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A CLASS OF TEAM PROBLEMS WITH DISCRETE ACTION 
SPACES: OPTIMALITY CONDITIONS BASED ON 

MULTIMODULARITY* 
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Abstract. In this paper we discuss a class of team problems with discrete action spaces. We 
introduce multimodularity into team theory as a natural alternative to convexity in continuous spaces. 
The main result relates coordinatewise-optimal (cw-optimal) points to the optimal team decision for 
a class of team problems. The method is based on a characterization of coordinatewise minima of 
multimodular functions. 
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1. Introduction. In 1955 Marschak introduced in [6] team problems as a math­
ematical model for cooperative decision making. In a team problem there are two or 
more decision makers or controllers who receive a common reward as the joint result 
of their decisions. The fact that the decision makers have a common objective sets 
it apart from the models that are usually encountered in game theory. Team prob­
lems differ from ordinary decision problems with one controller, since the controllers 
may have different information on which they have to base their decision. The role 
of information in control problems is discussed in Witsenhausen [11, 12] and Ho and 
Chu [3]. For some examples and a tutorial introduction to team problems see Ho [4]. 

The applications of team problems were at first found in the area of decision mak­
ing in organizations (see Marschak [6]). Recently the attention in team theory has 
acquired a new impulse from the area of load balancing in distributed computer sys­
tems (see, for instance, Wang and Morris [10]). The environment of high-performance 
computer networking provides a typical example of a complex and highly-distributed 
system for which decentralized control and team theory appear to provide the right 
framework. 

Despite a history of more than forty years, there are not that many fundamental 
results in team theory. The verification of the optimality of a team strategy, for 
instance, is equivalent to a minimization over a function space, and this is infeasible 
without additional assumptions. To the best of our knowledge, there are only two 
papers in the literature that present conditions for optimality of team strategies. 
Radner presents in [7] a sufficient condition that guarantees optimality: if the cost 
is a convex function of the decision variables and the expected cost is locally finite 
and stationary for a given team strategy, then this strategy is optimal. Stationarity 
is defined as a first-order property of the conditional expectation of the cost given 
the different information patterns. In the case of a convex cost function stationarity 
of a strategy implies that it is person-by-person optimal (pbpo). This means that the 
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expected cost cannot be improved by any player alone if the other team members keep 
using the same strategy. The importance of this result is twofold. First, it provides 
a way to verify the optimality of a strategy, and second, it suggests an algorithm to 
search for the optimal strategy. The local finiteness condition of Radner is relaxed 
by Krainak, Speyer, and Marcus [5] and replaced with a weaker condition. Both 
results, however, rely on the fact that the cost function is defined on a continuous 
space and that it is convex. The continuity makes it possible to compare the expected 
costs of any two team strategies by effectively constructing a randomization of the 
strategies. The expected cost of the randomized strategy is then a convex function of 
the randomization weight and the equivalence of local and global optimality for this 
one-dimensional convex function ensures the optimality of the stationary strategy. 

The primary motivation for our research comes from decentralized control in dis­
tributed computer systems. These systems consist of a large number of computers that 
are interconnected by a network, and they allow Hharing of resources and processors. 
Typically one computer is able to generate processes or tasks that can be performed 
on the computer itself, or they can be delegated to another processor. In the frame­
work of team theory each computer (or more accurately each process scheduler) is a 
team player that has to decide for each process that is generated locally where the 
task has to be performed, locally or on another processor. The action space for such 
a team problem is intrinsically discrete, and it also doel:l not allow a Htraightforward 
extension to a continuous action space. This property prohibits applying the results 
of [7] and [5]. 

The aim of this paper is to introduce a framework for team problems with a dis­
crete action space and to present preliminary results for the existence and uniqueness 
of optima. For the cost function we consider a discrete space analogy for convex­
ity, namely multimodularity. The specific results that were obtained for a class of 
two-person team problems are as follows: 

• we present a characterization of the set of pbpo Htrategies; 
• we give a procedure to check, for any pbpo strategy, in which direction to 

look for the optimal strategy. Not only does this provide us with an efficient 
search procedure, but it also enables us to check the optimality of a strategy. 

The outline of this paper is as follows. In section 2 we introduce the tearn problem. 
A special class of team problems is described in section 3 and we present the optimality 
conditions for this class. For these conditions we rely on some results on the minima 
of multimodular functions. These results are summarized in the appendix. 

2. Team problems. In this section we introduce our general formulation of the 
team decision problem. We restrict our attention to a nondynamical team problem. 

The following definition of a team problem is based on the definitions of Rad­
ner [7] and Krainak, Speyer, and Marcus [5]. We use an underlying probability space 
(n, :F, P), with n the space of elementary events, :Fa sigma field of subsets of n, and 
P a known probability measure on :F. We use the letter w to denote an event, but we 
do not really distinguish between events and states. In fact we also refer to n as the 
underlying, unobserved, state space, and we also call w the state when it represents 
an outcome. 

A team is a set of N decision makers or players. Each player i can choose a 
decision ai from a set Ai, the action set. In this paper we assume that the action 
sets are subsets of Z. Here Z indicates the set of integers, and N indicates the set of 
natural numbers, including 0. If the players choose the action vector a= (a 1 , .•. , aN) 
and the state is w, then a cost C( a, w) is incurred. C is a real-valued function that is 
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measurable with respect to the sigma field generated on the product space (zm x 0) by 
the Borel sets B(zm) of zm and by the a-algebra F. On discrete spaces the a-algebras 
are not necessary, but they are retained to simplify the notation and to emphasize 
the analogy with the case of continuous spaces. 

Contrary to a conventional optimal decision problem, we assume that each player 
has his own observation of the underlying event space. This is implemented as follows. 
We assume that for each player i there exists an observation space Yi, a given sigma 
field Yi of subsets of Y;, and a function h; : 0 ---+ Y; that is Yi-measurable. If the event 
w occurs, then player i will observe h;(w), and thus each function hi is a random 
variable on (0, F, P). We refer to Yi as the information subfield of player i, and 
we define Fh' = {hj 1 (A) I A E Yi} as the sigma field that is induced by h;. The 
decision that player i makes can depend only on its observation, and thus the set 
of admissible control laws Ui for player i is defined by the set of Z-valued functions 
that are Y;-measurable. We let U = U1 x · · · x UN denote the set of admissible team 
strategies. 

Note that under a strategy 1' the team action a is by definition a function of the 
state w, i.e., a= 1(h(w)) with h(w) = (h1(w), ... ,hN(w)). Under a strategy 'Y the 
expected cost of the 8trategy J(1) is now defined as 

(2.1) J(r) = E{C(r(h(w)),w)}, 

where E denotes the expectation with respect to P. 
DEFINITION 2 .1. A strategy 'Y* EU is optimal ·if 

(2.2) J(1*):::; J(r), 'YE U. 

The next definition is a variation on the concept of cw-optimality as was intro­
duced in Radner [7]. In that paper a strategy 'Y is called pbpo if J(1) cannot be 
improved by changing the 8trategy for one player alone. The idea that lies behind this 
definition is that under some extra conditions on the cost function C there exists only 
one pbpo strategy and this strategy is by the conditions on the cost function then also 
optimal. As an extra bonus the computation of a pbpo strategy is much easier than 
for the globally optimal strategy, since the optimization problem in a sense becomes 
separable. In our model with discrete action spaces we introduce the same concept 
of pbpo. This is done in a way that is different from [7] and [5], where stationarity 
is defined by means of the differential of a conditional expectation with respect to 
the individual decisions. An example of the use of pbpo strategies to determine an 
optimal solution for a detection problem can be found in [9]. 

DEFINITION 2.2. A team strategy'? EU is pbpo if J('l) < oo and for each player 

i, i = 1, ... , N, 

(2.3) (P - a.s.) 

for all team strategies "( E U with 

"/j = '?j for all j = 1, ... , N, with j #- i. 

A team strategy is called strictly pbpo if the :::; sign in (2.3) is replaced by a strict 

inequality ( <). 
Note that the inequality (2.3) is well defined, since both conditional expectations 

are random variables on the same probability space. In fact, this implies that the 
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FIG. 2 .1. An example of a continuous convex junction restricted to a discrete space. 

inequalities can be replaced by the usual stochastic order ( cf. Shaked and Shanthiku­
mar [8, pp. 3, 5]). 

If the formulation of the team problem is such that there exists a natural continu­
ation c of the cost function from zN x n to RN x n, and c is a convex, differentiable 
and locally finite function, then this continuous version of the problem has a unique 
optimal solution and this solution is also the only pbpo solution (see Radner [7]). 
There is no guarantee that restriction to a discrete action space leads to an optimal 
solution that is in the "neighborhood" of the continuous solution. By neighborhood 
we mean that the discrete solution is close to the continuous solution, in the usual 
metric of RN. Consider for example the cost function 

(2.4) C(a1, a2, w) = (a1 + 0.5 - v'3a2) 2 + 2( v'3(a1 + 0.5) + a2)2 

for a team problem with only one possible outcome w, i.e., a deterministic team 
or an ordinary minimization problem. From the picture of the contour lines a..s in 
Figure 2.1, we can see that the continuous minimum is in (a1 , a2 ) = (-0.5, 0), while 
the two integer valued minima are in (a1, a2) = (-1, 1) and (0, -1). This example 
can be modified, however, such that the "discrete" solution is arbitrarily far from the 
"continuous" solution. Note also that the discrete nature of the problem in this case 
allows two solutions. 

In many problems the continuation of C to RN may not be as straightforward as 
in the example. If that is the case, then we might try to construct one. This is where 
the idea of multimodularity comes in, and it is shown in detail in Hajek [2]. Hajek 
constructs atoms that span the space RN. Each atom contains exactly m + 1 extreme 
points, and these points lie in zN. The continuation c of c is piecewise affine on 
all the atoms. If the function C is multimodular on zN, then the continuation of the 
function is convex in RN. Unfortunately this continuation is not differentiable, so the 
results of Radner [7] and Krainak, Speyer, and Marcus [5] cannot be applied here (see 
also the example in [7, p. 802]). For a justification of the use of multimodular cost 
functions see the remarks in [2, p. 546] and Bartroli and Stidham [1]. The discussion 
of multimodularity and its relation to convexity is presented in the appendix. 

3. Solution of a class of team problems. In this section we investigate a 
special class of team problems. It is intended as an example for team problems with 
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discrete action spaces. It will also serve to indicate the possibilities of using multi­
modularity properties in solving this kind of team problem. We shall discuss various 
properties of optimal and cw-optimal strategies. These properties can be used in a 
procedure to search for the optimal team strategy. 

We first need to introduce multimodular functions. For this we consider functions 
defined on zm. We define the vectors Vo' V1' ... 'Vm in zm as 

Vo ( -1, 0, ... , 0), 
V1 (1, -1, 0, ... , 0), 
v2 = (o,1,-1,0, ... ,o), 

Vm-1 (0, ... ,1,-1), 
Vm ( 0, ... , 0, 1) , 

and we let V = { v0 , v1 , ... , vm}. Note that any subset of m vectors of Vis a basis for 
zm' and furthermore we remark that 

(3.1) Vo+ V1 + ... + Vm = (0, ... '0). 

DEFINITION 3.1. A function f on zm form ?'. 2 is said to be multimodular if 
for all z E zm, 

(3.2) 

for any Vi, Vj E V and v., =f. Vj. 

For a function f on zni, n E { 1, ... , m} and z E zm, we denote the first-order 
n-difference of f at z as 

(3.3) 6.nf(z) := f(z +en) - f(z), 

where en denotes the nth unit vector. 
DEFINITION 3. 2. Let f be a real-valued function defined on zm. A point z E zm 

is called minimal for f if f(z) ::; f(y) for ally E zm, y =f. z, and it is called 
coordinatewise minimal (cw-minimal) if f ( z) ::; f ( z + ,\e;) for any i E { 1, ... , m} 
and any ,\ E Z, ,\ =f. 0. We define a point z E zm to be strictly minimal or strictly 
cw-minimal if these inequalities are replaced by strict inequalities. 

With these definitions we can now introduce the class of team problems that we 
want to describe. We consider a problem with two players. The underlying event space 
n has three elements, numbered as n = {1, 2, 3}, and each element occurs with the 
same probability. We assume that :Fis the sigma algebra generated by { { 1}, { 2}, { 3}}. 
The action sets for both players arc z. 

We assume that the two players have distinctly different information patterns. 
Player 1 cannot distinguish between events 1 and 2, so :Fh 1 = u( { {l, 2}, {3}} ), while 
player 2 cannot distinguish between events 2 and 3, so Fh2 = u( { {1}, {2, 3}} ). 

For the cost structure we assume the following. 
ASSUMPTION 3.3. For each possible o·utcome w, the cost function C('u1 , u2, w) is 

rrmltimodular as a function of the decision variables ( UJ, U2) E Z2 . 

In this section we shall discuss the properties of pbpo strategies. For this we shall 
make use of the classification of cw-minimal points of multimodular functions on Z2 . 

The following lemma is a direct consequence of the results of Appendix A, but we 
specifically state it here for easy reference. 
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LEMMA 3.4. If g : Z2 --> R is a multimodular function and y = (y1, y2) and 
z = ( z1, z2 ) are two distinct strictly cw-minimal points of g, where z1 2 Y1, then there 
is some B > 0 such that 

1. (z1,z2)=(y1+B,y2-B),· 
2. for all b, 0 < b < B, (y1 + b, Y2 - b) is also cw-minimal; 
3. if g(z) > g(y), then the minimum of g cannot be in the set {(y1 +b, Y2 -b)jb;::: 

B}; 
4. if bothy and z, for some B 2 0, are minimal for g, then (Y1 + b, Y2 - b) is 

minimal for all 0 :$ b :$ B; 
5. if both g(y1 + l,y1 -1) 2 g(y1,Y2) and g(y1 - l,y1 + 1) 2 g(y1,Y2), then 

(y1, y2 ) is minimal; if the inequalities are strict, then the minimum is also 
unique. 

Proof. See Appendix A, Lemma A.10. D 
Note that (strict) multimodularity of a function does not guarantee that the 

minimum is unique. It can take the form of a line segment {(y1 +z, Y2-z) I 0:::; z :$ B} 
for some (y1,y2 ) E Z2 and B :::= 0. There can be only one such segment, however. 

We now introduce the notation for a team decision strategy. We already saw 
in section 2 that the observations of the players can be modelled by functions that 
are defined on the event space. The observations of player 1 are given by a function 
hl : n __. {1, 3} of the state, where 

(3.4) h ( ) = { 1 if w = 1, 2, 
1 w 3 if w = 3. 

Similarly, we represent the information pattern of player 2 by a function h2 , which is 
defined as 

(3.5) { 1 if w = 1, 
h2(w)= 3 ifw=2,3. 

With this definition we can now represent a team decision function as 'Y = 
(lin,')'13,"(21,')'23) E Z4, where /'ij represent the action that"( prescribes when player 
i gets observation j. Finally, we can now write the expected cost J('Y) as a function 
of the team decision rule 'Y as 

1 1 1 
(3.6) J('Yu, /'13, 12i, /'23) = 3C(r11, 121, 1) + 3C(r11, /23, 2) + 3C(/13, /23, 3). 

In principle, this makes finding the optimal strategy an optimization problem on Z4 . 

The properties that 'Y has to satisfy for optimality and cw-optimality are summa­
rized in the following lemma. 

LEMMA 3.5. A team decision strategy 'Y* = ( 111 *,"(13*,121 •, "(23 •) is minimal if 

(3.7) (/11 •, /13 *, /21 •, /23 *) = arg min J ('Yu, "!13, 121, "/23), 
b11 >l'l3 ,)'21 ,)'23 )EZ4 

or, in other words, if"(* is a minimum for J. A strategy 'Y = ('Yu, ;:y13 , ')i21 , ;:y23 ) is 
strictly pbpo if J is strictly cw-minimal in 'Y, or 

(3.8) J('Y11,'Y13,;:y21,'Y23) < J(u11,'?13,'Y21.'b) for all uu E Z,u11 =I= 'Yu, 

(3.9) J('Y11,'Y13,;:y21,'Y23) < J('Y11,U13,;:y21,'Y23) for all U13 E Z,u13 =I= '?13, 

(3.10) J('Y11,'Y13,'Y21.'Y23) < J('Y11,'?13,u21,'?23) for all u21 E Z,u21 =I= '?21, 

(3.11) J('Y11,'?13,')i21,'?23) < J('?11,'Y13,;:y21,U23) for all u23 E Z,u23 =I= '?23· 
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Proof. The first statement is immediate from the definition of optimality. 
The second statement follows from the fact that, by definition, a team strategy 
1 = (111 , 1 13 , 1 21 , 1 2:J is strictly pbpo if it satisfies the following set of equations: 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

C(1u 1121, 1) + C(111, 12:31 2) < C(/'111121, 1) + C(/11, 123, 2), 

C(113· 12:3, 3) < C(/131123, 3), 

0(111,121, 1) < C(1u,/2111), 

0(1111 1231 2) + C(1'131123, 3) < C(l'u 1 /23, 2) + C(")'13 , 'Y23, 3) 

for all ')'11,')'13,/21,')'23 E Z. For instance, inequality (3.12) is immediate from the 
definition of pbpo and the fact that Fh 1 = o-( { {l, 2}, {3}} ). Since C(;;y13 , )723 , 3) is 
independent of )711 l (3.12) thus implies that J("\711 l113 , )721 l 'Yd < J('Yn, 1 13, ::Y21 l ::Y23) 
for all 111 E Z. In a similar way, one can prove the cw-minimality of J for the other 
components of ::y. D 

In the remainder of this section we shall exploit the special nature of multimodular 
functions to derive properties of optima and cw-optima. We show how one can search 
for other (coordinatewise) minima starting from a cw-minimum. The main result is 
as follows. 

THEOREM 3.6. If a= (a11,a131tx21,lY23) and (3 = (f311,f313,f321,f323) are both 
strictly pbpo strategies, then they have to satisfy either M (3T s; M aT or M (3T 2 M aT 
for 

(3.16) M= ( ~ -1 
-1 

1 
0 

-1 
-1 

1 
1 
0 

-1 

The vector inequality :::; is to be interpr·eted cornponentwise, i. e., z s; y if and only if 
Z·i :::; Yi for all i. 

Proof. For any strategy z = (z11 ,z13 ,z21 ,z23 ), the expected cost J(z) for this 
strategy is 

• rnultimodular in (z111 z2i) if (z13 , z23) is fixed, 
• multimodular in (z11 ,z23) if (z13,Z21) is fixed, 
• multimodular in (z13 ,z21) if (z11,z23) is fixed, 
• multimodular in (z13,z23) if (z11,z21) is fixed. 

Now assume that a is strictly pbpo. This implies that ~11J(a) > 0. Using the fact that 
J is multimodular in (z11 , z2i) for (z131 Z23) fixed, we get that ~11J(all +rn, z13, a21 -
m,a23 ) > 0 for all rn 2 0 and all z13 E Z. Note that ~11J(z) is independent of Z13. 
Next use the multimodularity of Jin (zn, z23) for (z13,z2i) fixed to get ~11J(a11 + 
rn +n, z13 , a 21 - rn, a 23 - n) > 0 for all m, n 2:: 0 and all z13 . Finally, use the fact that 
for any multimodular function f defined on Z2 , ~;f (x) s; ~;f (x + ej) for x E Z2 and 
i, j = 1, 2, to prove that ~11 J(z) > 0 for all z in 

9u+ := { (a11 + m + n + ·i, z13, a21 - m + j, a23 - n + k) I i,j, k, rn, n 2:: 0, Z13 E Z}. 

Specifically, this means that the points in the interior of 9u+ cannot be pbpo. With 
the interior of 911+ we mean the points z with z11 + z21 + z23 > an + n21 + a23. 
Analogously, we can exploit the fact that ~11J(au - l,a13,a21,a23) < 0 to show 
that ~ 11 J(z) < 0 for z in 

Q11 _ :={(au -1-rn-n-i, z13 ,a21 +m-j, a23 +n-k) I i,j, k,m, n 2:: 0, z13 E Z}. 
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In the same manner, we also find that the fact that a is strictly pbpo implies 
b.13J(z) > 0 for all z in 

913+ := {(z11 ,o:13 +rn+n+i,0:21 -m+j,o:23-n+k) I i,j,k,m,n-2: O,z13 E Z}, 

and D. 13 J(z) < 0 for z in 

913_ := {(z11 ,ctB-1-m-n-i,o:21 +rn-j,0:23 +n-k) I i,j,k,m,n -2: O,zu E Z}. 

For the decisions of player 2, we get, in a similar manner, D.21J(z) > 0 for z in 

9 21+ := {(ct11 -m+j,a13 -n+k,0:21 +rn+n+i,zz3,) I i,j,k,m,n-2: O,z23 E Z}, 

and D.2 1J(z) < 0 for all z in 

921 _ :={(au +m-j, o:13 +n-k, a21 -1-m-n-i, Z23,) I i,j, k, m, n 2: 0, z2:3 E Z}, 

and finally D.23J(z) > 0 for z in 

923+ :={(au - m + j, a13 - n + k, z21, a23 + m + n + i,) I i,j, k, m, n 2: 0, z21 E Z}, 

9 23 _ := {(a11 +m-j,et13+n-k,z21,et23-l-m-n-i,) I i,j,k,m,n 2: O,z21 E Z}. 

Observe that, by the same reasoning as for 911+, there cannot be other pbpo strategies 
in the interior of any of the 9's. 

Now assume that f3 is also pbpo and /311 > n 11 . Since /3 cannot lie in 911+, this 
implies that 

( 3.17) 

This proves the second inequality of Mf3T :::; MaT. Since /]11 > cx 11 , it also implies 
that /321 + /323 ::S: a21 + O:z3. This in itself implies that at least one of the inequalities 
f321 ::S: a21 and /32:1 ::S: a23 hold. We shall prove that, in fact, both inequalities hold. 
Assume that /321 > a21. Since /3 is pbpo, it cannot lie in the interior of 921,.., and 
thus /311 + /313 + /321 < 0:11 + a13 + a21· Because of the assumptions on /311 and 
,821, we conclude that /313 < a 13 . Now /3 is also outside the interior of 913_, so 
/313+/321 +/323 2: a13+0:21 +0:23. This contradicts /313 < a13 and /321 +/323:::; 0:21 +a23. 
We can thus conclude that both /321 ::S: 0:21 and /323 ::S: o:23 . 

Since ,821 ::S: a21 and /3 is outside of the interior of 9 21 _, this implies 

(3.18) 

and this proves the fourth component of the matrix inequality. Analogously to the 
reasoning above, we conclude from this that /313 2: a 13 . This, together with the fact 
that /3 is outside of the interior of 913+, implies 

(3.19) 

the first inequality, and finally /323 :::; a 23 leads us to 

(3.20) 
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the third inequality. 
If we start with /311 < a11, then this sarne reasoning gives us M (3T ::'.'.: Mo?. The 

case where f311 = a:11 is treated in the following lemma. D 
Note that the proof of Theorem 3.6 does not depend on the particular information 

patterns of this problem. It is based solely on the additive structure of the expected 
cost and on the multimodularity of the cost function. 

Theorem 3.6 provides us with a characterization of the areas around a known 
pbpo strategy, where we might find other pbpo strategies. If we want to design a 
search procedure, then we rnay want to know in which direction we have to search in 
the immediate neighborhood of a:. By immediate neighborhood of a: we refer to those 
strategies {3, with l/3ii - aiil ~ 1 for all coefficients f3ij· The following lemmas provide 
us with the necessary results. 

LEMMA 3.7. If a = (a:n,a13,a21,a23) and (3 = (f3n,f313,f321,f323) are both 
strictly pbpo strategies and a =f (3, then 

• if au = !311, then a21 = /321, 
• if 0:23 = f323, then a13 = {313. 

Proof Assume that an = f3n. Define g(z13, z21, z23) := J(au, z13, z21, z23); then 

g(z13,z21,z23) = Hc(an,z21,1)] + Hc(a:n,z23,2) + C(z13,z23,3)J. 

It is clear that g is a convex function of z21 on Z, and that a:21 = 
arg minz2 iEZ 9(z13, z21, z23) is independent of z13 and z23. Since both a: and (3 are 
pbpo, they are cw-minimal for 9 and thus a21 = /321- The proof for a23 = f323 pro-
ceeds analogously. D 

Lemma 3.7 does not tell us what happens if 0:13 = {313 or a21 = f321. It appears 
that we can construct two strictly pbpo strategies a and /3 that have some components 
in common. All these possibilities are summarized in the next lemma. 

LEMMA 3.8. If a:= (an,0:13,a21,a23) and /3 = (f311JJ13,f321,/323) are two dis-
tinct strictly pbpo strategies, then one of the following possibilities holds: 

1. a and /3 differ in at least two components, 
2. (an, a13) =f ({311, [313), 
3. (a21, 0:23) =f (/321, /323), 
4. (a11, a23) =f (f3n, /323). 

Proof. Part 1. Assume that the statement is false and that, for instance, an 
and (311 are the only two coefficients that are different. This implies C(a11, a21, 1) + 
C( au, 0:23, 2) < C(f3n, a21, 1) + C(f3n, a231 2) = C(f3n, !321, 1) + C(f3n, f323, 2) < 
C(a11 ,(321 , 1) + C(a11 ,f323,2). This gives a contradiction, since a21 = /321 and a23 = 
f323. 

Parts 2 and 3. Assume (o:n,a:13) = (/311,(313). Consider the function g(z21,z23) 
defined as J(an,a13,z21,Z23), so 

g(z21, z23) = ~ [ C(a:n, z21, 1) + C(an, z23, 2) + C(o:13, z23, 3) J =: 91 (z21) + 92(z23). 

Since a is a strictly pbpo strategy, (a21, 0:23) rnust be cw-minimal for g. The function 
g is multimodular in (z21 , z23 ), and thus g1 and 92 are convex functions of z21 and 
z23 , respectively. This implies that g has a unique minimum, so a= (3. 

Part 4. From Lemma 3.7, we see that an = /3n implies a21 = /321 and a23 = /323 
implies 0:13 = f313. D 

Now assume that we have found a pbpo strategy a, and we want to check the 
strategies in the neighborhood of a: to see whether they are pbpo. Among the pbpo 
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strategies we can then check the value of the expected cost J for optimality. The 
neighborhood of a strategy o: is the set 

{(f3n,P13,,821,,823) 11,Bij-O'.ijl :S 1, i = 1,2, J = 1,3}. 

Note that there are 80 strategies (excluding a) in this set. If we combine the results of 
Theorem 3.6 and Lemmas 3.7 and 3.8, the following corollary shows how 68 of these 
strategies can be eliminated. 

COROLLARY 3. 9. If a = ( a 11 , a 13, a 21 , a 23) is a strictly pbpo strategy, then the set 
of possible pbpo strategies in the neighborhood of a are the strategies of the form /3 = 
a±c with EE {(1,0,-l,0),(0,1,0,-1),(1,0,0,-l),(1,0,-1,-l),(1,l,0,-1),(1,l, 
-1, -1)}. Outside of this set there cannot be pbpo strategies in the neighborhood of 
O'.. 

Proof. We sketch the proof in three steps. 
1. Assume that a pbpo strategy /3 = o: +Eis of the form E = (1, -1, E21, E23) for 

any c21 , c23 E { -1, 0, 1}. We show that ,8 cannot satisfy M /]T s; M aT, since then the 
third and fourth matrix inequalities imply that a21 :S /321 and 0:23 :S /323. These again 
imply via the first and last inequalities that 0:11 2: /311 and o:13 2: f313, and this gives 
a contradiction with the assumption on the signs of the first two coefficients of c. The 
inequality M f3T 2: M aT gives a similar contradiction. Analogously, we can show that 
E cannot be of the form E = (-1, 1, E21, E23) or ±(E11, E13, 1, -1). 

2. Assume that a pbpo strategy p =a+ Eis of the form E = (1, E13, E21, 1) for 
any c13 , c21 E {-1,0, -1}. If /3 were to satisfy M/3T :S MaT, then this would imply 
c21 :S 2, while M /3T 2: M o:T would imply t:21 2: 2. Both contradictions show that 
the c cannot be of the proposed form. Similarly, we can show that E cannot be of the 
forms ±(1, t:13, 1, <.23), ±(en, 1, 1, t:23), or ±(Eu, 1, E21, 2). 

3. Combine 1 and 2 to get the possible candidates of E. 0 
Note that within this set there are pairs of strategies that differ in exactly one 

coefficient, and thus of these pairs only one can be strictly pbpo. Furthermore, for 
any E in the set of Corollary 3.9, both a+ E and a - E can be pbpo, but at mm>t one of 
these two strategies can have an expected cost smaller than J(o:) (see Lemma A.6). 
Finally, if it turns out that J(a + c) 2: J(a) for some<., then the same lemma ensure8 
that J(o: +kc) 2: J(a) for all k E N, and thus these points cannot be minimal. In 
immediate consequence of this is the following, which can be proven analogously to 
part 5 of Lemma 3.4. 

COROLLARY 3.10. If a is a strictly pbpo strategy and for all E as in Corollary 3.9 
we have J(o:+E) 2: J(a) and J(a-E) 2: J(a), then o: is minimal. If all the inequalities 
are strict, then o: is the unique optimal strategy. 

This concludes our exploration of this class of team problems. We have developed 
a check for the optimality of a team strategy, and we have given the description of a 
procedure to search for the optimal strategy. 

4. Conclusions. In this paper we have discussed team problems with discrete 
action spaces. Inspired by known results for problems on continuous spaces with con­
vex cost functions, we have introduced multimodularity as a natural abstraction of 
convexity onto discrete spaces. 

In the class of team problems of section 3, we have seen that multimodularity 
of the cost function translates to properties for the expected cost as a function of 
the strategy. These properties allow us to check for optimality of a strategy, and they 
indicate how the complexity of a search for the optimum can be reduced. The example, 
however, indicates that the complexity is still rather high, and we feel that it must be 
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possible to reduce it even more by exploiting the multimodularity even further. This 
is a topic for future research. 

If we extend the results of section 3 to a model with a larger observation space 
for both players, then most of the results of the section remain valid. The proof of 
Theorem 3.6 relies only on the multimodularity of the cost function and not on the 
structure of the information patterns. This means that it is a straightforward exercise 
to extend the results of Theorem 3.6 to a larger observation space. In Lemmas 3. 7 and 
3.8, the particular structure of the information patterns is used, and any extension in 
this direction has to be done on an ad hoe basis. 

Extending the team problem to more than two players is not a trivial task. If 
we try to mimic the proof of Theorem 3.6 for an example with three players, then 
even for small observation spaces it is not clear if a matrix inequality of the form 
M rxT ~ M (P' will hold and what the form of M will be. 

Appendix A. Multimodular functions and optimality. 
In this appendix, we introduce the concept of multimodular functions. Further­

more, we define cw-optimality for this class of functions, and we show its relation to 
ordinary optimality. We present a classification of cw-optimal points, and we specify 
a procedure to search for the optimum. For a more elaborate introduction to multi­
modular functions, we refer to Hajek [2]. 

We consider functions defined on zm. We define the vectors Vo, V1' ... ' Vm in zm 
as 

Vo (-1,0, ... ,0), 
V1 (1,-l,O, ... ,O), 
V2 (0, 1, -1, 0, ... , 0), 

Vm-1 (0, ... ,1,-1), 
Vm (0, ... ,0,1), 

and we let V = { v0 , v1 , ... , vm}· Note that any subset of m vectors of Vis a basis for 
zm' and furthermore we remark that 

(A.1) Vo + V1 + ... + Vm = ( 0' ... ' 0). 

DEFINITION A .1. A function f on zm for rn ;:::: 2 is said to be multimodular if 
for all z E zm, 

(A.2) 

for any Vi,Vj E V, and v; =f. Vj· 

For a function f on zm, n E { 1, ... , m}, and z E zm we denote the first-order 
n-diff erence of f at z as 

(A.3) Linf(z) := f(z +en) - f(z), 

where en denotes the nth unit vector. 
DEFINITION A.2. Let f be a real-valued function defined on zm. A point z E zm 

is called minimal for f if f ( z) ~ f (y) for all y E zm, y =f. z, and it is called coordi­
natewise minimal (cw-minimal) if f(z) ~ f(z + ..\e;) for any i E {l, ... ,m} and any 
.A E Z, ..\=f. 0. We define a point z E zm to be strictly minimal or strictly cw-minimal 
if these inequalities are replaced by strict inequalities. 
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Note that of course a minimal point is also cw-minimal. The following lemma 
gives an indication of the properties of cw-optimal points of a multimodular function. 

LEMMA A.3. Let z* be a strictly cw-minimal point of a multimodular function f, 
let z be any point in zm, and let the coordinates of z - z* with respect to the bases 

{ V1, ...• Vm} and {Vo, ... , Vm-d be 

(A.4) 

and 

(A.5) 

respectively. 
A. If ki > 0 for all i = 1, ... , m, then 0 < 6.if(z - e1), and thus z is not 

cw-minimal. 
B. If k; < 0 for all i = 1, ... , m, then !:.1 f(z) < 0, and z is not cw-minimal. 

C. If li > 0 for all 'i = 0, ... , m - 1, then 6.mf (z) < 0, and z is not cw-minimal. 

D. If li < 0 for all i = O, ... ,m - 1, then 0 < 6.mf(z - e1 ), and z is not 

cw-minimal. 
Proof. For statement A we assume, without loss of generality, that z* = 0, and 

let z E zm be z = k1 V1 + ... + kmVm. From the definition of multimodularity, we get, 
by taking v; = vo = (-1, 0, ... , 0): 

J(u - e1) - f(u) ~ J(u - e1 + vj) - f(u + Vj) 

for all u E zm and all Vj E V, VJ f. v 0 . Since u is arbitrary, we can rewrite this as 

(A.6) 

Note that -e1 =Vo = -v1 - v2 - · · · - Vm, so 

where, by assumption, k; - 1 ~ 0 for all i. By repeated application of (A.6), we thus 
get 

!:.if(z - ei) ~ 6.if(O) > 0. 

From !:.if(z - e1) > 0 follows that z cannot be a cw-minimal point, and this proves 
A. 

For statement B we note that if z* = 0 is a strictly cw-minimal point, then 
!:iif (-ei) < 0, and 

6.if(z) f:.1f(k1v1 + · · · + kmvm) 

so z is not cw-minimal. 

= f:.1f(-e1 + (k1 + l)v1 +···+(km+ l)vm) 
< !:lif (-e1) 
< 0, 

For statements C and D, note that Vm = em, so the proof is analogous to cases 
A and B by showing that (A.6) now becomes 

6.mf(1t) ~ 6.mf(u + Vj), 'U E zm, Vj E V, Vj-=/= Vm. 
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This concludes the proof. D 
To continue with a classification of cw-optimal points, we introduce the following 

definition of cones and atoms. 
DEFINITION A.4. For z E zm' define the following polyhedral cones: 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

Co+(z) = {u E Z I 'u = z + k1v1 + · · · + kmvm, ki E Z, k; > O}, 

Co-(z) = {n E Z I u = z+k1v1 + ··· + kmvm, k; E Z, k:i < O}, 

Cm+(z) = {u E Z I u = z + kovo + · · · + km-1Vm-1, k; E Z, ki > O}, 

Cm_(z) = {n E Z I 'u = z + kovo + · · · + km-1Vm-1, k; E Z, k; < 0}. 

We let C(z) denote the union 

(A.11) C(z) = Co+(z) U Co-(z) U Cm+(z) U Cm_(z). 

From Lemma A.3 we know that if z is a strictly cw-minimal point, then there 
are no other cw-minimal points in C(z). This means that if we start from a known 
cw-minimal point z, then we have to search only the complement of C(z) for other 
possible cw-minimal points. This complement can be characterized by means of a 
simplicial decomposition of Rm. We now continue with a brief introduction to this 
decomposition. For a detailed discussion, we refer to Hajek [2]. 

DEFINITION A.5. We let I; denote the set of permutations of {O, ... , m}. Let 

a EL; and z E zm. The set {uo, ... , Um} of extreme points of the atom S(z,a) is 
defined as follows: 

Uo Z, 

U1 'Uo + VD"(l), 

u2 u1+v0"(2), 

hence uo = Um+ v<J"(O). The atom S(z, a) C Rm 'is thus the set of convc:x: combinations 

of{uo,. .. ,um}: S(z,a) = n::::oaiUi E zm I a; E R+,I:::o(L; = l}. We denote 
S(z, a) = (uo, ... , Um). 

Each atom is in fact a simplex, since it contains exactly rn + 1 extreme points in 
zm. Examples of atoms in two and three dimensions are depicted in Figure A.l. In 
R 2 the atoms are triangles. In R:i each atom is bounded by four triangles, and each 
of the triangles that belong to the same atom share exactly one side. 

The atoms allow the following alternative characterization of multimodularity. 
Every atom S contains exactly rn + 1 points { n0 , ... , um}, so for any function f 
defined on zm, there is a unique affine function Ls(z) that agrees with f on the 
m + 1 extreme points. If f is multimodular, then Ls(z) :::; f(z) for z E zm (see 
Hajek [2, Lemma 4.2]). The entire Rm can be decomposed uniquely into atoms of the 
form S(z, a), and for a function f defined on zm we can thus uniquely construct a 
continuous function f on Rm that is piecewise affine on all the atoms S(z, a), z E zm. 
If f is a multimodular on zm, then this j_ is a convex function on R rn. 

The next property of multimodular functions will be used a couple of times in 
this paper, so for this reason we state it here explicitly. 

LEMMA A.6. If f is a multimod,ular function, then f(z+kei) is a convex function 

of k: E Z for any z E Z and unit vector e;, i = 1, ... , rn. 
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FIG. A.l. Atoms in two and three dimensions. 

FIG. A.2. Example of a multimodular function in Z 2 . 

Proof. Let z E zm and ei be some unit vector. Let S be an atom that contains 
both z and z + ei. Such an atom exists, since ei =Vi+···+ Vm· Using Ls(z) ::; f(z) 
for this atom, we get 

6.;f(z) = f(z + e;) - f(z) = Ls(z + ei) - Ls(z) = Ls(z + 2ei) - Ls(z + e;) 

::; f (z + 2e;) - f(z + e;) = 6.;f (z + ei)· 

The third equality is due to the fact that Ls is affine. D 
In a similar manner, we may conclude that in fact for any vector v E V and for 

any z E Z, the function f(z + kv) is convex ink E Z. 
For an example of a multimodular function on Z2 , see Figure A.2. The atoms 

that decompose R 2 were depicted in Figure A.l. 
DEFINITION A.7. For an atom S(z, a), z E zm, a E E, we define Ca(z) as the 

polyhedral cone in zm : 
Ca(z) 

= { u E zm I u = z + k1(u1 - uo) + ... + km(Um - uo), k; EN, S(z, a)= (uo, ... 'Um)}· 
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Define L:* to be the following subset of permutations: 

I:*= {a EI: I a(O) =/= 0, a(O) =/= m, u(l) =/= 0, u(l) =/= m}, 

and 

CE· (z) := U Ca-(z), 
o-EE* 

CE,(z) := {u E CE·(z) I u =/= z+ ke; for allk E Z,i = 1, ... ,m}. 

Finally, we define P( z) as the plane through z that has normal vector ( 1, ... , 1), i. e., 

P(z) := {u E zm1u1 + U2 +···+Um= Z1 + Zz + · · · + Zm}· 

Note in this definition that for the case of m = 2, the set I:* is empty, and thus 
CE· (z) and CE. (z) are also empty. 

In the remainder of this section, we shall use these definitions to build a charac­
terization of the set of cw-minimal points. The following lemma gives us the necessary 
preliminary results. 

LEMMA A.8. For any z E Z, 

(A.12) 

(A.13) zm = C(z) u CE· (z) u P(z). 

Proof. First consider (A.12). If m = 2, then CE· (z) = 0 and the result is imme­
diate. Form> 2, assume that we have z E zm and y E Ccr(z) for some u EI:*. This 
means that we can write y - z as 

y - z = k1(tl1 - uo) +···+km( um - 'Uo) 

or 

(A.14) y - Z = k1Vo-(l) + k2(vo-(l) + 110-(2)) + · · · + km(Vcr(l) + Vcr(2) + · · · + Vcr(m)), 

and thus 

Y - Z (k1 + k2 + · · · + km)Va(l) 

(A.15) 
+ (k2 + k3 + · · · + km)Va(2) 

Note that all k; ~ 0. Since u E I;*, we know that a(j) = 0 for some j =/= 0, 1. Using 
(A.l) and subtracting (kj + kJ+ 1 + · · · + km)(vo + · · · + Vm) from (A.15), we get 

y - z (k1 + · · · + kj_i)va(l) 

+ (k2 + ... + kj-1)11,,.(2) 

+ kj-lVcr(j-1) 

kjVo-(J+l) 

(kj + kj+1)Vo-(J+2) 
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Recall that { Va(l), ... 'Va(j-1), Va(j+l)' ... 'Va(m)} is a basis for zm, so this represen­
tation is unique. Since ki ::::: 0, we see that y is neither in Co+(z) nor in Co-(z). 
Analogously, one can prove that z ~ Cm+ ( z) and z ~ Cm- ( z), and thus z ~ C ( z). 
This proves that C(z) and C:E· (z) are disjoint. 

To prove (A.13), assume that y E zm and y ~ C:i:;· (z). We have to prove that y is 
in C(z) or P(z). The set {S(z, O") I z E zm, (}EI:} forms a partition of zm, so there 
must be a permutation O" of {O, ... , m}, such that y E Ca(z). Since y fj. CL;• (z), a is 
not in I:*, and we must have O"(O) = 0 or m, or O"(l) = 0 or m. We shall deal with the 
case of a(l) = 0 first. According to the definition of Ca(z), we can write y - z as 

(A.16) Y - z = (k1 + kz + · · · + km)vo + (k2 + · · · + km)V"(2) + · · · + kmVa(m) 

for some ki ::::: 0. We now have to distinguish between the three following cases. 
1: ki > 0. Use (A.1) to show that 

y-z -k1Vrl(2) 
(k1 + k2)Va(3) 

(k1 + · · · + km-1)v"(m) 
(k1 + · · · + km)Va(O) · 

Since k1 is strictly positive, this means that y E C0_ ( z). 
2: ki = 0, a(O) = m. We first show that km > 0. Assume that km = 0. Construct 

a permutation T as follows: T(l) = a(2), T(2) = a(l) = 0, T(m) = a(O) = m, 
T(O) = O"(rn), and T(i) = a('i) for i = 3, ... , m - l. This makes TE I:*. From (A.16), 
using k1 = km = 0, we get 

y - Z (k2 + · · · + km)V-r(l) 

+ (k2 + · · · + km)V7 (2) 

which implies that y E C:i:;·(z), and this contradicts y ~ Ci:;.(z). We may conclude 
that the assumption km = 0 is incorrect, and then it is immediate from (A.16) that 
y E Cm+(z). 

3: ki = 0 and O"(O) -:f. m. Define the permutation T by T(l) = a(2), T(2) = a(l) 
and T(i) = O"(i), i = 3, ... , m. From (A.16), we have 

Y - Z (k2 + ... + km)VT(l) 

(A.17) 
+ (k2 + · · · + km)V7 (2) 

+ kmV-r(m)1 

and thus y E C7 (z). Now assume that T(l) # m, then TE I:*, and thus y E C:E·(z), 
which contradicts the assumption that y ~ C:i:;. (z). We conclude that T(l) = m. Since 
vT(l) = Vm and V-r(2) =Vo, we may conclude from (A.17) that the coefficients of y - z 
sum up to zero, and thus y E P(z). 

The case where cr(l) = m is proven analogously, with the roles of v0 and vm 
interchanged. The case where a(O) = 0 (or a(O) = m) proceeds as follows. Again, use 
(A.l) by substituting 

(A.18) Va(l) + Va(2) + ... + Va(j) = -Vrl(j+l) - . ·' - V"(m) - V"(O) 
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into each line of (A.14) to get 

(A.19) 

Y - Z = -(k1 + · · · + km)'Ua(O) 

-(k1 + · · · + km-ilVu(m) 

-(k1 + · · · + km-2)Va(m-l) 

This brings y - z in a form similar to (A.15), with the exception that now all the 
coefficients of the vis become negative. The proof concludes analogously to the case 
where cr(l) = 0. D 

Note that the three sets C(z), Cl::* (z), and P(z) are not mutually disjoint. C(z) 
and P(z) are disjoint, but Cl::* (z) and P(z) have a nonempty intersection. The im­
mediate consequence of Lemma A.8 is summarized in the following theorem, which is 
the main result of this section. 

THEOREM A.9. If z E zm is a strictly cw-minimal point of a multimodular func­
tion f, then there can be other cw-minimal points only in Ql::* (z) or in the plane 
P(z). 

Proof It is immediate from Lemma A.8 that the only other cw-minimal points 
must lie in Cl::* (z) or in P(z). Actually, we do not need to include the entire set Cl::· (z) 
as a possibility for other coordinatewise minima. It may contain an axis of the form 
{ z + kei I k E Z} for some unit vector ei, i = 1, ... , m. Since z is strictly cw-minimal 
and f is convex along this axis (see Lemma A.6), it is immediately obvious that there 
cannot be other coordinatewise minima on this axis. D 

Theorem A.9 not only gives a characterization of the set of cw-minimal points, 
but it also enables us to search for the minimum in an efficient manner. In the two­
dimensional case, for instance, the theorem means that if z E Z2 is strictly cw­
rninimal, then the possible other coordinatewise minima must lie on the line { (z1 + 
k, z2 - k) I k E Z}. For an indication of the implications of Theorem A.9, take a look 
at Figure A.3. We assume that 0 (the center of the cube) is strictly cw-minimal. The 
points indicated with a bold filled circle are the points on the unit cube that are in 
both Cl::* (0) and in P(O). The bold open circles are the points of Ql::. (0) that are not 
in P(O). The bold open diamonds are the points P(O) that are not in Cl::* (0). 

We conclude this appendix with the proof of Lemma 3.4. It summarizes the results 
of Theorem A.9 for multirnodular functions defined on Z2 . 

LEMMA A.10. If g: Z2 -->Risa multimodular function and y = (y1, Y2) and 
z = ( z 1, z2) are two distinct strictly cw-minimal points of g where z1 ?:: Y1, then 

1. (z1,z2) = (Y1 +B,y2 -B) for some B > O; 
2. for all b, 0 < b < B, (y1 + b, Y2 - b) is also cw-minimal; 
3. if g(z) > g(y), then the minimum of g cannot be in the set { (Y1 +b, Y2 - b)\b?:: 

B}; 
4. if bothy and z = (y1 + B, y2 - B) for some B ?:: 0 are minimal, then (Yi+ 

b, Y2 - b) is minimal for all 0 ::; b ::; B; 
5. if both g(y1 + l,y1 -1)?:: g(y1,Y2) and g(y1 - l,y1+1)?:: g(y1,Y2), then 

(y1 , y2 ) is minimal; if the inequalities are strict, then the minimum is also 
unique. 

Proof The proof follows immediately from Theorem A.9. Note that if m = 2, 
then there exist no permutations er of {O, 1, 2} with both cr(O) f=. 0, 1 and cr(l) -/= 0, 1, 
so Cl::* (z) = r/J for all z E Z2 . This means that if z is a strictly cw-minimal point, then 
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FIG. A.3. The cone Gr:· (0) and the plane P(O). 

the only other cw-minimal points must lie in P(z) = {(z1 +b,z2 - b) I b E Z}. This 
proves 1. 

To prove 2, note that y strictly cw-minimal implies that /:::qg(y) > 0. Since g is 
multimodular, this implies that !::.ig(y1 + b, Y2 - b) > 0 for b ~ 0. In the same manner, 
.6.1g(z1 - 1, z2 ) < 0, and by multimodularity !l1g(z1 - 1- b, z2 + b) < 0 for all b > 0. 
Analogously, one can show that !:::.2g( z1 - b, z2 + b) > 0 and ll2g(y1 + b, Y2 - 1 - b) < 0 
for all b ;::: 0, and these equalities combined prove 2. 

For 3, 4, and 5, note that f(z) := g(y1 + z,y2 - z) is a convex function of z E Z 
by the remark below Lemma A.6. 0 
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