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We consider a GI/G/1 queue in which the service time distribution and/or the interarrival 
time distribution has a heavy tail, i.e., a tail behaviour like C" with l < v ::;:; 2, so that 
the mean is finite but the variance is infinite. We prove a heavy-traffic limit theorem for 
the distribution of the stationary actual waiting time W. If the tail of the service time 
distribution is heavier than that of the interarrival time distribution, and the traffic load 
a -+ 1, then W, multiplied by an appropriate 'coefficient of contraction' that is a function 
of a, converges in distribution to the Kovalenko distribution. If the tail of the interarrival 
time distribution is heavier than that of the service time distribution, and the traffic load 
a -+ 1, then W, multiplied by another appropriate 'coefficient of contraction' that is a 
function of a, converges in distribution to the negative exponential distribution. 

Keywords: GI/G/l queue, heavy tails, regular variation, waiting time distribution, heavy
traffic limit theorems 

1. Introduction 
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In this paper we consider the classical GI/G/1 queue, with i.i.d. (independent, 
identically distributed) interarrival times £T 1, 0-2, .•. with distribution A(-) with finite 
mean a, and with i.i.d. service times T1, T2, ... with distribution B( ·) with finite 
mean (3. The traffic load a := (3 /a is assumed to be less than one, so that the 
queue is stable. 

When the variances of the interarrival and service time distributions are finite, 
the standard heavy-traffic limit theorem for the stationary actual waiting time W in the 
GVG/1 queue holds, i.e., 

limP(~W ~ t] = 1 - e-t, t;:?: 0, 
t.lO 

( 1.1) 

with~:= 2(a - (3)/(Var(rr1) + Var(T1)). This exponential heavy-traffic theorem was 
obtained by Kingman in the early sixties; see Kingman [27] for an early survey, and 
Whitt [34] for an extensive overview of heavy-traffic limit theorems for queues. 

©J.C. Baltzer AG, Science Publishers 
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In the present study we prove a heavy-traffic limit theorem for the GI/G/l queue 
in which the second moment of the service time and/or interarrival time is infinite. 
Our main motivation for this study, apart from the wish to extend the classical GI/G/l 
theory, is the close relation between the ordinary GI/G/l queue and the so-called fluid 
queue, coupled with the recent interest in fluid queues with input distributions that have 
an infinite variance. Let us elaborate. Plots of recent traffic measurements in Ethernet 
Local Area Networks [35], Wide Area Networks [32] and VBR video [2] have shown a 
striking similarity when one considers a time period of hours, minutes or milliseconds: 
bursty subperiods are alternated by less bursty subperiods on each time scale. This 
scale-invariant or self-similar feature of traffic, and the related phenomenon of long
range dependence (i.e., the integral of the covariance of the traffic rate diverges), 
were convincingly demonstrated in [28]. A natural possibility to introduce long-range 
dependence (LRD) in a traffic process is to take a fluid queue fed by one or more on/off 
sources (viz., sources that alternate between active and silent periods), and to assume 
that either the on-period or the off-period of a source has the following 'heavy-tail' 
behaviour: 

(1.2) 

with hv a positive constant and 1 < 11 < 2, giving rise to an infinite variance (here 

f(t) t-:.,oo g(t) stands for f(t)/g(t) -t 1 with t -too). As soon as one of the sources 
exhibits such behaviour, the cumulative input process is LRD. As observed in [35], in 
many cases on- and/or off-periods of actual traffic sources do indeed exhibit such a 
heavy-tail behaviour. The occurrence of heavy-tailed on- and/or off-periods of sources 
seems to provide the most natural explanation of LRD and self-similarity in aggregated 
packet traffic. These observations have triggered much research on fluid queues with, 
in particular, heavy-tailed on-period distributions. In this context, regularly varying 
and subexponential on-period distributions have received special attention. 

There appears to be a strong relation, and a considerable similarity of behaviour, 
between the fluid queue and the ordinary single server queue. See, e.g., [9,25]. The 
latter paper studies a fluid queue fed by independent on/off sources, and relates the 
buffer content, embedded at the beginnings of periods in which at least one source is 
active, to the waiting time in a certain G/G/l queue. Among other things, this allows 
one to exploit [4,5] a result of [8] which states that, in the ordinary GI/G/l queue, the 
tail of the waiting time distribution is regularly varying if and only if the tail of the 
service time distribution is regularly varying. 

The above elaboration on the intricate phenomena encountered in fluid models 
clearly motivates a study of the GI/G/1 model with heavy tails. While the results to 
be obtained have their own merit, they also should provide a better insight into fluid 
models. 

Generally speaking, it is very difficult to obtain explicit waiting-time results for 
the GI/G/1 queue with heavy-tailed interarrival and/or service time distribution. How
ever, we are able to obtain heavy-traffic results for the actual waiting time, and these 
results give much insight into the behaviour of the single-server queue with heavy-
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tailed distributions. We consider service time and/or interarrival time distributions 
for which the dominant tail behaviour is a generalization of the behaviour specified 
in (1.2). First assume that the tail of the service time distribution exhibits this behav
iour, with 1 < v < 2, while the tail of the interarrival time distribution is 'less heavy' 
than that of the service time distribution. Our main result (theorem 5.1) for this case 
states the following. The 'contracted' waiting time .1.(a)W / {3 converges in distribution 
for a i 1 to a limiting distribution R11 _ 1(t). This distribution is specified in (5.14), and 
the 'coefficient of contraction' .1.(a) (that typically behaves roughly like (1 - a) 11<11 - 1>) 
is specified in the 'contraction equation' (4.6). 

Next assume that the tail of the interarrival time distribution exhibits the tail 
behaviour of (1.2), while the tail of the service time distribution is less heavy than that 
of the interarrival time distribution. Our main result (theorem 7.1) for this case states 
the following. The 'contracted' waiting time A(a)W /a converges in distribution for 
a T 1 to the negative exponential distribution. The 'coefficient of contraction' A(a) 
(that typically behaves roughly like (1 - a)11<11 - 1>) is specified in (7.5). 

Remark 1.1. Recently some special cases of theorem 5.1 have been obtained. In [12] 
this heavy-traffic result has been derived for the M/G/1 queue with a special Pareto
type service time distribution; in [13] it has been obtained for the GJ/G/1 queue with 
a Pareto-type service time distribution and an interarrival time distribution that has a 
less heavy tail than the service time distribution. The report [14) extends the work 
of the present paper to handle the case in which the tails of the interarrival time and 
service time distributions are 'similarly heavy'. 

Remark 1.2. The above-mentioned heavy-traffic limit theorems open possibilities for 
approximating the waiting time distribution in the GJ/G/l queue with heavy-tailed 
interarrival and/or service time distributions. These possibilities are explored in [6] 
and appear to be very promising. For example, approximating P[W > t] in the case 
of theorem 5.1 by 1 - R11-1(.1.(a)t//3) gives, for v = 3/2, a remarkably accurate 
approximation, even if the traffic load a is not close to one; cf. remark 5.5. 

The remainder of the paper is organized in the following way. Section 2 presents 
the class of service time distributions under consideration in the case of theorem 5.1; 
examples taken from this class are given in section 3. In section 4 the coefficient 
of contraction tl(a) is discussed. Theorem 5.1 is proven in section 5. Section 6 
presents the class of interarrival time distributions under consideration in the case of 
theorem 7.1. In section 7 the coefficient of contraction A(a) is discussed, after which 

theorem 7.1 is proven. 
Our proofs rely on a well-known expression for the Laplace-Stieltjes transform 

of the GJ/G/1 waiting time distribution, on representations of the Laplace-Stieltjes 
transform of heavy-tailed distributions, and on boundary value techniques. Various 
analytical results and derivations concerning these are gathered in the appendices. 
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2. On the service and interarrival distributions 

For the GVG/1 queueing model, denote by A(t) the distribution of the interarrival 
times <Tn, and by B(t) that of the service times Tn· In this section we describe the 
classes of distributions A(-) and BO for which we analyse the heavy-traffic behaviour 
of the waiting time distribution. 

Put 

o: := fo 00 tdA(t) < oo, f3 := fo 00 
tdB(t) < oo, a:= f3/a < 1, (2.1) 

and, for Re p ~ 0: 

a{p} := f 00 e-ptdA(t), 
lo-

/J{p} := rXJ e-pt dB(t). 
lo-

(2.2) 

Concerning the service time distribution BO we only introduce assumptions about its 
tail probabilities, i.e., about 1 - B(t) for t -+ oo. It is assumed that for some finite T 
we may write: for t > T, 

1 - B(t) = G1 (t) + G2(t). (2.3) 

Here G2(t) will be a function such that for a 8 > 0, 

fr00 e-PtG2(t)dt exists for Rep> -8. (2.4) 

For instance, (2.4) holds if 

(2.5) 

Note that it is no restriction to take T = /3, as we shall do in the sequel for reasons of 
simplicity. 

The function G 1 (t) shall describe the dominant asymptotic behaviour of 1-B(t); 
e.g., G 1(t) = C(f3/t)312, with Ca positive constant. In section 3 we shall discuss the 
class of functions G 1 ( t) in more detail. We shall not work with the representation (2. 3) 
but mainly with the following closely related LST (Laplace-Stieltjes) representation of 
f3 { p}. We have chosen this representation because it easily relates to the tail behaviour 
of probability distributions, and because it allows us to operate in the whole complex 
half-plane; see further the examples in section 3. It is assumed that f3 { p} can be 
represented as: for Rep ~ 0, 

where: 

1 - 1 - ~{p} = g((3p) + c(f3p)v-I L(/Jp), 

c > 0 is a constant; 

1 <[I~ 2; 

g(/Jp) is a regular function of p for Rep> -8, g(O) = O; 

(2.6) 

(2.7a) 

(2.7b) 

(2.7c) 
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l L((3 p) is regular for Rep > 0, and continuous for Rep ;:: 0, 
except possibly at p = 0, 

L((3p)--+ b > 0 for IPI--+ 0, Rep~ 0, with b = oo if v = 2, 
. L((3px) 

hm L = 1 for Rep ~ 0, p I- O; 
xlO (x) 

for >. E (1, v): fo00 
t>.. dB(t) < oo. 

Concerning A(t) it will be assumed that 

Mµ := fo 00 tµ dA(t) < oo for a µ > v. 
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(2.7d) 

(2.7e) 

(2.8) 

Remark 2.1. Whenever in the present analysis many-valued functions occur, like ({3p)'-1 
or log (3p, then they are assumed to be defined by their principal value; the principal 
value of ((3p)v is positive for (3p > 0, that of log (3p is real for (3p > 0. 

Remark 2.2. The class of service time distributions specified by (2.6) and (2. 7) contains 
the class of regularly varying distributions of index -v E (-2, -1); cf. [3, pp. 333, 

334], and notice that L(x) is a slowly varying function of x for x real. In particular, 
it follows from [3, theorem 8.1.6, pp. 333, 334] that 1 - B(t) is regularly varying 
of index -v E (-2, -l) iff 1 - (1 - f3{p})/(f3p)""' canst. pv- 1L((3p), with L(-) a 
slowly varying function. It should also be noticed that condition (2.7e) for v < 2 

is immediately implied by the previous conditions; for reasons of reference we have 
inserted it in (2.7). 

3. On the class of distributions B(·) 

In this section we present a number of examples of service time distributions with 

heavy tails, of which the LSTs have the properties described in the previous section. 

Case (i) 
In [12] the subject of study is the M/G/1 queue with service time distribution 

B(t) given by 

82-v ' roo e 
l - B(t) = 1(2 - v) 8 Jo e-sB (B + t)v dB, t ;:: 0, 

~ 

l < l/ < 2, s > 0, 0 < 8 ~ 1, (3.1) 
~ 

2-v8 
f3 = v- l ~· B(O+) = 1 - 8. 
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It is readily seen that (3.1) implies 

1 - B(t)""' c( q)v fort-too, c > 0, 

and it is also readily verified that this B(t) for t > f3 can be written in the form (2.3). 
In [12] it has been shown that (3.1) leads to: for Rep;;::: 0, 

1 _ 1 - /3{p} = _ p/s __ 1_ p/s + _1 _ (p/s)v-1 
f3p l-p/s 2-v(l-p/s)2 2-v(1-p/s)2· 

Obviously, (3.2) satisfies (2.6) and (2.7); note that here 

L(f3p) = 1 - (p/s)2-v[1 + (2- z;)(l - p/s)]. 
(1 - p/s)2 

Further, note that for v = 3 /2, 8 = 1, 

1-,6{p} 1 
=----

,6p (1 + ffp)2' 
Rep;;::: 0. 

Case (ii) 
In [13] the following case is considered: 

(3.2) 

(3.3) 

1 - B(t) = c( q) v + G2(t) fort> (3, c > 0, 1 < v < 2, (3.4) 

and it is shown that: for Rep ;;::: 0, 

1 - 1 - (3 { p} - (3 C''lr /3 v-1 
,6 -g1( p)+ re).< I) < p) , (3.5) p V Sill ZJ - 7r 

with: for Rep > -8, 

[ 13 dt ( 00 (/3) v dt g1((3p)= Jo (1-e-pt)(l -B(t))p+ }(3 c t (j 

100 t c + (1 - e-Pt)G2(t)- + --e-f3P 
f3 (3 v-l 

+ _P_ e-pt - dt; c 1(3 (t)l-v 
1-z; 0 {3 

(3.6) 

obviously, g1 (0) = 0 and g1 ((3 p) is regular for Rep > -8. Clearly, (3.5) satisfies (2.6) 
and (2.7); note that here L(f3p) is a constant. 

The following extension is also considered in [13]: 

(/3) v N ((3) Vn 
1 - B(t) = c t + ~ Cn t + G2(t) fort> (3, 

c > 0, 1 < v < 2, vn > v, 1 :::;; N < oo. (3.7) 
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From [13) it is seen that for this B(t) we again get (2.6) and (2.7), but of course with 
a different g(-) and a different L(/3p). Actually, we have for Rep~ 0: 

1-1-/3{p} 
/3p 

= (/3 ) crr(/3p)v-I {i .:.!.. r(v)sin(v - l)'Tr ( ti-v} 
92 p + r(v) sin(v - l)'Tr + c f(v1) sin(v1 - l)7r (3p ' 

(3.8) 

for Cn = 0, n = 2, ... , N, v1 > v, v1 not an integer; whereas for v1 = k > v, k an 
integer, 

1 - {J{p} C1r({3p)v-I 
1 - /3 = g3(f3p) + re ) . c 1) p v sm v - 1r 

{ l ~(-l)k_ 1 f(v)sin(v - l)'Tr(/3 )k-vl /3 } 
x + c f(k - 1) P og P · (3.9) 

Case (iii) 
The case 

1 - B(t) = c( ~) v {log~ - ~:ii_-~)}+ G2(t) fort~ (3, (3.10) 

with c > 0, 1 < v < 2. From [18, Vol. I, p. 469), it is seen that: for Rep~ 0, 

1- 1 - ~{p} = 94(,Bp) + cr(l - v)(/3pt- 1 1og(3p, (3.11) 

and this agrees again with (2.6) and (2.7); note that 

C'Tr 

cr(l - v) = r(v) sin(v - l)7r' 

so that for the present case 

1T 1 
L(/3p) = r(v)sin(v- l)?T log (3p' Rep~ 0, p =f. 0. 

Case (iv) 
The case 

1 - B(t) = c( ~) 2 + G2(t), t > (3. (3.12) 

From [18, Vol. I, p. 467], it is seen that: for Rep ~ 0, 

1-,B{p} 1 
1 - {3p = gs(/3p) + cf3plog f3p' (3.13) 
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with g5((3 p) regular for Rep > -8 and gs(O) = 0. Obviously, we have here an example 
with v = 2 and 

1 
L((Jp) = log /3p. 

A heavy-tailed distribution of the type (3 .12) has been studied in [ 1]. 

Case (v) 
The case 

((3) 2 t 
1 - B(t) = c t log 7J + G2(t), t :;::: (3. 

From (3.15) we have: for Rep:;::: 0, 

1 - ,B { p} 100 - t ( (3) 2 t dt 1- = h1(f3p) - c e P - log--, 
(3p (J t (3 /3 

with 

r(J dt 
h 1 ((3p) :=Jo (1 - e-Pt) (1 - B(t)) (j 

+ ioo (1 - e-pt)G2(t) ~ + c ioo ( 1) 2 (log~)~. 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Obviously, h 1 (/]p) is regular for Rep > -8, since the Laplace transform of G 2(t) 
exists for Rep > -8, cf. (2.4). 

The integral in (3.16) is calculated in appendix A. We obtain from (3.16), (A.I), 
(A.6) and (A.7): for Rep ;-?: 0, 

1 - 1 -:{p} = 96(/3p) + c((Jp)log /31 + ~c(f3p)2 (1og')'(3p)2 , (3.18) 
p p 2 

with 

96(/3p) := h1 ((3p) - ch2(f3p); 

for h2(/3p) see (A.7), and it is readily seen that 

96(f3p) is regular for Rep > -8 and 96(0) = O; 

L((Jp) = (1og __!___) [1 - ~(3p(log"'((3p)2], Rep~ 0, p ::f. 0. 
(3p 2 log (3p 

4. The coefficient of contraction 

(3.19) 

(3.20) 

In the heavy-traffic limit theorem, to be presented in section 5, it will be shown 
that the waiting time W, scaled by the coefficient of contraction L\(a), approaches a 
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proper limiting distribution for a i 1. In the present section that coefficient of contraction 
is discussed. 

The function 

1- 1-(3{p} 
fJp ' 

p~ 0, 

is zero for p = 0. It is monotonically increasing in p with limit equal to one for 
p ---+ oo. Hence the equation 

1-,G{p} 1-a (1 ) 
I - f3p =-a-, p > 0, a E 2, 1 , (4.1) 

has a unique root p = 15(a)/ f3 > 0 and 

15(a) l 0 for a i 1. (4.2a) 

/5(a) is regular for a E (~, 1), continuous for a E (~, l]. (4.2b) 

Consequently, cf. (2.6), 15(a) is that root of 

g(x)+cx,,,_ 1L(x)= 1 :a. x>O, aE (~.1). 
which satisfies (4.2a). From (2.7c) it is seen that 

(4.3) 

g(fJp) = f1f3p + O(lfJPl2 ) for lfJPI ---+ 0, Re > -8, (4.4) 

with j 1 a finite constant, and so from (2.7d) we obtain 

g(fJp) = o(lf3pl 11 - 1 IL({Jp)J) for IPI---+ 0, Rep~ 0. 

Consequently, the equation 

1-a 
cx,,,_ 1L(x) = --, :x: > 0, 0 < 1 - a« 1, 

a 

has a unique root x =~(a) such that 

~(a)l 0 for ail; 

(4.5) 

(4.6) 

(4.7) 

note that the left-hand side of ( 4.6) is regular for Rex > 0, continuous for Rex ~ 0. 
This root of ( 4.6) will be called the coefficient of contraction, and equation ( 4.6) 

will be called the contraction equation. 
Obviously, we have 

From (4.6) we obtain 

lim ~(a) = l. 
a.11 o(a) 

~~(a)= ~ [L(~(a))]-l/(v-1), ( 
1 

) 
(2-v)/(v-1) 

1 - a ac 

(4.8) 

(4.9) 
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hence from (2.7d) and (4.7), 

Further, 

lirn 1 ac A(a) = 0. 
ail - a 

( 1 
) 

(µ-v)/(v-1) 
~ [A(a)t-1 = ~ [L(A(a))r<µ-t)/Cv-o. 
1-a ac 

Hence from (2.7a), (2.7b), (2.7d), (2.8) and (4.11), 

lim ~ [A(a)t-l = 0. 
ail 1 - a 

(4.10) 

(4.11) 

(4.12) 

Remark 4.1. Note that (4.10) and (4.12) also hold ifµ~ v = 2, cf. (2.7d) for v = 2. 

Below we consider the equations for the coefficient of contraction for the five 
cases discussed in section 3. 

Case (i) 
We take for the sake of simplicity 8 = 1 so that 

2 - v 1 
/3=v-(:;" 

The equation for the coefficient of contraction reads 

1 (v-l)v-l v-l[ v-1]-2_1-a -- -- x 1---x ---
2-v 2-v 2-v a ' 

x > 0, 0 < 1 - a « 1. 

Obviously, we have 

2 
[ 

1 
] 

l/(v-1) -v -a 
L\(a) ,.._, Al(a) := -- (2 - v)-- , 

v-1 a 
for a i 1. 

Case (ii) 
Here the equation for the coefficient of contraction reads 

err v- l 1 - a ------x = -- x > 0, O < l - a« I, 
r(v) sin(v - l)7r a ' 

so that 

[
I - ar(v)sin(v- l)'rr] L/(v-l) 

A(a) = -- , for 0 < 1 - a« 1. 
ac 7r 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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y log y ·1 

c 2(a} ----- --·············-···· ········-··-··············· 

y(a) ---> y 

Figure 1. 

For the case (3.8) it is readily seen that the equation for the coefficient of contraction 

reads 

------x + - x 1 = --C7r 11 _ 1{ 1 c1 f(v)sin(v-l)7r v-1.1} 1-a 

f(v) sin(v - l)7r c f(v1) sin(v1 - 1)7r a · 
(4.17) 

Obviously, the right-hand side of ( 4.16) is a first-order approximation for a T 1 of the 

zero Li(a) of ( 4.17) which tends to zero for a T 1. Similarly for the case (3.9). 

Case (iii) 
For this case, cf. (3.11), the equation reads 

C7f I I 1-a 
------x11 - logx- = --, x > 0, 0 < 1- a« l. (4.18) 
f(v) sin(v - l)7r a 

Remark 4.2. Since we need the root Li(a) of (4.18) which approaches zero from above 

for a T 1, equation ( 4. 18) should be only considered for those values of a E ( ~, 1) for 

which 
1 - a f(v) sin(v - 1 )n 1 < . 

ac n 

For the numerical solution of ( 4.18) put y = x 11 - 1, so that ( 4.18) transforms into 

ylogy- 1 = c2(a), 

with 

c2 (a) l 0 for a T 1, 

and y(a) (= (Li(a))11 - 1) is that solution for which holds that y(a) l 0 for a T 1, see 

figure 1. 
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Case (iv) 
The equation reads here 

1-a 
ex log x- 1 = --, x > 0, 0 < l - a « 1. 

a 
It can be easily solved numerically. 

Case (v) 
The equation reads 

I 1 2 2 1-a cxlogx- +-ex (log")'x) = --, x > 0, 0 < 1 - a« 1. 
2 a 

( 4.19) 

(4.20) 

It is readily seen that the zero ~(a) of (4.20) with ~(a) l 0 for a T 1 has as a first-order 
approximation the zero ~(a) of (4.19). 

From the above examples of the equations for the coefficient of contraction it 
is seen that in general the determination of ~(a) for a sufficiently close to one can 
only be done numerically; cf., e.g., equations ( 4.17), ( 4.20). However, a first-order 
approximation of ~(a) is usually easy to obtain. In this respect the following result 
from the theory of regularly varying functions is very useful. In [3, pp. 334, 335], it 
is shown that the following are equivalent: 

1 - B(t) "' - l (~) v l (!), t --+ oo, 1 < v < 2, 
r(l - v) t /3 (4.21) 

with l(t) a slowly varying function at infinity (cf. [3]), and 

1 - 1 -/3{p} ""'(/3pt- 1z(-1 ) for IPI l O, P > O. 
/3p /3p 

(4.22) 

Hence, if in (2.3), 

-1 (/3)v (t) c 1 c t) = rci _ v) t z ~ fort--+ oo, 1</,)<2, (4.23) 

then ( 4.22) holds. Consequently, it is seen that a first-order approximation of L\(a) for 
a T I is given by that root of the equation 

xv-lz (~) = 1 - a (4.24) 
x a 

which tends to zero for a T 1. Interesting examples are here: 

l (~)=log(~) n' n a positive integer, (4.25a) 

l (~) = loglogt. (4.25b) 
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5. The stationary waiting time distribution 

The main goal of this section is to prove theorem 5.1, a heavy-traffic limit theorem 
for the waiting time distribution in the GI/G/1 queue with interarrival and service time 
distributions satisfying the (tail-) assumptions of section 2. 

The GI/G/l queueing model under consideration has a unique stationary waiting 
time distribution W(t), say, since a< 1, cf. (2.1). Let W be a stochastic variable with 
distribution W(t). Denote by n the number of customers served in a busy period, and 
by i the idle period. It is well known, cf. [10, p. 286], that 

a < 1 {::} E[n] < oo => E[i] = (a - ,6)E[n], 

and that, cf. [10, p. 371]: for Rep= 0, 

_ w (,6 - a)p 1 - E[ePi] 
E[e P ] = 1 - ,6{p}a{-p} -pE[i] ' 

or 

(/3- a)p 
w{p} = l -,6{p}a{-p}x{-p}, Rep=O, 

with: for Rep ~ 0, 

1 - E[e-Pi] 
x{p} := pE[i] . 

(5.1) 

(5.2) 

(5.3) 

w{p} and x{p} are regular for Rep> 0, continuous for Rep~ 0, and w{O} = 1, 

x{O} = 1. 
We first write: for Rep = 0, 

1-,B{p}a{-p} = 1 +_a_ [l -1-/J{p}]- _1_[1 _ 1-a{-p}] 
(,6 - a)p 1 - a ,Bp 1 - a -ap 

+_a_ (1 - a{-p}][l - ,6{p}] 

1 - a ,Bp 

= [1 + 1 ~a [1- l -~{p} ]] [1 + F(/Jp,a)], (5.4) 

with: for Rep = 0, 

__ ! [1 - 1-a(-p}J + .....£.....[} - a{-p}][l - f3{p}]/,6p 
F(,6 ) 1-cL -ap 1-a (5 5) 

p,a := 1 .....£.....[1- 1-/3{p}] . 
+ I-a /3p 

By starting from the relations ( 4.10) and ( 4.12), the following lemma has been proven 
in appendix B. We remind the reader that the function g(-), that is mentioned below, 
has been introduced in (2.6). For the definition of the coefficient of contraction L1(a), 
see (4.6) and (4.7). 
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Lemma 5.1. For Re 'T' = 0, T '/= 0, 

(i) Iim\-a-g(rti(a)) \ = 0, 
aT! 1 - a 

I 
a 1-,G{TD.(a)}I 

(ii) lim - [ 1 - a{ -rD.(a)} J (3 D.( ) = 0, 
all 1 - a 'T' a 

(iii) lim\-l-[1 - 1 - a{-rA(a)}] I= 0, 
ail 1 - a -a'T'A(a) 

(iv) lim(l +_a_ [1 - 1 - ,6{TA(a)}]) = 1 + (,6T)v-1. 
a11 1 - a ,6TL1(a) 

From (5.5) and lemma 5.1 it is seen that, for Rer = 0, 

lim F (,Gri:l(a), a) = 0, 
ajl 

. 1-,G{rA(a)}a{-ri:l(a)} 1 (r.i)v-1 
hm = + f~r . 
aTI (,6 - a)rD.(a) 

(5.6) 

(5.7) 

Notice that the determination of w{p} and x{p} from (5.2) and the required properties 
formulated below (5.3) amounts to solving a Wiener-Hopf boundary value problem. 
We shall solve this boundary value problem for 0 < 1 - a « 1, and then consider the 
limit for a j 1 (see appendix C). First define, cf. (C.4), for IP! < oo, 

H(p) := _1 jioo [log 1 - (3{~}a{-~}] pd~ . 
2rri -ioo (,6 - a)~ (~ - p)~ 

(5.8) 

Replacing p by ri:l(a) and~ by ryA(a) it follows from (5.7) (cf. appendix C) that 

1 jioo rd17 
limH(rti(a)) = -. [log(l +(f3TJt- 1)] . 
aTI 2m -ioo (77 - r)r7 

(5.9) 

Note that the last integral is a principal value singular Cauchy integral for Re r '/= 0 at 
77 = 0 and also a principal value singular Cauchy integral for Re r = 0. The integral 
converges absolutely and the logarithm satisfies on intervals with finite endpoints the 
Holder condition, because it is differentiable, except at 'T/ = 0, cf. [30, p. 13], and, 
further, the condition (26)iv of [11], since 0 < v - 1 < 1. 

It follows from [11, theorem 4] that the solution of the boundary value problem 
reads, for 0 < 1 - a « 1 and after taking p = rD.(a) in (5.2), 

w{TA(a)} = eH(r!:J.(a)), Rer > 0, 

x{-rti(a)} = eH(-rli(a)), Rer < 0. 
(5.10) 
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Now apply contour integration of the integral in (5.9) in the right-half, respectively 
left-half plane, cf. appendix C. Because 1 +(,677)1.1-I is regular for Re 77 > 0, continuous 
for Re 77 ~ 0, and 

I 1 + ({377)1.1-i 1 ,..., (,BR)1.1-I for rJ = Reir/J, 11>1 ~ ~7r, R » 1, 

and 1 < v ~ 2, the following limits exist and for Re r > 0: 

w{ r} := limw{ r~(a)/ ,B} = 1 1' 
aTl 1 + r1.1-

X{-r} := lim x{-r~(a)/ f3} = 1. 
a TI 

(5. lla) 

(5.llb) 

From the continuity theorem for LST of probability distributions with support contained 
in [O, oo) it follows that w { r} is the LST of a nondefective probability distribution 
R1.1-1(t): 

rXJe-rtdR1.1-1(t)=1 1 I' Rer~O; (5.12) 
Jo- + r1.1-

note that the right-hand side in (5.lla) indeed tends to one for lrl ~ 0, Rer ~ 0. The 
distribution R1.1-I (t) is called the Kovalenko distribution in [22]. In [3] it is called the 
Mittag-Leffler law, for further details see [3, p. 391]. 

Consequently, ~(a)W / f3 converges in distribution for a i 1, with limiting distri
bution R1.1-i(t). For this distribution we have 

fo00 
e-rt(l - R1.1-1(t)) dt = 1 :;:_1 , Rer ~ 0, r =/= 0. (5.13) 

By applying theorem 2 of [18, Vol. II, p. 175], it is readily seen that: fort~ 0, 

oo tn(1.1-I) 

1 - R1.1-1(t) = ~)-1r f'(n(v - l) + l). 
n=O 

(5.14) 

It should be observed that R1.1-1(t) = E1.1-1(-t1.1- 1), with E1.1-1(t) the Mittag-Leffler 
function, cf. [19, Vol. 3, p. 206]. By applying theorem 2 of [18, Vol. II, p. 159], we 
obtain the following asymptotic series for R1.1-1(t), 1 < v < 2. Fort~ oo and every 
finite H E { 1, 2, ... }, 

H cn(1.1-I) 
1 - R1.1-1(t) = ~(-l)n-1 + o(c<H+l)(1.1-I)) 

L.J ro - n(v - 1)) 
n=l 

1 LH n-l r(n(v - 1)) sin n(v - l)7r O( -<H+l)(1.1-I)) 
=- (-1) ( I) + t . (5.15) 7r tn z;-

n=I 
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In the last equality we have used the identity 1 /r(l - z) = [r(z) sin 11z]/7T, see also 
below (3.11). Note that 

R2(t) = 1 - e-t, t;?: 0. 

From the analysis in this section it is seen that the following heavy-traffic limit theorem 
has been proved. 

Theorem 5.1. For the stable GI/G/1 queue with interarrival and service time distrib
utions A(t) and B(t) satisfying the conditions (2.1) and (2.3)-(2.8), the "contracted" 
waiting time J),,(a)W / f3 converges in distribution for a T I, the limiting distribution 
Rv-i(t) is given by (5.14) and the coefficient of contraction /)..(a) is that root of the 
equation (4.6) with the property that /)..(a) l 0 for a i 1. 

Corollary 5.1. Theorem 5 .1 holds for µ :;;:: v = 2 and also for 1 < v < 2, µ :;;:: v, if 
IL(f3p)I-+ oo for IPI-+ 0, Rep:;;:: 0. 

Proof Because (4.10) and (4.12) also hold forµ:;;:: v = 2, cf. remark 4.1, it is readily 
verified that lemma 5.1 and (5.10) both apply for µ :;;:: v = 2, so (5.11) follows as 
before. Further, for 1 < v < 2 the relation ( 4.10) always holds, but ( 4.12) with µ = v 
holds only if IL(,8p)I-+ oo for IPI-+ 0, Rep:;;:: 0. 0 

Remark 5.2. Clearly, a special case of theorem 5.1 occurs when one considers the 
M/G/l queue in which BO satisfies the conditions of section 2. According to the 
Pollaczek-Khintchine formula (cf. [10, p. 255]) we have, for Rep :;;:: 0, 

[ -pWJ 1 - a 
Ee = t-.6! 1 . 

1-a~ ,Bp 

Hence, after some rewriting, for Re r ;?: 0, 

E [e-r!::..(a)W / f3] = 1 
l + _a_ (I _ 1-,B{r!::..(a)/,6}) · 

I-a r!::..(a) 

(5.16) 

(5.17) 

The result of theorem 5.1 for the M/G/1 queue now follows from lemma 5.1 (iv). 

It is also simply obtained from a limit theorem formulated in [22, p. 38], con
cerning geometrical sums of i.i.d. stochastic variables. Notice that the geometrical 
sum 

00 

n=O 

with X1, X2, ... independent stochastic variables with common distribution the dis
tribution of a residual service time (hence with LST (1 - {3 { p}) / {3 p ), has the same 
distribution as W. For detailed results concerning the MIG/ I queue with B( ·) a Pareto
type tail see [12]. 
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Remark 5.3. Rv-1 (t) has also turned up as limiting distribution in functional limit 
theorems for risk processes with heavy tails. Consider the classical model of risk 
theory, with claims occurring according to a compound Poisson process. It is known 
that the ruin probability, starting from a level x, equals the steady-state probability 
P[W > x] in the M/G/1 queue; cf. [33, p. 86]. Furrer et al. [24] consider that classical 
risk model. They assume that the claim size distribution is heavy-tailed, in such a way 
that the sum of n claim sizes, after subtraction of the mean and appropriate scaling 
by a factor n I/o. times a slowly varying function, weakly converges to a-stable Levy 

motion. They assume that 1 < a < 2 (viz., the claim sizes have infinite variance). 
Under additional conditions, they show that a sequence of risk processes, parametrized 
by n, weakly converges for n --+ oo, in the Skorokhod topology, to an a-stable Levy 
motion with drift. They also discuss the weak convergence of functionals of the risk 
process, like the ruin probability. Notice that the above scaling bears a relation to the 
coefficient of contraction that we apply to obtain a heavy-traffic limit result for the 
single-server queue. 

Furrer [23] extends the classical model of risk theory by adding an a-stable Levy 
motion to the compound Poisson process. He derives an elegant expression for the 
probability of ruin starting from a level x. The 0::-stable Levy motion turns out to give 
rise to the Mittag-Leffler function, which we have also encountered in (5.14). Furrer 
[23] subsequently discusses the case in which the claim sizes of the compound Poisson 
process are heavy-tailed; he considers the separate effects of these heavy tails and of 
the 0::-stable Levy motion on the tail of the ruin probability function. 

Remark 5.4. Building upon the present study, we have recently considered the work
load process { Vt, t ;;::: 0} of the GI/G/l queue with heavy-tailed interarrival and/or 
service time distribution in heavy traffic [7,15,16]. In order to get a proper limiting 
process, we not only apply the same coefficient of contraction L1(a), but we also scale 

time by a factor L11(a) := (1 - a)L1(a). It can be shown that L1(a)v7 ;t:.1cal converges in 
distribution for a j 1, for every T > 0. It can further be shown that the thus scaled and 
contracted workload process converges weakly to the workload process of a queueing 
model of which the input is described by a stable Levy motion if 1 < v < 2 and by 
Brownian motion if v = 2 (with v the index of the heaviest tail). 

Remark 5.5. Theorem 5.1 opens possibilities for approximating the waiting time distri
bution in the GI/G/l queue with heavy-tailed service time (and possibly also interarrival 
time) distribution. These possibilities are explored in [6]. The preliminary results in 
that study are most promising. For example, consider an M/G/1 queue with LST of 
the service time distribution given by (3.3) (hence v = 3 /2). This distribution is 
sufficiently nice to allow one to determine P[W > t] exactly. Following theorem 5.1, 
we approximate P[W > t] by 1 - R 1; 2(L1(a)t/ {3); note that 

(5.18) 



194 O.J. Boxma, J. W. Cohen I Heavy-traffic analysis 

with the complementary error function being defined by 

Erfc(x) = Jn 100 e-u2 du. (5.19) 

Take A(a) = A1(a) = ((1 - a)/(2a))2, cf. (4.14). The above approximation is re
markably accurate, even if the traffic load a is not close to one. Comparison with 
1 - Wex(t), the exact waiting time tail, shows that for a = 0.9 the approximation is 
off by less than one percent for 1 - Wex(t) less than 0.2, and by less than 0.3% for 
1 - Wex(t) less than 0.1. For a = 0.5 those same percentages increase to 12% and 
4%. Even for a= 0.1, a very light traffic situation, the approximation provides errors 
less than 10% from t = 20 on. 

6. The Gl/G/1 queue with heavy-tailed interarrival time distribution 

In this section we consider the case that the interarrival time distribution has a 
heavy tail; a tail that is, moreover, heavier than the tail of the service time distribution. 
Concerning A(·) and BO we make similar assumptions as in (2.3)-(2.8), but now with 
AO and B(·) reversed. It is assumed that 

1 - A(t) = J1 (t) + Jz(t), t ~ O!. 

Here J2(t) will be a function for which holds that: for a 8 > 0, 

fo00 
e-pt Jz(t) dt exists for Re p > -8, 

and a{ p} can be represented as: for Rep ~ 0, 

where: 

1 - 1 - a{p} = h(O!p) + c(ap)µ-t L(O!p), 
ap 

c > 0 is a constant; 

1<µ~2; 

h(ap) is a regular function of p for Rep> -8, h(O) = O; ! L(O!p) is regular for Rep > 0, and continuous for Rep ~ 0, 
. except possibly at p = 0, 

L(O!p) ~ b > 0 for IP! ~ 0, Rep~ 0, with b = oo ifµ = 2, 
. L(apx) 

hm L ) = 1 for Rep ~ 0, p # O; 
xio (x 

for a >. E (1, µ): fo00 
t>. dA(t) < oo. 

(6.1) 

(6.2) 

(6.3) 

(6.4a) 

(6.4b) 

(6.4c) 

(6.4d) 

(6.4e) 
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Concerning B(t) it will be assumed that 

Nv := fo00 
tv dB(t) < oo for a v > µ. (6.5) 

Note that c, 8, L(-) and b are only for convenience denoted by the same symbols as 
in (2.7). 

The analysis for the present case is quite similar to that for the case described in 
section 2. In the next section the main points of the analysis for the present case will 
be discussed in so far as they differ from the heavy-tailed BO case. 

7. A heavy-traffic limit theorem for the case of a heavy-tailed interarrival 
time distribution 

We start from (5.4): for Rep= 0, 

1-,B{p}a{-p} =l--1-[1 _ l-a{-p}] +-a-[1 _ 1-,B{p}] 
(,8 - a)p 1 - a -ap 1 - a ,Bp 

+_a_ [1 - a{-p}][l - ,B{p}]. (7.l) 
1 - a ,Bp 

We have: for Rep ~ 0, 

1 __ 1_[1_ 1-a{-p}] =-1-[-a+ 1-a{-p}]· (7_2) 
1 - a -ap 1 - a -ap 

From Gl/M/1 theory it is well-known that the equation 

1 - a{p} 
=a, 

ap 
Rep~ 0, a< 1, (7.3) 

has exactly one root p = >..(a)/a; this root is real, positive, and >..(a) l 0 for a i 1. 
Hence it follows from (6.3) that >..(a) is the only root of 

h(x) +exµ-! L(x) = 1 - a, Rex~ 0. 

Denote, for 0 < I - a« 1, by A(a) that unique root of 

cxµ-IL(x) = 1- a, x ~ 0, 

which tends to zero for a i 1. Obviously, we have 

lim A(a) = 1. 
ail >..(a) 

(7.4) 

(7.5) 

(7.6) 

For the present case A(a) will be called the coefficient of contraction, and equation (7.5) 
the contraction equation. 
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Put p = rA(a), then from (7.2) and (6.3) we have: for Rer = 0, 

1 __ l_ [l - 1 - a{-rA(a)}] 
1 - a -arA(a) 

= - 1-[1 -a - c(-ar)µ-l (A(a)t-l L(-raA(a)) L(A(a)) 
1 - a L(A(a)) 

- h(-arA(a)) l (7.7) 

So from (7.5) and the conditions on hO and LO in section 6 we obtain: for Re r = 0, 

lim 1 - - 1-[1 - 1 - a{-rA(a)}] = 1 - (-o:r)µ-I. (7 8) 
ail I - a -arA(a) · 

A similar analysis as in section 5 shows that for a i 1 the last two terms in (7 .1) with 
ap = arA(a), Rer = 0, both tend to zero for a i 1. 

Next we consider the boundary value problem for the present case. It follows 
from (5.2) that 

. ({3 - a)rA(a)(l + ar) 
(1) w{rA(a) }O + ar) = 1 _ ,8{rA(a)}a{-rA(a)} x{-rA(a) }, Rer = 0, (7.9) 

(ii) w { r A(a)} and x { r A(a)} are both regular for Re r > 0, continuous for Re r ;;::: 0, 

(iii) lw{rA(a)}i ~ 1, lx{rA(a)}i ~ 1, forRer;;::: 0, and w{O} = x{O} = 1. 

In appendix D it is shown that this boundary value problem has a unique solution apart 
from a constant factor D1 if the first factor in the right-hand side of (7.9) satisfies certain 
conditions, cf. (D.2) of appendix D. As in appendix C it is shown by using (7 .8) that 
for 0 < 1 - a « 1 these conditions are satisfied, and that the following limits exist: 

(1 + ar)w{r} := lim(l + ar)w{rA(a)} = D 1, Rer > 0, 
ajl 

x{ -r} := Jim x{-rA(a)} 
ajl 

=Di exp [-1. Jioo [log 1 + OT) ] r dr1 ] ' 
2m -ioo l-(-aT))µ-I (r1-r)T) 

(7.10) 

Rer < 0. (7.11) 

Because w { 0} = 1 we obtain 

(7.12) 

Hence we find: for Re r ~ 0, 

w{r/a} = limE{e-rA(a)W/a} =_I_. 
aTI 1 + r 

(7.13) 
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We finally detennine x { r /a}: for Re r ~ 0, 

x{r/a} = 1. (7 .14) 

The latter result follows by considering the following principal value singular Cauchy 
integral: for Re r < 0, 

1 Jioo [l 1 + a.ry ] r dr] --. og-----
27Tl -ioo l - (-a.r1)µ-l ('T] - r)'T] 

1 Jioo [ 1 - ( a.()µ-1 J r d( = - log = 0 
27ri -ioo 1 - a( (( + r)( · 

The latter integral has been closed by taking a large semicircle in the right-half plane, 
after which Cauchy's theorem has been applied. 

The analysis given above leads to the following: 

Theorem 7.1. For the stable Gl/G/1 queue with interarrival and service time distri
butions A(t) and B(t) satisfying the conditions (2.1), (6.1)-(6.5), the "contracted" 
waiting time A( a) W /a converges in distribution for a T 1, the limiting distribution is 
the negative exponential distribution with mean one, and the coefficient of contraction 
A(a) is that root of the equation (7.5) with the property that A(a) l 0 for a T 1. 

Remark 7.1. It is well known (cf. [10, p. 230]) that the waiting time distribution in 
the GI/M/1 queue is given by 

P[W > t] = >-oe-(1-,\o)t//3, t > 0, (7.15) 

with >-o the smallest zero, in absolute value, of z-a{(l - z)/{3}. Obviously, cf. (7.3), 

>..(a)/ a = (1 - >..o) / f3. This immediately yields theorem 7. l in the Gl/M/l case. 
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Appendix A 

In this appendix we calculate the integral 

{ 00 ((3) 2 tdt [ 00 lot 
J({3p) := },e e-pt t log (j(j =Ji e-,6pt t~ dt, Rep~ 0. (A. l) 
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We have 

[ logt 1]1 00 rXJ t[logt 1] I((Jp) = e-f3pt --t- - t I -(3p 11 e-f3p -t- + t dt 

= e-f3p - {3p e f3p - - {3p e f3p -- dt. l oo - tdt loo - tlogt 
I t I t 

(A.2) 

From [19, Vol. 2, p. 144], we have: for Rep ~ 0, 

100 at 00 <-f3pr+1 
J1({3p) := {3p e-f3pt_t = -1{3p - {3plog{3p + L 1 , 

I n.n 
n=I 

(A.3) 

with 'Y Euler's constant. Further, partial integration yields 

100 lo t 1 100 d fi({3p) := (3p e-f3pt2._dt = -{3p e-f3pt_d (logt)2 dt 
1 t 2 I t 

= -({3p)2 e-f3pt(log t)2 dt. I loo 
2 I 

(A.4) 

From [20, Vol. 1, p. 149], we have: for Rep> 0, 

(A.5) 

Note that 

fou (log t)2 dt = u(log u)2 - 2u log u + 2u, 

which shows that the last integral exists for all p. Hence we obtain from the above 
relations: for Rep ~ 0, 

1 
I({3p) = h2({3p) + {3plog(3p- ?_(f3p)2(log1{3p)2 , (A.6) 

with 

( 1 ) 1 11 oo (-{3 )n+I h2({3p) = e-f3p +{3p 1--7r2 +-((3p)2 e-f3pt(log t)2 dt-'"' p (A.7) 
12 2 0 ~ n!n 

n=l 

Obviously, h2(f3p) is an entire function of p. 
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Appendix B 

In this appendix we prove lemma 5.1. Statement (i) follows from ( 4.4) and ( 4.10). 
For Rep~ 0, 

so that, for Re r = 0, 

1 - a{-p} = roo ePt(1 - A(t)) dt' 
-ap h a 

1

1 - a{-rL1(a)} I 

~ 1 
-arL\(a) 

(and similarly for the corresponding ,8-term). By using (4.10) we have that: for 

Rer = 0, r =f. 0, 

I a A( )1 - a{-r.!\(a)} l -,8{rL1(a)} I f i 
--ar u a -+ 0 or a 1, 
1 - a -rL\(a) ,8rL1(a) 

and (ii) has been proved. 
From [29, p. 199], and (2.8) we have: forµ~ 2 and Re r = 0, r =f. 0, 

a{-r} = 1 + ar + fiMµ,\rµ\ for \r\-+ 0, (B.1) 

with ha finite constant. Hence, by using (B.1) and (4.12): for Rer = 0, r =f. 0, 

I _I_ [i _ 1 - a{ -r.1.(a)}] I = hMµ \r\µ-l _1 _L1(a)µ,-I -+ O, 
1 - a - cm1( a) a I - a 

which proves (iii) for µ ~ 2; for µ > 2 the statement follows again by using [29, 
p. 199]. 

Finally, from (2.6), (2.7d), (4.6) and lemma 5.l(i): for Rer = 0, r =f. 0, and for 
a j I, 

_a_ [ 1 _ 1 -,8{r.!\(a)}] = _a_g(,8rL\(a)) + (,8rf-l L(,8rL1(a))-+ (,8r)v-I, 
1 - a ,8rL1(a) I - a L(~(a)) 

which proves (iv). 

Appendix C 

In this appendix we discuss the contour integration of (5.9). Let T and o- be 

stochastic variables with distribution B(-) and AO, respectively. Then with ::Y := 
min(.\, µ) so that, cf. (2.7e) and (2.8), 

1<9<2, (C.1) 

we have, cf. [29, p. 155], that 

E{\r - o-\i'} < fo[E{ r'Y} + E{ o-"r}J <co, (C.2) 
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with f o a finite constant. 
With n the number of customers served in a busy period we have, cf. (2.1), 

a < 1 =? E[n] < oo and E[i] = (a - (J)E[n]. (C.3) 

Put for IPI < oo, 

1 jioo [ 1-,B{Oa{-0] pd~ 
H(p) := 27ri -ioo log (,B - a)e <e - p)~. (C.4) 

In [11, appendix A, lemma 3], it is shown that the integral in (C.4) is well defined as 
a principal value Cauchy integral because of (C.2) and (C.3). Note that, cf. [11], with 

D(R) := {~: 1e1 ~ R, Ree= O}, 

l
_l r [1og 1 - ,B{~}a{-0] pde I___,. 0 for R ___,. 00. 

27ri } D(R) ({3 - a)~ (e - p)e 
(C.5) 

Because (C.2) holds, it is seen that the logarithm in (C.4) satisfies the Holder condition 
with index '9 - 1 on every interval of the imaginary axis with finite endpoints. The 
condition (26)iv of [11] plays the role of the Holder conditions on intervals (ih1, ih2) 
of the imaginary axis with I h 1 I and I h2 I both large. For the present case, this condition 
reads 

11 - ,8{6 }a{-6} _ 1 - ,B{6}a{-6} I ~Ji 1-1- __ 1_ I 
({3 - a)6 (,B - a)6 --<: 161 81 161 61 ' (C.6) 

for 161 and 161 both large, for a 81 E (0, l], and f1 a constant. Putting in (C.6) 

6 = 7]1 A(a), ~2 = 772/l.(a), Re 7]1 = Re 7]2 = 0, 

it is seen that for 0 < 1 - a« 1, i.e., for 0 < !l.(a) « 1, the relation (C.6) applies 
because of (5.7). 

With 

p = rA(a) and e = 77A(a), 

we have: for R > 0, lrl < oo, Re 'I} = 0, 

1 jiR [1 1 - f3{0a{ -OJ pde 
27ri -iR og ({3 - a)~ (~ - p)~ 

= ~ jiR/6(a) [log 1 - ,6 { 7]/l.(a) }a{ -77/l.(a)}] r d17 . (C.7) 
27!"1 -iR/t:.(a) (/3 - a)77/l.(a) (7] - r)17 

Hence from (5.7) and the absolute and uniform convergence of the integral in (C.4): 
for lrl < oo, 

1 jioo d limH(r!l.(a)) = -. [Iog(l + ({377)v-I)J r 77 . 
ajl 27rl -ioo (77 - r)'I} 

(C.8) 
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We shall now perform the contour integration in (C.8) (= (5.9)). Note that the integral 
in (C.8) is a principal value singular Cauchy integral, cf. [30, pp. 27, 28], or [17, 
section I.1.5]. It is defined by 

_1. Jioo log[l + (,677)1-'-l] rd77 
2m -ioo (7) - r)77 

:= lim lim~ f log[l+(,67])1-'-I] rd77 , 
R->oo c:LO 2m J D(e:,r) (7] - r)77 

with D(c, R) the line segment: 

D(c,R) := {7/: c:;:;; lr1I:;:;; R, Rery = o}. 
Denote by C(c, R) the contour 

C(c, R) := D(c, R) U { 71: 7] = cei<P, 11>1:;:;; ~71"} U { 17: 77 = Rei<P, 11>1:;:;; ~71" }· 

The calculation of the integral in (C.8) proceeds as follows. Application of Cauchy's 
theorem to C(c, R) yields (notice that integration is clockwise, and that the first term 
in the right-hand side below stems from the residue at the pole in r, for Rer > 0) 

_21 . { log [ 1 + (,677)1-'-1 J ( r dry) 
7rl j D(e:,R) 77 - r 1] 

= - log[l + (,6r)v-I] - _21. jn/2 log[l + (/377)1-'_1 J ( rd7]) I 
1T1 -n /2 77 - r 1] 7J=e:ei1' 

+-1.Jn/2log[l+(,677)1-'-1] rd'T) I ' 
2m -n/2 (7) - r)rJ 7J=Rei<P 

with c < lrl < R. Here the last integral converges to zero for R --+ oo because 1 < 
1; :;:;; 2. The second integral converges for c: l 0 also to zero, because log[l + (/377)'1 - 1] 

is zero for T/ = 0, cf. [30, pp. 27, 28], or [ 17, section L 1.5]. From the last two relations 
it is readily seen that -log[l+(,6r)v-I] is the value of the integral in (C.8) (=(5.9)) for 
Rer > 0. The result in (5.llb), for Rer < 0, follows also from contour integration. 
For Re r = 0 the result follows by applying the Plemelj-Sokhotski formula, cf. [17]. 

Appendix D 

Consider the boundary value problem 

<l>(p) = K(p)O.(p), Rep= O; 

{ <l>(p) is regular for Rep> 0, continuous for Rep ? 0, 
O.(p) is regular for Rep< 0, continuous for Rep :;:;; O; 

{ l<l>(p)/ Pi < oo for IPI --+ oo, Rep? 0, 
Q(p)I < oo for IPI--+ oo, Rep:;:;; 0. 

(D. I a) 

(D.1 b) 

(D. lc) 
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Concerning K(p) the following is assumed. The integral 

1 Jioo pde 
'P(p) := 27ri -ioo log K(O (.; - p).; (D.2) 

with j'P(p)I < oo for !PI --+ oo exists as a principal value singular Cauchy integral 
and: for Rep = 0, 

1 
'P+(p) := lim 'P(z) = -2 log K(p) + 'I'(p), 

z-+p; Rez<O 
(DJ) 

'P-(p) := - lim 'P(z) = --2
1 log K(p) + 'I'(p). 

z-+p; Rez>O 
(D.4) 

It then follows that: for Rep = 0, 

<l>(p)e'l'-(p) = Q(p)e'f+<P>. (D.5) 

From (D.2) it is seen that 'P(p) is regular for Rep < 0 as well as for Rep > 0, and 
further that, cf. (D.lb) and (D.4), <l>(p)exp['P-(p)], Rep= 0, is the boundary value of 
a regular function in Rep> 0, and Q(p)exp['P+(p)], Rep= 0, is the boundary value 
of a regular function in Rep < 0. Hence the functions <I>(p )exp ['I' (p)], Rep > 0 and 
Q(p)exp['P(p)], Rep< 0 are each other's analytic continuations. Because l'I'(p)j < oo 
for !PI ~ oo it follows from (D. lc) and Liouville's theorem that 

or 

<l>(p )e 'l'(p) = D1 + pDz, Rep > 0, 

Q(p)e 'l'(p) = Di + pDz, Rep < 0, 

Rep> 0, 
Rep= 0, 

Rep< 0, 
Rep= 0. 

(D.6) 

(D.7) 

From (D.lc) and (D.2) it follows that we should have D2 = 0. Actually, (D.7) with 
Dz = 0 is the unique solution of the boundary value problem (D .1) under the conditions 
assumed to hold for K(p). 
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