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of mathematical morphology, or more precisely, the theory of morphological operators on 
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1. Introduction 

1 

In 1975, a seminal book by Georges Matheron, entitled Random Sets and Integral Geometry, 
appeared in the literature [20]. This book laid down the foundations of a novel technique for 
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shape processing and analysis known as mathematical morphology. Mathematical morp~ology 
was enriched and subsequently popularized by the highly inspiring book Image Analysis and 
Mathematical Morphology by Jean Serra [24]. Today, mathematical morphology is considered to 
be a powerful tool for image analysis, in particular for those applications where geometric aspects 
are relevant. The main idea is to analyze the shape of objects in an image by "probing" the 
image with a small geometric template (e.g., line segment, disc, square) known as the struc~uring 
element. The choice of the appropriate structuring element strongly depends on the particular 
application at hand. This however should not be viewed as a limitation, since it usually leads to 
additional flexibility in algorithm design. The reader will find several examples of this flexibility 
in this paper, as well as in the various other contributions to this special issue. 

2. Morphological Image Operators 

2.1. Introduction 

The basic problem in mathematical morphology is to design nonlinear operators that extract 
relevant topological or geometric information from images. This requires development of a 
mathematical model for images and a rigorous theory that describes fundamental properties 
of the desirable image operators. For example, let us consider the case of binary (black and 
white) images. Binary images can be mathematically modeled as subsets of a given space E, 
which, depending on the application at hand, is assumed to possess some additional structure 
(topological space, metric space, graph, etc.). Thus, the family of binary images is given by 
P(E), the subsets of E. In this paper, we set E = JRd, the d-dimensional Euclidean space, in 
which case X is a continuous binary image, or E = zd, the d-dimensional discrete space, in 
which case X is a discrete binary image. Fundamental relationships between binary images can 
be mathematically specified by means of set inclusions, unions, or intersections. For example, 
the fact that image X is hidden by another image Y can be modeled by set inclusion: X ~ Y. If 
we simultaneously consider two images X, Y, then what we see is their union XUY. The part of 
an image Y which is not covered by some other image X is their set difference Y\X = Y n xc, 
where xc denotes the set complement of X, also called the background of X. Some major 
references in the area of mathematical morphology are [3-6,8,10,16-20,22-25,31-34]. 

2.2. Complete lattices 

The previous discussion can be further formalized by noticing that P(E) is a complete lattice. 
A complete lattice .C is a nonempty set furnished with a partial order relationship ::; such that 
every subset 1-£ of Chas a least upper bound V 1-£, called supremum, and a greatest lower bound 
/\ 1-£, called infimum. Obviously, P(E) is a complete lattice if we take set inclusion as the partial 
ordering. In this case, the infimum is given by set intersection and the supremum by set union. 

Another example of a complete lattice is given by C = Fun(E, T), the set of functions 
mapping E into a complete lattice T, furnished with a partial order relationship "F ::; G <=> 
F(x) :S G(x), for every x E E." Here, the inequality "F(x) ::; G(x)" refers to the partial 
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ordering on the complete lattice T, which, in the given context, could be interpreted as the set 
of "grey-levels." We will encounter different choices of T, such as T = lR = lR U {-oo, oo }, T = 
Z = Z U { -oo, oo }, or T = {O, 1, ... , N}, for some finite N (which are all totally ordered), and 
T = JfiP, where p > 1 is an integer. This latter choice corresponds to the so-called multivalued 
images; see§ 4.5. If E = IRd, then Fun(E, T) models continuous grey-scale images; for E = zd it 
models discrete grey-scale images. Notice that Fun(E, {O, 1}) is isomorphic to P(E). Therefore, 
a binary image can be either viewed as a subset of E or as a function from E into {O, 1 }. 

From our discussion so far, it is becoming clear that the structure of a complete lattice is 
the appropriate algebraic framework for a general theory of mathematical morphology. This 
structure allows us to generalize various concepts of mathematical morphology and apply it to 
a wide variety of different situations without having to re-derive fundamental results. From an 
algebraic point of view, mathematical morphology is the study of operators on complete lattices. 
As we explain in the sequel, these operators are required to satisfy additional properties, such 
as increasingness, distributivity over suprema or infima, idempotence, etc. 

Since the partial order :::.; is a fundamental relationship in a complete lattice L, mathematical 
morphology mostly deals with operators 'lj;: [, -+ [, which preserve such a relationship, in the 
sense that, if X :::.; Y, then 'lj;(X) :::.; ·ij;(Y). These are called increasing operators. The operator 
'ljJ is decreasing if it reverses the ordering. A bijective decreasing operator v: .C -+ .C such that 
v 2 = id.c, where id.c denotes the identity operator on .C, is called a negation. If v is a negation, 
then X* = v(X) is called the negative of X. On P(E), the mapping X-+ xc defines a negation, 
whereas, a negation on Fun(E, JR), is the mapping F -+ -F. The operator 'lj;*: .C-+ £, given 
by 'lj;* (X) = [1/J(X* )]*, is the negative operator of 'f. It is important to notice that an operator 
may have several negatives depending on the specific negation. In practice, this does not lead to 
any confusion. Notice that, if 'i/J is increasing, then 'i/J* is increasing too. Finally, the invariance 
domain of an operator 'ljJ, denoted by Inv( 'ljJ), is defined to be the set of all X E P( E) that are 
invariant under 'i/J; i.e., 

Inv(?/i) = {X E P(E) 17/i(X) = X}. 

2.3. Adjunctions 

Let £, M be complete lattices. An operator c:: .C -+ M is called an erosion if it distributes over 
infima, i.e., if c:(/\i Xi) = /\i c(Xi), for every collection {Xi} of elements in .C. An operator 6: 
M -+ £ is called a dilation if it distributes over suprema, i.e., if o(Vi Yi) = Vi o(Yi), for every 
collection {Yi} of elements in M. Two operators c: .C-+ M and 6: M -+ .Care said to form an 
adjunction between £ and M if 

o(Y) :::; X ~ Y :::_; c(X), X E .C, YEM. 

Given an adjunction (c:, o) between .C and M, then c: is an erosion and 6 is a dilation. In fact, 
with every erosion c;: .C -+ M one can associate a unique dilation O: M -+ .C such that (c:, 6) 
constitutes an adjunction between£ and M. In this case, 

6(Y) =A {X E [,I y:::.; c(X)}) y EM. 
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Similarly, with every dilation o: M --+ £, one can associate a unique erosion c:: £ -+ M such 
that (€, o) constitutes an adjunction. In this case, 

c(X) = v {YEM 1 o(Y) ::; x}, x E £. 

In general, the operators c: and o in an adjunction (c, o) are not inverses of each other. In 
fact, it can be easily seen that 0€ ::; id.c, whereas €0 2:: idM. However, if (c:, J) is an adjunction, 
then EO€ = E and OEO = o. A very important result is that, every increasing operator 'l/;: £ -+ £ 
with 1/J(I) = I, where I is the greatest element of[, (i.e., X ::; I, for every X E £), can be 
decomposed as a supremum of erosions on £. Similarly, every increasing operator 7./J: £ -+ £ 
with 1/;(0) = 0, where 0 is the least element of[, (i.e., X 2:: 0, for every X E £), can be 
decomposed as an infimum of dilations on £. Therefore, erosions and dilations are elementary 
operators which can be viewed as the building blocks of more advanced increasing morphological 
operators. 

2.4. Openings and closings 

An operator a: l--+ [, is called an opening if it is increasing, anti-extensive (i.e., a ::; id), and 
idempotent (i.e., a 2 =a). An operator {3: l--+ [, is called a closing if it is increasing, extensive 
(i.e., {3 ~ id), and idempotent. For an adjunction (c, o) between two complete lattices £and M, 
the composition & (i.e., an erosion followed by a dilation) is an opening on£, called adjunctional 
opening, whereas the composition €0 (i.e., a dilation followed by an erosion) is a closing on M, 
called an adjunctional closing. Further results on openings and closings can be found in § 5.2. 

3. Set Morphology 

3.1. Set dilation and erosion 

Assume that o is a dilation on P(E), where Eis a nonempty set. For X ~ E, we can write 

o(X) = LJ A(x), (1) 
xEX 

where A(x) := o({x}) ~ E, the dilation of the singleton {x}. Here, we have used the fact that 
8 distributes over unions. Every dilation on P(E) is of the form (1), and the adjoint erosion is 
given by 

c(X) = {h EE I A(h) ~ X}, X ~E. (2) 
In the following subsection, we consider the special case when the operators are invariant under 
translations. In that case, the sets A(x) are translates of a fixed set, called the structuring 
element, over the vector x. 

3.2. Translation invariance 

A class of operators of particular interest in image processing and analysis are the ones that are 
translation invariant. In order to study this type of operators, we first need to define what we 
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mean by "translation invariance" in a complete lattice framework. Let T be an Abelian group 

of automorphisms r on £. An operator 'lj;: £,-+ £, is called T-invariant if 

'lj;T = T'lj;, VT ET. 

If (c, 8) is an adjunction on £, then c is T-invariant if and only if 8 is T-invariant. In this 

case, (c:, 8) is called a T-invariant adjunction. When {, = P(E), with E = JRd or zd, T can be 

taken to be the Abelian group of all translations on E. For h E E, let us define the translation 

operator Th on P(E) by Th(X) = xh = {x + h Ix EX}. Then, an operator 'lj;: P(E)-+ P(E) 

is T-invariant if 'l/Jrh = rh'l/J, for every h E E, that is, if 'lj;(Xh) = ['lf;(X)]h· Every T-invariant 
erosion on P(E) is given by 

q(X) = X e A= {h EE I Ah~ X}, (3) 

whereas, every T-invariant dilation is given by 

(4) 

where A E P(E) is referred to as the structuring element and A= {-a I a EA} is the reflection 

of A around the origin. Observe that the expressions above are in agreement with those in (1), 

(2). The pair (t:A, llA) forms a T-invariant (or translation invariant) adjunction on P(E). It is 

clear that a T-invariant erosion on P(E) comprises all points h of E for which the structuring 

element Ah, located at h, fits inside X. On the other hand, a T-invariant dilation on P(E) 

comprises of all points h of E for which the structuring element Ah, located at h, hits X. Notice 

that X EB A = ( xc e A) c. Therefore, the dilation X EB A is the negative operator of erosion. This 

defines a duality between binary dilations and erosions, in the sense that dilation of a binary 

image X by a structuring element A can be viewed as the set complement of the erosion of the 

background xc of X by A. The effects of erosion and dilation on a binary image are depicted 

in Fig. 1. If 1/J is an increasing T-invariant operator on P(E), then 

Figure 1 Dilation and erosion by a square structuring element with the origin at the lower-left 

corner. 

'lj;(X) = LJ X e A = n X EB A. (5) 
AEV(1/i) AEV(1/i*) 
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Here, V(~J) is the kernel of operator 1µ, defined by V(~) = {A E P(E) I 0 E \b(A)}, where 0 is 
the origin in E. The result in ( 5) is known as Mat heron's representation theorem. 

The decomposition in (5) can be generalized to T-invariant operators which are not necessar­
ily increasing. For A, B E P(E), the interval [A, B] is the set of all X E P(E) with A~ X ~B. 
IfW(~) = {(A.B) E P(E) xP(E) I [A,B] ~ V(~)}, and if~ is a T-invariant operator on P(E), 
then 

·l)J(X) LJ X 0 (A, Be), 
(A,B)EW(1/') 

where 

The set X 0 (A, B) contains all vectors h for which Ah does not hit xc and Bh does not hit X. 
Notice that X 0 (A, B) = (X e A) n (Xc e B). The mapping X i---t X 0 (A, B) is called the 
hit-or-miss operator. 

Given an adjunction (EA, 8A) on P(E), 5AEA defines an opening aA on P(E), whereas EA5A 
defines a closing fJA: 

aA(X) = X o A= (X 8 A) EB A, 

f3A(X) = X •A= (X EB A) 8 A. 

It is easy to see that the opening X o A is the union of all translates of structuring element A 
that fit inside X: 

X o A= LJ{Ah I h EE and Ah~ X}. 

Notice that X •A = (Xc o Ay. Therefore, the closing X •A is the negative operator of the 
opening. This defines a duality between openings and closings. The effects of the opening and 
closing on a binary image are depicted in Fig. 2. Clearly, X o A and X e A are smoothing 

structuring 
element 

Figure 2. Opening and closing by a square structuring element. 

operators that eliminate components in X and xc, respectively, of size smaller than the size of 
the structuring element A. 
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3.3. Granulometries 

The notion of a granulometry formalizes the intuitive notion of a sieving process, and happens to 
be one of the most practical tools in mathematical morphology. Here, we give a brief exposition. 
More details can be found in [24]. For a formal presentation we refer to [10]. 

Consider the image space [, = P(JR.d). For a set X <;; JR.d, denote by conn(X) the set of 
connected components of X (see Section 6 for a formal definition of connectivity), also called 
the particles of X. One can think of a sieving process as a parameterized family an r > 0, 
of operators on £ such that every O:r deletes from X all particles "the size of which is at most 
r ." This last phrase can be formalized in various ways. Thinking of the physical device of a 
sieve with meshes rA, where A is convex-shaped (e.g., A may be a disk or a square in the 2-
dimensional case), ar deletes from X all particles YE conn(X) which have at least one translate 
Yh that fits inside r A: 

ar(X) = LJ{Y E conn(X) I Yh <f:. ·rA, for all h E JR.d}. (6) 

It is easy to show (even under the weaker assumption that A is star-shaped with respect to the 
origin) that the opera,tors ar have the following properties: 

( i) { ar I r > 0} is a family of openings with the semigroup property 

(ii) every ar is translation invariant; 
(iii) the family ar is scale-compatible, i.e., 

O:r(rX) = ra1(X), r > 0, X <;; JR.d. 

A family { ar I r > 0} of operators on [, that satisfies property ( i) is called a gran·ulometry. 

If it satisfies all three properties (-i)-(ii-i), then it is called a Minkowski granulometry. 
An important instance of a granulometry is the family of openings ar(X) = X o A(r), where 

{A(r) I r > O} is a one-parameter family of structuring elements with the property that A(s) is 
A(r)-open for s;::::: r (a set A is said to be B-open if Ao B =A). Note that this latter example 
is completely different from the example we described before. 

The next two results yield a complete description of Minkowski granulometries; see [10,20,24]. 

Proposition 3.1. Every Minkowski granulometry { O:r I r > O} on P(JR.d) is of the form 

ar(X) = LJ LJ X o sA, 
s?_r AEA 

where A<;; P(E) is an arbitrary collection of strncturing elements. 

The collection A can be very huge in practice. For the example described in (6), we find that 
A comprises all connected sets C such that Ch <l A, for all h E JR.d. 

If, in addition, we require that every opening ar is of a structural type, we arrive at the 

following result. 
Proposition 3.2. G·iven a compact strncturing element A<;; JR.d, the openings ar(X) = X or A 

on P(Rd) define a Minkowski gra.n1J,lornetry if and only if A is convex. 
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3.4. Boolean functions and morphological operators 

In this subsection, we discuss the relationship between Boolean functions and morphological 
operators. Our exposition is based on Sect. 4.5 in [10]. 

First, we recall some basic terminology. A Boolean function (of n variables) is a mapping 
from the Boolean lattice {O, l}n into the Boolean lattice {O, l}. If b1,b2 are Boolean functions, 
then their product b1b2 (infimum) and sum b1 + b2 (supremum) are Boolean functions as well, 
given by 

(b1b2)(u1, ... , Un) = bi(u1, ... , Un)b2(u1, ... , Un), 

(b1 + b2)(u1, ... , Un) = bi(u1, ... , Un)+ b2(u1, ... , Un)· 

The complement of a Boolean function b is given by 

The Boolean function bis increasing (or positive) if Ui ~ Vi, i = 1, ... , n, implies that b( u1, ... , un) 
~ b( V1, ... , Vn) · 

For the purpose of this subsection, the class of threshold functions is very important. 

Definition 3.1. Given w1, w2, ... , Wn and s E JR, the Boolean function 

is called a threshold function. The entries Wi are called the weights and s is called the threshold. 
The vector ( w1 , ... , Wn I s) is called the realization vector. 

By using the convention that [ S] = I if statement S is true and 0 if it is false, we can also 
write 

n 

b(u1, ... , un) = [2: WiUi 2: s]. 
i=l 

An important example is the rank function r8 which has realization vector (1, ... , 1 I s), i.e., 

n 

rs(u1, ... ,un) =[Lui 2: s]. 
i=l 

In this subsection, we identify a set X by its characteristic function, i.e., we write X(h) = 1, if 
h E X, and X ( h) = 0, if h rf X. Assume that A is a structuring element containing n elements 
a1, ... , an, and assume that b is a Boolean function with n variables. Define the translation 
invariant operator 'l/Jb by 

'l/Jb(X) = {h EE I b(X(a1 + h), ... , X(an + h)) = l}. 

Notice that, if b(u1, ... 'Un) = U1 ... Un, then 'l/Jb(X) = x e A, whereas, if b(u1, ... 'Un) = 
u1 +···+Un, then 'l/Jb(X) = X Ef) A. 
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Proposition 3.3. 'l/Jb is increasing if and only if b is increasing. 

It is easy to check that 

9 

As another example of generating morphological operators by means of Boolean functions, 
we take b to be the rank function r8 • The resulting operator, which we denote by PA,s, is called 
the rank operator. One finds that h E PA,s(X) if and only if X n Ah contains at least s points. 
In particular, PA,1(X) = x E9 A and PA,n(X) = x e A. Furthermore, 

PA,n S PA,n-1 S · · · S PA,1, 

and 
* PA,s = PA,n-s+l· 

Thus, PA,s is self-dual if n is odd and s = ~(n + 1). The operator PA,(n+l)/2 is called the median 
operator. Fig. 3 illustrates the use of rank operators for image denoising, and for the case when 
A is the 3 x 3 square structuring element. 

We get a much larger class of morphological operators if we choose for ban arbitrary threshold 
function. In fact, if 

n 

b(ui, ... , Un)= [2: WiUi ~ s], 
i=l 

then 
n 

'l/Jb(X) = {h EE 12: WiX(h + ai) ~ s}. 
i=l 

We call this operator the weighted rank operator. Considering w as a function from E into Z 
with domain A (and w(ai) = Wi), we can write 

where X *sW = {x E E I L:hEE w(h)X(x+h) ~ s }. Substituting for w the characteristicfunction 
of A, we get 

PA,s(X) = X *sA. 

As a final illustration, we explain how to express the hit-or-miss operator X H X@ (B, C) 
as a weighted rank operator. Let the weight function w be given by 

w(h) = B(h) - C(h), 

where B, Care considered as characteristic functions; then, 

X@ (B,C) = X*mW· 

Here m denotes the number of points in B. In [10], we explain how to construct modifications 
of the hit-or-miss operator starting from this representation. 
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Figure 3 Original noisy image (top) and the transformed images PA,n(X), for n = 1, ... , 9 (from 
left to right and top to bottom), where A is the 3 x 3 square structuring element. 

We conclude this subsection with the following remarks. The previous exposition is general, 
in the sense that it applies to the discrete as well as to the continuous case. However, the 
operators which fall within the class described here use finite structuring elements. As such, 
this approach is only relevant for the discrete case. Finally, the operators described in this 
subsection are also known in the literature as stack filters [19, 35]. 

3.5. Morphology for fuzzy sets 

The expressions for erosion and dilation in (3), (4) can also be written in terms of implications 
and conjunctions (logical 'AND'): 

cA(X) = {h EE I \ly EE: y - h EA => y EX}, (7) 
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o A ( X) = { h E E I :3 y E E : h - y E A and y E X}. 

Starting from these expressions, it is straightforward to extend these operations from the com­
plete lattice of sets P(E) to the complete lattice of fuzzy sets P(E). An element in E) 
can be modeled as a function, the so-called membership function, X: E -+ [O. l]. To extend 
the expressions in (7), (8) to P(E), we need to introduce implications and conjunctions on 
[0,1] x [0,1]. 

Definition 3.2. A mapping C: [O, 1] x [O, l] -+ [O, l] is called a conjunction, if C(:;::, y) is in­
creasing in both arguments, C(O, 1) = C(l, 0) = 0, and C(l, 1) = l. 
Definition 3.3. A mapping I: [O, 1] x [O, 1] -+ [O, 1] is called an implication, if I(x, y) is de­
creasing in x, increasing in y, I(O, 0) = J(l, 1) = 1, and J(l, 0) = 0. 

Assume that I is an implication with the additional property that I(a, ·) is continuous from 
the right. Given a fuzzy set A E P(E), called the fuzzy strucforing element, the operator £A on 

P(E), given by 
cA(X)(h) = /\ I(A(y - h), X(y)), (9) 

yEE 

defines an erosion which is translation invariant. On the other hand, the operator 

8A(X)(h) = V C(A(h -y),X(y)), ( 10) 
yEE 

defines a translation invariant dilation on P(E), if we assume that C(a, ·) is continuous from the 
left. In order that the pair (EA, OA), given by (9), (10), forms an adjunction, we have to assume 
that the pair (I(a, ·), C(a, ·)) is an adjunction on [O, 1], for every a in the range of A. In other 

words: 
C(a, y) ~ x ~ y:::; I(a, x), 

for x, y E [O, 1] and a in the range of A. We present some examples. 

Godel-Brouwer implicator: 

Lukasiewicz implicator: 

Kleene-Dienes implicator: 

C(a,y)=a/\y 

{ x, 
I(a, x) = l, 

if x <a 
if x ~a 

C (a, y) = 0 V (a + y - 1) 

I(a, x) = 1 /\ (x - a+ 1) 

{o ify<l-a 
C(a,y)= y'. ify;l-a 

I(a,x) = (1-a)Vx 
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Reichenbach im.plicator: 

{ 0, 
C(a, y) = (y +a - l)/a, 

I (a, x) = 1 - a + ax 

if y ~ 1 - a 
if y > 1 - a 

There exist various papers dealing with extensions of mathematical morphology to fuzzy 
sets; see for example [l, 21, 29, 30]. In this subsection, we only wanted to show that the theory 
of adjunctions on complete lattices is a natural framework for such an extension. 

4. Grey-scale Morphology 

We start with some notation and terminology. Mathematically, we represent grey-scale images 
as functions F: E -t T, where T is the grey-value set. We denote the set of all such functions 
by Fun(E, T). Depending on the application at hand, we may choose for T the sets 1R = 
1R U {-oo, +oo }, IR+ = IR+ U { +oo }, Z = Z U {-oo, +oo }, Z+ = Z+ U { +oo }, the bounded 
interval [O, l], or the finite set {O, 1, ... , N}. All these examples have a complete lattice structure 
in cornF.Jn. If T = JR, we simply write Fun(E); in all other cases, we include the grey-value set 
in our notation. An operator W on Fun(E, T) will be called a function operator. 

4.1. Direct approach 

We assume throughout this subsection that T = JR. However, most of our discussion carries 
over to the case of T = Z. For h EE and FE Fun(E), the horizontal translate Fh is defined by 

Fh(x) = F(x - h), x EE. 

The vertical translate F + v, where v E JR, is defined by 

(F + v)(x) = F(x) + v, x EE. 

Given a function GE Fun(E), we define the operators 

6.c(F) = F ff) G and Ec(F) =Fe G, (11) 

where 

(F ff) G)(x) = V [F(x - h) + G(h)], (12) 
hEE 

(F 8 G)(x) = /\ [F(x + h) - G(h)]. (13) 
hEE 

These operators are the grey-scale dilation and erosion, respectively. We call G an additive 
strnct:uring function. In the case of ambiguous expressions, we use the convention that s + t = 
:-oo, if~ = -oo or t = -oo, and s - t = +oo, ifs = +oo or t = -oo. Refer to Fig. 4 for an 
1llustrat1on. 
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---m-·--

Figure 4. Dilation and erosion of a grey-scale function with an additive stru~· .iring function. 

Proposition 4.1. The pair (Ee, b.c) defines an adjunction on Fun(E). 

Both l::!..c and Ee are translation invariant with respect to horizontal and vertical translations, 

i.e., both operators have the following property: 

w(Fh + v) = [w(F)]h + v, 

for h E E and v E R. An operator with this property is called a T-operator. If '1i is only 

invariant under horizontal translations, i.e., if 

then it is called an H-operator. 

The mapping F-+ -F, where (-F)(x) = -F(x), defines a negation on Fun(E). Writing 

F* = - F, we have the following duality relations: 

(FsG)*=F*eG and (FeG)*=F*ffiG, 

where 6 is the reflection of G with respect to the origin, that is, G ( x) = G ( -x). 

There exists a simple analogue of Matheron's representation theorem (see (5)) in the grey­

scale case. Before we formulate it, we have to generalize the notion of the kernel, given in§ 3.2. 

The kernel of a function operator '1i is defined by 

V(w) = {GE Fun(E) I w(G)(O) ?:: O}. 

Proposition 4.2. Let w be an increasing T-operator on Fun(E). Then, 

w(F) = v Fe G = /\ F tB G. 
GEV(w) GEV(w•) 

By composing dilations and erosions, we get openings and closings, just like in the binary 

case. 
A general way to construct T-operators is by using (extensions of) Boolean functions. If b is 

an increasing Boolean function of n variables, then we extend b to a function mapping K into 
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JR as follows: products are rPplaced by infima, sums by suprema, 0 by -oo and 1 by +oo. For 
example. if b(u 1,u2 . u3) = u 1 + u2u:{, then b(t1, t2, ta)= t1 V (t2 /\ta). 

Let A = {a 1, ••. , an} be a finite structuring element and b an increasing Boolean function of 
n variables. Define the increasing T-operator Wb on Fun(E) by 

wb(F)(x) = b(F(x + a1), ... , F(x +an)). 

For example, assume that b is a threshold function with realization vector (w1, - .. , wn\s) con­
taining only integer numbers. Just like in the binary case, let F*sW denote the transformed 
function. Then, (F*sw)(x) is the sth entry of the sequence obtained by sorting the values 
F( :.z: +a,), occurring wi times, in decreasing order. If every Wi equals 1, we get the rank operator 
PA,s(F) = F*,A. In fact, all grey-scale operators obtained using Boolean functions belong to 
the class of fiat operators introduced in § 4.4. 

4.2. Complete lattice approach 

We have observed that, provided that T is a complete lattice, Fun(E, T) is also a complete 
lattice with partial ordering 

F :S F' if F ( x) :S F' ( x), for x E E. 

Heijmans and Ronse [14] (see also [10, Sect. 5.1]) have given a complete description of adjunctions 
on such complete lattices. 
Proposition 4.3. The pa-it (£, 6..) is an adjunction on Fun(E, T) if and only if, for every 
x,y EE, there exists an adfunction (ey,x,dx,y) on T S'Uch that 

6.(F)(y) = V dx,y(F(x)), 

E(F)(x) = /\ ey,x(F(y)). 
yEE 

Let us now focus on adjunctions in which both the dilation and the erosion are H-operators; 
such adjunctions are called H-adjunctions. The next proposition follows easily from the previom; 
one. 

Proposition 4.4. The pair (£, 6..) is an H-adjunction on Fun(E, T) if and only if, for every 
h E E, there exists an adjunction (eh, dh) on T such that 

.6.(F)(y) = V dh(F(y - h)), 
hEE 

£(F)(x) = /\ eh(F(x + h)). 
hEE 

Assume, for example, that T =JR. We obtain the adjunction (Ec,6.c), given by (11)-(13), by 
setting dh(t) = t + G(h) and eh(t) = t - G(h). 

In [10, Sect. 11.5], one finds examples of other H-adjunctions. Below, we apply Proposi­
tion 4.4 to the case when the grey-value set T is finite. 
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4.3. Finite grey-value set 

If T = {O, 1, ... , N}, the adjunction in (11)-(13) looses its meaning, since T is not closed under 
addition and subtraction. If one tries to overcome this problem, by truncating values below 0 
and above N, one does not get adjunctions (see [9] or [10, Sect. 11.9]). It turns out that we can 
use the characterization of H-adjunctions, given in Proposition 4.4, to solve this problem. 

For v E Z, define the operation t r---+ t + v on {O, 1, ... , N} as follows: 

t + v = 0, r+v ~ 0, 
if t > 0 and t + v ~ 0, 

t :- v = t + v, if t > 0 and O~t+v~N, 
t+v = N, if t > 0 and t+ v > N. 

Moreover, define the operation t r---+ t...:... v on {O, 1, ... , N} by 

{ 

t...:... v = 0, if t < N and t - v ~ 0, 
t ~ v = t - v, 
t-v = N, 
N...:...v=N. 

if t < N and 0 ~ t - v ~ N, 
if t < N and t - v > N, 

Let, for example, N = 10. Then (6 + 5)...:... 4 = 10 and 6 + (5...:... 4) = 7. The operation+ is neither 
commutative (0+1f.1 +o) nor associative ((3 +o) + 5 = 3 ..f-5 = 8 f. 3 = 3 +o = 3 + (O..f-5)). 

Lemma 4.1. The pair e(t) = t...:... v, d(t) = t + v defines an adjunction on {O, 1, ... , N}, for 
every v E Z. 

For an illustration, see Fig. 5. 

10~~~~~~~~----------_,.. 

91---+---+~l---+--+---l~+--+--+---I 

81---+---+--11---+------+~+-~ .. '--+---I 

7f----l---+~+---t---+~+--;f--t~-i----j 

61---+---+--ll---+--+----,+'---+--+---.I0--1 

51--+--1--+---1~,r:-...+--+-....... ---1---1 

41---1---+--+--'1"--+-+-.... -+---i---1 

31----1--1----..li:...__i~+..---t----+--+---lf--l 

21---l--,l:.:---l----l----...... +--+--+---lf--l 

11--..+----1---1-~--+--+--l--+---!f--l 

0 12345678910 

I d(t) 
- e(t) 

Figure 5. The adjunction e(t) = t...:... 3, d(t) = t + 3 on {O, 1, ... , 10}. 
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Combination of Proposition 4.4 and Lemma 4.1 yields an interesting class of H-adjunctions, 

with dilation and erosion given by 

(F ffi G)(x) = V (F(x - h) -i- G(h)), 
hEdom(G) 

(Fe G)(x) = A (F(x + h) _:_ G(h)), 
hEdom(G) 

respectively. Here, G is a function with domain dom(G) and values in Z. In fact, one takes 
dh(t) = t -i- G(h), eh(t) = t _.:_ G(h), for h E dom(G), and dh = 0, eh= N, for h ~ dom(G). It is 

easy to verify that 

(F-i-v) ffiG = (FffiG)-i-v, 

(F _.:_ v) e G = (Fe G) _:_ v, 

if v 2: 0. Additional results can be found in [10, Sect.11.9]. 

4.4. Flat operators and thresholding 

A simple way to construct morphological operators on Fun(E) is the following: threshold a 
function at every grey-value, apply a given set operator to the sets obtained in this way, and 
reconstruct a new transformed function from the transformed sets. This approach can be for­
malized within the complete lattice framework. Below, we present a short discussion. Further 
details can be found in [10, Chapters 10-11]. 

Let l be an arbitrary complete lattice, let .C <> 1R consist of all functions X: 1R -t .C which 
are decreasing, and let £6.JR be the subcollection of all X that satisfy 

X(V ti) = A X(ti), 
iEl iEl 

for every family { ti I i E I} in JR. Let i: £ <> 1R -t l <> 1R be the operator given by 

(IX)(t) = /\ X(s). 
s<t 

Proposition 4.5. The operator i is a closing with invariance domain £6.lR. 

A straightforward consequence of this result is that £6.JR is a complete lattice with the same 
infimum as . .c <> lR (i.e., the pointwise infimum of .C). The supremum of the family Xi in £, <> JR 
is given by I(ViEJ Xi), where the term within parentheses denotes pointwise supremum. 

Now, let FE Fun(E), and define the threshold sets X(F, t) by 

X(F, t) = {x EE I F(x) 2: t}. 

Furthermore, given an element X E 'P(E)b.lR, define the function 

F(X)(x) = V {t E lR Ix E X(t)}. 

The next result can be found in [10, Chapter 11]. 
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Proposition 4.6. The mapping F r-t X(F, ·) defines an isomorphism between Fun(E) and 
P(E)LJ.lR. with inverse F. 

Remark: It is possible to use the same approach to deal with u.s.c. (upper semi-continuous) 

functions, presumed that E is a topological space. In fact, using the same expressions, one can 

establish an isomorphism between the u.s.c. functions and the complete lattice :F(E)61R; here, 
F(E) are the closed subsets of E. 

Using the threshold set representation of Fun(E), i.e., P(E)61R, one can extend a given 

increasing set operator 'ljJ on P(E) to a function operator w on Fun(E). Let F be a function 

and apply '1/J to every threshold set X(F, t). The resulting collection of sets 'ljJ(X(F, t)) lies in 

P(E) o JR., but not necessarily in P(E)6JR. To achieve this, we apply i. Thus, we define 

w(F) = FI('l/J(X(F,·))). 

It is easy to verify that the following relations hold: 

X(w(F), t) = n 'ljJ(X(F, s)), 
s<t 

and 

w(F)(x) = V{t E IR Ix E 'l/J(X(F, t))}. 

We call W the fiat function operator generated by 'lj;. Evidently, W is an increasing operator. 

Proposition 4. 7. Every increasing fiat function operator is invariant under vertical transla­

tions. Moreover, if 1/; is translation invariant, then w is a T-operator. 

In [10, Sect. 11.3], we have derived several interesting results for fiat operators. Among 

others, we showed that W is a dilation if 'I/; is a dilation; the same holds for erosions, openings, 

closings, etc. 
We conclude with an example. Let A ~ E be a structuring element. The fiat function 

operators generated by EA(X) = X 8 A and OA(X) = X E9 A are given by 

EA(F) = f\ F_h and b.A(F) = V Fh, 
hEA hEA 

respectively. An illustration of flat dilation, erosion, closing, and opening is depicted in Fig. 6. 

4.5. Multivalued images 

So far, we have been concerned exclusively with binary and grey-scale images. In various ap­

plications, however, one is faced with multivalued images. The best known example are color 

images, but one can also think of the case of magnetic resonance images (MRI) in medical 

diagnostics; here, a recording usually comprises three images, a proton density image and two 

relaxation time images. If one wants to analyze such images using morphological tools, one is 
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Figure 6. Flat dilation, erosion, closing, and opening. 

faced with the problem that their range is no longer a subset of a linearly (or totally) ordered 
set, but rather a set that is only partially ordered (e.g., JR3 in the case of col or images). 

The fact that images take values in a set which is not totally ordered gives rise to a number 
of problems. For example, a supremum over a finite subset usually results in a value which 
does not lie within this finite subset. In color image processing, this gives rise to the so-called 
"false colors." These, and other problems, are discussed in more detail in [7] and the references 
mentioned there. In [7], we have discussed, in great detail, a complete lattice approach for 
multivalued images. Here, we briefly review this approach. 

In the sequel, we assume that R is a complete lattice, that T is an arbitrary nonempty 
set, and that h: 7 -+ R is a surjective mapping. Consider a mapping h +-: R -+ T such that 
hh+-(r} = r, for r ER. Such a mapping h+- is called a semi-inverse of h. We define a binary 
relation '5oh on 7 in the following way: 

t '5oh t' <=* h(t) '5, h(t'), t, t' ET. 

Clearly, this relation is reflexive ( t '5oh t) and transitive ( t1 '5oh t2 and t 2 Sh t3 implies that 
ti '5oh t3). However, '5oh does not define a partial ordering because t Sh t' and t' '5oh t implies 
only that h(t) = h(t') (which we denote as t =h t') but not t = t'. We refer to Sh as the 
h-ordering. 

A mapping a: 7 -+ 7 is called h-increasing if t Sh t' implies that a(t) '5oh a(t'). One 
can show that an operator is h-increasing if and only if there exists an increasing mapping a 0 : 

R -+ R such that 

a0 h =ha. 

The mapping a0 is uniquely determined by a, and can be computed from 

a0 = hah<-. 

The mapping a0 turns-out to be independent of h +-, and we write a A a0 . 

Definition 4.1. Let e, d: 7-+ 7 be two mappings with the property that, £ t ET ors, , 

d(s) S:h t <=* s Sh e(t). 

Then, the pair ( e, d) is called an h-adjunction. 
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h-Adjunctions inherit many properties from classical adjunctions between complete lattices; 
in particular, the mappings e and d involved are h-increasing. 

Proposition 4.8. Let ( e, d) be h-increasing mappings on T, and let e A e0 , d A d0 • Then, 
( e, d) is an h-adjunction on T if and only if ( e0 , d0 ) is an adjunction on R. 

As a next step, we consider adjunctions on Fun(E, T). Presumed that h: T---* R is surjective, 
the extension of h to Fun(E, T), given by 

(h(F))(x) = h(F(x)), FE Fun(E, T), x EE, 

is also surjective and possesses (the extension of) h,_ as a semi-inverse. 

Proposition 4.9. (a) The pair(£, .6.) is an h-adjunction on Fun(E, T) if and only if, for every 
x, y EE, there exists an h-adjunction (ex,y, dy,x) on T such that 

h(E(F)(x)) = /\ h(ey,x(F(y))), (14) 
yEE 

h(.6.(F)(x)) = V h(dy,x(F(y))), (15) 
yEE 

for FE Fun(E, T). 

(b) Let ex,y A e~,y and dy,x A d~,x· Then, (eg,y, d~,x) is an adjunction on R. Let (£0 , .6.0 ) 

be the adjunction on Fun(E, R), given by 

£0 (F)(x) = /\ e~,x(F(y)), 
yEE 

.6.0 (F)(x) = V d~,x(F(y)), 
yEE 

for FE Fun(E, R). Instead of (14), (15), we can write 

h(E(F)(x)) = £0 (h(F))(x) = f\ e~,x(h(F(y))), 
yEE 

h(.6.(F)(x)) = .6.0 (h(F))(x) = V d~,x(h(F(y))), 
yEE 

h h for FE Fun(E, T). In other words, £ r--+ [ 0 and .6. r--+ .6.0 . 

We briefly explain here how the concept of an h-adjunction, as well as other derived notions 
such as h-openings and h-closings, can be used to deal with spaces of multivalued images, 
say Fun(E, JR?). For a comprehensive discussion, we refer to [7]. A possible choice for h is 
h(t) = At, where A is an invertible p x p matrix, such as the maximum noise fraction (MNF) 
transform matrix, used to decorrelate the components of a multispectral image. This choice has 
been employed in [7] for removing noise from MRI images. Alternatively, we can use a scalar 
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transform h: jjP -+ R For filtering purposes, for example, vector data may be ordered by means 

of the Mahalanobis distance 
h(t)::::: (t - ro)TC01(t - ro), 

where 70 is the expectation of the noise-free image and Co its covariance matrix. 
Note that, in Proposition 4.9, the transformed functions E(F) and Ll(F) are not uniquely 

determined, in general. For example, if the function G satisfies the equation in (14), i.e., if 
h(G(x)) = /\yEEh(ey,x(F(y))), then the same holds for h+-h(G), for every semi-inverse h+--. 
In [7], we present an algorithm to overcome this problem. The basic idea is to compute E ( F) ( x) 
by substituting the same argument y that yields the infimum in expression (14) (same for 

Ll(F)(x)). 

5. Morphological Filters 

5.1. Introduction 

Image filtering is an· important step in image processing and analysis. Filters are used for 
preprocessing images in order to remove noise and clutter, sharpen edges, and enhance image 
quality. The theory of morphological filtering was initiated by Matheron and Serra [25] and has 
found numerous applications in image processing and analysis. In general, a morphological filter 
(or simply a filter) is an increasing operator 'l/; on a complete lattice £ that is also idempotent; 
i.e., 

This property guarantees that repeated application of a filter does not alter the result. In this 
section, we present a short account on the theory of morphological filters, which is far from 
being exhaustive. For a more comprehensive discussion, we refer to [12] and the references given 
here. 

5.2. Openings and closings revisited 

Openings and closings are both increasing and idempotent, and as such they are filters. In fact, 
an anti-extensive filter is an opening, whereas an extensive filter is a closing. Some preliminary 
results about openings and closings have been presented in § 2.4. We will continue our discussion 

about openings and closings here. For simplicity, we restrict ourselves to openings; similar results 
for closings follow by duality. We start with the following two important results. 

Proposition 5.1. Let cxi, a2 be openings on a complete lattice £. The following assertions are 
equivalent: 

(i) a1 :S cx2; 

(ii) cx1 cx2 = a2cx1 = a1; 
{iii) Inv(cx1) ~ Inv(cx2). 

In particular, cx1 = a2 if and only if Inv(a1) = Inv(cx2). 
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Refer to [10, Section 6.1] to see how these relations can be reformulated in terms of adjunc­

tions. 

Proposition 5.2. If ai is an opening, for every i in some inde::c set I, then ViEI O:i is an opening 

as well. 

In § 2.4, we have seen that every adjunction (c, t5) between £ and M yields an opening OE 

on£. It can be shown that Inv(&) = Ran(t5), where Ran(t5) denotes the range of o. This result 

can be generalized in the following way. 

Proposition 5.3. Let a be an opening on M and let (c, J) be an adj'Unction between[, and M. 

Then, foe is an opening on [, with invariance domain { o(Y) I y E Inv( o:)}. 

5.3. Adjunctional filters 

If (c:, o) is an adjunction on£, then t5kck is an opening and c:kJk is a closing, for every k ;::=: 1. This 

is an immediate consequence of the fact that (ck, Jk) is an adjunction as well. The composition 

c:02 c is a filter, since (c82c) 2 = c:o2c262c: = c:i52c. Here, we have used the fact that 62c:262 = 62 , 

since (c2 , 62 ) is an adjunction. Note also that 

We state the main result of this subsection. 

Proposition 5.4. Assume that (c, o) is an adj'Unction on L. Let'!/; be a composition of c 's and 

o 's of the form 

(16) 

where ei and di are nonnegative integers. If 

n n 

2= Ci = '2.:di, 
i=l i=l 

then 'ljJ is a filter. 

Filters of the form (16), which are composed of an equal number of dilations and erosions 

from an adjunction, are called adfunctional filteTS. The operator ci52c:, considered above, is such 

a filter, but note that it is neither an opening nor a closing; in fact, it is a composition of the 

closing cO with the opening Oc. In many cases, expressions of the form (16) can be simplified. 

For example, an expression like 64c363 may be replaced by 64, since (c3 , 83) is an adjunction 

and, therefore, 63 c:3 o3 = 63 , yielding that 64 c3 83 = 663 c:3 63 = 663 = 84 . More generally, if a 

composition contains an expression od' ce od, with e :; d and e :; d', this can be simplified to 

Jd+d' -e. Dually, c:e' od c:e, with d :; e and d :; e', can be simplified to c:e+e' -d. 
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5.4. Overfilters and inf-overfilters 

If 11._ (pare two filtPI·s. tlwn 1/,6. q"i v VJ and </> /\ 41 are not necessarily filters. In the rnse of 
</! v Ii·. it can be shown that ( cp v 4.i )'2 2:: </> V ·1/;, which shows that operator </> V ~ preserves one 
part. of idempotence. Anticipating on the following definition, we say that </> V 'lj_J is an .ove~filter. 
Definition 5.1. An increasing operator ·ijJ on a complete lattice is called an overfilter if 1/J 2:: 1/;. 
It is called an inf-over:fi.lter if 41(id f\ 1/J) = 1/J. 

The dual notions are called underfilters and sup-underfilters, respectively. Motivated by 
duality. we restrict ourselves to (inf-) overfilters. In the following proposition, we summaries 
some basic facts concerning these two concepts. 
Proposition 5.5. 

(a} Every e:J:tensiue operator is an inf-overfilter. 
(b) Every inf-overfilter is an overfilter. 
( c) If 1)1 is an inf-ol'crfilter, then id f\ ·1/J is an opening. 
( d) The family of o·l'erfilters, as well as the family of inf-overfilters, is closed under suprema. 
(e) If <fi ·i.s an (inf-) overfilter. then ·I/Jn is an (inf-) overfilter as well, for every nonnegat,ive 

integer. 
There exist various ways to construct (inf-) overfilters. For the sake of illustration, we 

mention a few of them. 
Proposition 5.6. 

(a) Let (E. o) be an adjunction between[, and .M and let 'lj;: M -+ L be an increasing operntor· 
such that ,~, 2:: c5. Then. 41c: is an inf-overfilter. 

(b) Let (c:.S) and (c:',J') be adjunctions between[, and M S'Uch that c:'::; E and (hencp,) f/ 2:: !5. 
If <f; is an ( inf-) overfilter on M, then f/ 'lj.;c: is an ('inf-) over filter on L. 

(c) If 4; is an inf-overfilter and (j is a closing, then (3'1/J and 'lj;(3·ij; are inf-overfilters. 
We conclude the present subsection with an example. Let A be a finite structuring element 

containing n points. and let Bk contain all subsets of A which contain k points (where 1 ::; k ::; n). 
From Proposition 5.G(a). we get that c5AEB is an inf-overfilter, for every structuring element 
B E Bk· Since the supremum of every collection of inf-overfilters is an inf-overfil ter, we g(~t that 

1/Jk := v OAEB = OA v EE 
BE Bk BE Bk 

is an inf-overfilter as well. In fact, it is not difficult to verify that V BEBk EB = PA,k, the rank 
operator introduced in§ 3.4. Thus, we have 'l/Jk = OAPA,k· Now, by Proposition 5.5(c), 

aA,k =id f\ 'i/Jk =id/\ OAPA,k 

is an opening, called the mnk-max opening. Fork= n, this opening coincides with the structural 
opening X o A, whereas fork= 1 it is the identity operator. 

The rank-max opening aA,k is "more tolerant" than the structural opening aA. The struc­
tural opening preserves translates of A that fit entirely inside X, whereas the rank-max opening 
PA,k preserves those portions of X n A1i that contain at least k points. It is evident that 

O:A,n :S O'.A,n-1 :S · · · :S O:A,l =id. 
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5.5. Alternating sequential filters 

In this section, we introduce a general class of filters, called alternating sequential filters, or 

AS-filters, obtained by concatenation of overfilters and underfilters. We introduce the following 

notation: if 'l/J1, 1/J2, ... are operators, then 

More generally, if </>1 , </>2, ... is another sequence of operators, then 

('1/J</>)n = 'i/Jn</>n'l/Jn-l<Pn-1···1/J1c/>1, 

('ljJqxt/J)n = 1/JncPn'i/Jn'i/Jn-1</>n-11/Jn-l · · · 1/J1</Ji1/J1. 

A sequence of operators ·ijJ1, 'l/J2, ... is said to be absorbing if 

Proposition 5. 7. Given a family of increasing operators 1/Jn, for which ( 1/J )n ·is a filter, then 

the sequence (·l/; )n is absorbing. 

Proposition 5.8. A ssurne that </>1, </>2, . . . are overfilters, that 't/J1, 1/J2, ... are underfilters, and 

that the following conditions are satisfied: 

</>n :S 'I/Jn, 

</>n</>n- l 2'.'. </>n, 
'~JnV!n-1 :S 1/Jn · 

Then, (c/>1/J)n, ('lj;cfa)n, (</>'i/J</>)n, ('i/J</>'lj;)n are absorbing filters, and 

Note that conditions (17)-(19) hold if we make the (stronger) assumption that 

( 17) 

( 18) 

(19) 

(20) 

(21) 

The filters constructed in (20) are called alternat'ing sequential filters, or AS-filters. The best­

known examples are the ones when </>n are openings, with rf>n+l :S </>n, and 1/Jn are closings, with 

'l/;n+ 1 ~ 1/Jn. In Fig. 7, we depict the effect of three different AS-filters (with increasing parameter 

n) on a noisy binary image (top row). The second row depicts the classical AS-filter (/3o:)n, for 

n = 1, 2, 3, where an(X) = X o nA, f3n(X) = X • nA, and A is the 3 x 3 square structuring 

element. Here, nA denotes the structuring element A EB A EB · · · EB A (n terms). The third row 

depicts the rank-based AS-filter (f3AaA)n, for n = 3, 6, 9. Here, aA,n is the rank-max opening 

discussed in § 5.4, and f3A,n is the negative closing. 
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Figure 7 A noisy binary image (top row) and the output resulting from three different AS-filters 
(three subsequent rows), with increasing parameter n (from left to right). Refer to the text for 
further details. 

As another application, consider the case when o:n, f3n are openings and closings, respectively, 
and ~ is an increasing operator, such that 

(22) 

Define </:in = o:n( and 'I/Jn = f3n~. Then, r/Jn is an overfilter and, dually, 'I/Jn is an underfilter. It is 
obvious that (21) holds. As an example, we take for~ the median operator, using the rhombus 
mask (origin and four horizontal and vertical neighbors). Let an, f3n be the opening and closing, 
respectively, with the (2n + 1) x (2n + 1) square structuring element, and define r/>n = anE and 
'1/Jn = /3nE· It is easy to see that the conditions in (22) are satisfied. The resulting AS-filter 
(7/J</>)n, n = 1, 2, 3, is illustrated in the bottom row of Fig. 7. 
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5.6. Further results 

Another general method for constructing filters is to iterate increasing operators, which are not 
idempotent, until convergence. In [15], this method is explained in great detail. 

Self-duality is very important in applications: self-dual filters treat image foreground and 
background identically. In [11], we present a method, based on iteration, to construct self-dual 
morphological filters. 

6. Connected Operators 

6.1. Connectivity 

Given a topological space E, a set X s;;; E is said to be connected (or, more precisely, path­
connectecl) if, for every pair of points x,y EX, there exists a continuous mapping f from [O, l] 
into X such that f (0) = x and f (1) = y. If X, A are two path-connected sets, then X E9 A is also 
path-connected. However, this statement is not true for erosions, openings and closings [10]. It 
is easy to see that the union of a collection of connected sets with nonempty intersection is also 
connected; i.e., if { Ci \ i E I} is a collection of connected sets such that niEJCi 'I 0, then UiEJCi 

is also connected. Matheron and Serra [25] have used this property to generalize the notion of 
connectivity to spaces E that are not necessarily topological. In this subsection, we give a brief 
summary of their approach. 

Definition 6.1. Let Ebe an arbitrary nonempty set. A family C s;;; P(E) is called a connectivity 
class if it satisfies: (i) 0 EC and {x} EC, for x EE, and (ii) if Ci EC and niEICi f:. 0, then 
UiEJCi E C. We say that C defines a connectivity on E. An element of C is called a connected 
set. 

An example, illustrating the notion of connectivity class, is the family C s;;; 'P(JR2 ) comprising all 
sets whose points cannot be separated by a straight line. It is not difficult to show that C is indeed 
a connectivity class. However, elements in C are not necessarily connected, or path-connected, 
in the topological sense of connectivity. 

Given a connectivity class C, we can define an operator /x: P(E) -+ 'P(E), by 

f'x(X) = LJ{C EC Ix EC and Cs;;; X}. (23) 

Notice that /x(X) EC and, therefore, 'Yx(X) is a connected component of X that contains point 
x. It can be shown [10,25] that: (i) l'x is an opening on P(E), known as the connectivity opening 
associated with C, (ii) /'x({x}) = {x}, (iii) rx(X) n ry(X) = 0, or !'x(X) = 'Yy(X), and (iv) 
x fJ. X ::::} 1'x(X) = 0. The connected components rx(X) of a set X are called the grains of X. 
Every set X s;;; E can be uniquely decomposed into its grains 'Yx (X), x EE; i.e., 

X = LJ /'x(X). 
xEE 
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It can also be shown that, if {"Ix I x E E} is a collection of operators that satisfy properties 

( i)-( iv) above, and if C is given by 

C = LJ Inv(/x), 
xEE 

where Inv('Yx) is the invariance domain of 'Yx, then C defines a connectivity and /x is given by 
(23). Finally, if C ~ X is a connected subset of X, then C is contained within some grain of X. 

Given a connectivity C, we may want to build a new connectivity C' that is more appropriate 
for a particular application. This can be accomplished by several methods [13]. However, the 
most frequently used method is to extend C to C' by means of an increasing operator 'I/;. Indeed, 
let C be a connectivity class in 'P(E) and let 'I/; be an increasing operator on P(E). Let C' consist 
of the empty set, the singletons, as well as every element C E C for which C ~ 'l/;(C); then, C' 
is a connectivity class [13]. 

Another way to build a new connectivity from an existing one is by means of dilation. Let 
C be a connectivity class in 'P(E) with connectivity openings 'Yx· Assume that o is an extensive 
dilation on 'P ( E) such that 8 ( { x}) E C, for every x E E. Then, 

c<' = {X ~EI 8(X) EC} 

is a connectivity class, and C ~ C5. The corresponding connectivity openings 'Y~ are given by 

"!~ = id/\ rx<>, for x E E. 

This construction is illustrated in Fig. 8. Although the previous exposition is limited to the 

y~(X) 

0 
Figure 8 From left to right: a set X and the grain 'Yx(X), the dilation 8(X), and the grain 
'Y~(X). 

co~plete lattice 'P(E), the concept of connectivity class can be extended to the case of an 
arbitrary complete lattice £. For more information, refer to [26] or [27]. 
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6.2. Connected operators 

Classical morphological operators, like the ones discussed in Section 3, are compositions of one 

or more "local" operators. Here, "local" means that the output of an operator at a particular 

point depends only on the input values in a small neighborhood around this point. In contrast, 

the connected operators to be discussed in this section do not change the value of individual 

pixels but only the values of connected regions with constant grey-level, the so-called fiat zones. 

In this section, we restrict our exposition to the binary case. The flat zones are therefore the 

connected components of the foreground and the background. For the grey-level case, the reader 
is referred to [26]. 

Before we proceed with a formal definition of a connected operator, we need the concept of a 

partition, which subdivides a given space E into disjoint zones. Given a space E, a function P: 

E-+ P(E) is called a partition of E if: (i) x E P(:r), for every x EE, and (ii) P(x) = P(y), or 

P(x) nP(y) = 0, for every x,y EE. The set P(x) is called the zone of partition P that contains 

point x. If Eis furnished with a connectivity C, and if P(x) EC, for every x EE, then we say 

that P is a connected partition. Given two partitions P and P' of a space E, we say that P is 

coarser than P' (or that P' is finer than P) if P'(x) ~ P(x), for every x EE. 

Every subset X of E can be associated with a connected partition Px the zones of which 

are the grains of X and xc. In this case, we have that 

if h EX 
if h rt. x . 

Notice that this connected partition directly depends on the choice of connectivity. 

An operator 'l/J on P(E) is called a connected operator if the partition P'l/!(X) is coarser than 

the partition Px, for every subset X ~ E. Notice that a connected operator acts on the zones 

of an image X, by preserving certain zones and by changing others so that the partition of the 

input image is coarsened. It can be shown that an operator 'ljJ is connected if and only if the 

symmetric difference (X \ 'lj;(X)) U ('l/;(X) \ X) consists only of grains of X and xc, for every 

X <; E [13, 28]. 
An important example of a connected operator is given by 

a(X) = p(a(X) IX), for x EE, (24) 

where 
p(Y I X) = LJ /'y(X), for X, Y EE, 

yEY 

is the so-called reconstruction of Y in X [10], and a is a given opening. The operator a is an 

opening on P(E), known as opening by reconstruction. In fact, every connected opening (i.e., an 

opening that is also a connected operator) is necessarily of the form (24); see [13]. Fig. 9 depicts 

an example of such an operator, when a(X) = X o A, with A being a disk structuring element. 

Notice that, in this case, operator a reconstructs only the connected components of X which 

are "marked" by the opening X o A. 
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Figure 9 Opening by reconstruction. From left to right: X, a(X), and &(X). a(X) is an 
opening by a disk structuring element (in black). 

6.3. Grain operators 

Given a connectivity C on E, by a grain criterion we mean a mapping u: C -+ { 0, 1}. Given two 
grain criteria u and v, we define a grain operator 't/Ju,v(X) by [2, 13] 

Clearly, this operator leaves unchanged foreground grains /x(X) that satisfy criterion u(rx (X)) = 
1 and background grains l'x(Xc) that satisfy criterion v(rx(Xc)) = 1, and flips the other grains 
from foreground to background and vice versa. An example, illustrating this concept, is depicted 
in Fig. 10. 

-·------------ --- ------ -- .. 

I , 

Figure 10 A binary image X (left) and its transform 'l/Ju,v(X) (right). In every foreground (resp. 
background) grain of X it is indicated whether the grain criterion u (resp. v) equals O or l. 

It can be shown that a connected operator 'lj;: P(E) -+ P(E) is a grain operator if and only 
if, for every h EE and X, Y ~ E such that X(h) = Y(h) and Px(h) = Py(h), we have that 
'tf;(X)(h) = ·tj;(Y)(h) [13]. This property means that 'ljJ is a grain operator if the value 7.jJ(X)(h) 
is completely determined by the value X(h) and the zone Px(h). 
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An example of a grain operator is obtained by considering the grain criteria 

u(C) = { l, 
0, 

if ICI ?. t 
otherwise ' 

for some nonnegative threshold t, where ICI denotes the area of set C, and v(C) = 1, for every 
C E C. The resulting operator is an opening, known as an area opening. This operator deletes 
from a set X all grains with area less than t. Another example of a grain operator is the opening 
by reconstruction, given by (24). 

7. Conclusion 

In this paper, we have provided a brief introduction to a powerful tool for shape analysis known 
as mathematical morphology. We have limited our presentation to various theoretical aspects, 
by focusing on the theory of morphological operators on complete lattices. We hope that we 
have succeeded in giving the reader a first impression of the underlying algebraic principles of 
mathematical morphology, and the fact that this tool benefits from the power of a complete 
lattice theoretic framework. 
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