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ABSTRACT. Let A # B be nonempty subsets of the group of integers modulo a
prime p. If p > |A|+|B|—2, then at least |A|+|B|—2 different residue classes can
be represented as a + b, where a € A, b € B and a # b. This result complements
the solution of a problem of Erdés and Heilbronn obtained by Alon, Nathanson,

and Ruzsa.

1. THE RESULT

For nonempty subsets A, B of an abelian group G define their restricted sumset
as

A+B={a+b|a€ Abe B,a#b}.
Concerning a conjecture of Erdés and Heilbronn [10, 11], in 1994 Dias da Silva
and Hamidoune [6] established the inequality

|A+A| > min{p, 24| - 3}
via exterior algebra methods in the case when G = Z/pZ is a cyclic group of

prime order. With an application of the polynomial method of Alon and Tarsi
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[4], Alon, Nathanson, and Ruzsa [2, 3] obtained the more comprehensive result
1) |A+B| > min{p, |A| + |B| — 2}
whenever |A| # |B|, which clearly implies the relation

|A+B| > min{p, |A| + |B| — 3}

in general. Some ramifications in elementary abelian p-groups have been explored
in a series of papers by Eliahou and Kervaire [7, 8, 9].

However, |A+B| > |A| + |B| — 2 holds in every torsion free abelian group
whenever A # B (see e.g. [14]), thus (1) has been expected to be also valid in
Z/pZ when A # B, but the existing methods do not work under the condition
|A| = |B|, A # B. The purpose of the present paper is to circumvent this
seemingly technical problem employing the Combinatorial Nullstellensatz of Alon
[1]. Thus we prove

Theorem 1. Let A # B be nonempty subsets of the additive group of a field of
characteristic p. Then |A+B| > min{p, |4| + |B| — 2}.

Coupled with the results of [15] this yields the following

Corollary 2. Let A, B be nonempty subsets of the additive group of a field of
characteristic p > |A| + |B| — 2. Then |A+B| > |A| + |B| -2, unless A= B and
one of the following holds:
(i) [A[=2or|Al =3;
(i) |A| =4, and A= {a,a+d,c,c+d};
(iii) |A| > 5, and A is an arithmetic progression.

2. THE PROOF

Denote the field of characteristic p at issue by F. If |A| + |B| — 2 > p, then there
exist nonempty subsets A’ C A and B’ C B such that |A| + |B| — 2 = p and
A" # B'. Since A'+B' C A+B, it is enough to prove Theorem 1 for the pair
A', B'. Thus we may assume that p > |A| + |B| — 2. The statement is obvious if
p = 2, so we also assume that p is an odd prime, or p = c©.

If A and B are arbitrary nonempty subsets of F' with p > |A| + |B| — 2, then
|A4+B| > |A| + |B| — 3. Indeed, if |A| # |B|, then in fact |A+B| > |A| + |B| — 2

as it was proven by Alon, Nathanson, and Ruzsa in [2], see Theorem 1 therein.
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Although it is formally stated only for prime fields, the proof works in arbitrary
fields, as they mention it at the end of the paper. If |A| = |B| > 2, then this
applied for the sets A and B’ = B\ {b} for any b € B gives

|A+B| > |A+B'| > |A|+ |B'| -2 = |A| + |B| - 3.

If one of the sets has only one element, then the statement is obvious. Accord-

ingly, we only have to prove the following version of Theorem 1.

Theorem 3. Let A, B be subsets of a field F' of characteristic p > 2 such that
|A|=|B|=k>2andp>2k—1. If|A+B| =2k — 3, then A= B.

Assume that A = {a1,a2,...,ar}, B = {b1,ba,...,b}, and put
C = A—|—B = {Cl,CQ,...,CQk_:;}.

The polynomial f € F[z,y] defined as

2k—3

fay) =@-y) [[@+y—c)

i=1
has the property that f(a;,b;) = 0 for any 1 < i,j < k. Recall the Combinatorial
Nullstellensatz of Alon [1]:

Lemma 4. Let F be an arbitrary field and let f = f(x1,...,2x) be a polyno-
mial in Flzy,...,x,]. Let S1,...,Sk be nonempty finite subsets of F' and define
gi(z:i) = [l,es, (i — 8). If f(s1,82,...,8k) = 0 for all s; € S;, then there ewist
polynomials hy, ha, ..., hy € Flx1,...,zk] satisfying deg(h;) < deg(f) — deg(g;)
such that f = 3% hig;.

Accordingly, we introduce the polynomials

k
9(z) = H(ﬂf —a;) =2 — a1zt +anah T — L+ (= 1)y
i=1
and
k
hy) = [[ = b) =¥ = Biy* ™ + Boy* 2 — ..+ (=1)*By,
i=1

where a; = 0;(A4) and B; = 0;(B) are the elementary symmetric functions of
ay,as,...,a resp. by,by, ..., bg. In view of Lemma 4, there exist polynomials
g,r € F[z,y] of degree at most k — 2 such that

(2) f(@,y) = a(z,y)9(z) — r(y, z)h(y).
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Writing
k—2 k—2
q(l',y) = Zl]z(ﬂf,y), T(.’L’,y) = ZT’,(:L",y) and f@(l’,y) = (w_y)($+y)z_1a
i=0 i=0

where p;,r;, f; are homogeneous polynomials of degree i, with the additional
notations ; = 0;(C) (1 <i <2k —3) and

g1=q2=7_1=7—2=0, ag=F=v=1,

Eq. (2) implies the following equations of homogeneous polynomials of degree
2k — 2 — t for every integer 0 < t < k:

t
B (=D'vfor—2—i(z,y) = Z(—l)t_j{at_jqk_z_j(x,y)xk—t+j
7=0

—Bi—jTh—2—j(y,z)y* 7}

Finally writing
Gi(z,9) = Y Auwz'y’ and  ri(z,y) = Y Bua'y’
utv=i utv=i
we find that the equations (3) encode certain relations between the coefficients
Ayv, Byy and the numbers a;, 8;,v;- The careful study of these relations, after a
technical elimination process that we postpone until the next section, results in
the following

Lemma 5. For every integer 1 <t <k, ay = B¢ and u+v =k — 2 — t implies
Ayy = Byy.

Consequently, g(z) = h(z). It means that a1,as,...,ar and by, ba,..., by are
the roots of the same polynomial of degree k, hence A = B as claimed. It only

remains to prove Lemma 5.

3. DETAILS
For 1 <i<2k—3,let

fz(xay) = (.’L’ - y)(x + y)i_l = Z Cuvxuyv'

u+v=1

Then C;o =1, Cp; = —1, and in case u,v # 0 we have

1—1 1—1 2u—1(1—1
Cuv__cvu_(u—1>_( u >_ u (u—l)'
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Since ¢ < p, Cypy = 0 if and only if 4 is even and v = v = i/2. Consider
Cuv + Cu—l,v+1- Ifu= 7, then it is

1 —1 1—1 .
Ci,0+0i—1,1=1+(. >—( >=z—1,
1 — 1—1

a nonzero element in F' if 4 > 1. Similarly in the case u = 1,
Cl,i—l + CO,i =1—-i#0.

In general, if 2 <w <7 —1, then

2u—tfi1—1 2u—2—ifi—1
Cuv+0u71,v+l = ( >+7( )

U u—1 u—1 u—2
{2u—i i—u+1+2u—2—i} 1—1
u u—1 u—1 u—2

S ()

Claim 6. Ifi > 1, then Cyy + Cy_1,04+1 =0 if and only if i —2v —1 = 0.

Thus we proved:

We prove Lemma 5 by induction on ¢. Note that if ¢t > k—2, then by definition
u+v=~k—2—timplies Ay, = By, = 0. For the initial step, ag = 8o = 1 by
definition. Let u +v = k — 2. To see that Ay, = By, consider Eq. (3) for ¢ = 0.
It reads as

Z C'uuw”y” — Z Auvxu+kyv _ Z Buvy”“x” .
utv=2k—2 utv=k—2 utv=k—2
It follows that

(4) Buv = _Cv,u+k = Cu—i—k,'u = Auv-

For complete induction, let 1 < ¢t < k, and suppose that Lemma 5 has been
already proved for smaller values of ¢t. We start with the first statement. First we
verify a; = B¢ in the case when t is even, that is, t = 2s for some s > 1. We have
k—1—s>k—1—(t—1) > 0. Consider the coefficient of the term z*~1~5y*¥~1-5 in
Eq. (3). On the left hand side this coefficient is (—1)!;Ck—1—sk—1—s = 0. In the
polynomial gi—a—; (@, y)z* "7, the coefficient of zF~1=5y*=1=5ig A, 1 ;1
if j < s—1 and 0 otherwise, whereas in r¢_s_; (y, z)y* 7, the coefficient of the
same term is By _1_j ;15 if j < s —1 and 0 otherwise. Thus Eq. (3) implies

s—1

Z(_l)tij{at—jAs—l—j,k—l—s — Bt—jBs—1—jk—1-s} = 0.
=0
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Since (s —1—j)+(k—1—5s)=k—2—j and s — 1 < t, based on the induction
hypothesis we have As_1_jr—1—s = Bs—1—jr—1—s and az_; = f_; for every
1 < j < s—1. The summation can thus be reduced to the first term and we
obtain

atAs_1,k-1-s — BtBs—1,k-1-s = 0.
Here (s — 1)+ (k—1—s) = k — 2, and in view of Eq. (4)

As—l,k—l—s = Bs—l,k—l—s = Cs—1+k,k—1—s 7£ Oa

since s — 1+ k #k —1—s, given that s > 1. It follows that oy = ;.

If ¢ is odd, that is, ¢ = 2s + 1 with some s > 0, then in Eq. (3) we consider
the sum of the coefficients of the terms zF~1=*yk=2=% and gh=2-sy*—1-5. (Note
that k—2—s>k—2—(t—2) > 0, unless kK = ¢t = 1, which is excluded by k& > 2.)

On the left hand side it is

(=1)'%(Cl—1-s,k—2—5 + Ck—2—sk—1-5) = 0.

Therefore Eq. (3) implies

s—1
0 = (1) ay jAs jp2s+ Z(_l)tijatfjAsflfj,kflfs
Jj=0 j=0
s s—1
=Y (-1)"7B_jBs_jr—2—s — Z(—l)tﬁﬂt—stflfj,kflfs-
Jj=0 j=0

Since (s —j)+(k—2—s)=(s—1—-j)+(k—1—-s)=k—2—jand s < t, the
induction hypothesis once again allows us to reduce the above equation to
0 = (_1)tatAs,k72fs + (—1)t04tAs—1,k7175
—(=1)!'BtBsk—2—5 — (—1)'BiBs—1 f—1—s-
In view of Eq. (4) this equation can be rewritten as

(ar — Be)(Coxr—2—5 + Cs—14k,k—1—5) = 0.
Since (2k —2) —2(k—2—5) —1=2s+1 =t is not zero in F, in view of Claim
6 it follows that the second term is not zero, and we conclude that a; — 8y = 0,

oy = fy.

It remains to verify the second statement of the lemma under the additional
assumption that the first statement has been already verified. Accordingly, we
assume t < k—2, oy = B¢, and let u +v = k — 2 —t. On the left hand
side of Eq. (3), the coefficient of z¥t*y? is (=1)'4Cyyk,e- If 0 < j < ¢, then
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v<k—2-t<k—t+7, thusinry_o ;(y,z)y* """ the coefficient of z%*+*y? is
0. Therefore on the right hand side of Eq. (3), the coefficient of z%+*y? is

t
S T A jru

Jj=0

Consequently, Eq. (3) implies

¢
(_1)t_jat7jAt7j+u,v = (=1)"vCuik,o-
—

J

Looking at the coefficient of 2y*** the same way we obtain

t
- Z(—l)t_jﬁt—jBt—Hu,v = (=1 Cousk-
=0

Since Cy, ytk = —Cuystk,v, it follows that

t

¢
(=)' j At jrup = Z(—l)t_jﬁt—jBt—jJru,u-
=0 7=0

J
Because (t — j +u) +v = k — 2 — j, the induction hypothesis implies A;_j 4y =
Bi_yyjp for 0 < j < t. We have furthermore assumed oy_; = S;—; for all
0 < j <t, therefore the above equality can be reduced to

(=)ot At trup = (1) Bt Bi—tiu,-

Since ag = fo = 1, we obtain A, = Byy.

4. REMARKS

The strategy of the above proof is very similar to that of the inverse theorem
contained in our previous work [15], and in fact the technical details are much
more simple. In retrospect, the present paper should have preceded [15], but
at that time it seemed very complicated to handle the restricted sumset of two
different sets using the Combinatorial Nullstellensatz.

For any nontrivial group G, let p(G) denote the order of the smallest nontrivial
subgroup in G. In [12, 13] we extended the result of Dias da Silva and Hamidoune
proving that

|A+A] > min{p(G), 2/4] - 3}
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holds in any abelian group G. Further developing this technique and the method
of group extensions introduced in [16], Balister and Wheeler [5] established

|A+B| > min{p(G), |4] + |B| — 3}

in every group. It is quite plausible, that Theorem 1 and Corollary 2 can also be
generalized in the same spirit.
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