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Abstract 

The Minimum Description Length (MDL) principle is solillly based on a provably ideal method 
of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general 
problem in moue! selection: that or learning the best model granularity. The performance of a model 
depends critically on the granularity, for example the choice of precision of the parameters. Too 
high precision generally involves modcling of accidental noise and too low precision may lead to 
confusion of models that should be distinguished. This precision is often determined ad hoe. In 
MDL the best model is the one that most compresses a two-part code of the data set: this embodies 
"Occam's Razor". In two quite different experimental settings the theoretical value determined 
using MDL coincides with the best value found experimentally. In the first expcri ment the task is 
to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and 
orientation. Based on a new modi Ii cation of elastic matching, using multiple prototypes per character, 
the optimal prediction rate is predicted for the learned parameter (length of sampling interval) 
considered most likely by MDL, which is shown to coincide with the best value found experimentally. 
In the second experiment the task is to model a robot arm with two degrees of freedom using a three 
layer feed-forward neural network where we need to determine the nurnher of nodes in the hidden 
layer giving best modcling performance. The optimal model (the one that extrapolizcs best on unseen 
examples) is predicted for the number of nodes in the hidden layer considered most likely by MDL, 
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which again is found to coincide with the best value found experimentally. © 2000 Elsevier Science 

B.V. All rights reserved. 

Keyll'ords: Minimum Description Length principle <MDL): Kolmogorov complexity; Universal prior: Bayes' 
rule: Occam's razor: Learning best model granularity: On-line handwritten character recognition: Improved 
elastic matching: Learning optimal feature extraction interval: Modeling robot arm; Feedforward neural 
network: Leaming optimal hidden layer 

1. Introduction 

It is commonly accepted that all learning involves compression of experimental data 
in a compact 'theory' , 'hypothesis', or 'model' of the phenomenon under investigation. 
In [ l 0,26] the last two authors analyzed the theory of such approaches related to shortest 
effective description length (Kolmogorov complexity). The question arises whether these 
theoretical insights can be directly applied to real world problems. Selecting models on the 
basis of compression properties ignores the 'meaning' of the models. Therefore we should 
aim at optimizing a model parameter that has no direct semantics, such as the precision 
at which we represent the other parameters: too high precision causes accidental noise 
to be modeled as well, too low precision may cause models that should be distinct to be 
confused. In two quite different experimental settings the theoretically predicted values are 
shown to coincide with the best values found experimentally. 

In general, the performance of a model for a given data sample depends critically on what 
we may call the "degree of discretization" or the "granularity" of the model: the choice of 
precision of the parameters, the number of nodes in the hidden layer of a neural network, 
and so on. The granularity is often determined ad hoe. Here we give a theoretical method to 
determine optimal granularity based on an application of the Minimum Description Length 
(MDL) principle in supervised learning. The cost of describing a set of data with respect 
to a particular model is the sum of the lengths of the model description and the description 
of the data-to-model error. According to MDL the best model is one with minimum cost, 
that is, the model that explains the data in the most concise way. 

The first two authors, in [4], carried out an experiment in on-line learning to recognize 
isolated alphanumerical characters written in one subject's handwriting, irrespective of size 
and orientation. Some novel features here are the use of multiple prototypes per character, 
and the use of the MDL principle to choose the optimal feature extraction interval. It is 
satisfactory that in this case the general learning theory can without much ado be applied to 
obtain the best sampling rate. We believe that the same method is applicable in a wide range 
of problems. To obtain evidence for this assertion, in [23] the third author with G. te Brake 
and J. Kok applied the same method to modeling a robot-arm. 

The genesis of this work is not rooted in traditional approaches to artificial intelligence 
(Al), but rather on new exciting general learning theories which have developed out from 
the computational complexity theory [24,25], statistics and descriptional (Kolmogorov) 
complexity [15,26,28,29]. These new theories have received great attention in theoretical 
computer science and statistics, [6,15-18,24,25]. On the other hand, the design of real 
learning systems seems to be dominated by ad hoe trial-and-error methods. Applications 
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of these recent theoretical results to real world learning system design are scarce and far 
between. One exception is the elegant paper by Quinlan and Rivest. [ 14 J. 

In a companion paper [26 J we develop the theory and mathematical validation of 
the MDL principle [ 1,28,29] based on ultimate data compression up to the Kolmogorov 
complexity. Our purpose here is trying to bring theory and practice together by testing the 
theory on simple real applications. We give a brief accessible exposition of the theoretical 
background of MDL and the mathematical proof that it works. The principle is then applied 
to two distinct practical issues: that of on-line character recognition and of robot modeling. 
In both cases the issue is the supervised learning of best model granularity for classification 
or extrapolation on unseen examples. The systems and experiments are quite simple, and 
are intended to just be demonstrations that the theoretical approach works in practice. Both 
applications are in topical areas and the results give evidence that the theoretical approach 
can be extended to more demanding settings. 

Contents. From a theoretical point of view we explain the general modeling principle of 
MDL and its relation to Bayesianism. We show that the MDL theory is solidly based on a 
provably ideal method of inference using Kolmogorov complexity and demonstrate that it 
is valid under the assumption that the set of data is "typical" (in a precise rigorous sense) for 
the targeted model. We then apply the theory to two experimental tasks that both concern 
supervised learning of the best model granularity but are otherwise quite dissimilar: In 
the ti.rst task we want to obtain the best model sampling rate in the design of an on-line 
hand-written character learning system, and in the second task our goal is to determine 
the best number of nodes in the hidden layer of a three-layer feedforward neural network 
modeling a robot arm with two degrees of freedom. It turns out that the theoretically 
predicted optimal precision coincides with the best experimentally determined precision. 
We conclude with a discussion concerning the equivalence of code-length based methods 
with probability-based methods. that is, of MDL and Bayesianism. 

I.I. Introduction to learning 011-line handwritten characters 

One of the important aspects of AI research is machine cognition of various aspects 
of natural human languages. An enormous effort has been invested in the problem of 
recognizing isolated handwritten characters or character strings. [21 J. Recognizing isolated 
hand-written characters has applications, for example, in signature recognition and Chinese 
character input. The alphanumerical character learning experiment reported here is a pilot 
project which ultimately aims at providing a practicable method to learn Chinese charac­
ters. This problem knows many practical difficulties-both quantitatively and qualitatively. 

There are several thousand independent Chinese characters. No current key-board input 
method is natural enough for casual users. Some of these methods require the user to 
memorize a separate code for each of seven thousand characters. Some methods require 
the user to know ping ying-the phonological representation of mandarin Chinese in latin 
characters. But then the translation into computer representation of characters is not easy 
because there are too many homonyms. Similarly, sound recognition techniques do not help 
much either because almost every commonly used Chinese character has more than one 
commonly used homonym. For non-professional casual users, hand-written input which is 
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mechanically scanned and processed, seems to be a quite reasonable way of entering data 
into the computer. 

A variety of approaches and algorithms have been proposed to achieve a high recognition 
rate. The recognition process is usually divided into two steps: 

(1) feature extraction from the sample characters, and 
(2) classification of unknown characters. 
The latter often uses either deterministic or statistical inference based on the sample data, 

and various known mathematical and statistical approaches can be used. Our contribution 
is on that level. This leaves the technical problem of feature extraction, whose purpose is 
to capture the essence from the raw data. The state of the art is more like art than science. 
Here we use existing methods which we explain now. 

I. I. 1. Feature extraction 
The most common significant features extracted are center of gravity, moments, 

distribution of points, character loci, planar curve transformation, coordinates, slopes 
and curvatures at certain points along the character curve. The obvious difficulty of the 
recognition task is the variability involved in handwritten characters. Not only does the 
shape of the characters depend on the writing style which varies from person to person, but 
even for the same person trying to write consistently writing style changes with time. 

One way to deal with this problem is the idea of 'elastic matching' [9,22]. Roughly 
speaking, the elastic matching method takes the coordinates or slopes of certain points ap­
proximately equally spaced along the curve of the character drawing as feature to establish 
the character prototypes. To classify an unknown character drawing, the machine com­
pares the drawing with all the prototypes in its knowledge base according to some distance 
function and the entered character is classified as the character represented by the closest 
prototype. When an unknown character is compared to a prototype, the comparison of the 
features is not only made strictly between the corresponding points with the prototype but 
also with the points adjacent to the corresponding point in the prototype. The method we 
use for feature extraction is a new modification of the standard elastic matching method. 

1.1.2. Classification 
Each implemented algorithm for character recognition embodies a model or a family 

of models for character recognition. One problem of the extant research is the lack of a 
common basis for evaluation and comparison among various techniques. This is especially 
true for on-line character recognition due to the lack of common standard and limited raw 
data source. A model from a family of models induced by a particular method of feature 
extraction is usually specified by a set of parameters. Varying the parameters gives a class 
of models with similar characteristics. 

Consider the above mentioned elastic matching. It uses certain points along the character 
curve as features. The interval size used to extract these points along the curve is a 
parameter. How to determine the value of this parameter which gives optimal recognition? 

Practically speaking, we can set the interval size to different values and experiment on 
a given sample set of data to see which value gives the best performance. However, since 
the experiment is based on one particular set of data, we do not know if this interval size 
value gives a similar optimal performance for all possible observations from the same data 
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source. A theory is needed to guide the parameter selection in order to obtain the best 
model from the given class of models. 

1.1.3. Model selection 
Suppose we have models M1. Mz, .. .. Let H; be the hypothesis 'M; gives the best 

recognition rate'. Our problem in selecting the best model consists in finding the most 
likely hypothesis. We use the Minimum Description Length principle (referred as MDL 
hereafter) for this purpose. MDL finds its root in the well-known Bayesian inference and 
not so well-known Kolmogorov complexity. 

Below we give the classic "Bayes' rule". According to Bayes' rule, a specific hypothesis 
is preferred if the probability of that hypothesis takes maximum value for a given set of 
data and a given prior probability distribution over the set of hypotheses. This happens for 
the hypothesis under which the product of the conditional probability of the data for the 
given hypothesis and the prior probability of the hypothesis is maximal. When we take 
the negative logarithm of Bayes' formula, then this maximal probability is achieved by the 
hypothesis under which the sum of the following two terms is minimized: the description 
length of the error of the data for the given hypothesis and the description length of the 
model (the hypothesis). Therefore, finding a maximum value of the conditional probability 
of a given set of hypotheses and data becomes minimizing the combined complexity or 
description length of the model and the error-to-model for a given set of candidate models. 

To quantify this idea, the two description lengths are expressed in terms of the coding 
length of the model (set of prototypes) and the coding length of the error-to-model 
(combined length of all data failed to be described by the model). The trade-off between 
simplicity and complexity of both quantities is as follows. 

( 1) If a model is too simple, in the sense of having too short an encoding, it may fail 
to capture the essence of the mechanism generating the data, resulting in increased 
error coding lengths. 

(2) If a model is too complicated, in the sense of having too long code length (like when 
it consists of a table of all data), it may contain a lot of redundancy from the data 
and become too sensitive to minor irregularities to give accurate predictions of the 
future data. 

The MDL principle states that among the given set of models, the one with the minimum 
combined description lengths of both the model and the error for given set of data is the 
best approximation of the mechanism behind data and can be used to predict the future 
data with best accuracy. 

The objective of this work is to implement a small system which learns to recognize 
handwritten alphanumericals based on both elastic matching and statistical inference. MDL 
is used to guide the model selection, specifically the selection of the interval of feature 
extraction. The result is then tested experimentally to validate the application of the theory. 

1.2. Introduction to modeling a robot arm 

We consider the problem of modeling a robot arm consisting of two joints and two 
stiff limbs connected as: joint, limb, joint, limb. The entire arm moves in a fixed two­
dimensional plane. The first joint is fixed at the origin. The position of the other end of the 



--

6 Q. Gao et al. I Artificial Intelligence 121 (2000) 1-29 

arm is determined by the lengths of the two limbs, together with the angle of rotation in 
the first joint of the first limb, and the angle of rotation in the second joint of the second 
limb with respect to the first limb. The mobile end of the arm thus has two degrees of 
freedom given by the two angles. In [ 12] this standard problem is modeled using a Bayesian 
framework to obtain a feed-forward network model. We use MDL to obtain the best number 
of nodes in the hidden layer of a three-layer feed-forward network model. The method is 
essentially the same as in the character recognition experiment. Just as before it is validated 
on a test set of unseen data. 

2. Theoretic preliminaries 

We first explain the idea of Bayesian reasoning and give "ideal MDL" as a noncom­
putable but provably good approach to learning. Then, we will dilute the approach to ob­
tain a feasible modification of it in the form of the real MDL. For another viewpoint of the 
relation between Bayesianism and MDL see [2]. 

2.1. Bayesianism 

Bayesianism is an induction principle with a faultless derivation, and allows us 
to estimate the relative likelihood of different possible hypotheses-which is hard or 
impossible with the commonly used Pearson-Neyman testing. With the latter tests we 
accept or reject a zero hypothesis with a given confidence. If we reject the zero hypothesis, 
then this does not mean that we do accept the alternative hypothesis. We cannot even 
use the same data to test the alternative hypothesis. (Or a subhypothesis of the alternative 
hypothesis-note that all hypotheses different from the zero hypothesis must be taken 
together to form the alternative hypothesis.) In fact, this type of testing does not establish 
the relative likelihood between competing hypotheses at all. 

Definition 1. We give Bayes' rule in a simple setting. The common more general version 
is also used in situations where the hypotheses are not just events (subsets) of the sample 
space, but for example are probabilistic concepts. Consider a discrete sample space Q. 

Let D, H1. H1 • ... be a countable set of events (subsets) of Q. H = {H1, H2, .. . } is 
called hypotheses space. The hypotheses H; are exhaustive (at least one is true). From 
the definition of conditional probability, that is, P(A I B) = P(A n B)/ P(B), it is easy to 
derive Bayes'formula (rewrite P(A n B) in two different ways): 

P(H ID)= P(D I H;)P(H;) 
I P(D) . 

If the hypotheses are mutually exclusive (H; n H1 =0 for all i, j), then 

P(D) = L P(D I H;)P(H;). 

(1) 

Despite the fact that Bayes' rule is just a rewriting of the definition of conditional 
probability, its interpretation and applications are most profound and have caused bitter 
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controversy over the past two centuries. In Eq. (1 ), the Hi 's represent the possible 
alternative hypotheses concerning the phenomenon we wish to discover. The term D 
represents the empirically or otherwise known data concerning this phenomenon. The 
term P(D), the probability of data D, may be considered as a normalizing factor so that 
L; P(H; I D) = 1. The term P(H;) is called the a priori probability or initial probability 
of hypothesis H;, that is, it is the probability of H; being true before we see any data. The 
term P(H; I D) is called a posteriori or inferred probability. In model selection we want 
to select the hypothesis (model) with the maximum a posteriori probability (MAP). 2 

The most interesting term is the prior probability P(H;). In the context of machine 
learning, P(H;) is often considered as the learner's initial degree of belief in hypothesis 
H;. In essence Bayes' rule is a mapping from a priori probability P(H;) to a posteriori 
probability P(H; I D) determined by data D. In general, the problem is not so much that in 
the limit the inferred hypothesis would not concentrate on the true hypothesis, but that the 
inferred probability gives as much information as possible about the possible hypotheses 
from only a limited number of data. In fact, the continued acrimonious debate between the 
Bayesian and non-Bayesian opinions centered on the prior probability. The controversy is 
caused by the fact that Bayesian theory does not say how to initially derive the prior proba­
bilities for the hypotheses. Rather, Bayes' rule only tells how they are to be updated. In the 
real-world problems, the prior probabilities may be unknown, uncomputable, or conceiv­
ably nonexistent. (What is the prior probability of use of a word in written English? There 
are many different sources of different social backgrounds living in different ages.) This 
problem would be solved if we can find a single probability distribution to use as the prior 
distribution in each different case, with approximately the same result as if we had used 
the real distribution. Surprisingly, this turns out to be possible up to some mild restrictions. 

2.2. Kolmogorov complexity 

So as not to divert from the main thrust of the paper, we recapitulate the basic formal 
definitions and notations in Appendices A, B. Here we give an informal overview. 

Universal description length 
For us, descriptions are finite binary strings. Since we want to be able determine where 

a description ends, we require that the set of descriptions is a prefix code: no description 
is a proper initial segment (proper prefix) of another description. Intuitively, the prefix 
Kolmogorov complexity of a finite object x conditional y is the length K (x I y) in bits of the 
shortest effective description of x using y as input. Thus, for every fixed y the set of such 
shortest effective descriptions is required to be a prefix code. We define K (x) = K (x I e) 
where e means "zero input". Shortest effective descriptions are "effective" in the sense that 
we can compute the described objects from them. Unfortunately, [8], there is no general 
method to compute the length of a shortest description (the prefix Kolmogorov complexity) 
from the object being described. This obviously impedes actual use. Instead, one needs to 
consider computable approximations to shortest descriptions, for example by restricting 

2 If we want to predict then we determine the expected a posteriori probability by integrating over hypotheses 
rather than choosing one hypothesis which maximises the posterior. 
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the allowable approximation time. This course is followed in one sense or another in 
the practical incarnations such as MDL. There one often uses simply the Shannon-Fano 

code 13.11], which assigns prefix code length Ix := - log P(x) to x irrespective of the 
regularities in x. If P (x) = 2 -I, for every x E { 0. 1 }", then the code word length of an 
all-zero x equals the code word length of a truly irregular x. While the Shannon-Fano 

code gives an expected code word length close to the entropy, it does not distinguish the 
regular elements of a probability ensemble from the random ones, by compressing regular 
individual objects more than the irregular ones. The prefix code consisting of shortest 
prefix-free programs with the prefix Kolrnogorov complexities as the code word length set 

does both: for every computable distribution P the ?-expected code-word length (prefix 
Kolmogorov complexity) is close to the entropy of P as well as that every individual 

element is compressed as much as is possible, and it is an effective code. 

Universal probability distribution 
Just as the Kolmogorov complexity measures the shortest effective description length of 

an object, the algorithmic universal probability m (x I y) of x conditional y measures the 
greatest effective probability of x conditional y. It turns out that we can set m(x I y) = 
2-K (xl.vl. (B. I) in Appendix B. For precise definitions of the notion of "greatest effective 

probability" the reader is referred to this appendix as well. It expresses a property of the 
probability of every individual x, rather than entropy which measures an "average" or 
"expectation" over the entire ensemble of elements but does not tell what happens to the 
individual elements. 3 We will use the algorithmic universal probability as a universal prior 
in Bayes' rule to analyze ideal MDL. 

bidil,idual randomness 
The common meaning of a "random object" is an outcome of a random source. Such 

outcomes have expected properties but particular outcomes may or may not possess these 

expected properties. In contrast, we use the notion of randomness of individual objects. 
This elusive notion's long history goes back to the initial attempts by von Mises, [27], 

to formulate the principles of application of the calculus of probabilities to real-world 
phenomena. Classical probability theory cannot even express the notion of "randomness 
of individual objects". Following almost half a century of unsuccessful attempts, the 
theory of Kolmogorov complexity, [8], and Martin-Lof tests for randomness, [ 13], finally 

succeeded in formally expressing the novel notion of individual randomness in a correct 
manner, see [ l l ]. Every individually random object possesses individually all effectively 
testable properties that are expected (that is, hold on average) for outcomes of the random 
source concerned. It is "typical" or "in general position" in that it will satisfy all effective 

tests for randomness-known and unknown alike. A major result states that an object x 
is individually random with respect to a conditional probability distribution P ( · I y) iff 
log(m(x I y)/ P(x I y)) is close to zero. In particular this means that x is "typical" or "in 
general position" with respect to conditional distribution PC I y) iff the real probability 
P(x I y) is close to the algorithmic universal probability m(x I y) = 2-K(xlyl_ That is, the 

.l As an aside. for every fixed conditional y the entropy - Lx m(x I y) logm(x I y) = oo. 
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prefix Kolmogorov complexity K (x I y) is close to the Shannon-Fano code length of x as 
element of the a set with probability distribution P( · I y). 

For example, if H is the hypothesis that we deal with a fair coin and the data sample D is 
a hundred outcomes 'heads' in a row, then D isn't typical for H. But if Dis a truly random 
individual sequence with respect to H (a notion that has a precise formal and quantitative 
meaning), then D is typical for H. The probability of atypical sequences is very small and 
goes to zero when the data sample grows unboundedly. 

Prediction and model selection 
It has been shown by Solomonoff [20] that the continuous variant of m has astonishing 

performance in predicting sequences where the probability of the next element is 
computable from the initial segment. We now come to the punch line: For model selection, 
Bayes' rule using the algorithmic universal prior distribution, suggested by Solomonoff 
already in [ 19], yields Occam's Razor principle in the MDL sense and is rigorously 
shown to work correctly in the companion paper [261. Namely, there it is shown that 
data compression is almost always the best strategy, both in hypothesis identification and 
prediction. 

2.3. Minimum description length principle 

Scientists formulate their theories in two steps. Firstly, a scientist. based on scientific 
observations. formulates alternative hypotheses (there can be an infinity of alternatives). 
and secondly a definite hypothesis is selected. The second step is the subject of inference in 
statistics. Historically this was done by many different principles, like Fisher's Maximum 
Likelihood principle, various ways of using Bayesian formula (with different prior 
distributions). Among the most dominant ones is the ·common sense' idea of applying 
Occam's razor principle of choosing the simplest consistent theory. But what is "simple"? 
We equate "simplicity" with "shortness of binary description", thus reducing the razor to 
objective data compression. 

However, no single principle is both theoretically sound and practically satisfiable in all 
situations. Fisher's principle ignores the prior probability distribution (of hypotheses). To 
apply Bayes' rule is difficult because we usually do not know the actual prior probability 
distribution. (What is the prior distribution of words in written English, where there 
are many sources of many ages and social classes?) No single principle turned out to 
be satisfiable in all situations. Philosophically speaking, relative shortness achievable by 
ultimate data compression presents an ideal way of solving induction problems. However, 
due to the non-computability of the Kolmogorov complexity and the associated algorithmic 
universal prior function. such a theory cannot be directly used. Some approximation is 
needed in the real world applications. 

Rissanen [ 15] follows Solomonoff's idea, but substitutes a 'good' computable approxi­
mation tom (x) to obtain the so-called Minimum Description Length principle. He not only 
gives the principle, more importantly he also gives the detailed formulas on how to use this 
principle. This made it possible to use the MDL principle. The basic form of the MDL 
principle can be intuitively stated as follows: 
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Minimum Description Length Principle. The best theory to explain a set of data is the 
one which minimiLes the sum of 

• the length. in bib. of the description of the theory: 
• the length. in bits. of datu when e1K·oded with the help of the theory. 

Earlier than Rissunen. but luter than Solomonoff. Wallace 128.291 invented indepen­
dent!) thi: SlH:alled Minimum Message Length (MML) principle. a variant to MDL. 
A '.'IUney of the development of the MDL principle in statistical inference and its appli­
cations i~ given in I 11. In 1261 the relationship between the Bayesian approach and the 
minimum description length approach is established. The general modeling principle MDL 
is sharpened and claritied. abstracted as the ideal MDL principle and detined from Bayes' 
rule by means of Kolmogorov complexity. The argument runs a~ follows: 

Given a data sample and a family of models (hypotheses) one wants to select the model 
that produced the data. A priori it is possible that the data is atypical for the model that 
actually produced it. Meaningful induction is possible only by ignoring this possibility. 
Strictly speaking. selection of a "true" model is improper usage. ··modeling the data" 
irrespective of truth and falsehood of the resulting model is more appropriate. In fact. 
given data sample and model class the truth about the models is impossible to ascertain and 
modeling as well as possible is all we can hope for. Thus. one wants to select a model for 
which the data is typical. The best models make the two-part description of the data using 
the model as l"<.mcise as possible. The simplest one is best in accordance with Occam's razor 
principle since it summarizes the relevant properties of the data as concisely as possible. 
In probabilistic data or data subject to noise this involves separating regularities (structure) 
in the data from accidental effects. 

From Bayes· formula ( I). we must choose the hypothesis H that maximizes the posterior 
P( H I Dl. Taking the negative logarithm on both sides of Eq. (I) 

-log P(H I Dl = - log PW I HJ - log P(H) +log P(D). 

Here. log P( D) is a constant and can be ignored because we just want to optimize the 
left-hand side of the equation over H. Maximizing the P(H I D)'s over all possible H's is 
equivalent to mi11imd11g - log P( H I Dl. that is. minimizing 

-log PW I H) - log P(H). 

To obtain the ideal MDL principle it suffices to replace the tem1s in the sum by K ( D I H) 
and K ( H ). respectively. In view of (B. I l in the Appendix B this is justitied provided~ 

+ + - log P(D I H) = - logm(D I Hl and also -log P(H) = - logm(H). ln [26] we show 
that the basic condition under which this substitution is justitied is encapsulated as the 
Fundamental Inequality. which in broad terms states that the substitution is valid when the 
data are random. relative to every contemplated hypothesis and also these hypotheses are 
random relative to the (universal) prior. Basically. the ideal MDL principle states that the 
prior probability associated with the model should be given by the algorithmic universal 

4 From now on. we will denote hy ~ an in equality to within an additive constant. and hy i the situation when 
+ .;.. 

hoth < and > hold. 
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probability, and the sum of the log universal probability of the model plus the log of the 
probability of the data given the model should be minimized. For technical reasons the 
latter probability P(D I H) must be computable. 

It is important to note that using the algorithmic universal prior we compress every 
model H to its prefix Kolmogorov complexity K(H) = - logm(H). Applying the ideal 
MDL principle then compresses the description of the data encoded using the model. 
D I H, to its prefix Kolmogorov complexity K ( D I H) = - log m ( D I H) as well, that 
is, with respect to the model H minimizing the sum of the two complexities. Roughly 
speaking, the MDL selection assumes that the data set is "typical" for the selected model 
H. Thus, MDL aims at selecting a model for which the data are "typical", even if there 
happened to be a different "true" model that inappropriately generated ''atypical" data. In 
this manner application of MDL is resilient to overfitting the model. 

2.4. ideal MDL 1•ersus real MDL 

Using the algorithmic universal prior, the ideal MDL principle is valid for a set of 
data samples of Lebesgue measure one, the "random", ''typical" outcomes, for every con-

templated hypothesis. For these "typical" outcomes we have K ( D I H) ;t, - log P ( D I H) 

which means that the classic Shannon-Fano code length reaches the prefix Kolmogorov 
complexity on these data samples. The Shannon-Fano code that assigns code words of 

length ;t, - log P (-) to elements randomly drawn according to a probability density P ( ·) is 
in fact used in the applied statistical version of MDL. Thus, under the assumption that the 
data sample is typical for the contemplated hypotheses, the ideal MDL principle and the 
applied statistical one coincide, and moreover, both are valid for a set of data samples of 
Lebesgue measure one [26]. The latter result has also been obtained in the statistical theory 
using probabilistic arguments [I]. 

The term - log P ( D I H), also known as the se/f-ilifonnation in information theory 
and the negative log likelihood in statistics, can now be regarded as the number of bits it 
takes to redescribe or encode D with an ideal code relative to H. In different applications, 
the hypothesis H can mean many different things, such as decision trees, finite automata, 
Boolean formulas, or polynomials. 

Example 1. In general statistical applications, one assumes that H is some model H (e) 
with a set of parameters 8 = {81, ... , Eh} of precision c, where the number k may vary and 
influence the descriptional complexity of H (8). For example, if we want to determine the 
distribution of the length of beans, then His a normal distribution N(11, a) with parameters 
median 11 and variation a. So essentially we have to determine the correct hypothesis 
described by identifying the type of distribution (normal) and the con-ect parameter vector 
(11, a). 

In such cases, we minimize 

- log P(D I 8) - log P(8). 

Example 2. Let's consider the fitting of a 'best' polynomial on n given sample points in 
the 2-dimensional plane. This question is notoriously underdefined, since both a l st degree 
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polynomial with x 2 best fit. and a (12 - 1 )th degree polynomial with perfect fit are arguably 
the right solutions. But with the MDL principle we can find an objective 'best' polynomial 
among the polynomials of all degrees. 

For each fixed k. k = 0 ..... n - l. let fk be the best polynomial of degree k, fitted on 
points (x;, Yi) (I ( i ( n ), which minimizes the error 

11 

error(.fk) = 2.)fk(x;) - y; )2. 
i=l 

Assume each coefficient takes c bits. So fk is encoded in c(k + 1) bits. Let us interpret 
the Yi 's as measurements for argument x; of some true polynomial to be detem1ined. 
Assume that the measurement process involves errors. Such errors are accounted for by 
the commonly used Gaussian (normal) distribution of the error on Yi 's. Thus. given that f 
is the true polynomial, 

Pr(y1 ..... Yn I f. XJ, ...• X11) = n exp(-O((fCxi) - Yi ) 2)). 

The negative logarithm of above is c' ·error( f) for some computable c'. The MDL principle 
tells us to choose f = f; 11 , with m E (0 .... , n - 1 }, which minimizes c(m + 1) + c' . 
emlr(/;11 ). 

In the original Solomonoff approach a hypothesis H is a Turing machine. In general we 
must avoid such a too general approach in order to keep things computable. In different 
applications, H can mean many different things. For example, if we infer decision trees, 
then H is a decision tree. In case of learning Boolean formulas, then H may be a Boolean 
formula. If we are fitting a polynomial curve to a set of data, then H may be a polynomial 
of some degree. In Experiment 1 below, H will be the model for a particular character. 
Each such H can be encoded by a binary string from a prefix-free set, where a set of codes 
is prefix-free if no code in the set is a prefix of another. 

3. Experiment 1: On-line handwritten characters 

3.1. Model development 

3. 1. 1. Basic assumptions 
When an alphanumeral character is drawn on a planar surface, it can be viewed as a 

composite planar curve, the shape of which is completely determined by the coordinates of 
the sequence of points along the curve. The order of the sequence is determined by on-I ine 
processing the data from the scanning machinery at the time of writing the character. Since 
the shape tends to vary from person to person and from time to time, so do the coordinates 
of the point sequence. A key assumption in our treatment is that for a particular person writ­
ing consistently the shape of the curve tends to converge to an average shape, in the sense 
that the means of corresponding coordinates of the sampled point sequences converge. 

That is, we assume: 
• Each shape of an example curve for a particular character contains a set of 

distinguished feature points. 



Q. Gao et al. I Artificial lntelliRence 121(2000)1-29 13 

• For each such point, the average of the instances in the different examples converges 
to a mean. 

• Moreover, there is a.fixed probability distribution (possibly unknown) for each such 
point which is symmetric about the mean value, and the variance is assumed to be the 
same for all the character drawings. 

Essentially, we only assume that one person's hand-writing has a fixed associated 
probability distribution, which does not change. 

3.1.2. Feature space, feature extraction and prototypes 
A Kurta ISONE digitizer tablet with 200/inch resolution in both horizontal and vertical 

directions was used as the scanner to obtain and send the coordinates of the sequential 
points of the character curve on the tablet to the microprocessor of a IBM PS/2 model 30 
computer. The system was implemented using programming language C. The coordinates 
were normalized on a 30 x 30 grid in horizontal and vertical directions. 

The character drawn on the tablet is processed on-line. The sequence of the coordinates 
in order of time of entry is stored in the form of a linked list. This list is preprocessed in 
order to remove the repeating points due to hesitation at the time of writing, and to fill in 
the gaps between sampled points resulted from the sampling rate limit of the tablet. 

The latter needs some explanation: the digitizer has a maximum sampling rate of 100 
points/second. If a person writes a character in 0.2 seconds, only 20 points on the character 
curve will be sampled, leaving gaps between those points. 

The preprocessing procedure ensures that in the resulting linked list any pair of 
consecutive points on the curve has at least one component of coordinates (stored as 
integers between 0 and 30) differing by I and no coordinate component differing by 
more than 1. For a preprocessed list ( (x 1, YI), ... , (x11 , y 11 )) therefore we have that for all i 
(! ~ i < n) 

Ix; -x;+1I + IYi - Yi+II;:::;: 1, 

Ix; - x;+1 I. I.Vi - Yi+! I~ I. 

The preprocessed curve coordinate list is then sent to the feature extraction process. So far 
the coordinates are still integers in the range of 0 to 30. 

The coordinates of certain points along the character curves are taken as relevant 
features. Feature extraction is done as follows. A character may consist of more than one 
stroke (a stroke is the trace from a pen drop-down to pen lift-up), the starting and ending 
points of every stroke are mandatorily taken as features. In between, feature points are 
taken at a fixed interval, say, one point for every n points along the preprocessed curve, 
where n is called feature extraction interval. This is to ensure that the feature points are 
roughly equally spaced. Actually the Euclidean length between any two points on the 
stroke curve, excluding the last point of a stroke, varies from n to /211 (for the diagonal). 

The sequence of the feature point coordinates extracted from a given character drawing 
constitute a feature vector. (If the character drawing contains more than one stroke, its 
feature vector consists of the concatenation of the feature vectors of the individual strokes 
in time-order.) The dimension of the feature vector is the number of entries in it-or 
rather twice that number since each entry has two coordinate components. Obviously the 
dimension of the feature vector is also a random variable since the shape and the total 
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number of points on the character curve varies from time to time. The dimension of the 
feature vector is largely determined by the feature extraction interval. 

The extracted feature vector of a character is viewed as a prototype of a character, and is 
stored in the knowledge base of the system. 

3.1.3. Comparison between feature vectors 
Before the system is employed to recognize characters, it must first learn them. It 

is trained with examples of the character drawings from the same data source which 
it is supposed to recognize afterwards. Here the 'same data source' means the same 
person writing consistently. The basic technique used in both training and recognition 
is the comparison or matching between prototypes or feature vectors. To compare any 
two prototypes or feature vectors of equal dimension, we can simply take the Euclidean 
distance between the two vectors. Mathematically this means subtracting each component 
of one vector from its corresponding component in the other feature vector, summing up 
the square of the differences and taking the square root of the sum. If the two prototypes 
are X = ((x1, YI) ... , (X11 , Yn)) and X' = ((x;, y;) ... , (x:,. y;1)), then the distance between 
them is 

11 

~(x· - x'.) 2 + (v· - /)2. ~ l l .,l •/ 

i=I 

The knowledge base of the system is a collection of feature vectors stored in the form of a 
linked list. Each such feature vector is an example of a particular character and is called a 
prototype for that character. Each newly entered character drawing in the form of a feature 
vector is compared to the prototypes in the knowledge base. But we do not (cannot) assume 
that all feature vectors extracted from examples of the same character will have the same 
dimension. 

Therefore, the comparison technique used in our system follows the spirit of this 
mathematical definition but is more elastic. As a consequence, corresponding feature points 
may be located in different places in the feature vectors. This problem is solved by so­
called elastic matching which compares a newly sampled feature vector with the set of 
stored feature vectors, the prototypes. The elasticity is reflected in two aspects: 

Dimension tolerance is a constant integer Td such that the new feature vector is compared 
with all stored feature vectors of which the dimension is not more than Td different. That 
is, if the new feature vector has n feature points, it will be compared (matched) with all the 
prototypes with a number of feature points in the range of [n - 1;1, n + Td ]. 

Local extensibility is an integer constant Ne such that the ith feature point of the new 
feature vector is compared with the feature points with index ranging from i - Ne to i +Ne 

of each prototype satisfying the dimension tolerance. The least Euclidean distance found 
this way is considered to be the 'true' differenced; between the two vectors at ith feature 
point. 
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Definition 2. If the dimt'n,ion 111 ttw new katun.· \l'l"lor .1 is 11. then the l'lwtic distance 
,i1.r. .1 'i betv.een x and a prutol~llC .1 1' dl.'lrned a' 

,)(r. .r') = ! "\' d:. i...- I 

\ 1=1 

it x · i-. v. ithin the dimcn-.ion tolcrance T,1 nf x. and a ( r .. 1 ·I = x othern ise. 

For our particular problem. l'\pl'rimental t'\ iJence inJicati:s that it suftices to set both 
Td and N, to I. In our experiment we u-.ed elastic distance betwet'n a new featurt' vector r 
and a prototypt' .r' as ..:omputed above with T,1 == N, = I. 

3.1.4. Knmrletlgc hase and fe,m1i11g 

The knowledge ba.;e is constnK·tt·d in the learning phase of the -.y~..cem hy sampling 
feature vector-. of handwritten charal·ters while telling the system \~ hil·h ~·haral"ter it is an 
example of. Our system uses the following Leaming Algorithm to establish the knov. ledge 
base. 

Step 0. lnitiali1.e the knov. ledge base S tn the empty set VI. tThe demenb of S will be 
triples (x. x. cl with x a prepm:t'sst'd featurt' \t'ctor (a prototype!. x is the character 
value of which x is a prototype. and c is a counta. l Assign values to weights a. fJ ( ust'd 
later to combine prototypes) so that a + f3 = I. 

Step I. Sample a new example of a •:haracter feature vector, say x after preprocessing. 
together with its character value. say x. (Actually. the user draws a new example 
handwritten character on the tablet and indicates the character value-which character 
the Jrawing represents-to the system. l 

Step 2. Check S whether or not any prototypes exist for character x. 
If there is no prototype for x in S. then store x in Sas a prototype for x by setting 

s : = s u I (.C x . I ) I · 
If P, = I y • .... .:: I is the current nonempty list of prototypes in S. then determine elastic 
distances b (x. y l ... 8 Lr . .:: I. Let P:1'm S:: P, be the set of prototypes in P, such that for 
all x' E p:nm v.e have 

, . , Jd . I< p I u(X.X)=umin=mmu(x.yl:yE r. 

Now x' E p:nm may or m<ty not he one of the prototypes with the character value x. 
Step 2.1. If x' E P{rnn and (x'. x. 111) ES 1the minimum distance 8111m is between x and 
one of the prototypes for x in S ), then 

x':=ax'+fix: m:=m+I. 

1The new prototype is combined with the existing prototype by taking the weighted 
average of every coordinate to produce a moditied prototype for that character. 
Moreover. we add one to the counter associated with this prototype. l 
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Step 2.2. If Step 2.1 is not applicable. then for no x' E P;.nin we have (x'. X. ·) E S (the 
minimum distance is between .r and prototype(s) in S with character value i= X ). Then 
we distinguish two cases. 

Case I. There is (x'.x.111) ES such that o(x.x') ~ Omin(m + !)/m. (Herem is 
number of character drawings-the current counter value-which have consecutively 
be combined to form the cuffent .r' prototype.) Then set 

x' := a.r' + f3x; m := m + 1. 

It is expected that the modified prototype will have minimal distance Omin next time 
when a similar drawing of the same character value arrives. 

Case 2. The condition in Case 1 is not satisfied. Then the new prototype will be saved 
in the knowledge base as a new prototype for the character by setting 

s : = s u { (.r. x. 1)}. 

Notice that more than one prototype for a single character is allowed in the knowledge 
base. 

3. I .5. Rf!Cognition of an unknown character dro\\'ing 
The recognition algorithm is simple. Assume the Learning Algorithm above has been 

executed. and a knowledge base S with prototypes of all possible characters has been 
constructed. When an new character drawing is presented to the system, it is compared 
to all the prototypes in the knowledge base with dimension variation within the range 
specified by the dimension tolerance. The character of the prototype which has minimum 
8-distance from the presented feature vector is considered to be the character value of that 
feature vector. The rationale here is that the prototypes are considered as the ·mean' values 
of the feature vectors of the characters, and the variances of the distribution are assumed to 
be the same for all prototypes. Formally, the Recognition Algorithm is as follows. 

Step 0. Sample a new example of a character feature vector, say x after preprocessing. 
(Actually, the user draws a new example handwritten character on the tablet which is 
preprocessed to form feature vector .r.) 

Step 1. If S = ( (.r 1. x 1, ·) ..... (.r11 • x11 • ·) l is the knowledge base, then determine elastic 
distances8(x .. q) ... 8(x.x11 ). lf8(.r.x;) is the minimal distance in this set, with i is 
least in case more than one prototype induces minimum distance, then set Xi is the 
character value for x and 

Recognize character X;. 

This concludes the main procedure of training and classification. A few remarks are in 
order to explain differences with the original elastic matching method. 

(I) This process differs from the original elastic matching method in the the way of 
prototype construction. More than one prototype are allowed for a single character. 
By our procedure in the Learning Algorithm, a prototype is the statistical mean of a 
number of positive examples of the character. 
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(2) Every prototype is a feature vector which in tum is a point in the feature space of 
its dimension. Since the classification is based on statistical inference, the rate of 
correct classification depends not only on how well the prototypes in the knowledge 
base are constructed, but also on the variability of the handwriting of the subject. 
Even though more than one prototype is allowed for any character in the knowledge 
base, too many prototypes may result in an overly dense feature space. When the 
8-distance between two points (two prototypes with different character values in the 
knowledge base) in the feature space is comparable to the variability of the subjects 
handwriting, then the rate of correct classification may drop considerably. 

(3) The prototypes in the knowledge base constitute the model for the system. How 
well the prototypes are constructed will essentially determine the rate of correct 
classification and therefore the performance of the model. For the scheme described 
above, the prototypes are constructed by extracting points at a constant interval. 
Generally speaking, more points in the prototypes gives a more detailed image of 
the character drawing but may also insert random 'noise' in the model. 

Application of MDL to guide the selection of 'best' feature extraction interval is 
the main thrust of this work, to which we proceed now. 

3.2. Implemented description lengths and minimization 

The expression in MDL consists of two terms: the model and error coding lengths. The 
coding efficiency for both of these two terms must be comparable, otherwise minimizing 
the resulted expression of total description length will give either too complicated or too 
simple models. For this particular problem, the coding lengths are determined by practical 
programming considerations. 

A set of 186 character drawings, exactly 3 for each of the 62 alphanumeral characters, 
were processed to feature vectors and presented to the Learning Algorithm, to form the raw 
database. The character drawings were stored in an integer coordinate system standardized 
from 0 to 30 in both x and y axis. After preprocessing as above, they were then input to 
the Learning Algorithm to establish a knowledge base: the collection of prototypes with 
normalized real coordinates, based on a selected feature extraction interval. 

Subsequent to the construction of the knowledge base, the system was tested by having 
it classify the same set of character drawings using the Recognition Algorithm. This 
procedure served to establish the error code length and the model code length which are 
defined as follows. 

Definition 3. The error code length or exception complexity is the sum of the total 
number of points for all the incorrectly classified character drawings. This represents the 
description of the data given the hypothesis. 

The model code length or model complexity is the total number of points in all 
the prototypes in the machine's knowledge base multiplied by 2. This represents the 
hypothesis. 

The total code length is the sum of the error code length and the model code length. 
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Remark 1. The factor of 2 in the model code length is due to the fact that the 
prototype coordinates are stored as real numbers which takes twice as much memory (in 
programming language C) as the character drawing coordinates which are represented 
in integer form. One might wonder why the prototype coordinates are real instead of 
integer numbers. The reason is to facilitate the elastic matching to give small resolution 
for comparisons of classification. 

Thus, both the model and error code lengths are directly related to the feature extraction 
interval. The smaller this interval, the more complex the model, but the smaller the error 
code length. The effect is reversed if the feature extraction interval goes toward larger 
values. Since the total code length is the sum of the two code lengths, there should be a 
value of feature extraction interval which minimizes the total code length. 

This feature extraction interval is considered to be the 'best' one in the spirit of MDL. 
The corresponding model, the knowledge base, is considered to be optimal in the sense 
that it contains enough essence from the raw data but eliminates most redundancy due to 
noise from the raw data. This optimal feature extraction interval can be experimentally 
determined by carrying out the above described build-and-test (building the knowledge 
base and then test it based on the same set of characters on which it was built) for a number 
of different feature extraction intervals. 

The actual optimization process was implemented on the actual system we constructed, 
and available to the user. For our particular set of characters and trial, the results of 
classifying by the Recognition Algorithm the same set of 186 character drawings used by 
the Learning Algorithm to establish the knowledge base, is given in Fig. I. Three quantities 
are depicted: the model code length, the error code length, and the total code length, 
versus different feature extraction intervals (FEATURE EXTRACTION INTERVAL in the 
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figure). For larger feature extraction intervals, the model complexity is small but most of 
the character drawings are misclassified, giving the very large error code length and hence 
the very large total code length. On the other hand, when the feature extraction interval is at 
its low extremal value, all training characters get correctly classified which gives zero error 
coding length. But now the model complexity reaches its largest value, resulting also in a 
large total code length again. The minimum total code length occurred in our experiment at 
an extraction interval of 8, which gives 98.2 percent correct classification. Fig. 2 illustrates 
the fraction of correctly classified character drawings for the training data. 

3.3. Validation of the model 

Whether the 'optimal' model, determined by choosing the interval yielding minimal 
total code length for the training data, really performs better than models in the same class 
using different feature extraction intervals, can be tested by classification of new data­
new character drawings. 

We have executed such a test by having the set of 62 characters drawn anew by the same 
person who provided the raw data base to build the knowledge base. After preprocessing, 
the feature vectors resulting from these data were entered in the Recognition Algorithm. 
The new data are considered to be from the same source as the previous data set. 

This new data set was classified by the system using the knowledge bases built by 
the Learning Algorithm from the training data set of 186 character drawings, based on 
different feature extraction intervals. The test results are plotted in Fig. 3 in terms of the 
fraction of correct classification (CORRECT RATIO) versus feature extraction interval 
(FEATURE EXTRACTION INTERVAL). It is interesting to see that a 100% correct 
classification occurred at feature extraction intervals 5, 6 and 7. These values of feature 
extraction intervals are close to the optimal value 8 resulting from MDL considerations. 
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Fig. 3. Fraction correctly classified new test data. 

Furthermore, at the lower feature extraction intervals, the correct classification rate drops, 
indicating the disturbance caused by too much redundancy in the model. The recommended 
working feature extraction interval is thus either 7 or 8 for this particular type of character 
drawings. 

4. Experiment 2: Modeling a robot arm 

In the second experiment, the problem is to model a two-jointed robot arm described 
in the introduction. A mathematical description is as follows. Let rl and rz be the lengths 
of the two limbs constituting the arm. One end of the limb of length r1 is located in the 
joint at the origin (0, 0) of the two-dimensional plane in which the arm moves. The angle 
the limb makes with the horizontal axis is 81. The angle the limb of length r1, the second 
limb, makes with the first limb (in the second joint) is e1. Then the relationship between 
the coordinates (y1, y2) of the free end of the second limb (the hand so to speak) and the 
variables 81, 82 is given by 

YI= ri cos(e1) + r1cos(e1+82), 

Y2 = r1 sin(81) + r1 sin(81 + 82). 

The goal is to construct a feedforward neural network that correctly associates the (y1, y2) 

coordinates to the (81, e1) coordinates. 
As in [ 12) we set r1 = 2 and r2 = 1.3. The setup is similar to the character recognition 

experiment except that the data are not real-world but computer generated. We generated 
random examples of the relation between YI, yz and 81, 82 as in the above formula and a 
little Gaussian noise was added to the outputs. 
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Since we want the learned model to extrapolate from the training examples rather than 
interpolate between them, the training sets consist of random examples taken from two 
limited and separate areas of the domain. In the training data the first angle e1 was in 
between 90 and 150 degrees or between 180 and 240 degrees, and the second angle was 
in between 30 and 150 degrees. To test extrapolation capability of the learned model we 
used a unseen test set in which 81 ranges between 0 and 270 and 82 between 0 and 180 
degrees. 

4.1. Mode/features 

The model class consists of three-layer feedforward networks. The first layer is the input 
layer consisting of two input nodes with as input the real values of the two angles e1, 82. 

Both nodes in the input layer are connected with every node in the second layer-the 
hidden layer-of which the number of nodes is to be determined. Every node in the second 
layer is connected to both nodes in the third (output) layer, yielding the two real-valued 
output values YI, y2. There are no other connections between pairs of nodes. The second 
layer nodes have sigmoidial transfer functions and in the third layer output nodes have 
linear transfer functions. Thus, the only unknowns in the network are the number of nodes 
in the hidden layer, the weights on the connections and the biases of the nodes in the hidden 
layer. For every number of k nodes (k = 2, 3, ... , 15) in the hidden layer we learned the 
weights of the network using the back propagation algorithm in I 05 training cycles. After 
that, the learned models are evaluated experimentally as to their prediction errors on an 
unseen test set. 

During the experiments we noticed that if we used a test set from the same domain as 
the training set-thus testing interpolation rather than extrapolation-then the increase of 
error with increasing number of nodes in the hidden layer (after the optimal number) was 
small. For the unseen test set described earlier-testing extrapolation or generalization­
the increase of the error after the optimal network size was more steep. Below we used the 
latter "generalization" test set. 

4.2. Determining size of hidden layer by MDL 

We verify the contention that in this experimental setting the hypothesis selected by the 
MDL principle using the training data set can be expected to be a good predictor for the 
classification of unseen data from a test set. 

Neural networks can be coded in the following way. Both the topology, the biases of the 
nodes, and the weights on the links are coded. Assume that the network contains k nodes. 
The code starts with the number k. Next a list of k bias values is encoded using l bits for 
each bias value. We need k x (k - 1) bits to describe which pairs of nodes are connected 
by directed arcs (possibly in two ways). The weight for each link is given using a precision 
of l bits. Concatenating all these descriptions in a binary string we can only retrieve the 
network if we can parse the constituent parts. Keeping the above order of the constituents 
we can do that if we know k. Therefore, we start the encoding with a prefix-free code for 
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k in log k + 2 log log k bits. 5 The total description now takes at most log k + 2 log log k + 
k x I + k(k - I)+ m x I bits, where m is the number of directed edges (links). 

For three-layer feedforward networks that constitute our models, with two input nodes 
and two output nodes and k nodes in the hidden layer, the topology is fixed. As already 
stated, we have to choose only the weights on the links and possibly the biases of the hidden 
nodes. Using standard bias, this gives descriptions of length log k + 2 log log k + 4k x l bits. 
For the range of k. l we consider the logarithmic terms can be ignored. Thus, the model 
cost is set at 4k/ bits. and with precision I = 16 the model cost is linear ink at 64k bits. 

The encoding of the output data for the neural network, to determine the error cost in 
the MDL setting. depends on whether they are given as integers or reals. For integers one 
takes the 16 bits that the Maxlnt format requires, and for real numbers usually twice as 
many, that is, 32 bits. For reals such an encoding introduces a new problem: when is the 
output correct'? We consider it correct if the real distance between the output vector and 
the target vector is under a small fixed real value. In the MDL code every example consists 
of two input angles 01, 82, which are encoded as 32 bits. Thus, the erroroneous examples, 
those exceeding the small fixed error cut-off level that we set, are encoded in 32 bits each. 
We ignore the amount with which the misclassified output real value differs from the target 
real value, it may be large or small. The total error is encoded as an explicit list of the 
misclassified examples. 

Because MDL selects the model that minimizes sum of model length and total error 
length, it is important how large a training set we choose. The coding length of the models 
is the same for every fixed k and training set size, but the total error length depends on this. 
For a small training set the number of erroneous (misclassified) examples may be very 
small compared to the model code length. and the difference between simple models with 
small k and complex models is large. With large training sets the opposite happens. This is 
exactly right: with a small number of examples the simpler models are encouraged. How 
complex a model can be must be justified by the size of the training set Intuitively, with 
increasing training set size, eventually the smallest model that has low enor on this set can 
be expected to stabilize and to have low prediction error. 

In the following experiment we used a random training set of JOO examples, and for 
every k (2 ~ k ( 15) a network with k nodes in the hidden layer was trained with 105 

training cycles. Fig. 4 shows the results in terms of MDL: the model code length, the error 
code length, and the total description length, as a function of the number of nodes in the 
hidden layer. The optimum of the total code length is reached for seven hidden nodes, that 
is, MDL predicts that seven hidden nodes (the granularity of the hidden layer so to speak) 
give the best model. This is only one node away from the optimal network size determined 
experimentally below. 

4.3. Validation of the model 

To determine the best number of hidden nodes we used thirty different random training 
sets of 100 examples each. For every k (2 ~ k ( 15) the network was trained using I 05 

training cycles. Other more sophisticated stop criteria could have been used, but some 

5 This is standard in prefix-free coding, see Appendix A 
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checking showed that in general the performance of the network after I 05 training cycles 
was close to optimal. The error per example is the real distance between the output vector 
and the target vector. In Fig. 5 the average squared error on the training set and the average 
squared prediction error on the unseen test set are displayed as a function of the number of 
nodes in the hidden layer. The optimal network in the sense of having best extrapolation and 
generalization properties in modding the unseen examples in the test set most correctly. is 
a network with 8 hidden nodes. 

As expected. the error t..n the training set keeps on decreasing with an increasing number 
of nodes in the hidden layer. that is. when the model becomes increasingly complex and 
is capable of modeling more and more detail. When we look at the prediction error of 
new examples that were not in the training data (Fig. 5). we see that the average squared 
prediction error tirst decreases when the model complexity increases. but that there is an 
optimum of minimum error after which the error starts to increase again. Experimentally. 
the best number of hidden nodes for this problem with a training set size of I 00 examples 
is 8, that is. one more than predicted by the simplified application of MDL above. 
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5. Discussion 

We applied the theoretical Minimum Description Length principle to two different 
experimental tasks aimed at learning the best model discretization. The tirst application was 
learning to recognize isolated handwritten characters on-line using elastic matching and 
some statistical technique. A 'model' is a collection of prototypes built from raw training 
character drawings by on-line taking points on the curves of the executed character drawing 
at a constant feature extraction interval, and by combining closely related character 
drawings. Some novel features here are the use of multiple prototypes per character, and 
the use of the MDL principle to choose the optimal feature extraction interval. 

The model is optimized in the spirit of MDL by minimizing the total code length, which 
is the sum of the model and error-to-model code lengths, against different feature extraction 
intervals. The resulting model is optimal according to the theory. It is then validated by 
testing using a different set of character drawings from the same source. We believe that 
the result of this small test gives evidence that MDL may be a good tool in the area of 
handwritten character recognition. 

The second application was modeling a robot arm by a three layer feedforward neural 
network, where the precision parameter to be learned is the number of nodes in the hidden 
layer. The MDL predicted number of nodes was validated by extensive testing of the model 
with respect to extrapolation and generalization capabilities using unseen examples from a 
test set. 

The optimal granularity of the models was predicted for sensible values-only marginally 
different from the experimentally determined optimal ones. This shows that this rigorous 
and not ad hoe form of "'Occam's Razor" is quite succesfull. Comparison of the 
performance of the-admittedly limited- experiments on the robot arm problem with that 
of other principles, such as NIC and AIC, indicated that MDL's performance was better or 
competitive [23]. 

A similar theory and practice validation in case of the Bayesian framework for model 
comparison was given by Mackay [ 12]. This paper inspired us to use the robot arm problem 
in the MDL setting. We note that the Bayesian framework is genuinely different as is 
rigorously demonstrated in our companion paper [26]. It is well known that prefix code 
length is equivalent to negative log probability through the Shannon-Fano code [3, 11], 
and therefore with every such code there corresponds an equivalent probability. Thus, it 
(incorrectly) may seem that the MDL coding approach can in principle be translated back 
into a Bayesian approach where the model code gives the prior. But then the error-to­
model part will be improper: The analysis we have given in [26] shows that the data-to­
model error may not correspond to the conditional data-to-model probability if the data are 
"atypical" for the contemplated hypothesis. Moreover, to the authors, coding of large data 
is more natural than reasoning about possibly nonexisting probabilities. 

5.1. Directionsj()rfuture work 

In general the MDL method appears to be well suited for supervised learning of 
best model discretization parameters for classification problems in which error coding 
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is straightforward. Applying the MDL method is simple, and it is computationally not 
expensive. 

The central point is that using MDL the optimal granularity of the model parameters 
can be computed automatically rather than tuned manually. This approach constitutes a 
rational and feasibly computable approach for feature selection as opposed to customary 
rather ad hoe approaches. The purpose of presenting the theory outline and the example 
applications is to stimulate re-use in different areas of pattern recognition, classification, 
and image understanding (region segmentation, color clustering segmentation, and so on). 
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Appendix A. Kolmogorov complexity 

The Kolmogorov complexity [8] of a finite object x is the length of the shortest effective 
binary description of x. We give a brief outline of definitions and properties. For more 
details see [11 ]. Let x, y, z EN, where N denotes the natural numbers and we identify N 
and {O. I)* according to the correspondence 

(0, c:), (1, 0), (2, 1), (3, 00), (4. 01 ), .... 

Here c: denotes the empty vvord with no letters. The length I (x) of x is the number of bits 
in the binary string x. For example, I (010) = 3 and l (c:) = 0. 

The emphasis is on binary sequences only for convenience; observations in any alphabet 
can be so encoded in a way that is 'theory neutral'. 

A binary string y is a proper prefix of a binary string x if we can write x = y z for z f. s. 
A set {x, y, .. . } s; {O, 1} * is prefix-free if for any pair of distinct elements in the set neither 
is a proper prefix of the other. A prefix-free set is also called a prefix code. Each binary 
string x = x 1 x2 ... x 11 has a special type of prefix code, called a se(fdelimiting code, 

where ....,x11 = 0 if Xn = 1 and ....,x11 = I otherwise. This code is self-delimiting because we 
can detennine where the code word .r ends by reading it from left to right without backing 
up. Using this code we define the standard self-delimiting code for x to be x' = l (x )x. It is 
easy to check that l (.r) = 2n and l (x') = n + 2 log n. 

We develop the theory using Turing machines, but we can as well use the set of LISP 
programs or the set of FORTRAN programs. 

Let T1, T2, ... be a standard enumeration of all Turing machines, and let 4>1, 4>2, ... be 
the enumeration of corresponding functions which are computed by the respective Turing 
machines. That is, T; computes 4>i. These functions are the partial recursive functions or 
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comp11tahlt- functions. The Kolmogorov complexity Ctx l of x is the length of the shonest 
hinary program frnm which .1 is l·omputed. Formally. we define thi~ as follow~. 

Definition A. I. The Kolmogom1· complt'Xitv of x given -" (for free on a special input tape) 
b 

C\x[vl=min!t<i'p): c/>,(p.yl=x. pE{O.I)'. iEN!. 
f'.1 

Define C(.r l = Ctx I E J. 

Though defined in terms of a partirnlar machine model. the Kolmogorov complexity is 
machine-independent up to an additive constant and acquires an asymptotically universal 
and absolute chmacter through Church's thesis. from the ability of universal machines 
to simulate one another and execute any effective process. The Kolmogorov complexity 
of an object can be viewed as an absolute and objective quantiti..:ation of the amount of 
information in it. This leads to a theory of ahsolute information co11te11t.1 of i11dirid1wl 
objecb in contrast to classil· information theory which deals with u1·erage information to 
t·ommunicate objects produced by a random source 111 ]. 

For technical reasons we also need a variant of complexity. so-called prefix Kolmogorov 
complexity, which is associated with Turing machines for which the :,et of programs 
resulting in a halting computation is prefix-free. We can realize this by equipping the 
Turing maehine with a one-way input tape, a separate work tape, and a one-way output 
tape. Such Turing machines are ealled prefix machines since the halting: programs for 
anyone of them fonn a prefix-free set. Taking the universal prefix machine U we can define 
the prefix complexity analogously with the plain Kolmogorov rnmplexity. If x• is the first 
shonest program for x then the set Ix*: U (x •) = x. x E I 0, l l * l is a prefix cod I!. That is. 
eaeh x* is a code word for some x. and if x* and y* are code words for x and-" with x ::j= y 
then x' is not a prefix of y*. 

Let (-) be a standard invertible effective one-one encoding from N x N to a prefix-free 
recursive subset of N. For example. we can ~et (x. y) = x'y'. We insist on prefix-freeness 
and rernrsiveness because we want a universal Turing machine to be able to read an image 
under ( ·) from left to right and determine where it ends. 

Definition A.2. The prl!_fix Kolmogoror rnmpli!xity of x given y (for free) is 

K!xjyl=min{l((p.i)):ip,((p.y))=x. pE{O.l}*. iENj. 

'"' 
Define K(x) = K(.r I E). 

The nil'e thing about K (x l is that we can interpret 2-K en as a probability distribution 
since K (x) is the length of a shonest prefix-free program for x. By the fundamental Kraft's 
inequality, see for example 13. 11 ], we know that if I 1. /2 • ... are the code-word lengths 
of a prefix code, then [, T 1• ~ l. This leads to the notion of algorithmic universal 
distribution-a rigorous fonn of Occam's razor-below. 
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Appendix B. Universal distribution 

A Turing machine T computes a function on the natural numbers. However, we can also 
consider the computation of real valued functions. For this purpose we consider both the 
argument of </> and the value of</> as a pair of natural numbers according to the standard 
pairing function ( · >. We define a function from N to the reals JR. by a Turing machine T 
computing a function </> as follows. Interprete the computation</> ( (x, t}) = (p, q) to mean 
that the quotient p/q is the rational valued tth approximation off (x). 

Definition B.1. A function f : N -+ JR. is enumerable or semi-computable from below if 
there is a Turing machine T computing a total function</> such that <f>(x, t + 1) ~ <f>(x, t) 
and lim1_,. 00 <f>(x, t) = f(x). This means that f can be computably approximated from 
below. If f can also be computably approximated from above then we call f recursive. 

A function P: N -+ [0, I] is a probability distribution if LxeN P(x) ~ 1. (The 
inequality is a technical convenience. We can consider the surplus probability to be 
concentrated on the undefined element u fj. N.) 

Consider the family EP of enumerable probability distributions on the sample space 
N (equivalently, (0, l}*). It is known, [11], that EP contains an element m that 
multiplicatively dominates all elements of EP. That is, for each P E £P there is a constant 
c such that cm(x) > P(x) for all x EN. We call man algorithmic universal distribution 
or shortly universal distribution. 

The family EP contains all distributions with computable parameters which have a 
name, or in which we could conceivably be interested, or which have ever been considered. 
The dominating property means that m assigns at least as much probability (up to a fixed 
constant factor) to each object as any other distribution in the family EP does. In this sense 
it is a universal a priori by accounting for maximal ignorance. It turns out that if the true 
a priori distribution in Bayes' rule is recursive, then using the single distribution m, or 
its continuous analogue the measure M on the sample space {O, 1 )00 (for prediction as in 
[20]) is provably as good as using the true a priori distribution. 

We also know, [ 11 ], that we can choose 

-logm(x) = K(x). (B.l) 

That means that m assigns high probability to simple objects and low probability to 

complex or random objects. For example, for x = 00 ... 0 (n O's) we have K (x) ± K (n) ~ 
log n + 2 log log n since the program 

print n_times a "0" 

prints x. (The additional 2 loglog n term is the penalty term for a self-delimiting encoding.) 
Then, l/(n log2 n) = O(m(x)). But if we flip a coin to obtain a stringy of n bits, then 

with overwhelming probability K (y) ;t n (because y does not contain effective regularities 
which allow compression), and hence m(y) = 0(1/2n). 

The algorithmic universal distribution has many astonishing properties [ 11]. One of 
these, of interest to the AI community, is that it gives a rigorous meaning to Occam's Razor 

I 
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by assigning high probability to the "simple", "regular", objects and low probability to the 
"complex."', "irregular", ones. For a popular account see [7 ]. A celebrated result states that 
an object x is individually random (see Section 1) with respect to a conditional probability 

distribution P( · I y) iff log(m(x I y)/ P(x I y)) t 0. Here the implied constant in the t 
notation is in fact related to K (P(- I y))-the length of the shortest program that computes 
the probability P (x I y) on input x. In particular this means that for x is "typical" or "in 
general position" with respect to conditional distribution P(· I y) iff the real probability 
P(x I y) is close to the algorithmic universal probability m(x I y) = 2-K<xl.vl. 
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