has the following (standard) F-representation, where a and b are distinct elements of $\mathbf{F} \backslash\{0,1\}$ and $a \neq b^{-1}$:

$$
A:=\begin{gathered}
1 \\
2 \\
2 \\
4
\end{gathered}\left(\begin{array}{cccc}
5 & 6 & 7 & 8 \\
1 & 1 & 1 & 1 \\
1 & 1 & b^{-1} & a \\
1 & a & 0 & a \\
1 & b & 1 & 0
\end{array}\right) .
$$

- $P_{8}^{\prime \prime}$ can be obtained by relaxing the unique pair of disjoint circuithyperplanes of P_{8}.
- F-representable if and only if $|\mathbf{F}| \geqslant 5$.
- Self-dual.
- Transitive automorphism group.

We conclude by showing that P_{8} and $P_{8}^{\prime \prime}$ are in fact excluded minors. Let $M_{a, b}$ denote the matroid represented by the matrix A (above), where a, b are elements of $\mathbf{F} \backslash\{0,1\}$, but where we possibly allow $a=b$ and/or $a=b^{-1}$. By considering the 1×1 and 2×2 singular submatrices of A, it is clear that, by elementary row operations and column scaling, we can put any representation of $M_{a, b}$ into the same form as A. There are just two square submatrices of A that are singular for some, but not all, choices of a and b from $\mathbf{F} \backslash\{0,1\}$; these are

$$
A_{1}:=\frac{3}{3}\left(\begin{array}{ll}
1 & 6 \\
4 & a \\
1 & b
\end{array}\right) \quad \text { and } \quad A_{2}:=\frac{1}{2}\left(\begin{array}{cc}
7 & 8 \\
b^{-1} & 1 \\
b^{-1}
\end{array}\right) .
$$

A_{1} is singular if and only if $a=b$, and A_{2} is singular if and only if $a=b^{-1}$. Exactly one of the two equations $a=b$ and $a=b^{-1}$ is satisfied by a given pair $a, b \in G F(4) \backslash\{0,1\} . P_{8}$ is the matroid obtained by insisting that both equations are satisfied, and $P_{8}^{\prime \prime}$ is the matroid obtained when neither is satisfied. Therefore neither P_{8} nor $P_{8}^{\prime \prime}$ is $G F(4)$-representable.

It remains to check that proper minors of P_{8} and $P_{8}^{\prime \prime}$ are $G F(4)$-representable. Note that any such minor is a minor of one of the two matroids, $M_{a, a}$ and $M_{a, a-1}(a \neq 0,1)$, obtained by insisting that exactly one of A_{1} and A_{2} is singular. By the discussion above, these matroids are both $G F(4)-$ representable (in fact they are isomorphic). Hence, all proper minors of P_{8} and $P_{8}^{\prime \prime}$ are $G F(4)$-representable as well.

REFERENCES

1. S. Akkari and J. G. Oxley, Some local extremal connectivity results for matroids, Combin. Probab. Comput. 2 (1993), 367-384.
2. R. E. Bixby, On Reid's characterization of the ternary matroids, J. Combin. Theory Ser. B 26 (1979), 174-204.
3. A. Bouchet, W. H. Cunningham, and J. F. Geelen, Principally unimodular skewsymmetric matrices, Combinatorica 18 (1998), 461-486.
4. R. A. Brualdi, Comments on bases in dependence structures, Bull. Austral. Math. Soc. 1 (1969), 161-167.
5. C. R. Coullard, "Minors of 3-Connected Matroids and Adjoints of Binary Matroids," Ph.D. thesis, Northwestern University, 1985.
6. C. R. Coullard and J. G. Oxley, Extensions of Tutte's wheels-and-whirls theorem, J. Combin. Theory Ser. B 56 (1992), 130-140.
7. J. G. Geelen, On matroids without a non-Fano minor, Discrete Math. 203 (1999), 279-285.
8. A. M. H. Gerards, A short proof of Tutte's characterization of totally unimodular matrices, Linear Algebra Appl. 114/115 (1989), 207-212.
9. J. Kahn, A geometric approach to the forbidden minors for GF(3), J. Combin. Theory Ser. A 37 (1984), 1-12.
10. J. Kahn, On the uniqueness of matroid representations over GF(4), Bull. London Math. Soc. 20 (1988), 5-10.
11. J. Kahn and P. D. Seymour, On forbidden minors for GF(3), Proc. Amer. Math. Soc. 102 (1988), 437-440.
12. S. Krogdahl, The dependence graph for bases in matroids, Discrete Math. 19 (1977), 47-59.
13. J. P. S. Kung, Bimatroids and invariants, Adv. Math. 30 (1978), 238-249.
14. T. Lazarson, The representation problem for independence functions, J. London Math. Soc. 33 (1958), 21-25.
15. J. G. Oxley, On the matroids representable over GF(4), J. Combin. Theory Ser. B 41 (1986), 250-252.
16. J. G. Oxley, A characterization of the ternary matroids with no $M\left(K_{4}\right)$-minor, J. Combin. Theory Ser. B 42 (1987), 212-249.
17. J. G. Oxley, "Matroid Theory," Oxford Univ. Press, New York, 1992.
18. J. G. Oxley, D. L. Vertigan, and G. P. Whittle, Conjectures on matroids representable over GF(3) and other fields, in "Matroid Theory" (J. E. Bonin, J. G. Oxley, and B. Servatius, Eds.), Contemp. Math., Vol. 197, pp. 411-412, 1996.
19. J. G. Oxley, D. L. Vertigan, and G. P. Whittle, On inequivalent representations of matroids over finite fields, J. Combin. Theory Ser. B 67 (1996), 325-343.
20. R. Reid, Seminar, Bowdoin College, Maine, 1971.
21. G.-C. Rota, Combinatorial theory, old and new, in "Actes du Congrès International des Mathématiciens (Nice, Sept. 1970)," Tome 3, pp. 229-233, Gauthier-Villars, Paris, 1971.
22. A. Schrijver, Matroids and linking systems, J. Combin. Theory Ser. B 26 (1979), 349-369.
23. P. D. Seymour, Matroid representation over GF(3), J. Combin. Theory Ser. B 26 (1979), 159-173.
24. P. D. Seymour, Decomposition of regular matroids, J. Comb. Theory Ser. B 28 (1980), 305-359.
25. K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of matroids, J. Combin. Theory Ser. B 32 (1982), 112-139.
26. K. Truemper, "Matroid Decomposition," Academic Press, San Diego, 1992.
27. W. T. Tutte, A homotopy theorem for matroids, I, II, Trans. Amer. Math. Soc. 88 (1958), 144-174.
28. H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935), 509-533.
29. G. P. Whittle, On matroids representable over GF(3) and other fields, Trans. Amer. Math. Soc. 349 (1997), 579-603.
30. G. P. Whittle, Stabilizers of classes of representable matroids, J. Combin. Theory Ser. B 77 (1999), 39-72.

[^0]: ${ }^{1}$ The research for this paper was done while J. F. Geelen and A. Kapoor visited the CWI in Amsterdam with financial support from EIDMA.

