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We study the discrete approximation of a Neumann problem on an interval for a 
singularly perturbed parabolic PDE. For this boundary value problem we con
struct a special piecewise-uniform mesh on which the discretization, based on 
the classical finite difference approximation, converges e-uniformly with the order 
O(N-2 ln 2 N + K- 1 ), where, respectively, N and K are the number of intervals 
in the space and the time mesh. With such discretizations we construct schemes 
of high order accuracy in the time. To obtain the better accuracy, we use a de
fect correction technique. Auxiliary discrete problems on the same time-mesh are 
introduced to correct the low order difference approximations. To validate the 
theoretical results, some numerical results for the new schemes are presented. 

1 Introduction 

For singularly perturbed boundary value problems, for parabolic PDEs with 
smooth data and without convection terms, a special discretization was stud
ied in Shishkin cs 1 •2•3 •4•5 , for which the order of e-uniform convergence is 
O(N- 2 ln2 N + K- 1 ), where N and J{ denote, respectively, the number of 
intervals in the space and time discretization. For this discrete method the 
amount of computational work was primarily determined by the time dis
cretization, which was of first order accuracy only. The improvement of the 
order of accuracy in time, maintaining €-uniform convergence, by means of 
a defect correction technique was studied in Hemker et al 6 for a Dirichlet 
problem and it could be achieved without essentially increasing the amount of 
computational work. 

In this paper we show that we can extend the method for a Neumann 
problem, still obtaining the higher (2nd or 3rd) order of accuracy for the time 
variable and the second (except for a logarithmic factor) order accuracy in 
space. 
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2 The class of boundary value problems studied 

a) On the domain G = D x (0, T], D = (0, 1) with the boundary S = G\ G we 
consider the singularly perturbed parabolic equation with Neumann boundarY 
condition: 

L(l)u(x,t) := c2 :x (a(x,t) :x u(x,t))- c(x,t)u(x,t)- (la) 

8 
-p(x, t) at u(x, t) = f(x, t), (x, t) E G, c E (0, I), 

8 
l(l)u(x,t):=c 0nu(x,t)=?fi(x,t), (x,t)ES1 , (lb) 

u(x,t) = <p(x,t), (x,t) E So. 

Herea S = So U S 1 , S 1 = { ( x, t) : x = 0 or x = 1, 0 < t :'.S T}, So = { ( x, t) : 
x E (0, 1), t = O}, 8/8n is the derivative w.r.t. the outward bound normal to 
Si. In (1) a(x,t), c(x,t), p(x,t), f(x,t), (x,t) E G, and <p(x,t), (x,t) E So, 
,,P( x, t), ( x, t) E S1 are sufficiently smooth and bounded functions 

0<a0 :=:;a(x,t), 0<p0 :Sp(x,t), c(x,t)2:0, (x,t)EG. 

When the parameter€ tends to zero, in a neighborhood of the lateral bound
ary Si layers appear in the solution, which are described by an equation of 
parabolic type (parabolic boundary layers). 

b) We assume that compatibility conditions which ensure sufficient smooth
ness of the problem solution are satisfied on the set So n 5 1 . Then, for the 
solution of the problem and its components from the representation, we may 
write 

u(x, t) = U(x, t) + W(x, t), (x, t) E G, 

where U(x, t) represents the regular part and W(x, t) the singular part. For 
these components the following estimates are valid 

(2) 

(x,t)EG, k+2ko<2n+4, 

"The subscript (1) denotes that the symbol is introduced in equation (1). 
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where r(x, I') is the distance between the point x ED and the set I'= D \D. 
Here and in the text below we denote by M (or m) sufficiently large (or 

small) positive constants which do not depend on the value of parameter€ or 
on the difference operators used. 

3 The finite difference schemes 

a) To solve problem (1) we first consider a classical finite difference method. 
On the set G we introduce the rectangular mesh 

(3) 

where w is a (possibly) non-uniform mesh of nodal points, xi, in [O, l], w0 is 
a uniform mesh on the interval [O, T]; N and K are the numbers of intervals 
in the grids w and wo respectively. We define r = T / K, hi = xi+I - xi, 
h = max;hi, h ~ M/N, Gh = GnGh, Sh = SnGh. 

For problem ( 1) we use the difference scheme 

A(4 )z(x, t) = f(x, t), (x, t) E Gh, (4a) 

A(4)z(x, t) = ?/Jh(x, t), (x, t) E S1h, z(x, t) = <p (x, t), (x, t) E Soh· (4b) 

Here 
A( 4 ) z(x, t) ::: e 2 &; ( ah(x, t).S:;:z(x, t)) - c(x, t)z(x, t) - p(x, t)otz(x, t); 

xi+l -x' 
.\( 4 ) z(x, t)::: -e.Sxz(x, t) + h )[c(x, t)z(x, t) + p(x, t)o,z(x, t)], 

2ea+ (x, t 

h +h -1 xi+1 - xi ' 
'I/; (x, t) = a(x, t)(a (x, t)) ,P(x, t) - +h( ) J(x, t), x = x = O; 

2ea x, t 

x' -x'-1 
.\( 4 ) z(x, t) =: e6:;:z(x, t) + h [c(x, t)z(x, t) + p(x, t).S,z(x, t)], 

2ea (x, t) 

h h -L xi - x•-1 ' 
1/J (x, t) = a(x, t)(a (x, t)) 'l/;(x, t)- h( /(x, t), x = x = 1; 

2ea x, t 

6; ( ah(x', t) .S:;:z(x', t)) = 2(x'+ 1 - x•-L )- 1 ( a+h(x', t)cSxz(x', t) - ah(xi, t).S:;:z(x', t)) , 

ah(x',t) =a ((x•- 1 +x')/2,t), a+h(x',t) = ah(x 1+1 ,t) =a (<xi +x•+ 1)/2,t), 

oxz(x, t) and o:;:z(x, t), s,z(x, t) are the forward and backward differences, and 
the difference operator &-.(ah(x, t)o:;:z(x, t)) is an approximation of the operator 

"' tx (a(x, t) fx u(x, t)) on the non-uniform mesh. 
Taking into account estimates of the derivatives we find that the solution 

of the difference scheme ( 4), (3) converges for a fixed value of the parameter&: 

I u(x, t) - z(x, t) I ~ M(C1 N-1 + r), (x, t) E Gh. (5) 
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b) Let us construct the scheme, convergent €-uniformly. On G we 
the mesh 

Gh* = w*(<T) x. wo , 

where wo = w0(3 ) and w* = w*(<T) is a special piecewise uniform 
pending on the parameter er E JR, O" = u(6J(E, N) = min(d/4, mcln, 
m = m(6 ) is an arbitrary positive number. The mesh w*(u) is cons1 
follows. The interval ( 0, J) is divider! i.n three parts [ 0, O"], [ <T, 1- O"], 
0 < u ~ 1/4. In each part we use a uniform mesh, with N /2 subir 
[ CT, 1 - er J and with N / 4 subintervals in each interval [ 0, u] and ( 1 -

Theorem 3.1 Let the estimate (2) hold for the solution of ( 1). 
solution of ( 4), ( 6) converges €·Uniformly to the solution of ( l) with 
bounds 

I u ( x, t) - z ( x, t) I ~ M ( N - 2 In 2 N + r) , ( x , t) E G;; . 

4 Numerical results 

To see the effect of the special mesh in practice. we take the model i 

where 

82 8 
L(s\u(x, t) := c: 2 -8 ') u(x. t) - -8 u(x, t) =f(x, t), (x, t) E G, 

' x- t 

c: 8° u(x. t) = 1/J(x, t), (x, t) E 51 , 
n 

u(x, t) = cp(x, t), (x, t) E So, 

' 3 -f\x, t) = -4t , (x, t) E G, 

7,1;(0, t) = 1/i(l, t) = -(128/35)7T- 112t 712 , 0 < t < T, T == L 

cp(x,t)=O, (x,t)ESo. 

We present the error E(N, K,c:), defined by 

E(N, K, c:) = ma~ I z(x, t) - u*(x, t) I· 
(x,t)EGn 

Here u* ( x, t) is the piecewise linear interpolation obtained from the r 
solution z(x, t) on an adapted fine mesh (6) with parameters m = 2, 
N* >> N, I\* >>I<. 

In Table 1 we give the results for the scheme (4), (6) with K 
Here we can clearly see that, in accordance with estimate (7), the 
convergence is O(N- 2 ln2 N + g- 1) fnr large N, f{. 
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e \ N 8 16 32 64 128 256 
1.0 1.065e- l 4.473e-2 l.971e-2 8.740e-3 3.645e-3 l.199e-3 
2-J 3.065e-l l.358e-l 6.185e-2 2.794e-2 l.l 77e-2 3.891e-3 
2-2 6. 723e-l 2.922e-l 1.315e-1 5.905e-2 2.480e-2 8.184e-3 
z-3 l.485e+O 6.305e-1 2. 755e-1 l.212e-1 5.036e-2 l.652e-2 
2-4 3.352e+O l.436e+O 6.054e-1 2.568e-l l.042e-1 3.374e-2 
z-s 3.474e+O 2.108e+o 1.161e+o 5.696e-1 2.225e-l 7.035e-2 
z-6 3.435e+O 2.069e+o l.226e+O 5.604e-l 2.529e-1 8.844e-2 
2-12 3.435e+O 2.069e+O 1.226e+o 5.604e-1 2.529e-1 8.844e-2 

E(N) 3.474e+oo 2.1ose+oo 1.226e+oo 5.696e-01 2.529e-1 8.844e-2 

Table 1: Errors E( N, N 2 , e) for the special method ( 4), (6). 
ln this table the function E(N,N2 ,e:) is defined by (9) for N* = 512, K* = 5122 . 

5 Improved time-accuracy. A scheme based on defect correction 

a) In this section we construct a new discrete method based on defect correc
tion, which also converges c:-uniforrnly to the solution of the boundary value 
problem, but with an order of accuracy (w.r.t. the timestep r) higher than 
in (7). 

The idea is similar to the one considered in Hemker et al 6 for the Dirichlet 
problem. For the difference scheme ( 4), ( 6) the error in the approximation of 
the partial derivative (a/ at l ·u ( x, t l is caused by the divided difference sT z ( x, t l 
and is associated with the truncation error given by the relation 

a a2 a3 

at 'U ( x , t) - sT 'U ( x, t l = r 1 r at 2 'U ( x, t) - 6 - 1 r 2 at 3 u ( x, t - i9 l , ( i o l 

where i9 E (0, r]. Therefore we now use for the approximation of (a/at) u(x, t) 
the expression 

c5T'U(X, t) + rc:ltt'U(X, t)/2, 

where 011'U(x,t) <51 1u(x,t - r), c511 u(x,t) is the second central divided 
difference. We can evaluate a better approximation than ( 4a) by defect cor-
rection 

( 11) 

r is step-size of the mesh w0 ; zc(x, t) is the "corrected" solution. Instead 
of (82 /at 2 )·u(x,t) we shall use c51zz(x,t), where z(x,t), (x,t) E Gh(6) is the 
solution of the difference scheme (4), (6). The new solution zc(x, t) has an 
accuracy of CJ(r2 ) w.r.t. the time variable. 

When constructing the scheme with order of accuracy in time greater than 
two, in the case of the Neumann problem it -in addition- is necessary to make 
a correction in the difference derivative c:ltz(x, t) in the boundary condition. 
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b) Let us first consider the modified difference scheme with of second order 
accuracy in r. We denote by 8ktz(x, t) the backward difference of order k: 

8kt z(x, t) = (c5k-l t z(x, t) - 8k-l t z(x, t - r)) /r, 

t 2: kr, k ~ 1; o0t z(x, t) = z(x, t), (x, t) E Gh. 

We consider the boundary value problem ( 1). When constructing difference 
schemes of second order accuracy in r in (11), instead of (82 /ot 2 )u(x, t) we use 
621 z( x, t), which is the second divided difference of the solution to the discrete 
problem (4), (6). On the mesh Gh we consider the finite difference scheme (4), 

writing 

A( 4 )zCll(x, t) = f(x, t), (x, t) E Gh, 

,\( 4 )zC 1l(x,t)=ilih(x,t), (x,t) E S1h· 

z(ll(x,t)=ip(x,t), (x,t) E Soh· 

(12) 

Then for the boundary value problem ( 1) we now get the difference equa
tion: 

(~) { p(x, t)2- 1 r ~u(x, 0), t = r, 
A(4 )z" (x, t) = f(x, t) + 

p(x, t)2- 1 ro2 tz< 1l(x, t), t ~ 2r, (x, t) E Gh, 
(13) 

..\(4 )z( 2 l(x,t)=1)!h(x,t), (x,t) E S1h, 

z( 2 )(x,t)=ip(x,t), (x,t) E Soh· 

Here z(l) ( x, t) is the solution of the discrete problem ( 12), ( 6), and the deri va

ti ve g;2 u(x,O) is obtained from the equation (la). We shall call z< 2l(x,t) the 
solution of difference scheme (13), (12), (6) (or shortly, (13), (6)). 

For simplicity, in the remainder of this section we take a homogeneous 
initial condition: 

ip(x,O) = 0, x ED. ( 14) 

Under the homogeneous initial condition (14), the following estimate holds for 
the solution of problem (13), (6) 

ju(x,t)-z<2l(x,t)j:SM [N- 2 ln2 N+r2 ], (x,t)EGh. (15) 

Theorem 5.1 Let condition (14) hold and assume in equation (1) that a E 
H (a+ 2n+l)(G), c, p, f EH (a+Zn)(G), ip EH (a+ 2nl(G), a> 4, n = 1 and let 

-u E H (a+Zn) for n = 1. Then for the solution of difference scheme (13), (6) 
the estimate (15) holds. 
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c) Analogously we construct a difference scheme with third order accuracy 
in r. For problem (1) on the mesh Gh we consider the difference scheme 

A( 4 )z( 3 l(x, t) = f(x, t) + 

{ 
p(x, t) (C11 r.g;.u(x, 0) + C1 2r2 ~u(x, O)l, t = r, 

+ &' 2 &3 _ p(x,t) C21r 8 t,u(x,O)+C22r Ft'u(x,O) , t-2r, 

p(x, t) (C31 n52 iz( 2)(x, t) + C32r2o3 1z(ll(x, t)), t ~ 3r, 

(16) 

(x,t) E Gh, 

A(4);;( 3 J (x, t) = 1/Jh(x, t) -

-{4- 1c 1 (x'+ 1 -.xi)r(a+h(x,t))- 1p(x,t)!t2
2 u(x,O), x = x' = 0, 

4- 1c:- 1 (x' - x1 - 1 )r(ah(x,t))- 1p(x,t)%t 2 u(x,O), x = x' = 1, t = T, 

>.(4)Z( 3l(x, t) = 1/Jh(x, t) -

{ 
4- 1c:- 1 (xi+i - xi)r(a+h (x, t))- 1p(x, t)o21z( 1l(x, t), x = xi = 0, 

4- 1c 1 (x' - x'- 1)r(ah(x, t))- 1p(x, t)o21z( 1l(x, t), x = x' = 1, t ~ 2T, 

(x,t) E S1h, 

z( 3l(x,t) = cp(x,t), (x,t) E Soh· 

Here z(l) ( x, t) and z( 2) (x, t) are the solutions of problems ( 12), (6) and ( 13), 
(6) respectively, the derivatives (82 /8t 2)u(x, 0), (83 /8t 3)u(x, 0) are obtained 
from equation ( 1 a), the coefficients C;j are determined by 

Cll = C21 = C31 = 1/2, C12 = C32 = 1/3, C22 = 5/6. 

We shall call z(3 ) ( x, t) the solution of the difference scheme ( 16), ( 13), ( 12), 
( 6) (or shortly, ( 16), ( 6)). 

Again we assume the homogeneous initial condition 

cp(x,0)=0, f(x,0)=0, xED. (17) 

Under condition ( 17) the following estimate holds for the solution of dif
ference scheme (16), (6) 

I u(x, t) - z(3l(x, t) I::; M [ N- 2 1n2 N + T 3 ], (x, t) E eh. (18) 

In a similar way we can construct difference schemes with c:-uniform order 
convergence O(N- 2 ln2 N + rn), n > 3, i.e. an arbitrary high order of tirne
accuracy. 
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6 Numerical results for the time-accurate schemes 

a) In order to illustrate the effect of the defect correction, we consider a 
singularly perturbed boundary value problem with the Neumann condition in 
the half-strip. The solution of the problem 

is given by 

L(sJV(x,t) = 0, 0 < x < oo, 0 < t :ST, 

c:~V(O,t) = -(128/35) rr(-t/ 2lt 7l 2 , 0 < t :ST, 
fJx 

V(x,O) = 0, 0 :S x < oo, 

1 (-x2 ) ( x7 1; 2 9x5 3 ; 2 37x3 5; 2 93x 7; 2) 
- ..Ji exp 4e:2t 840e:7 t + 140e:5 t + 42t:3 t + 35e t · 

Now we study the model problem 

L(8 Ju(x, t) = 0, (x, t) E G, 

a a 
e: 0xu(x,t)=e: 0xV(2o)(x,t), (x,t)ES1 , x=O, 

u(x, t) = V(2o)(x, t), (x, t) ES, x "# 0. 

Then the function V(2o)(x, t) is the solution of problem (21). 

(19) 

(20) 

(21) 

b) Strictly speaking, the problem (21) is a problem with mixed boundary 
conditions, that is with Neumann and Dirichlet conditions at the left and the 
right boundary respectively. The solution has a boundary layer character, 
and at the point x = 1, V ( x, t) is exponentially small for e --+ 0. Therefore, 
actually problem (21) is a problem with a Neumann condition. We use for the 
approximation of problem (21) the schemes which are formed for x < 1 by the 
mesh equations (12), (6); (13), (6) and (16), (6) and for x = 1 by the following 
discrete equations (Dirichlet condition) 

z(k)(x, t) = V(2o)(x, t), (x, t) ES, x == 1. (22) 

These schemes we denote briefly by (12), (22), (6); (13), (22), (~ and (16), 
(22), (6) respectively. 
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As the solution of boundary value problem (21) has a boundary layer at 
the left side, for its solution we use the locally condensed mesh 

G (*) -(•) -
h = w x wo ' (23) 

where w<*l = w<*l(o-) is a special mesh, condensed in the neighborhood of the 
left end of the interval [ 0, 1 ] ; u is the parameter depending on c and N. The 
mesh w(*l(u) is a piecewise constant mesh with constant steps h(l) and h(2 ) 

on the intervals ( 0, u] and [ u, 1], h(l) = u (N/2)- 1 , h(2) = (1 - u) (N /2)- 1 . 

We take u = min( 1/2, 2c In N ]. 
According to the theory, the difference schemes (12), (22), (23); (13), (22), 

(23) and (16), (22), (23) converge respectively with order 1, 2 and 3 w.r.t. r. 

I u(x,t)- zg~,22 , 231 (x,t) I ::::: M (N- 2 ln2 N + r), (x,t) E Gh(*), (24) 

I u(x, t) - z/121,22 ,23)(x, t) I ~ M (N-2 ln2 N + r 2), (x, t) E Gh(*), (25) 

I u(x, t) - z/;~,22,23)(x, t) I ~ M (N- 2 ln2 N + r 3) l (x, t) E et). (26) 

To demonstrate this effect numerically, we solve problem (21), using the 
schemes (12), (22), (23); (13), {22), (23) and (16), (22), (23) for various values 
of N, Kand c. 

c) Results from numerical experiments for the above model Neumann Prob
lem are given in the Tables 2-4 and they are analogous to the results for the 
Dirichlet problem in Hemker et al 6•7 . 

We know that the error of the numerical solution consists of two compo
nents related to two contributions: one caused by the discretization of the time 
derivative and the other by the space derivative. From the theory we know 
that for the basic scheme the order of convergence is one in r, and almost 
two in h. This dependence can be easy observed from the error tables, in the 
regions where one component of error is neglectable w.r.t. the other. Thus, to 
see the first order of convergence in r, we should consider the errors where the 
contribution from the discretization of the space derivative is relatively small. 
Referring to Tables 2-4, these errors are in the upper-right corner of the table. 

It is convenient to introduce the notion of "correct behavior" (w.r.t. the 
time variable) of the global error if the ratio of the errors for the same N 
and varying K decreases as the ratio of relative time steps (with a power p if 
the method is convergent with an order p w.r.t. the time). Using the notion 
of correct behavior of the global error for Table 2, we see that for € = 1 the 
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N 8 32 128 512 2048 
e K 
1 8 1.01(-1) 1.08(-1) 1.08(-1) 1.08(-1) 1.08(-1) 

32 2.15(-2) 2.73(-2) 2.78(-2) 2.78(-2) 2.78(-2) 
128 2.73(-3) 6.53(-3) 6.96(-3) 6.99(-3) 6.99(-3) 
512 5.94(-3) 1.35(-3) 1.72(-3) 1.75(-3) 1.75(-3) 
2048 7.26(-3) 1. 72(-4) 4.09(-4) 4.36(-4) 4.37(-4) 

2-"""2" 8 6.98(-2) 1.20(-1) 1.26(-1) 1.27(-1) 1.27(-1) 
32 7.56(-2) 2.51(-2) 3.09(-2) 3.13(-2) 3.14(-2) 
128 1.01(-1) 3.99(-3) 7.36(-3) /'.'. 79(-3) 7.82(-3) 
512 1.07(-1) 5.78(-3) 1.56(-3) 1.92(-3) 1.95(-3) 
2048 1.09(-1) 7.25(-3) 2.49(-4) 4.60(-4) 4.86(-4) 

2-4 8 1.87(-1) 7.76(-2) 1.20(-1) 1.26(-1) 1.27(-1) 
32 2.91(-1) 5.16(-2) 2.51(-2) 3.09(-2) 3.13(-2) 
128 3.17(-1) 7.64(-2) 3.99(-3) 7.36(-3) 7.79(-3) 
512 3.23(-1) 8.26(-2) 5.78(-3) 1.56(-3) 1.92(-3) 
2048 3.25(-1) 8.42(-2) 7.25(-3) 1.58(-3) 1.61(-3) 

2-<> 8 1.87(-1) 7.76(-2) 1.16(-1) 1.26(-1) 1.27(-1) 
& 32 2.91(-1) 5.16(-2) 2.30(-2) 3.02(-2) 3.13(-2) 

2-8 128 3.17(-1) 7.64(-2) 3.46(-3) 6.79(-3) 7.71(-3) 
512 3.23(-1) 8.26(-2) 9.38(-3) 1.52(-3) 1.85(-3) 
2048 3.25(-1) 8.42(-2) 1.09(-2) 1.55(-3) 1.59(-3) 

Table 2: Table of errors E(N, K, e) for scheme (12), (22) 

E(N, K, e) is defined by (9), where z(x, t) = zg~,22 .23 ) (x, t), u*(x, t) = V(20) (x, t), 
- -(•) 
Gh = Gh(23)" 

domain with correct behavior of the error is the major part of the table, related 
to e: = 1 and laying on the upper-right side. 

As the value of e: decreases, the domain of correct behavior of the error 
tends to decrease w.r.t. that domain for e: = l. This can be explained by the 
relative increasing influence of the space error for smaller e:. In the case of£ ~ 
2- 6 the domain of correct behavior of the error does not longer change. Thus, 
in Table 2 we can observe the e:-uniform convergence, of order (approximately) 
one w.r.t. the time. 

Now we analyze the analogous tables, which give the errors for z( 2) ( x, t) 
and z(3l (x, t) that are the corrected solutions. Note that, in principle, the time 
correction does not improve the space-accuracy. By the correction we improve 
only the time component in the error, and we observe the improvement only 
when the space-dependent contribution of the error is small in comparison with 
the time-dependent contribution. 

In order to check the expected second and third order time-accuracy re
spectively in Tables 3 for z(2) (x, t) and a corresponding table for z(3 ) (x, t) (not 
shown by lack of space), we should compare the ratios of the errors for fixed 
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N 8 32 128 512 2048 
e K 
1 8 2.94(-2) 2.01(-2) 1.63(-2) 1.53(-2) 1.51 (-2) 

32 1.11(-3) 2.13(-3) 1.38(-3) 1.11 (-3) 1.03(-3) 
128 5.98(-3) 7.75(-5) 1.38(-4) 8.84(-5) 7.06(-5) 
512 7.27(-3) 3.76(-4) 4.91(-6) 8.71(-6) 5.55(-6) 
2048 7.59(-3) 4.58(-4) 2.35(-5) 2.83(-7) 5.94(-7) 

2 ., 8 1.75(-2) 2.92(-2) 1.85(-2) 1.45(-2) 1.34(-2) 
32 8.49(-2) 1.41 (-3) 2.05(-3) 1.~4(-3) 9.47(-4) 
128 1.03(-1) 5.96(-3) 9.27(-3) 1.32(-4) 7.86(-5) 
512 1.08(-1) 7.31(-3) 3. 75(-4) 9.92(-6) 1.02(-5) 
2048 1.09(-1) 7.64(-3) 4.60(-4) 2.34(-5) 1.02(-5) 

2 ·4 8 1.95(-1) 1.98(-2) 2.92(-2) 1.85(-2) 1.45(-2) 
32 2.93(-1) 6.28(-2) 1.55(-3) 2.05(-3) 1.58(-3) 
128 3.17(-1) 7.92(-2) 5.96(-3) 1.55(-3) 1.58(-3) 
512 3.23(-1) 8.33(-2) 7.31(-3) 1.55(-3) 1.58(-3) 
2048 3.25(-1) 8.43(-2) 7.64(-3) 1.58(-3) 1.61(-3) 

2 ·o 8 1.95(-1) 1.98(-2) 3.06(-2) 2.12(-2) 1.58(-2) 
& 32 2.93(-1) 6.28(-2) 2.39(-3) 2.30(-3) 1.59(-3) 

2-s 128 3.17(-1) 7.92(-2) 9.21(-3) 1.52(-3) 1.59(-3) 
512 3.23(-1) 8.33(-2) 1.08(-2) 1.52(-3) 1.59(-3) 
2048 3.25 (-1) 8.43(-2) 1.12(-2) 1.55(-3) 1.59(-3) 

Table 3: Table of Errors E(N, K, e) for scheme (13), (22) 

E(N, K, e) is defined by (9), where z(x, t) = zl~1. 22 ,23 l (x, t), u•(x, t) = Vc 2o) (x, t), 
- -(•) 
Gh = Gh(2si· 

N and varying [{, and the ratios of related time steps squared in Table 3 and 
to the 3rd power in the table not shown. 

Analyzing Table 3, we see that the domain with correct behavior of the 
error is smaller than in Table 2 and it decreases when the parameter E decreases. 
Note that, for small E, the part of Table 3 with correct behavior of the error is 
much reduced because the portion of the space error is relatively large for the 
corrected solution. Again, for E ::; 2- 6 the errors for the same N, K do not 
change. Consequently, we see an £-uniform effect of the improvement of the 
accuracy. The order of convergence w.r.t. r is about two. 

Because the space error is smaller for £ = 1, this case shows more clearly 
the effect of the defect correction in time. For illustration, Table 4 shows the 
convergence order, defined as P = log2 (E(Ni, Kj, I)/ E(N;, Kj+1, I)) . For the 
construction of Table 4 the same data are used as for the Tables 2 and 3, and 
the "incorrect behavior" of the error is indicated by *. We can see that, in 
practice, the order of convergence corresponds with the theoretical result. 

Comparing the Tables 2, 3, and the corresponding table for order 3, we 
summarize the observations: (i) already at K = 32 (for all£ and N) the error 
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N 8 16 32 64 128 256 512 1024 2048 

k K 
1 8 1.07 1.00 .98 .98 .98 .98 .98 .98 .98 

16 1.16 1.04 1.00 .99 .99 .99 .99 .99 .99 

32 1.33 1.09 1.02 1.00 1.00 .99 .99 .99 .99 
64 1.64 1.18 1.05 1.01 1.00 1.00 1.00 1.00 1.00 

128 * 1.34 1.09 1.02 1.00 1.00 1.00 1.00 1.00 
256 * 1.63 1.18 1.05 1.01 1.00 1.00 1.00 1.00 
512 * * 1.34 1.09 1.02 1.01 1.00 1.00 1.00 
1024 * * 1.63 1.18 1.05 1.01 1.00 1.00 1.00 

2 8 1.80 1.57 1.62 1.72 1.81 1.86 1.89 1.91 1.92 
16 2.92 1.83 1.61 1.66 1.76 1.84 1.90 1.93 1.95 
32 * 2.93 1.84 1.63 1.68 1.78 1.86 1.92 1.95 
64 * * 2.94 1.85 1.64 1.69 1.79 1.87 1.92 
128 * * * 2.95 1.85 1.65 1.69 1.79 1.87 
256 * * * * 2.96 1.85 1.65 1.70 1.79 
512 * * * * * 3.01 1.85 1.65 1.69 
1024 * * * * * * 3.10 1.72 1.54 

3 8 * 1.79 3.73 3.19 3.02 3.00 3.01 3.02 3.02 
16 * * * 2.67 3.52 3.10 2.99 2.98 2.98 
32 * * * * * 4.03 3.30 3.03 2.98 
64 * * * * * * 1.84 3.65 2.99 
128 * * * * * * * * 2.99 

Table 4: Table of Convergence Orders under e: = 1 for corresponding z(k) (x, t), k = 1, 2, 3. 

for z(3 ) ( x, t) is practically equal to the space component and it is smaller than 
for z( 1l(x, t) at K = 2048; (ii) the order of c:-uniform convergence w.r.t. r is 
better for scheme (13), (22) than that for scheme (12), (22), and the order 
for scheme (16), (22) is better than for scheme (13), (22); (iii) the order of 
convergence w .r. t. r increases for the functions z(k) ( x, t) for increasing k; (iv) 
the order of convergence w.r.t. the space variable is nearly two, c:-uniform for 
sufficiently large N. 

Thus, numerical results confirm the theoretical results and demonstrate 
the efficiency of the defect correction. 

Conclusion 

In this paper we show the feasibility of a defect correction procedure, that can 
easily be implemented in order to improve the time-accuracy in a parabolic 
PDE, for an c:-uniformly convergent discretization scheme in the case of a 
Neumann Problem. In this way the order of accuracy w.r.t. the time and the 
space variables can be made of the same order of magnitude. 

The defect correction process improves only the accuracy w .r. t. the time 
discretization and does not change the approximation w.r.t. the space dis-
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cretization. Therefore, by application of the defect correction, the principal 
part of the total error becomes the part due to the approximation of the space 
derivatives even for relatively small values of K, if the higher order corrections 
are applied. 

By defect correction we are able to increase the accuracy of the approxi
mate solution essentially, viz. from lst to 2nd and 3rd order in r. For this we 
use the same time grid for the accurate and for the auxiliary solutions. 

In addition, numerical results illustrate that, also in practice, for the spe
cial piecewise uniform grid, the order of convergence w.r.t. the space variable 
is close to two. 
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