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HEINRICH HERRE, JAN JASPARS AND GERD WAGNER

PARTIAL LOGICS WITH TWO KINDS OF
NEGATION AS A FOUNDATION FOR
KNOWLEDGE-BASED REASONING

1 INTRODUCTION

As opposed to theoretical reasoning, such as in mathematics, where all predicates
are exact,' and a single contradiction destroys the entire theory, knawledge-based
reasoning has to be able to deal with inexact predicates (e.g. from empirical do-
mains) having truth value gaps, and with knowledge bases containing contradictory
items but being still informative. Therefore, partial logics allowing both for truth-
value gaps and for inconsistency are natural candidates for modelling knowledge-
based reasoning.

In knowledge representation, two different notions of falsity arise in a natural
way. Certain facts are implicitly false by default by being not verified in any in-
tended model of the knowledge base. Others are explicitly false by virtue of a di-
rect proof of their falsity, corresponding to their falsification in all intended mod-
els. These two kinds of falsity in knowledge representation are captured by the two
negations, called weak and strong, of partial logic.? In the monotonic base sys-
tem of partial logic, weak negation corresponds to classical negation by virtue of a
straightforward translation of partial logic into classical logic which is discussed in
section 3. In the nonmonotonic refinements of partial logic, discussed in sections
4 and 5, weak negation corresponds to negation-as-failure, and hence can be used
to express local Closed-World Assumptions, default rules, and the like.

As opposed to the traditional logical notion of a theory being a (possibly deduc-
tively closed) set of formulas, the emerging concept of a knowledge base (KB) is
richer both in terms of the expressive structure of a KB and in terms of the meaning-
fol restrictions imposed upon it. Typically, a KB consists of facts and various kinds
of rules. In this paper, we shall only consider deduction rules. Facts correspond to
sentences of an appropriately restricted language, and deduction rules correspond
to non-schematic (Gentzen) sequents. While facts express extensional knowledge,
rules express intensional knowledge. This dichotomy of the knowledge represen-
tation language also affects the usc of the universal quantifier: a generic law, for

L the sense of Komer [15].
2This was already noticed in [26]).
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instance, is rather expressed in the form of a rule and not by means of a universal
sentence.

In real world knowledge bases like, for instance, relational or deductive data-
bases, it is essential to be able to infer negative information by means of minimal
(resp. stable) reasoning, i.e. drawing inferences on the basis of minimal (resp. sta-
ble) models. Relational databases, being finite sets of tables the rows of which rep-
resent atomic sentences, have traditionally been viewed as finite models. On this
account, answering a query F is rather based on the model relation, My | F,
where M 4 is the finite interpretation corresponding to the database A, and not on
an inference relation. However, especially with respect to the generalization of re-
Jational databases (e.g. in order to allow for incomplete information), it secms to
be more adequate to regard a relational database as a set of atomic sentences A,
and to infer a query F whenever it holds in the unique minimal model of A4, i.e.

Ap b F 4 Min(Mod(Aa)) € Mod(F) & Ma = F

While minimal models are adequate for definite extensional knowledge bases (such
as relational databases), a refinement of the notion of minimality, called paramin-
imality, is needed to capture the inclusiveness of disjunctive knowledge. Minimal
and paraminimal models are discussed in section 4.

It turns out, that for a deductive knowledge base, corresponding to a set of se-
quents, minimal (resp. par: imal) models are not adequate because they are not
able to capture the directedness of rules. We, therefore, propose stable models as
the intended models of deductive knowledge bases in section 5. We show that Gel-
fond’s and Lifschitz’s notion of an answer set of an extended logic program [11]
corresponds to a special case of our notion of a stable model of a sequent set.

Since in practice large knowledge bases cannot be expected to be free of incon-
sistent information, one needs a notion of inference which is able to tolerate incon-
sistency and at the same time still as logically conservative as possible. In order
to deal with possibly inconsistent KBs, the simplest way is to refet to minimally
inconsistent four-valued models as proposed in [20]. In summary, we get an ‘or-
thogonal’ combination of minimally inconsistent paraminimally stable models as
the preferred models of a deductive knowledge base.

2 PRELIMINARIES

A signature 0 = (Rel, EzRel, Const, Pun) consists of a set of relation symbols
Rel, aset EzRel C Rel of exact relation symbols, a set of constant symbols, and a
set of function symbols,

The sct of all variables, Var, is {zo,1,...}; we will also use z,y,..., how-
ever. U{o) denotes the set of all ground terms of o. The logical functors are -~
yAVL |, D, Y, 3; where ~,~, | and D are called weak negation, strong negation,
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exclusive disjunction, and material implication, respectively.? L(o) is the smallest
set containing the atomic formulas of o, and being closed with respect to the fol-
Jowing conditions: if F,G € L(c), then {~F,—F, F AG, FVG, FIG, F >
G, 32F, VzF} C L{o).

Lo(o) denotes the corresponding set of sentences (closed formulas). For su_b-
languages of L(c) formed by means of a subset F of the logical functors, we write
L(g; F). With respect to a signare o we define the following sublanguages:
At(o) = L(0;9), the set of all atomic formulas (also called atoms); Lit(a) =
L(a; {~}). the set of all literals; Lito () the set of ground literals (also called Her-
brand basis), and XLit(o) = Lit{(g) U {~{ : | € Lit(o)}, the set of all ex-
tended literals. We introduce the following conventions. When L' € L(o) is
some sublanguage, L} denotes the corresponding set of sentences. If the signa-
ture o does not matter, we omit it and write, e.g., L instead of L{c). Furthermore,
X={(~F:FeX}

Let L C L(o) be a nonempty language. An operation C : 2% — 2% is called an
inference operation, and the pair {L, C) is said to be an inference system. The cor-
responding inference relation - is defined by X + F iff F € C(X). An inference
operation (relation) is called a consequence operation (relation) if it satisfies Inclu-
sion (Reflexivity), Idempotence (Transitivity), and Monotony. (L, C) is called a
deductive system if C is a consequence operation satisfying Compactness.

A model-theoretic system (L, I, =) is determined by alanguage L, aset I whose
elements are called interpretations and a model relation |= C I x L between in-
terpretations and formulas. With every model-theoretic system (L, I, =), we can
associate a model operator Mod;, a consequence operation C, and a consequence
relation = in the following way. Let X C L, then the associated model oper-
ator is defined as Mod;(X) = {Z € I : T | X}, where I |= X iff for
every F € X : I = F. The associated consequence operation is defined by
Ci(X) = {F € L: Mod,(X) € Mod;(F)},and finelly X |=; Fiff F € C;(X).
For a subset K* C I the theory of K, denoted by Th(K) is defined by Th(K) =
{FeL:Tk Ffa Ie K} Amodel-theoreticsystem (L, I, }=)is called com-
pact if Cy is compact. An inference system (L, Cy) is called correct, resp. com-
plete, with respect to the model-theoretic system (L, I, }=) iff C(X) C Cy(X),
resp. CL(X) = C1(X). In the case of completeness we also say that (L, I, =)
represents {L,CL).

If X is a set of sets, then Fin(X) denotes its restriction to finite elements. If Y
is an partially ordered set, then Min(Y") denotes the set of all minimal clements of
Y, ie.Min(Y) = {X € Y |-3X' € Y : X' < X}, and Max(Y") denotes the set
of all maximal elements of Y, ie. Max(Y) = {X e Y |-3X' € YV : X' > X}.

3possible extensions of our framework may in addition include negation-as-inconsistency (-), in-
tensional implication (—), and modal operators for definite and persistent belief.
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3 PARTIAL LOGICS WITH TWO KINDS OF NEGATION

In this section we start with a brief introduction of partial model-theory, and then
we present their underlying axiomatics. Since partial logic adopts its name from its
alternative at the very core of denotational semantics, consisting of a shift from total
to partial truth-value assignments, this order of presentation seems most natural.

More specifically, we begin with a presentation of partial first-order models.
Then we will discuss some issues of the expressivity of certain languages for rea-
soning on the basis of partial models. An essential feature of partial models is the
fact that they allow 1o distinguish between two types of extensional? negative in-
formation, i.e. between the explicit falsity and the non-truth of a proposition.

After this, we will show how partial first-order logics can be translated into clas-
sical first-order logic. This result does not mean that partial logic is abundant® but
rather shows how well-known meta-theoretic theorems can be adopted from clas-
sical logic. An immediate consequence, which is directly relevant for this paper, is
compactness.

In the third subsection we will present Gentzen-style axiomatizations of partial
logics. Other styles of derivation, like Hilbert-style axiomatization and natural de-
duction, are also possible. The reasons for us to chose in favour of the Gentzen-
style comes down to its meta-theoretical convenience and its brevity.

3.1 Model Theory

The model-theory of partial logic is slightly deviant from the standard Tarskian one
of classical logic. The only difference is that the predicate structure is somewhat
richer. As already stressed above, the central idea of partial logic is the distinction
between falsity and non-truth. In the partial predicate logics which we will discuss
this distinction is implemented by assigning a positive and a negative extension to
each predicate.

DEFINITION 1 (Interpretation) Let 0 = (Rel, ExRel, Const, Fun) be a sig-
nature. A partial g-interpretation I consists of:

1. A set Uz, the universe or domain of Z;

“4Roughly speaking, extensionality says that the information is only about one specific information
state or model. Intensional information comes from other information state which are related in one
way or another to the information state at hand. An ple of an i ional of ion can
be found in intuitionistic logic. In this setting, —¢ means that every hypothetical verification of ¢ will
lead to a contradiction. In other words, for determining the truth of —¢ we need to take ‘later’ states of
information, which contain more information than the current one, into account.

80pponents of partial logic may argue that the translation actually ‘proves’ the abundance of partial
lognc We disregard such an abstract position, because for practical purposes, partial logic arises as the
most natural model-theoretic method for interpreting the two kinds of extensional negative information
that we mentioned above,

PARTIAL LOGICS WITH TWO KINDS OF NEGATION 125

2. an assignment c* € Uz to every constant symbol ¢ € Const;

3. an assignment of a function b "’(/ ) Uz to every function symbol
f € Fun, where ar(f) denotes the anty of f:

4. an assignment of a pair (BT, R%) to every relation symbol R € Rel such
that

RTURT cup™®,

and in the special case of an exact relation symbol R € EzRel,
RTURT =U;®,

where ar(R) denotes the arity of R.

While many predicates from the ontology of empirical domains are inexact, ie.

have truth value gaps, analytical predicates (such as equality, or being a prime num-
ber), and legally defined predicates (such as being eligible, or having a certain na-

tionality) are exact.

In the sequel we shall often simply say ‘interpretation’ instead of ‘partial inter-
pretation’.

The class of all partial ¢-interpretations is denoted by I4(c). We define the
classes of coherent (sometime also called 3-valued), of total, and of total coherent
(or 2-valued) o-interpretations by

I.(0) ={T € I4(o) : REN R =B forall R € Rel}
I(o) = {T € Is(o) : RFU BT = UZ"™ forall R € Rel}
Iy{0) = I (o) N I (o)

The satisfaction relation = between an interpretation, a valuation and a formula is
defined inductively on the complexity of formulas F € L(o) and ~F € L(o).
Such a dichotomous induction is needed, because verification and falsification are
independent truth-value assignments in partial logic.® A valuation over an interpre-
tation Z is a function v : Var — Uz, which can naturally be extended to arbitrary
terms by

V(f(thu- tn) = fz("(tl)v"-"(tn))

Note that for a constant ¢, being a 0-ary function, we have r(c) = ¢%. For a tuple
t1,- .. ba we will also write ¥ when its length is of no relevance. We write y =,
v, if two valuations p, v are equal except for the variable z: u(y) = v(y) for all
y € Var\ {}.

&Most often these two relations are also written in a different fashion, e.g. = for verification and =

for fatsification, Such a treatment is necded when the strong negation ~ is not available. In this paper,
we will not deal with strong negation free sublanguages.
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DEFINITION 2 (Satisfaction Relation)
LR, ta) i (), v(in)) € RY
v ~R(ty. . ta) iff (v(t1),....v(t)) € R?

IwvEFAG if IvEFadIyvEG
IwvkEFVG iff ZwEFoIlvkEG

IywvE-F if ZvEF

Iyvl=vVaF iff ZyulEFforall p=;v
ZyvE3xF if I,pf= Fforcertainp = v

All other cases of formula composition are treated by the following DeMorgan-
style rewrite rules expressing the falsification of compound formulas:

~(FAG) — ~FV~G ~(FVG) — ~FA~G
~3zF(z) — Vz~F(z) ~VzF(z) — 3Jaz~F(z)
~~F s F ~—-F — F

and the definitions for exclusive disjunction,
FIG — (FA-G)V(GA-F)

and material implication,
F>G— ~-Fv@

in the sense that for every rewrite rule LHS — RHS, we define
I,vk LHS iff I,vk RHS

Notice that conjunction and disjunction, resp. the universal and the existential quan-
tifier, are interdefinable via the DeMorgan rules, and consequently, it is sufficient
in definitions and proofs to treat the functors —, ~, A, V.

DEFINITION 3 (Model Relation) The mode) relation between an interpretation
and a formula F € L(0) is also denoted by =; it is defined by

IEFiffT,v = Fforeveryv € U Yo"
IfT = Fforevery F € X andT € I, , then T is said to be a x-model of X.

For + = 4,c,t,2, Mod, denotes the model operator associated with the system
{L(0),I.,|=), and |=. and C. denote the corresponding consequence relation and
operation, i.e. X |, F iff Mod,(X) € Mod,(F). A set X is *-satisfiable iff
Mod,(X) # 8.

DEFINITION 4 (Satisfaction Set)  LetZ € I4(0), and X C L(a). Then
Satz(X) = {v € UzV*" : I,v = X}
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DEFINITION 5 (Logical Equivalence) Let F\G € L(o). The formulas F and G
are logically x-equivalent, symbolically F =, G, iffforall T € I..(0), Satz(F) =
Satz(G).

Note that this definition of equivalence does not capture uniform substitutability.
For example p A ~p =, g A ~¢, but ~(p A ~p) ¥ ~(q A ~q). In general,
substitutability of F' by G can be regained by requiring that F =, G and ~G =,
~F.

1t is not hard to show that the general case of I4(o) can be reduced o classical
logic. Because the propositions F" and ~ F' are completely independent, they can be
understood as two different propositions in a two-valued setting. This can be made
explicit by a dichotomous translation function, which has been given (in a slightly
different way) by Gilmore [9], but can also be found in Feferman [6] or Langholm
(16). ’

DEFINITION 6 (Gilmore translation) The Gilmore translation functiong is a pair
(t, ) with:

({%(2%: = fi;(f) (R(g): = ?g(ﬂ
(FAG) = FAGH (FAG) - Fivor
(VzF)t = VzF* (VeF)f = 3zFf
(-F) = ~F* (-F)f = F*

where we have introduced the new relation symbols Ry and R which are intended
to capture the truth and the falsity extension of R.

If o = (Rel, ExRel, Cons, Func) is asignature, then we define o8 to be the signa-
ture (Rel®, Rel®, Cons, Func) such that Rel® = EzRelU{R;, R¢ | R € Rel}. Fur-
thermore, if Z is a g-interpretation, we write Z8 for the o8-interpretation such that
T and Z8 coincide with respect to Cons and Func, and for R € Rel: (Rt)Ig = RT,
and (Rf)’:’l = RZ, By a simple inductive argument it can be shown that

() Ly F iff I%v = F* forall Z-valuations v.

The translation is surjective, which implies that we even have the following more
drastic equivalences:

PROPOSITION 7 If X C L(0) and F € L(c), then

XE4F &= X' FY
XE.F &= XYY = FtwithY = {~(G* AGT) |G € L(o)}:
XEF < X% Zk, FwithZ={G*VG'|G € L(o)}."



COROLLARY 8 (Lowenheim-Skolem) Let x = 4, tor c. If a formula F € L{c)
is *-satisfiable, then it also has a countable model, i.e. there exists T € Mod, (F)
such that UY is countable.

COROLLARY 9 Let =4, torc

1. Compactness: X C L(o) is #-satisfiable iff every finite subset of X is
*-satisfiable.

2. Finiteness: X \=. F iff there is a finite set Y C X such thatY |=, F.

3.2 Propositional Expressivity and Normal Forms

Let us suppose that we only deal with the sublanguage Prop(c) := Lo(o;A,V,
~, —). A o-interpretation Z can then be understood as a partial truth-value assign-
ment Vg : Atg(o) — 2{%1}, The simple reason to do so is that we wish to discuss
the expressivity of connectives, rather than that of quantifiers. The corresponding
partial truth-value assighment: Vz(P) is the subset of {0, 1} such that

1€ V(P) iff PeDg
0eVi(P) iff ~PeDy

In other words, {0, 1} stands for over-valued, {0} for falsity, {1} for truth, and 6 for
under-valued. The set of all truth-values, {8, {0}, {1}, {0, 1}}, will be called four.
The subsets {#, {0}, {1}}, {{0},{1},{0,1}} and {{0},{1}} will be denoted by
three, three’ and two, respectively.

Of course, this definition settles a 1-1 correspondence between partial interpre-
tations and partial truth-value assignments. For this reason, we will drop the Z-
index in the sequel of this subsection. For the full collection of partial truth-value
assignments we write V4. Ve, Vi and V3 refer to the obvious subclasses of partial
truth-assignments.

The question arises, whether our propositional language that we work with, is
expressive enough to describe the content of a partial truth-assignment V € V.
In other words, can every (extensional) connective be defined in terms of the con-
nectives of the language. This property is also called expressive or functional com-
pleteness of the language. In classical logic, we know that the language Lo (a7 ~, A)
is adequate for this purpose. In partial logic this is certainly not the case, by means
of these two connectives we can not express that a proposition is not true: —P can
not be defined by means of P, ~ and A alone.

These issues of expressivity are not of purely theoretical concern. For example,
given asubclass of models which behaves computationally very well, then we want

7The stronges versions with G € At(c) also hold.

e e

1o know the exact language which describes such a class.® Furthermore, if we want
to axiomatize an extension of the model class I, then we need to know whether
connectives are independent or can be defined in terms of others. We know for
sure, that the former class requires explicit reference within such an axiom system.
Last but not least, we also want to have a formal understanding what we really gain
in expressivity, once we extend a model class. For example, the formula —(P Vv
~P) has no 2-models, but is c-satisfiable, which makes clear that — really adds
expressive power to the connectives ~ and V.

In other words, given a class of models, we wish to know the underlying lan-
guages of both super- and subclasses.

Formally, we interpret an n-ary connective 7 as a function [v) from n-tupels of
truth-values to truth-values.

4] : val® — val

with val being one of the earlier mentioned truth-vatue sets: {{0},{1}} C val C
{@,{0}, {1}, {0,1}}. For example, the weak negation — is interpreted as the func-
tion
_[ {0} iflex
[-le) = { {1} otherwise.

The question arises, whether this weak negation is sufficient as an addition to ~ and
A to obtain functional completeness for the classes V, V, and V. The answer is:
‘nearly’. We only need to add some additional nullary connectives u and o, which
obtain the following denotation: [u} = @, and [o] = {0,1}.

The following table presents for all four classes the associated set of connectives
which yields functional completeness.

V, ~, A
Ve u~,—A
Vi 0,~, = A

Vi uo0,~—A

In the field of partial logic many more expressivity results are known for well-
defined subclasses of V. and V4 (see (3], [16], {2], [19] and [23]). Animportantre-
sult is the functional completeness of u, ~, A with respect to the persistent connec-
tives over V, by Blamey in [31.? A connective v is persistent iff its interpretation
[] is monotone over C:

(Vie{l,....n}:2z Cy) = [z, 2a) S (1] (Wrv- oo ym).

8E g, Langholm’s description of Hom clauses in partial logic (17 in terms of transferring the clas-
sical semantic properties of such clauses to partial logic, and then define the language which has this
properties over partiol models.

9The connective set {~, A} has complete expressivity over so-called closed persistent connectives
in Ve [2]. Closed connectives always obtain a classical value, {0} or {1}, if all its arguments have
classical values.
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In V4 we also need o for getting the same complete expressivity over the same class
of persistent connectives [19.1°

In most cases, functional expressivity of a propositional language can be demon-
strated by means of so-called normal forms in the language, which specifies the
class of satisfying truth-value assignments in an obvious way. In this section we
only discuss the language with complete expressivity for V4, Ve, Vyand V.

DEFINITION 10 If X is a set of formulas, thenyX := {yF | F € X} for a given
unary connective . If X = {Fy,...,F,} is a non-empty finite set of formula then
AX=FRA. . AFad\X:=FR V. VFM!

A conjunct form is a formula of the form:

2) AWAASXAN=YANN\—~Z suchthar W,X,Y,Z C Ato

A 4-conjunct form is a conjunct form as in 10 with W UY = X U Z = Atg
and WNY = XNZ = 0. A c-conjunct form is a 4-conjunct form as in 10 with
Wn X = 0. Analogously, a t-conjunct form is obtained by taking Y N Z = @ and
Jor a 2-conjunct form we stipulateY = Z = 0.

A disjunct form is a formula of the form:

3) VWV ~x v\ =YV ~~Zsuchthat W,X,Y,Z C Ato.

The notions of *-disjunct form are defined analogously. A disjunct form in L(o) is
said 10 be a clause.

A prenex formula F € L{o) has the form Q71 ... QuznG(Z1,- ..\ Zny 11,
«-1Ym), where G is quantifier free and Q; € {V,3}. G is called the matrix of
F and is denoted by matrix(F).

PROPOSITION 11 (Propositional Normal Form) Every propositional formula is
4-equivalent 1o either a disjunction of 4-conjunct forms, 1, o or u. Analogously,
such a formula is 3-equivalent to 1, v or a disjunction of 3-conjunct forms, and
t-equivalent to L, o or a disjunction of 1-conjunct forms.

In general, it is not possible to obtain precise predicate logical version of propo-
sition 11. Most often, so-called prenex normal forms are used to define versions of
the normal form result above for the predicate logical case.

PROPOSITION 12 (Prenex Normal Form) For every formula F(xy,...,z,) €
L(o) there are prenex formulas G(z1, . . ., Ta), H(z1, .. ., %a) € L(c) such that

e

0This result for persi gives usi ly an answer to the question for which class of for-
mulas 2-satisfiability is the same as c-satisfiability: all the formulas which can be defined in terms of u,
~and A,

L1 0f course, this is not a well-defined formula, but because of commutativity of V and A this choice
is unique op to logical equivalence.

PAKLTAL LUUILY THATE LU DAV UT ROtV AN

1. F=4G,and F =4 H;

2. matriz(G) = V X, X is a set of conjunct forms, matriz(H) = AY, Y is
a set of disjunct forms.

3.3 Proof Theory

In this subsection we will present sequent calculi for partial logics. As mentioned
earlier, other styles of derivation calculi are also possible. There are several rea-
sons to chose for the sequential style. First, they make the axiomatic differences
between different partial logics and classical logic immediately visible. Second,
meta-theoretic proofs about the relations between deduction and model-theory, such
as correctness and completeness proofs, benefit from a sequential proof theory.
Third, in many cases sequential systems turn out to be shorter.!? For example,
general completeness results for functionally complete languages, can be easily be
transformed to completeness proofs for poorer sublanguages.

DEFINITION 13 (Sequent) A sequent 8 is an expression of the form
P},...,}an = (;1,‘..,(15

where F;,G; € L{o) fori = 1,...,mandj = 1,...,n. The body of s, de-
noted by Bs, is given by {F1, ..., Fin}, and the head of s, denoted by H s, is given
by {Gh,...,Gr). Seq(c) denotes the class of all sequents 3 such that Hs, Bs C
L(o).

DEFINITION 14 (Model of a Sequent)  LetZ € I,. Then,
TER,..Fn = Ci....Co iff [ Satz(F) € | Satz(G;)

i<m i8%n
For S C Seq, Mod.(S) and S |=, s are defined analogously as in Definition 3.

DEFINITION 15 (Sequential inference) A sequential inference rule R has the
form

81.¢..8n
3n+l

with s; € Seq(o) foralli € {1,...,n}. The elements of {s1, ..., 8.} are called
the assumptions of R, and 8,41 is called the conclusion of R. Ifn =0, that is rules
without assumptions, we say that R is axiomatic, and simply write s. A sequential
system s is a set of sequential inference rules. Every conclusion of an axiomatic

121n partial predicate logic, this advantage of sequential systems does not become sharply evident.
A branch of parial logic, which surely benefits in this respect from sequential axiomatization is partial
modal logic, as have been shown in Jaspars [13].
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rule in s is said to be s-derivable in 0-steps. If m > 0 then a sequent s is said to
be s-derivable in m steps if there exists a rule *=225 € s such that for all i €
{1,...,k} the sequents s; are s-derivable in less than m steps. A sequent is called
s-derivable if it is s-derivable in a certain finite number of steps. These sequents
X =Y are called s-sequents, and we writet; X = Y.

Below we will present sequential systems for the partial logics which have been
discussed earlier. As usual, we distinguish structural rules from introduction rules.
Structural rules are syntactically independent of the logic which we are axiomatiz-
ing. Introduction rules stipulate the meaning of logical functors in a proof-theoretic
fashion. Logical functors are introduced both in the head of a sequent (L-intro-
duction) and in the body of a sequent (R-introduction). Furthermore, we distinguish
between rules which introduce a new compound proposition as being true and those
which define the falsity of a new compound proposition which then appears in the
scope of the strong negation ~ within the conclusion of the rule.! Every introduc-
tion rule is specified by an abbreviation of the form XV, where X € {L,R} (left
or right), v € {true,false} and vy specifies the connective or quantifier which is
introduced.

Below we give a presentation of the rules which are relevant for the axiomati-
zation of partial Jogic. Instead of X U {F} we write X, F.

Structural Rules
F= F START
X=Y,XCXxX,\ycy
X =Y MON
XF=Y X'sRY
XX =YY T

This set of structural rules will be called struc.

131n (8} so-called quadrants have been introduced, which can be understood as a kind of four-placed
sequents: X|X’ = Y|Y. The truth-conditional reading of such a quadrant is that all models which
verify all members of X and falsify all members of X', verify at least one member of ¥ or falsify
at least one member of ¥/, This approach makes falsity introduction possible within the derivational
format and is therefore somewhat more elegant. If we wish to axi ize ~-free sut ges, such a
choice would even be nccessary in order 1o oblain complete inference systems in a sequential fashion.
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Truth Rules
X=FY Ltrue, X, F=Y I
X,~F=Y X=>~’F,Y ,
X, F,G=>Y Liruep X=>FY X =>G,Y’ -
X,FAG=Y X, X"= FAGY)Y
X, L=Y Lirue
X =o0,Y R'™0
X, Fit/a)=Y (1) e X = Fle/z}Y (2) ptruey
] X[‘\/fa:F:Y LY X = VeF Y
(1) = t substitutable (2) = cis aclosed term
for x in F not occurring in X UY

Furthermore, L€ — and R'FU¢ — are the rules which evolve from substi_tuting -
for ~ in the rules L""“®~ and R*"™®~, respectively. For the 0-ary connective u we

have only one rule; the same as as for L:

together are called true.

Livey = X,u = Y. All these rules

Falsity Rules
X.F=Y Lfsise X=FRY .
X,rF =Y X =~ BVY
X, ~F=2Y X, ~G=Y' Lstse o X = ~F,~GY AN
X X (FAG =YY X = ~(FAG),Y N
X =>~LlY Rl
X,~u=Y Loy
XnFlefel 2 Y () ey X ~FR/EY (1) ey
X, NaF =Y LY XS ~VaFV
(D and (2) asin
true above.

R™seq is the same as R with L replaced by o. For — we have the same rules
as for ~. Simply substitute ~ F' for the occurrences ~F in Lfalse and R ."N and
we obtain L% — and R\t _ respectively. The complete sel of these falsity rules

will be called false.

We define the following sequential systems:

2 = strucU (true\ {R"®0,L"¢u})

¢ = strucU (true\ {R'"*~,R""®0}) U (false \ {rfe0})
t = strucU (true\ {L~, LY u}) U (false | {L™*°u})
4 = (en®U{Lu,R¥0]|v,w € {true, false}}

Below we will present completeness results of these systems with respect to the
corresponding model-theoretic consequence relations. This completeness Ol:lly
holds when we presuppose the absence of exact predicates within the underlying
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sigqature. If o contains exact predicates, we need to strengthen the systems ¢ and
4 with a straightforward compensation for the loss of {R""*~}. Let L(o..) be the
sublz‘mguage of L(a) which consists of all the proposition that only contain exact
predicates. The systems c-ex and 4-ex evolve from adding the rule R~ to ¢ and
4, respectively. This additional rule has the following form: =

X.F=Y FelLlogs)
X = ~FY

true
Rex ™~

OBSERVATION .l 6 The differences between 2, ¢, t, and 4 can also be described
by means of relativized versions of contraposition. In 2 we have that

Fo X=2Y <= Fp~Y=~X

TZ!S isa fomx of con{r‘aposition Jor strong negation. In all the other systems we
obtain t.lus contraposition rule at least for the weak negation. The systems ¢ and t
have mixed versions of the rule of contraposition:

FeX=2Y & F~Y=-X
FHX=2Y & H-Y=~X

The foll‘owing proposition presents the completeness of the sequential systems
?f Iheuprevmuls paragraph. In fact, for the logic whose underlying language is func-
ionally complete, these results can be already obtained b i
oo y y means of the translation

PRQPOSITION 17 (Completeness) Let s be 4, ¢, t or 2, and let * refer 1o the as-
soquted model class, 4, ¢, t or 2, respectively. If o is a signature with no exact
predicates, then for all finite sets X,Y C L(o) we have:

,—JX:Y lff FnX#Y

fo ins exact predi then the leteness
! ) result
Ford and ¢, we have comp esult only holds for 2 and t.

Pz XYiff Ee Xa3Yand by oo X 2Yif s X =Y

'!I:ne pbartla] results of soundness are the left-to-right directions of the equivalences in
e above proposition. These results can be checked b i i i
y a straightforward indi

on the length of derivation. ’ weton

In order to give an ordfnary Henkin-style proof of these completeness theorems,
we neefi to define t!:e notion of saturated sets. This is a generalization of the notion
of r.naxupally consistent sets, which is needed to prove the completeness for partial
logxcfs with poorer eftpresswity. Especially, when the weak negation is lacking, the
requirement of maximal consistency is too strong. '
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DEFINITION 18 (Saturation) Let s be a sequential inference syster. Aset X C
L{o) is called s-saturated iff for all finite sets X.Y'CL(e)and X' C X:

(4) If FsX'=Y' then Y'nX#£0.

Aset X C L{o) is called s-term-saturated iff X is saturated and for every 3z F €
X there exists a constant ¢ in o such that Flz/c] € X.

Note that for every s-saturated X there exists no finite X' € X such that -,
X' = §. This property captures the s-consistency of X 14 Taking Y'in 18 to
be a singleton tells us that s-saturated sets are closed under s-deduction. If ' has
multiple elements, the definition tells us that every ‘disjunctive’ conclusion from
X breaks down into at least one element of X . In other words, the information in
X does not contain disjunctive uncertainty. Complete certainty is captured by the
defintion of term-saturation.

A further relevant observation here is that if a sequential system s contains struc

X, F=Y imall .
AT A S - -consistent
andarule XTI then s-saturated sets are the same as maximally s

sets.

LEMMA 19 (Generalized Lindenbaum Lemma) Let X and Y be two finite sub-
sets of the language L(c), and lets € {2,¢,%,4}. IfY, X =Y, then there exists
as-saturated set 2 C L(o) suchthat X C ZandY N Z = @.

The standard Lindenbaum lemma can be abtained by taking Y = { in the gen-
eral formulation above. Because saturation is the same as maximal consistency for
systems with the L-TRUE rule for negation, the classical result is the same as saying
that every consistent set is a subset of a maximal consistent set.

The generalization of the classical Lindenbaum lemma is due to Aczel and
Thomason . The generalization of the classical result evolved from independent
succesful attempts to prove the completeness of intuitionistic predicate logic [1;
24].

Most often, the proof of the generalized Lindenbaum lemma is presented by
making use of syntactic expressivity of the language that one works with. In fact,
the set of rules struc is enough to obtain the result [14}. If i/, X = Y, and
{F:}iew is an enumeration of the language, we define the following sequence of
sets of formulas:

Xo = X
X U{F.} if Vs X Fn=Y
Xﬂ-H. = .
Xn otherwise.

Hirr, X' = 0 then - X => F forall F* by application of MON. Note that a sequential system &
which contain the rules struc is conistent iff i/, @ = 0.
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The limit of this sequence is an s-saturated set, which contains X and does not in-
tersect Y.

In. the completeness proofs of partial predicate logics, we need term-saturated
§ets instead of saturated sets. The (cheap) trick to obtain these term-saturated sets
is to extend the Janguage with a countably infinite number of additional constants
(also called parameters). Let L(c’) be such an extension of L(a), and let X and
Y be two finite subsets of the latter language.

COROLLARY 20 Ifl/, X => Y then there exists an s-term-sat '
such that X C Z and Zs ny =4¢. s-term-saturated Z € L(o")

This result immediately follows from lemma 19 and by taking a unique fresh
parameter as an instantiation for each existentially quantified formula to obtain the
desired term-saturated set.

The following_ lemma, which is also called the truth lemma, tells us that a term-
saturated set verifies exactly those formulas which it contains. To formulate this
result‘properly, we associate with every s-term-saturated set X C L(g) an inter-
pretation Z% -

U = the set of all closed terms of T

fz’x = f for all functions and constants f;
P = (| P eX};

Plx = (| ~P() € X} for all predicates P.

( ) 1 wh
LEMMA 21 (Truth Lemma) Letsbea system w, ich contains the rules str ue, and

IxEF&® FeX.

Thfs proof of this lemma consists of a fairly straightforward induction on the con-

‘sitmc'non olf formulas. In fact every connective or quantifier only uses its ewn intro-
uction rules. This settles the completeness result also for pool
( rer la

the different model classes. P P

The final argument of the completeness result is an immediate consequence of
Lemma [9, Corollary 20 and Lemma 21. Suppose that X and Y are finite subsets of
L{o) ;fnd K X = Y According to Corollary 20 there exists an s-term-saturated
set Z in a parametrized superlanguage L(o') such that X C ZandY N Z = §.
Lemma 21 above tells us that 75 = F forall F € X and T }~ G forall G € Y.
In other words, f2. X => Y where « refers to the associated model class.}5

1695, i
1t s not hard to verify that I, € 1. (o) for all s-term-saturated sets Z.
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4 MINIMAL REASONING

In this section we study several versions of nonmonotonic reasoning based on par-
tial logic. In the first subsection nonmonotonic reasoning is analysed in an abstract
setting. This is done by using the concept of a deductive frame and its semanti-
cal counterpart, a model-theoretic frame. On this level of abstraction one can give
a characterization of several kinds of partial propositional logic. The second sub-
section is devoted to Herbrand models. Several theorems are generalized to partial
logics, in particular the proposition about canonical models of universal theory. In
the third subsection minimal models are investigated. Then, a new class of models
is introduced, the ®-paraminimal models of a universal theory which are a general-
ization of the good models of [22). Subsection 4.4 concludes with an investigation
of compactness properties of the introduced nonmonotonic model operators.

4.1 Inference Frames and Model-Theoretic Frames

Let L be a language and C : 2¢ — 2 an inference operation. A condition on
C is said to be pure if it concerns the operation alone without regard to its inter-
relations to classical consequence operation and truth-functional connectives. The
most important pure conditions are the following.

X CY COX)= CY)C CX) (Cut)
XCYCCX)= C(X)CC(Y) (Cautious Monotony)
XCcYcCcoX)=cCcX)=C(Y) (Cumulativity)
C(C(X)) C C(X) (Idempotence)

An inference operation C is cumulative iff C salisfies inclusion, cut and cau-
tious monotony. Besides the three conditions of cut, cautious monotony and cumu-
lativity (18] emphasizes several mixed conditions of inference: supraclassicality,
distributivity, and rationality. C is said to be supraclassical if it extends the usual
consequence operation Cn of classical logic, i.e. Cn(X) C C(X) forall X C L.
Obviously, these mixed conditions can be formulated for any logic.!® For this pur-

pose we use the following definition (12]

DEFINITION 22

1. (L,C1,C) is said to be an inference frame iff the following conditions are
satisfied: :

(a) Lisa language.

(b) Cy is an inference operation on L satisfying inclusion, idempotence
and manotony.

18This point of view was assumed in [7]
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(c) C is an inference operation on L extending Cy, i.e. C(X) C C(X).
2. An inference frame (L, Cy,, C) satisfies

(a) left absorption iff C1(C(X)) = C(X);

(b) co(ngruencc or right absorption iff C1(X) = C1(Y) = C(X) =
c(y);

(c) full absorption iff it satisfies left absorption and congruence.

If full absorption holds, Cy, is called a monotonic basis for C.

3. Aninference frame (L, Cy,, C) is said 10 be a deductive frame if it is compact
and satisfies full absorption. In this case, C, is called a deductive basis for

IfCpis cf)mpact then the system (L, Cy, C) is called a compact inference frame.
A semantics of an inference frame can be introduced by a model-theoretic frame.

DEFINITION23 (L, I,|=,®) is a model-theoretic frame iff
1. (L, I, k=) is a model-thearetic system;

2. ®:2% + 2M isafunctor such that (X) € Mod;(X). & is called mode}
operator.

Every model operator & corresponds to an inference o) i

. peration Ce(X) =
?‘h(@(l\ ))- Cq extends Cr and satisfies left absorption, and hence (L,C;,Cs)
is an inference frame.

A model aperator @ is said to be invariant with respect to a model-theoretic sys-
tem (L, 1, F:) lff.for all X C L, ®(X) = &(C1(X)). A model-theoretic frame
.(L, 1,}=, ®) is said to be compact if C satisfies compactness; it is called invariant
if the model operator @ is invariant wrt (L, I, |=).

PROPOSITION 24 If ® is invariant for the compact model-theoretic system
C 5.
(Lx 11 '=) then (Ly Cl. CQ) is a deductive Jrame

In or(?er to obtain a sernantics for a nonmonotonic inference system (L, C) we pro-
ceed in two steps: first we have to find an appropriate deductive basis (L, Cr, C);
then we have to construct a model-theoretic semantics for the deductive system
(.L,CL) which will finally yield a model-theoretic frame representing the deduc-
tive frame (L, Cr, C).

Aset X C L is said to be deductively closed iff C(X) = X. X is deductively
consistent (in short, d-consistent) if Cp,(X) # L. A deductive system (L, Cp) is
called explosive iff there exists a finite subset ¥ C L such that C,(Y) = L. C, is
negation explosive if there is a unary functorn : L — L in the language such that
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forevery X C L, and every F € L, the following holds: CL(X U{F}) = Liff
n(F) € CL(X). Aset X C L is maximally d-consistent if C(X) # L and for
every proper superset ¥ of X it holds that cL¥Y)=L.

OBSERVATION 25 The deductive systems (Lo(0), C, ), where » € {2.c, 4}, are
explosive and negation explosive.

Proof. We consider only the case x = ¢, the other cases are analogous. Let F°
be an arbitrary sentence and G := F A —F. Obviously, Ce(G) = Lo(a). To
prove that C. is negation explosive let n(F) =aefinition —F. In general we have
Mod,(X) = @if and only if C(X) = L. Let Co(X U{F}) = L, then Mod (X U
{F}) = 0. Weprove, that X (= —F. Assume, X . —F, then there isa coherent
model T |= X such that Z & —F, hence Z |= F. But then Mod (X U {F}) #
0. a contradiction. Conversely, assume X |, —F. Itis sufficient to show that
Mod.(X U {F}) = @. Assume Mad(X U {F}) # ®; then there is a coherent

interpretation Z such that T |= X, F°. From this follows X W —F, acontradiciion.
]

PROPOSITION 26 If (L, Cy) is explosive then every d-consistent subset of L can
be extended to a maximally d-consistent set.

Closed sets can be used to represent models, and to build model-theoretic seman-
tics for deductive systems. Let (L, C1,) be a deductive system and cs(L)y={XC
L: CL(X) = X). Forevery subset M ¢ Cs(L) the following model-theoretic
system (L, M, }=) can be introduced. Define for F € Landm € M: m |= Fiff
F € m. The model-theoretic system (L, M, [=) represents a semantics for (L,CL)
iff Cyr = Cyp: then it is called a Lind baum-Tarski- tics (L- tics) for
(L,Cy). Obviously, a subset M C Cs(L) represents a L-semantics for (L,CL)
iff for all consistent X G L itholdsthat Co(X) = [{Y : X CY AY € M},
This observation implies the following proposition.

PROPOSITION 27 A subset M C Cs(L) represents a semantics for (L, CL) iffor
every d-consistent subset X C L and F & CL(X) there is an extension X C m,
m € M such that F § m.

For the construction of a semantics it is sufficient to selecta subset of C's (L) rep-
resenting the models. X is said to be relatively maximal (abbreviated r-maximal)
iff there is & formula F € L such that F ¢ C,(X) and for every proper superset
Y of X the condition F' € CL(Y) is satisfied, Obviously, every r-maximal set is
deductively closed. Let rmaz(L) € Cs(L) be the set of all relatively maximal
subsets wrt (L,CL).

PROPOSITION 28 (Lindenbaum-Tarski) Lef (L, C,) be a deductive system, Xc
L, and F & Cr(X), then there exists a maximal extension’Y 2 X, such that
Fgv.
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OBSJ.ERVATION 29 rmaz(L) is smallest subsystem of Cs(L) representing a se-
mantics for (L,C1). We call it the Lindenbaum-Tarski standard semantics (LT-
semantics).

DEFINITION 30 The inference operations Cy,C,, Cy, Co can be characterized
as follows. We restrict our consideration to the case of propositional logic. Let
Axy(Prop) be the following set of formulas:

. FD>(GD>F)

2. (FO(GOH)D{F>G) >(F>HY
3 (FDO(GDH)D(GD(F>H)

4 (FOG@)2(-G>-F)

5. ~-FDOF

6 FO~-—F

7. ~~FDF, —-—-FDF

8 FD~~nF, FO—~F

9. (FAG)DF

10, (FAG)DG

1. (F2(GDOH)D((FAG)DH)

12. (~F o~ (FAG)

13 (~G>~(FAG)

4. ((~FOH)D ((~GDH)D (~(FAG) D H))

Az(Prop) = Awy(Prop) U {~F D ~F/F € Fm(Prop));

)} Az (Prop) =
Azy(P ~F D - :
A:j((Prrgg))U{ F D -F[F € Fm(Prop)};Azs(Prop) = Az.(Prop) U
Rules: Modus ponens : {(F,F D G/G) : F,G formulas }.

OBSERVATION 31 (Completeness Theorem)  Let X C Fm(Prop) and + €
{2,¢,4,1}. D,(X) is the smallest set containing X U Az, (Prop) and closed with
respect to modus ponens. Define X &, F iff F € D,(X). Then,

XEF iff XH, F

Proof. (sketch for f=4): A set X of formulas is said to be ¢ i i
f:ondiu'ons are fulfilled: F' ¢ X iff —F € X,FAG € (;(bfff ({)?,p (l;:[}eg f}t(h e}"f\(;nGoZ“;?
iff {F,GINX #0,~ ~F € XiftF € X,om F € X ift F € X v (FAG) € X
i {~ Fin GINX £ 0~ (FVG) € X iff {~ Fy~ G} C X.If X is complete
thenthe set 7 = {I € Litg(o) : | € X} is a partial model of X. To prove the
f:omplete'ness theorem we assume X f=4 F but X V4 F. By proposition 28 there
is a maximal setY D X U Az, such that Y /4 F. It can be shown that Y is
complete and deductively closed. This implies F¥ ¢ Y, hence —=F € Y. Then
there exists a model Z |= Y such that Z j& F. This is a contradiction to X k=4 F
[ |
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Deductive frames can be semantically characterized as follows (4].

PROPOSITION32  Let F = (L,Cy,C) be a deductive frame. Then there ex-
ists a model-theoretic frame S = (L, M, =, ®) such that & is invariant and S
represents F.

The subsequent schema summarizes the general method for constructing a seman-
tics for a given inference system. The main point here is to find the right deductive
basis in the set {C, : (L, C, C) is a deductive frame }. In many cases a deductive
basis (L, C1) can be chosen to be maximal (.

(L, C)
Construction of a deductive frame
(£,C1,C)
4
Construction of a model-theoretic frame

4
(LM, =, 2)
suchthat Cp, = Cpy,and C = Ce

4.2 Herbrand Models

A partial Herbrand interpretation in the language L{o) is one for which the uni-
verse equals I/ (g), and the function symbols have their canonical interpretation.
In this section we study model-theoretic frames based on Herbrand interpretations.
Let I¥ (o) be the set of all Herbrand interpretations in I (), with + € {4,c,t,2},
and Mod? (X) = I nMod,(X), X € L(¢). The corresponding consequence
relation =¥ is defined by X |=F F & Mod (X) € Mod.(F).

DEFINITION 33 (Diagram)  The diagram of a o-interpretation I is defined as
Dz = {l € Litg(o) : T = {}.77

OBSERVATION 34 Partial Herbrand interpretations can be identified with their
diagrams.

Proof. Let T = (U(0), (f) e Fun, (BF) ReRet) be a Herbrand interpretation and
...t € U(c). ThenT [ Rlty,... to) iff (¢F,...,t5) € RTand T |=

17Notice that, strictly speaking, we define the ground diagram, and not the full dingram.
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~R(t;...;,tn) iff (¢F,.. L) € RZ. From this follows that D1 represents the
set RT U RE, ]

Herbrznd interpretations over o can be considered as subsets of Lity(c). Then
the set I (o) coincides with 2Y*(?); I7(s) = {7 C Lito(a) : s.th. there is
nol € Atylo) salisfying {Lnd}y € TV I (o) = (T :foralll € Ato(o) :
{l,~}NT #8}; and I (o) = IF (6) N 1,(0). A consistentset X C L(o) does
not always have a Herbrand model.

OBSERVATION 35 There are consistent sets X C Ly(c) without a Herbrand
model: X = {P(a),Vz{P(z) > P(f(x)), 3z(-P(z))}.

Leto = (Rel, ExRel, Const, Fun) be a signature, Z a partial o-interpretation,
and U; C Uy. The restriction of Tto Uy is a partial interpretation 7, denoted by
J =1 Uy, which is defined by the following conditions:

L. the subset U is closed with respect to the functions {f7 : f € Fun}, and
{F 1 c€Const} C Uy; g

2. forevery R € RelU EgRel: R7 = RE (U™ and R = RZ aue(®,

g is said to be a substructure of T if there is a subset U, CUzsuchthat 7 =T
1.

PROPOSITION 36 LetVzy ...TnA(Z1,. .., Tmy Y1, . - ¥Un) =By, ...,yn) €
L(0) be a universal formula, A(T, ) quantifier free, T € Mod.(o), and I, u =
B(y1,..., ya) 1 an evaluation and w(y) = ay,..., 1(yn) = 6n. Let T bea
substructure of I such that {ay, ... ,an} C Ug. Then T, p =By, -y yn).

l?roof. Assume I, 11 |= B(y1,...,yn), and denote this condition by the expres-
sionT = Blas,...,a,). Since Blay,...,a,] is universal it follows that for all
by,...,ba € Ur the condition T |= Afby,... by, a1,.. .ay] is satisfied. Because
the formula A(Z,7) does not contain quantifiers it follows J |= Alb1, ... b
a.l,]. .-y}, provided {by, ..., bm,01 ,...a,} C Uy. This implies |= B[a.x,‘.“:
Qn). L]

COROLLARY 37 Let T € Ic(a), F € Lo(0) a universal sentence, and 7 C Ta
substructure of T. Then T = F implies J = F. -

PROPOSITION 38 Let S C  L(o) be a universal theo ]
c ry of signature o and
Const(a) # 0. If S has a coherent model then it has a coherent Herbrand model.

Proof. Let T be amodel of Mod.(S). A Herbrand model Z, is defined as fol
. Jows,
MU (L) = Vo).
@) (... ta) € RO | Rty,... 20) and (4, ..., tn) € R0 iff
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T = ~R(t1,...,tn), Where R € Rel(o).

From (2) follows for every quantifier free formula A(z, . .., Z,) andterms fy, ... .,
tn € U(o):

GV Ty | Altr,... tn) i T |= Alty,...,ta)Now, let 4 € S,and A =
Yoy ...2xG(z1,. .., 2k). Assume, Ip § Yz, ... 2xG(T), then there is an evalua-
tion v such that g, v b VEG(Z). By definition this is equivalent to the existence
of variable free terms ¢y, ..., % such that Ty = ~G(t1,...,ta); by condition (3)
this is equivalent to Z & G(ty,. .. ta). But then I | Va1 ... 5, G(Z) whichisa
contradiction 1o the assumption. - |

OBSERVATION 39 The relation |=¥ is not axiomatizable, i.e. there are decidable
sets X C L(o) such that {F : X [=H FY} is not recursively enumerable.

Proof. Let P A be the axioms of Peano Arithmetic in the signature 0 = (0, +, o, s);
then PA =l Fiff F is true in the standard model of arithmetic. This gives a
contradiction to Godel's incompleteness theorem. |

PROPOSITION 40 Let S be a universal theory, and F = 3ZG(T) a closed exis-
tential formula. Then S =X G iff S = F.

Proof. The implication () is trivial. We show (). Assume § =X F,bu S .
3FG(T). then there is a partial model Z € Mod,(S) such that T j= 3TG(T), and
hence I f= VZ — G(Z). Then S U {VZ ~ G(T)} has a model and by Proposition
38 there is a Herbrand model Z, for S U {VZ — G(Z)}. Since Ip |= S this implies
S ¥ F, acontradiction. ]

Proposition 40 cannot be generalized lo universal sentences.

OBSERVATION 41 For every language L(c), o containing a relational symbol
of arity > 1, there exists a universal theory S C L(o) and a universal sentence F

such that S =) F b S . F.

Proof. W.Lo.g., we assume that ¢ contains a unary relational symbol P(z). Let
§={P(t):t € U(0)}, then S =¥ VzP(z), but, obviously, S j VaP(z). ®

DEFINITION 42 (Persistent Formula) A formula F € L(o) is called persistent
if for arbitrary partial Herbrand interpretations I, J over o satisfying T C 7,
and every substitution 8 : Var — Uz the condition T |= F implies J |= F8.

OBSERVATION 43 Every formula F € L(c;~,A,V,3,Y) is persistent.

Praof. (Inductively on the complexity of ). Let! € Lit(c) and Z |= i6; then
10 € T and hence 6 € J for every extension J 2 Z. LetZ |= (G V H)f; then
Z |= G or I |= HB. By induction hypothesis it holds J }= G6 or J |= H#, and
hence Z |= (G v H)#A. Similarly, this is proved for F = G A H.
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Now let be F = 3FG(Z,7) and A : Var — U(o) is a substitution such that
T = G(MT),8(7)). By induction hypothesis J = G(A(T),8(7)), and this im-
plies J = 3TG(Z,0(F)). Finally, F' = VIG(ZT,6(7)). Then, forevery substitution
AT = U(Z) I = G(MT),0(F)). By induction hypothesis Z; = G(A(Z), (7)),
and since Uz = Uy it follows J |= VIG(T, 8(%)). B

PROPOSITION 44 Let S be a universal theory, and F = 3TG(T) a closed exis-
tential sentence. Then the following conditions are equivalent:

1. Sk F
2. There arevariablefree substitutions6 , . .., 0y such thatS k=, \/, ., G(6:(T)).

Proof. Assume S |=. F; since F is an existential sentence this is equivalent to
S |=H F. Thisis the case if and only if for every Herbrand model 7 of S there is a
substitution 67 such that Z |=, Gz. From this follows that S =7 \/{G1 : T is
an Herbrand model of S}. By the compactness theorem for £, there is a finite set
A of Herbrand models of S such that S |=. V{G0z : T € A}. |

Proposition 44 can also be proved for =, and }=4. For [= this proposition is
Herbrand's theorem.

4.3 Minimal Models

In the sequel we introduce several versions of minimal models; we assume that all
interpretations under consideration are Herbrand interpretations.

DEFINITION 45 (Extension)  Let Z and I’ be two interpretations. We say that
7' extends Z, symbolically T < T', if D7 C Dy..

This ordering of interpretations corresponds to the intuitive notion of information
growth. It has also been called knowledge ordering in the literature.
DEFINITION 46 (Minimally Inconsistent Models) ~ Let Inc(Z) = DzNDz mea-
sure the inconsistency of a four-valued interpretation I. Then

Mod? (X) = {Z € Modf (X) : ~3T’ € Mod¥ (X), s.th. Inc(T') C Ine(T)}
is the class of minimally inconsistent models of X C L(o).

Minimally inconsistent models were introduced in [20). Like plain four-valued
models they tolerate inconsistency, but they are, in a sense, logically more conser-
vative as the following example shows.

EXAMPLE 47 (Disjunctive Syllogism) Four-valued inference does not respect
the Disjunctive Syllogism, but minimally inconsistent inference does:

{pV g, ~q} Fapbut{pV g, ~g} =i p.
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Notice that whenever X C L has a coherent model, then Modpm, (X) = Mod.(X),
i.e. =, can be viewed as a restriction of f=,n; to coherent knowledge bases.

DEFINITION 48 (Minimal Models) Let X € L(o), and x € {c,4,mi}. Then
Mod]"(X) = Min(Mod! (X)) is the class of all minimal x-models of X with re-
spect 1o <. Similarly, Mod***(X) = Max( Mod? (X)) is the class of all maximal
x-models of X.

The following systems are important model-theoretic frames: (L. I H = Mod™),
where x € {c,4}, and L is a sublanguage of L(), and furthermore (L, Iy,
. Mody, ).

mi

OBSERVATION 49 There are theories T C L(c) which are c-satisfiable, i.e.
Mod,(T) # @, but do not have minimal models: Mod?*(T)) = 0.

Proof. Let T« be the theory of linear ordering with first but without last element; P
is a unary predicale satisfying the following property: 3z P(z) AVoYu(P(u)Av >
u D P(v)),i.e. Pisanonemply cofinal segment of the linear ordering. Thenevery
partial model of this theory is not minimal. B

OBSERVATION 50 Let K C I, AnimterpretationT € I, 1 is said 10 be minimal
inK ifT € K. andthereisno J € K suchthat J < I. Then the following holds:
An interpresation T € I¥ is minimal in I A if T is 2-valued.

From the results of section 3 the following observation can be easily derived.

OBSERVATION 51 For every set S of universal sentences there is a set of clauses
CU(S) such that Mod,(S) = Mod, (Cl(5)), * € {4,¢,t}.

PROPOSITION 52 Let § be a universal theory in L(o). Every partial model from
IY of S is an extension of a minimal coherent model of S and can be extended to
a maximal coherent model of S.

Proof. Let S be given; we may assume that S is a set of clauses. Let Z be a coherent
model of S and Q(Z) = {J : J € Z,J k= S}. We show that every decreasing
chainZy D 7y D ... D In... in (YZT), C) has a lower bound. Using Zorn’s
lemma this implies the existence of a minimal element, which is a minimal partial
coherent model of S. Assume I* = (), Zn, and I, |= S foreveryn € w. We
show that Z* |= S. Choose C € S, and

C=EV..VExV~RV...~EV=GV..V=GpV-~H V.. V—~Hy,
where E,, F,,G., H, € At(g). Assume I* = C; this is the case if and only if
T -va(\) B, v\ ~Fv \| =G v\ —~H,).

pSk qg r<m s<n
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implying that

eI N -EsA N\ —~Fo A\ = =G A\ —(=~H.))

p<k <! r<m ssn

which is equivalent to

T 3N\ B A N\ —~Fon N\ Gon \ ~Ho).

psk qs! rsm s<n

There is an evaluation 8 : Var — U(g), such that

' N\ ~EbA N\ —~FbA N\ GOA N\ ~Hb.

p<k gkl r<m s<n

From this follows that ({ E,8} U {~F,6}) NT* = @. This implies the existence of
anumber m € w such that Z,, N ({ E,0} U {~F,8}) = 0. On the other hand, since
I* E Arem G0 A Ay, ~H, 0, then by persistence of formulas without weak
negation for every extension J 2 Z* itholds 7 = A Gr6 A A ~H,0. Altogether,
we may conclude L = Ajop =B AN o) —~FfAA, ¢ ,-GA/\SQ ~H0.

But then Z,,, }& VEC, and this is a contrna'xcuon The proof for the existence of
maximal models is analogous. | ]

Proposition 52 holds also for 4-valued and for total models. Let Mod***(T") be
the set of maximal *-models of T ,* = ¢, 4.

PROPOSITION 53 Let S be a universal theory in L{c), and A*(8) = {l €
Litg(a) : S =4 1}, A™(S) = {l € Lito(o) : S = —1}. Then:

1. (\Mod™(5) = A*(S).
2. Lito(o) - UMod™=(5) = A=(S).

Proof. (l) Letl € (\Mod™(S), then | € T forevery I € Mod (S), since every
T € Mod¥ (S) is an extension of some J € Mod™(S). Hence, I € A4 (S). If
le A*(S) then ! € Z for every T € Mod™ () and it followsl € (Mod*(S).
(2)Letl € Litp(o)~{J Mod***(S), then foreveryI € Mod? (S): | ¢ T, since
Z can be extended to a maximal model .7 € Mod? (S). It fullows thatl € A=(S).
Now, let! € A=(S), then § |= —I. This implies ! ¢ T for every model Z = S
and in particular [ & {JMod***(S), hence I € Lito(o) — |J Mod{***(5). |

DEFINITION 54 (Paraminimal Models) Let X C L{o), * =c,4,mi,and K C
Mod# (X). Then,

Mod™ (K, X) = Min({Z € Mod! (X) : | JK C 1})
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is the set of all minimal s-supermodels of K. The set Mod?™ (K, X') of paramini-
mal x-models over K is the smallest set of x-models of X containing K and being
closed with respect to the condition:

(@ if M CMod™(K,X) then Mod™(M,X)C Mod?™(K,X).

If in condition () the set M is assumed to be finite then the resulting set, de-
noted by ModP™ (K, X), is the set of finitely based paraminimal x-models over
K. Finally, the set of paraminimal x-models of X is defined by Mod?™(X) =
Mod?™(Mod™ (X ), X ), and the set of finitely based paraminimal -models by
Mod/P™(X ) = Mod/*™(Mod™(X), X).

The paramxmmal model operator is the basis of the followmg model-theoretic
frames: (L, I, =, Mod?™). where * € {c, 4}, and (L, IZ k=, ModP?).

Let (L, M, =, ®) be a model-theoretic frame based on a partial logic £.. The set
of fP-pa:amlmmal models of X, denoted by Modt™(®,X), is defined by
ModP™($(X),X). We introduce the following notation: C{P™(X) =
Th(Mod{?™(Mod™(X), X)). Obviously, CF™(X) C C{F™(X) C C(X).

Our notion of a paraminimal *-model is a generalization of the ‘good models’
defined in [22] for classical theories. In the next section we will combine the idea
of paraminimality with the idea of stability which is essential for an adequate in-
terpretation of nonpersistent sequents, resp. generalized logic programming rules.

Paraminimal models can be classified with respect to a rank notion. We set
Mod?™(0, X) = @; ModE™(1, X ) = Mod}* (X); and for o > 1,

Mod?™ (a+1, X ) = Mod?™ (a, X JUU{Mod7* (K, X) : K C Mod?™(a, X)}

and finally for limit ordinals,

Mod?™ (X, X) = |} Mod?™(8, X)

B<X
A paraminimal model Z € Mod?™ (X) has rank ¢, denoted by 7k(I) = a, iff
T € Mod™ (a + 1, X) — Mod?™(a, X). The p-rank of X, abbreviated prk(X),
is defined by prk(X) = sup{rk(Z) : T € Mod}™(X)}.

EXAMPLE 55 Let T = {aVbVeVd, anb D cAdAenf, cAd D eV f}. Then
the largest paraminimal model of T is abede f; since it is the minimal supermodel
of the two minimal models a and b it has rank 1. There are exactly two paraminimal
models of rank 2: cde f and bede f, consequently prk(T) =

OBSERVATION 56 Let X C Prop(o) contain persistent formulas only. Then
prk(X) < 1.

Proof. Let Min.(Z) be the set of all minimal submodels of Z, and K be a set of
submodels of Z being models of X. If T is a minimal supermodel of K then by the
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persistence of X it holds that T = |J K. We show that the rank hierarchy stabi-
lizes at 1, i.e. ModI™ (1, X) = Mod2™(2, X ). Let Z € Mod?™ (2, X), then there
is a set M of submodels of Z such that M C Mod?™(1, X') and Z is a minimal
supermodel of M. By the above remark Z = | J M. Furthermore, every 7 € M
can be represented by J = [JMin,(.7). From this follows that T = |JMin(Z),
ie. rk(T) = L [ ]

If Y is a partially ordered set, then we can select those elements from ¥ which
are minimal upper bounds of certain minimal elements of ¥ by means of an oper-
ator

PMin!(Y)={X €Y |-3X' €Y : X' < X & Minx:(¥) = Minx (¥)}
where Minx (Y) = {X’ € Min(Y) : X’ < X}. We obtain the following corol-
lary.

COROLLARY 57  Let X C Prop(o) contain persistent formulas only. Then,

Mod?™(X) = PMin* (ModZ (X))

Eventually, an important question is: which of the inference relations }::; forz =
m, pm, and y = 4, ¢, ms, is the natural choice forknowledge systems. We shall see
below that the answer to this questions depends also on the logical expressiveness
of the language of knowledge bases. In the simplest case, where only extensional
knowledge, corresponding to sentences from L(~, A, V), is represented the pre-
ferred inference relation is based on paraminimal models, i.e. =0 (resp. 2™ if
only consistent KBs are admitted), as the following example illustrates.

EXAMPLE 58 (Inclusive Disjunction) Let X = {g(c), p(a) Vp(b)}. From this
KB we want to be able to infer —p(c), but not —p(a) vV —p(b). However, X -,
~p(c), for * = ¢, mi, but X =™ —p(c), since

Mod(X) = {{a(c). p(a)}, {q(c).p(b)}}

andalso, X |=* —p(a)Vv—p(b), which is not wanted. Therefore, we need paramin-
imal reasoning:

Mod?™(X) = {{g(c), p(a)}, {a(c):p(®)}, {a(c),p(a),p(b)}}
and hence, X 2™ —p(a) v —p(b).

4.4 Compactness Properties

We conclude this section with the investigation of compactness properties. Let
F = (L,1,}= ®) be a model-theoretic frame. Cg is semantically compact if
for every set X C L the following holds: if (X ) # @ for every finite subset
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Xy € X then ®(X) # 0. Inclassical logic compactness and semantical com-
pactness coincide. For arbitrary model-theoretic frames this is not longer true. The
following facts clarify the relation between compactness and semantical compact-
ness. ® is strongly semantical compact iff for every set X C L and formulag € L
the following holds: if ®(X ;) "Mod(¢) # @ for every finite subset Xy € X then
®(X) N Mod(¢) # 0. The following proposition shows the interrelation between
these properties.

PROPOSITION 59 Let F = (L, I, }=, ®) be a model-theoretic frame.

1. Assume (L,Cy) is explosive. If Cy is compact then it is semantically com-
pact.

2. Assume (L, Cy) is negation explosive. Then Cy is strongly compact if and
only if it is compact.

Let C be an inference operation on the language L, and C be the finitary restriction
of C,ie. dom(C) = {X : X C L, X is finite }, and Cy(X) = C(X) for all finite
subsets X of L. Let C be monotonic, and Ag(Cy)(X) = Uye,,-in(x) Ce(Y). Do
can be considered as an operator extending finitary inference operation fo infinitary
ones, and if C is monotonic then Ag(Cy) < C. If C is monotonic and compact
then Ag(Cy) = C, ie. C is uniquely defined by its finitary restriction via Ap. In
case C is not compact, but monotonic, Ag(C) gives an approximation of C from
below. If C does not satisfy monotony then there is no well-defined operator A
allowing to reconstruct the operation C from its finitary restriction Cy. To analyse
this phenomenon we use the following notions from {121

DEFINITION 60 Let (L, CL) be adeductive system. D(L,C1) = {C : (L,C1,C)
is a deductive frame }; Dy(L,CL) = {C : C is finitary and (L,CL, C) is a de-
ductive frame }; T(L,C1) = {C : (L,CL,C) is an inference frame }.

1. Afunctor A : Ds(L,Cr) =+ T(L,CL) is said to be an extension operator
if for every C € D(L,CL) the conditions dom(A(C)) = 2L and A(C) |
Fin(L) = C are satisfied. A is called deductive if im(A) C D(L,CL).

2. An inference operation C : 2L — 2L is A-compact iff C € A(Cy); Cis
completely A-compact iff C = A(Cy).

Abstract compactness properties can be expressed by conditions compeond(C,

¢, Fin(L)) depending on C, C, and the finite subsets of the language L. Impor-
tant compactness properties are summarized in the following definition [4].

DEFINITION 61 Let (L,CL,C) be a deductive frame.

1. C is weakly compact iff for every X C L, ¢ € C(X) there is a finite subset
A C CL(X) such that ¢ € C(A).
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2. C is weakly supracompact iff for every X C L, ¢ € C(X) and every finite
A C CL(X) there is a finite set B, A C B C C(X) such thar ¢ € C(B).

3. Let F be an inference operation defined for finite sets only. A ee(F)(X) =
{¢ : for every finite A C Cyr(X) there is a finite B such that A C B C
Cu(X)and ¢ € F(B)}.

The concepts in the preceding definition are modifications and generalizations
of compactness notions introduced and studied in [7]. The operator A, was in-
troduced and presented in [4]. In the following we show that the extension operator
Ay is suitable for analysing minimal reasoning in partial propositional and par-
tial predicate logic.

The set Prop(o) of propositional sentences over o is defined by Prop(s) =
Lo(o : {A,V,~,~)). LetV C Lity(o) and Prop(V) the smallest set of formulas
in L(o) containing V and closed with respect to A, V, ~, —. Obviously, Prop(s) =
Prop(Lity(0)). Given F € Prop(g) then lit(F) = the set of literals from Lito(c)
appearing in F, and lit(X) = [J{lit(F) : F € X}. To simplify the notation let
Mod(.X) be the set of all coherent Herbrand models of X, X C Prop(o). Fora
setV C Litg(o) let Mody (X) = {ZNV : T € Mod(X)}. The deductive frame
under consideration is defined by (Prop(c), I, |=, Mod™).

PROPOSITION 62 Let V C Lity(o), F € Prop(V), andZ € I”. ThenT |z F
fand only f TNV = F.

Proof. We may assume that F' is in negation form. The proof is inductively on the
complexity of F. We consider only the case F = —A. LetZ |= ~A, then A ¢ T,
hence A ¢ TNV, this implies TNV |= ~A. Conversely, let TNV = —A, then
A ¢ INV;byassumption A € V, hence A ¢ Z, and this implies Z }= 4, hence
I k= —A. The remaining cases are straightforward. L

PROPOSITION 63 If V C Lito(o), F € Prop(V), then X |= F if and only if
Mody (X) C Mod({F}).

PROPOSITION 64 Let X C Prop(o), V C lit(X) a finite subset. Then there is
a finite subset B C Cc(X), such that lit(B) = V and Mody (X) = Mody (B).

Proof. Mody(X) = {Z NV : I € Mod(X)} is a finite set of cardinality <
2¢2r4V). For every J € Mody (X) letd(J) = AT AA{~l:1 €V — 7}, and
F=V{d(J): J € Mody(X)}. Then B = {F} satisfies the desired condition.

L]

Obviously, the model operator Mod" is semantically compact, since for every
set X the condition Mod.(X) # @ implies Mod?*(X) # @. In [21) it is shown
that C” is not deductively compact. The following simpler example is due to J.
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Dietrich. Let Lito(c) be infinite, and {p; : i € w} an enumeration of Ifitu(a),
The set X is defined as follows X = {1 A ... ADi A (Piy1 Vo) 1 1 S i <w}.
Then X =7 ~(po ¢ ;). I € Mod"(X) then T E —po,m = p1, hence
T k= —(po ¢ ). For every finite subset Xy C X holds Xp T —~(po & m).

PROPOSITION 65 The deductiveframe (Prop(s), Cc, CT'), is weakly supracom-
pact.

Proof. Let X E™ F, A G C.(X), A finite and lit(A) U lit(F) = {{1,,..,2,} =
V. By Proposition 64 there is a finite subset B C Cc(X) such that lit{B) = {1,
...+ 1s} and Mody (X)) = Mody (AU B). Let J € Mod{ (AU F), then J QlV.
7 can be extended to a model Z 2 7, T € Mod(X). By Propos.mon 52 there is a
minimal model 7y € Mod7}(X) such thatZ; C Z. By assumption I = F Itis
J C T, since J is a minimal model of AU B. Then J |= F'iff Iy |= F, hence
AUBEMF. |

PROPOSITION 66 Let X C Prop(c) and F € Prop(o). Following conditions
are equivalent:

I X" F,

2. for every finite subset A C C.(X) there exists a finite subset B C C.(X)
such that lit(B) C lit(A) and AU B =7 F.

Proof. The implication (1) = (2) follows immediately from proposition 65.
We show (2) = (1). Using the preciding propositions we construct a sequence
Ay, Ao, ..., of finite sets A; € C(X) such that lit(F) C lit(Ay), lit(A;) C
lit(Aipr ) lit(UiEu) = lit(X), and MOdm,(Ai)(A,') = Mod,,-‘(A,.)'(X). Denote
1(i) = lit(A;). Obviously, Co(lUie, 4i) = Cec(X). By assumption for ;very
A; there is a B; C C(X) such that lit(B;) C lit(A;), and A; U Bi, Em F.
It is Mody(y (Ai) = Mod;()(A; U B;), and since hf(B;) C lit(Ay) it follows
Mod(A;) = Mod(A; U B;). This implies 4; = F,i=1,2,... .

We show that X =T F. Assume that this is not the case. Then there is .aI €
Mod™ (X such that Z % F. Then I N I(¢) is not minimal for /?; for every i € w.
Let T; = Z N 1(5) and Q%) = {J = J € Mody(;y(4:) slmd'J is minimal for'A.',
J CT..J #I;}. Obviously, 7 | F forevery J € (1), 1 € w. By assumption,
the sets (i) are nonempty foreevery i € w. Foreachk € wlet Ak)={T nl(k) :
7 € Uiy A5))- Letbe A = Uysy A(K). For 7 € Aletbe dom(J) = I(k) iff
7 € A(k) and for 1, Ja € Ai Ty © Jp if dom(h) € dom(Tz) and J1 =
Ja 1 dom(J1). Then (A, C) is a tree of finite valency. Furthf.ryn?re, ifJ e A(Ig)
and j < k then 7 N1(j) € A(4), hence J NI(j) C J. By Konig's lemma there is
an infinite branch B in (A, C), and let £ = |J B. Obviously, K k= F, because for
every J € Q) J k= F,and J Ni(j) = F forevery j < i. From this follows
K # I. Furthermore, K |= X, since X |= A;, foreveryi € w. We show that
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K C I. Assume this is not the case. Then there is av € X B(o) such thatv € K
butv & Z. Then there is a ¢ € w such that v € /(z). By construction, there is a
J € Q(j),7 >4, suchthat KN I(5) = T Ni(z); but J € ZNI(j). This gives a
contradiction. It follows X C Z, which is a contradiction to the minimality of 7.

H
PROPOSITION 67 (Corollary) Let (Prop(c),C., CI*) be the deductive frame of

minimal reasoning in partial propositional logic of coherent models. Then CT* is
completely Ay oc-compact, ie. CT = A,ee((C™) ).

5 SEQUENTS AND STABLE MODELS

Traditionally, Gentzen sequents are used in a schematic way in sequent calculi, such
as in 3.3, in order to express valid transitions from one argument schema to another.
In other words, a sequent in a sequential inference rule stands for a whole class of
propositional substitution instances.

In this section, we propose 1o use sequents in a non-schematic way for the pur-
pose of representing rule knowledge. A sequent here is not a schematic but a con-
crete expression representing some picce of knowledge.

We define the following classes of sequents.

1. Seq, (0) = {s € Seq(o) | Bs, Hs C Lit(s)}.

2. Seqy(0) = {s € Seq(0) | Hs C Lit(o), Bs C XLit(o)}.

3. SeQS(J) = {S € Seq(a) l Hs c L(U'-"':An V)vBs < L(U] v ~AY, ‘- )
)}

4. Seqq(0) = {s € Seq(s) | Hs C L{a;~,A,V,3,V), Bs C L(o;—,~
WAV, LD, 3T
We also define S' = {s € S| card(Hs) = 1} for every class of sequents S. For
S C Seq(o), and * = 4, ¢, ¢, 2, we define the model operators
Mod.(S) = {Iel.(o):Z}=sforallse S}
Mod# (3) {ZeIf(0): T sforalls € §}
ModZ () {Z € Mod# (S) : ~3T' € Modf(S) s.th.
Ine(Z') C Inc(Z)}
and their minimal reasoning refinements
Mod™(S) Min(Mod# (5))
Mod?™(S) Mod?™ (Mod}*(S), S)
The associated inference relations are defined as follows:
Sy Fiff Mody(S) € Mody(F)
where 2 = H,m,pm, andy = 4,¢,t,2,mi, and F € L(g).

(L]
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OBSERVATION 68  Let B = H be any sequent. Then, forany I € 14,
IkB=H ifIE\BD\H

This observation seems to imply that there is no big difference between sequents
and material implications, since for F, G € L, it holds that

Mod, (F = G) = Mod,(F 5 G)

However, for other model operators, such as stable models Mod (see below), this
is not the case.

EXAMPLE 69  Sequents differ from material implication:
Mod?™ (=p 2 q) = {{p},{g}} # Mod{*(-p= q) = {{¢}}
OBSERVATION 70  Let S C Seq be a set of sequents. Then,
Mod;’ (S) = Mod," ({S))
where [S] is the Herbrand instantiation of 5.

OBSERVATION 71  Let S C Seqs(0), and F € Lo(o) be a closed existential
sentence. Then,

SE.F if [S]k. F

5.1 Paraminimal Models for Persistent Sequents

A sequent s € Seqy is called persistent, if all body formulas F' € Bs are persis-
tent. For instance, all sequents from Seq, are persistent. For a set S of persistent
sequents, its paraminimal models, Mod?™ (5), are the intended models, and thus
J=P™ (resp. =P77) are the natural inference relations for consistent (resp. inconsis-
tent) knowledge bases consisting of persistent sequents.

EXAMPLE72 Let S = {= q(b); = p(a),p(b); p(x) = ~g(x)}. Since
Mod}7? (5) = Mod?™(8) = {{q(b), p(a), ~g(a)}}

we obtain for x = ¢, mi
S L™ ~g(a) A —p(b)

OBSERVATION 73 For a sequent set S C Seq}, where the head of a sequent
consists of a single literal, and its body of a set of literals, the notions of minimal
and of paraminimal models coincide, and there is a unig inimal model, denoted
M. Formally,

Mod5™(S) = Mod*(S) = {Ms}
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Proof. We have to show that the interpretation Mg = (Y ModZ’ (S) is a model of
S. Obviously, if it is a model, it is the least one.

Let (B = 1) H[S] and Mg |= B. By persisience of B we have M’ |= B for
every M' € Modz'(S). This implies that | € M’ for every M’ € Mod! (), and
hencel € M. | ]

5.2 Stable Models for Non-Persistent Sequents

When a knowledge base consists of a set of sequents S C Seq,, where body for-
mulas may be non-persistent, it may have (para)minimal models which are not in-
tended. This is ilJustrated by the following example.

EXAMPLE 74 (Specific Closed-World Assumption)
Let § = {= g(c); = p(a), p(b); ~p(z) = ~p(z)}.

The last sequent, from —p(t) conclude ~ p(t) for any term ¢, expresses a specific
Closed-World Assumption. Since we want to infer ~p(c), the following paramin-
imal models are not intended madels:

Ml = {Q(C)'D(C), p(n), Np(b)}
My = {g(c),»(c), p(8), ~p(a)}
Mz = {q(c),p(c),p(a), p(b)}

Therefore, we need a more refined preference criterion which allows to select the
intended models of a set of sequents from its Herbrand models.

DEFINITION 75 [My, Ma] = {M e I : My < M < My}

Recall that wrt a class of interpretations K, we write K |= F iff Z = F for all
I € K. We denote the set of all sequents from a sequent set S which are applicable
in K by

Sk ={s €[S): K |= Bs}

The following definition of a stable model is inspired by the definition of a stable
closure of a set of rules in [27].

DEFINITION 76 (Stable Model) ~ Let* = ¢, 4. M € Mod¥ (S) is called a min-
imally stable *-model of S C Seqz (o), symbolically M € ModT*(S), if there is
a chain of Herbrand interpretations My < ... < M such that M = My, and

1. Mo =@4

2. For successor ordinals a with 0 < a < &, M, is a minimal extension of
M1 satisfying the heads of all sequents whose bodies hold in [M g1, M),
ie. Mo eMIn{ZeI¥ :T> Mo 1, IEV Hs fa s€ SiMas i}
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3. For limit ordinals A < K,

My = U Ma
adh
Paraminimally stable coherent models are defined accordingly (replacing in the
definition all occurences of ‘minimal’, resp. ‘Min’, by ‘paraminimal’, resp.
‘PMin'’). The set of minimally stable *-models of S is denoted by Mod[**(5), end
the set of paraminimally stable models of 5 by Mod?™*(S). A further interesting
class of models is defined by Mod?™(Mod?**(S), S).
Minimally inconsistent stable models are defined by
Mod?,(S) = {T € Mod}(S) : =3I' € Modj(S) s.th. Inc(Z') C Inc(T)}
where * = ms, pms.
EXAMPLE 74 (continued) Only the following three paraminimal models of S are
stable:

My = {q(c),~p(c),p(a), ~p(b)}
Ms = {qg(c),~p(c), p(b), ~p(a)}
Ms = {aq(c),~plc),pla), p(b)}

and hence, S =P ~p(c).
Thus, =™ (resp. (=) will be our preferred inference refation for knowledge-
based reasoning.

EXAMPLE 77 (Default Rules) A default (resp. exception tolerant) rule can be
expressed by a combination of weak and strong negation. E.g., the rule ‘birds (nor-
mally) fly’ is expressed as

bz) A —~f(x) = f(z)
If the knowledge base S contains in addition the facts that Tweety and Opus are
birds, 5(T") Ab(O), but Opus does not fly, ~ (O}, we can infer by stable reasoning
that ’I\veety flies:
e )
Paraminimally stable reasoning supports inclusive digjunctive information as the
following example shows.

EXAMPLE 78 (Inclusive Disjunction) LetS = {= pVgq; —(pAq) = rVs}.
Then,

[

Mod*(5) {pr,ps, qr,qs, g}

Mod2™(S) = {pr,ps,q7,95,pg, Prs,qrs, par, pgs, pars}
Mody*(S) = ({pr,ps,gr,qs}

Mod{™*(S) {pr,ps,qr,qs,pq, prs, qrs}

i
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Stable models do not exist in all cases. For instance, S = {—p = p} has exacily
one minimal model, Mod." (S} = {{p}}. which is not stable, however. A sequent
set, resp. logic program, without stable models will be called unstable.

EXAMPLE79 S ={pD>¢=r; r= p}isunstable.
OBSERVATION 80  Stable reasoning is not cumulative.

Proof. The following counterexample is due to [25). Let S = {—r = ¢; —¢ =
ri —p = p; —r = p}. Since Mod"*(S) = {{p,q}}. and S 2** p,q, but
ModZ*(S U {p}) = {{p.a}, {p.7}}.and hence S U {p} |7 1. m

5.3 Extended Logic Programs as Sequent Sels
A sequent set S C Seqq corresponds to an extended logic program (ELP)
Ns={l+B:(B=>1)e 5}

The other way around, an extended logic program IT corresponds to a sequent set
Sn C Seqs with

Sp={B=1:(l« B)en)

For B C XLit(c), let B~ denote the set of Jiterals which occur weakly negated in
B,ie. B~ := {l € Lit(¢) : —! € B},andlet B* = {l € Lit(c) : l € B}. It
holds that for any B C XLitg, and any T € I},

IEB iff BYCD; & B-nNDr=40
DEFINITION 81 (Immediate Consequence Operator) Let IT be an extended logic
program, and I C Lit be the diagram of T € I ," . Then

Tn(I) = {l € Lito: 3(l « B) € [1I}, s.th. T |= B}

is called the immediate consequence operator associated with TL

DEFINITION 82 (Gelfond-Lifschitz 1990)  Let M C Lit, and Il be an ELP.
Then the Gelfond-Lifschitz transformation of IT with respect to M is defined as

IM={l«B*:(l«B)e[M], and B~ N M = 0}
M is called an answer set of TI, if Mod™(TT™) = {M}, and M = D o,

We shall show below that the definition of answer sets is just a specialization of
our notion of a stable model. The same holds for the definition of stable models of
normal logic programs in [10]. Since these definitions are based on the Gelfond-
Lifschitz-transformation ¥ requiring a specific rule syntax they are not very gen-
eral; as a consequence, Gelfond and Lifschitz are not able to treat negation-as-
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failure as a logical functor, and to allow for arbitrary formulas in the body of a rule.
The interpretation of negation-as-failure as weak negation in partial logic according
10 our stable semantics scems to be the first general logical treatment of nonmono-
tonic logic programs.'® It was already proposed by Wagner in [26; 28], but without
the full generality of the stable semantics proposed in the present paper.

PROPOSITION 83 An answer set of an extended logic program 11 is the dia-
gram of a minimally stable coherent model of the corresponding sequent set Sg.

Proof sketch: Let M C Lit be an answer set of an extended logic program 11, i.e.
Mod™([1M) = {M}, where M = Dps. For Iy = {l + B € [l : M |= B},
the immediate consequence operator Ti,, generates M as the supremum of the
following chain:

M. = |J MpUTu,(|J Mp)
B<a B<a

Itis easy to sec for all rules ! + B € [TI], that Mg |= | whenever [Mg—1, M] |=
B: simply becausc ! € Tu,, (Upcq Mp) Whenever Uy, Mp |= B. Itis also
clear that M, is a minimal (in fact, the least) such extension of My_;. B

PROPOSITION 84 Let M € Mod;*(S) be a minimally stable coherent model
of a sequent set S C Seqy, then M = D is an answer set of the corresponding
extended logic program Ils.

Proof. Let ModT ((ITs)™) = {M’}. We have to show that M’ = M. Denoting
M' = Dy, we first prove that M' C M. Let! € M', ie. thereis (I « B') €
MM, such that M = B'. Then there is a corresponding rule (! + B) € [Is],
such that B' = B, and B~ N M = §, and consequently M |= B, implying that
leM.

Assume that M is generated by Mo < ... £ M,. We show by induction on
athat M, C M’ for & < k. For @ = 0, we have My = § € M’. For a sucessor
ordinal @ = B+ 1,letl € Mpy1 — Mp. Thismeansthatl € {k: (A = k) €
[S] & [Mp-1, M] |= A}. Consequently, there is some rule (I ¢ B) € [[Ig], such
that [Mg, M} [= B, implying that (I + B*) € (TIs)™. Since by the induction
hypthesis Mg C M', it follows that M’ |= B+, and consequently,! € M'.

Finally, let @ = A be a limes ordinal. Then My = gy Mp © M', since by
the induction hypothesis for all B < A, Mg C M. ]

OBSERVATION 85 Since an ELP I1 may have several minimal models, it holds
that in general Mod* (T1) # Mod?™ (II). However,

Mod?™ (IT) = Mod?™* (II)

8There have been many meta-logical (notably modal logic) proposals, though.
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Proof. There is exactly one minimal extension of M, satisfying all heads of
sequents from Spaq,_,,a4p. namely Mo = {l € Lito : (I + B) € Sjm,_,,m}-
B

6 CONCLUSION

Partial model theory, being a natural generalization of classical model theory, is
able to capture many important distinctions arising in knowledge-based reasoning,
such as explicit falsity vs. non-truth, or exact vs. inexact predicates. At the object
level, these distinctions can be expressed by means of the two negations of partial
logic. While the strong negation is useful to express the explicit falsity or incompat-
ibility of some piece of information, the weak negation, as a non-persistent functor,
can be used to express specific Closed-World Assumptions and default rules.

We have shown in this paper how the fundamental notions of minimal, paramin-
imal and stable models in partial logic can be used to define the semantics of knowl-
edge bases including relational and deductive databases, and extended logic pro-
grams.
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