Some Error Estimates for Periodic Interpolation of Functions from Besov Spaces

Winfried Sickel and Frauke Sprengel
Dedicated to Professor M. Reimer on the occasion of his 65th birthday

Abstract

Using periodic Strang-Fix conditions, we can give an approach to error estimates for periodic interpolation on equidistant and sparse grids for functions from certain Besov spaces.

1 Introduction

We investigate the L_{2}-error of interpolation on equidistant and sparse grids for periodic functions from isotropic L_{2}-Besov spaces and L_{2}-Besov spaces of functions with dominating mixed smoothness properties.
The interpolation of periodic functions by translates of a given function and the corresponding error estimates have been analyzed by several authors (e.g. $[3,8,14])$ in the univariate as well as in the multivariate case. The periodic Strang-Fix conditions were introduced in $[2,14]$. There, they were used to find L_{2}-error estimates for functions from isotropic L_{2}-Sobolev spaces.
The approximation of functions on sparse grids and the related field of hyperbolic approximation have a fairly long tradition (e.g. [4, 5, 28]) as well. For bivariate functions, the number of interpolation knots can be reduced to $\mathcal{O}\left(N \log _{2} N\right)$ for the sparse grids where the equidistant grid has $\mathcal{O}\left(N^{2}\right)$ points. Nevertheless, the interpolation on sparse grids yields error estimates for functions with dominating mixed smoothness properties which are asymptotically only by a logarithmic term worse than the error estimates for the interpolation on the corresponding equidistant grids.
The aim of this paper is to give error estimates for periodic interpolation for functions from L_{2}-Besov spaces which extend the results for the L_{2}-Sobolev

[^0]spaces $[2,14,16]$ on one hand. On the other hand, there already exist error estimates for interpolation on sparse grids for functions from Besov spaces [22]. But there, for the general L_{p}-case, we needed conditions on the cardinal fundamental interpolant from which the periodic fundamental interpolant was constructed via periodization. In the L_{2}-case, we do not need the long way around with cardinal interpolation but can use conditions on the periodic fundamental interpolant directly.

2 Besov Spaces

We start with recalling the definition and some basic properties of the function spaces to be dealt with. For this, we follow [19, Chap. 3]. By \mathbb{T}^{n}, we denote the n-dimensional torus represented by the cube

$$
\mathbb{T}^{n}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ;\left|x_{r}\right| \leq \pi, r=1, \ldots, n\right\}
$$

Let $D\left(\mathbb{T}^{n}\right)$ and $D^{\prime}\left(\mathbb{T}^{n}\right)$ denote the set of all complex-valued, 2π-periodic (in each component), and infinitely differentiable functions and its dual space, respectively. The Fourier coefficients of a distribution $g \in D^{\prime}\left(T^{n}\right)$ are

$$
c_{k}(g):=g\left(\mathrm{e}^{-\mathrm{i} k \cdot}\right)
$$

for $k \in \mathbb{Z}^{n}$. With the help of the inner product in $L_{2}\left(\mathbb{T}^{n}\right)$,

$$
\langle f, g\rangle_{\mathbf{T}^{n}}:=\frac{1}{(2 \pi)^{n}} \int_{\mathbf{T}^{n}} f(x) \overline{g(x)} \mathrm{d} x
$$

the Fourier coefficients for functions $g \in L_{1}\left(\mathbb{T}^{n}\right)$ can be written as $c_{k}(g)=\left\langle g, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle_{\mathbf{T}^{n}}$. Then any $f \in D^{\prime}\left(\mathbb{T}^{n}\right)$ can be represented by its Fourier series

$$
f=\sum_{k \in \mathbb{Z}^{n}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot} \quad\left(\text { convergence in } D^{\prime}\left(\mathbb{T}^{n}\right)\right)
$$

and the Fourier coefficients satisfy an inequality of the type

$$
\begin{equation*}
\left|c_{k}(f)\right| \leq C_{M}\left(1+|k|_{2}\right)^{M}, \quad k \in \mathbb{Z}^{n} \tag{2.1}
\end{equation*}
$$

for some $M \in \mathbb{N}$. Here and in the sequel, $|k|_{2}:=\left(k_{1}^{2}+k_{2}^{2}+\cdots+k_{n}^{2}\right)^{1 / 2}$ is the Euclidian norm. Conversely, each formal Fourier series with polynomially bounded Fourier coefficients as in (2.1) can be interpreted as a periodic distribution in $D^{\prime}\left(\mathbb{T}^{n}\right)$.

The Wiener algebra of functions with absolutely summable Fourier series we denote by $A\left(\mathbb{T}^{n}\right)$.

In the following, we restrict our definitions to the L_{2}-case because all the estimates in the forthcoming sections hold in this case only. We need the index sets

$$
\begin{aligned}
Q_{0}^{n}= & \{0\} \\
Q_{j}^{n}= & \left\{k \in \mathbb{Z}^{n} ;\left|k_{r}\right|<2^{j}, r=1, \ldots, n\right\} \\
& \backslash\left\{k \in \mathbb{Z}^{n} ;\left|k_{r}\right|<2^{j-1}, r=1, \ldots, n\right\}
\end{aligned}
$$

Definition 2.1. Let $1 \leq q \leq \infty$ and $s \in \mathbb{R}$. Then we define the isotropic periodic $L_{2}-$ Besov space $B_{2, q}^{s}\left(\mathbb{T}^{n}\right)$ as

$$
\begin{aligned}
B_{2, q}^{s}\left(\mathrm{~T}^{n}\right):= & \left\{f \in D^{\prime}\left(\mathbb{T}^{n}\right) ;\left\|f \mid B_{2, q}^{s}\left(\mathbb{T}^{n}\right)\right\|=\right. \\
& \left.\left(\sum_{j=0}^{\infty} 2^{j s q}\left\|\sum_{k \in Q_{j}^{n}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot} \mid L_{2}\left(\mathbb{T}^{n}\right)\right\|^{q}\right)^{1 / q}<\infty\right\}
\end{aligned}
$$

for $q<\infty$ and

$$
\begin{aligned}
& B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right):=\left\{f \in D^{\prime}\left(\mathbb{T}^{n}\right) ;\left\|f \mid B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)\right\|=\right. \\
&\left.\sup _{j \in \mathbb{N}_{0}} 2^{j s}\left\|\sum_{k \in Q_{j}^{n}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot} \mid L_{2}\left(\mathbb{T}^{n}\right)\right\|<\infty\right\}
\end{aligned}
$$

respectively.
For the definition of the spaces of functions with dominating mixed smoothness properties, we restrict ourselves to the two-dimensional situation. We put the index sets

$$
P_{j_{1}, j_{2}}=Q_{j_{1}}^{1} \times Q_{j_{2}}^{1}, \quad j_{1}, j_{2} \in \mathbb{N}_{0}
$$

As a consequence, we have the splitting

$$
\mathbb{Z}^{2}=\bigcup_{j_{2}=0}^{\infty} \bigcup_{j_{1}=0}^{\infty} P_{j_{1}, j_{2}} \quad \text { with } \quad P_{j_{1}, j_{2}} \cap P_{j_{1}^{\prime}, j_{2}^{\prime}}=\emptyset \quad \text { if } \quad\left(j_{1}, j_{2}\right) \neq\left(j_{1}^{\prime}, j_{2}^{\prime}\right)
$$

Definition 2.2. Let $1 \leq q \leq \infty$ and $r_{1}, r_{2} \in \mathbb{R}$. Then the L_{2}-Besov space $S_{2, q}^{r_{1}, r_{2}} B\left(\mathbb{T}^{2}\right)$ of bivariate periodic functions with dominating mixed smoothness
properties is defined as

$$
\begin{aligned}
S_{2, q}^{r_{1}, r_{2}} B\left(\mathbb{T}^{2}\right):= & \left\{f \in D^{\prime}\left(\mathbb{T}^{2}\right) ;\left\|f \mid S_{2, q}^{r_{1}, r_{2}} B\left(\mathbb{T}^{2}\right)\right\|=\right. \\
& \left.\left(\sum_{j_{1}, j_{2}=0}^{\infty} 2^{\left(j_{1} r_{1}+j_{2} r_{2}\right) q}\left\|\sum_{k \in P_{j_{1}, j_{2}}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot} \mid L_{2}\left(\mathbb{T}^{2}\right)\right\|^{q}\right)^{1 / q}<\infty\right\}
\end{aligned}
$$

for $q<\infty$ and

$$
\begin{aligned}
S_{2, \infty}^{r_{1}, r_{2}} B\left(\mathbb{T}^{2}\right):= & \left\{f \in D^{\prime}\left(\mathbb{T}^{2}\right) ;\left\|f \mid S_{2, \infty}^{r_{1}, r_{2}} B\left(\mathbb{T}^{2}\right)\right\|=\right. \\
& \left.\sup _{j_{1}, j_{2} \in \mathbf{N}_{0}} 2^{\left(j_{1} r_{1}+j_{2} \tau_{2}\right)}\left\|\sum_{k \in P_{j_{1}, j_{2}}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot} \mid L_{2}\left(\mathbb{T}^{2}\right)\right\|<\infty\right\}
\end{aligned}
$$

respectively.
Equivalent definitions of the Besov spaces using the moduli of smoothness and further characterizations can be found in [18, 19, 21].
By construction, it holds that

$$
\begin{equation*}
B_{2,2}^{0}\left(\mathbb{T}^{n}\right)=L_{2}\left(\mathbb{T}^{n}\right) \quad \text { and } \quad S_{2,2}^{0,0} B\left(\mathbb{T}^{2}\right)=L_{2}\left(\mathbb{T}^{2}\right) \tag{2.2}
\end{equation*}
$$

The Besov spaces of bivariate functions with dominating mixed smoothness properties can be characterized as tensor products

$$
B_{2, q}^{s_{1}}(\mathrm{~T}) \otimes_{b} B_{2, q}^{s_{2}}(\mathbb{T})=S_{2, q}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)
$$

of the corresponding univariate Besov spaces for $q<\infty$ (equivalent norms). Here, the norm b which was used for the completion of the algebraic tensor product is the usual Besov norm $b:=\left\|\cdot \mid S_{2, q}^{s_{1}, s_{2}} B\left(\mathrm{~T}^{2}\right)\right\|$. In the sequel, we will use tensor product spaces where the the completion is taken due to the 2-nuclear norm α_{2} (cf. [7])

$$
\tilde{S}_{2, q}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right):=B_{2, q}^{s_{1}}(\mathbb{T}) \otimes_{\alpha_{2}} B_{2, q}^{s_{2}}(\mathbb{T})
$$

The 2-nuclear norms have the main advantage to be uniform crossnorms, cf. e.g. [7, 21]. This means (together with (2.2)) in particular that, for two operators $P \in \mathcal{L}\left(B_{2, q}^{s_{1}}(\mathbb{T}), L_{2}(\mathbb{T})\right)$ and $Q \in \mathcal{L}\left(B_{2, q}^{s_{2}}(\mathbb{T}), L_{2}(\mathbb{T})\right)$, the tensor product operator $P \otimes Q$ given by

$$
(P \otimes Q)(f \otimes g):=P(f) \otimes Q(g)
$$

is bounded, i.e. $P \otimes Q \in \mathcal{L}\left(\tilde{S}_{2, q}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right), L_{2}\left(\mathbb{T}^{2}\right)\right)$, and its norm can be estimated as

$$
\begin{align*}
& \left\|P \otimes Q \mid \mathcal{L}\left(\tilde{S}_{2, q}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right), L_{2}\left(\mathbb{T}^{2}\right)\right)\right\| \tag{2.3}\\
& \left.\quad \leq C \| P \mid \mathcal{L}\left(B_{2, q}^{s_{1}} \mathbb{T}\right), L_{2}(\mathbb{T})\right)\left\|\left\|Q \mid \mathcal{L}\left(B_{2, q}^{s_{2}}(\mathbb{T}), L_{2}(\mathbb{T})\right)\right\|\right.
\end{align*}
$$

with some constant C independent of P and Q.
Remark. Now, the question arises how the spaces $\tilde{S}_{2, q}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)$ are related to the usual Besov spaces $S_{2, q}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)$. For $q=2$, the L_{2}-Besov spaces equal the L_{2}-Sobolev spaces $B_{2,2}^{s}(\mathbb{T})=H_{2}^{s}(\mathbb{T})$. In this case, we know from the results in [21, 25] that the spaces coincide

$$
\tilde{S}_{2,2}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)=S_{2,2}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)
$$

(equivalent norms). Because of the imbeddings $B_{2, q}^{s}\left(\mathbb{T}^{n}\right) \hookrightarrow B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)$ for $1 \leq q<\infty$ we may restrict our error estimates in the following sections to the most interesting case $q=\infty$. Here, the 2 -nuclear norm of the spaces $\tilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)$ turns out to be stronger than the original Besov norm

$$
\tilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right) \hookrightarrow S_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)
$$

what has been proved in [21].

3 Interpolation on Equidistant Grids

This section is devoted to error estimates for periodic interpolation on equidistant grids. We can apply the concept of periodic Strang-Fix conditions on the fundamental interpolant in order to find such error estimates.
Let N be a natural number and denote by

$$
J_{N}=\left\{k \in \mathbb{Z}^{n} ;-\frac{N}{2} \leq k_{r}<\frac{N}{2}, r=1, \ldots, n\right\}
$$

a related set of indices. Further

$$
T_{N}=\left\{\sum_{k \in J_{N}} \eta_{k} \mathrm{e}^{\mathrm{i} k \cdot} ; \eta_{k} \in \mathbb{C}\right\}
$$

denotes a corresponding set of trigonometric polynomials. The discrete Fourier coefficients of a continuous function f are given by

$$
c_{k}^{N}(f)=\frac{1}{N} \sum_{\ell \in J_{N}} f\left(\frac{2 \pi \ell}{N}\right) \mathrm{e}^{2 \pi \mathrm{i} k \ell / N}, \quad k \in J_{N}
$$

Discrete Fourier coefficients and Fourier coefficients are connected by aliasing

$$
c_{k}^{N}(f)=\sum_{\ell \in \mathbb{Z}^{n}} c_{k+\ell N}(f)
$$

as long as $f \in A\left(T^{n}\right)$. We consider interpolation on equidistant grids of type

$$
\mathcal{I}_{N}=\left\{\frac{2 \pi k}{N} ; k \in J_{N}\right\}
$$

The continuous and 2π-periodic function Λ_{N} is called a fundamental interpolant for \mathcal{T}_{N} if

$$
\Lambda_{N}\left(\frac{2 \pi k}{N}\right)=\delta_{0, k}, \quad k \in J_{N}
$$

The associated Lagrange interpolation operator L_{N} is defined as

$$
L_{N} f=\sum_{k \in J_{N}} f\left(\frac{2 \pi k}{N}\right) \Lambda_{N}\left(\cdot-\frac{2 \pi k}{N}\right)
$$

The Fourier coefficients of $L_{N} f$ can be easily computed:

$$
c_{k}\left(L_{N} f\right)=N^{n} c_{k}^{N}(f) c_{k}\left(\Lambda_{N}\right)=N^{n} c_{k}\left(\Lambda_{N}\right) \sum_{\ell \in \mathbb{Z}} c_{k+\ell N}(f)
$$

for $f \in A\left(\mathbb{T}^{n}\right)$. Finally, we denote the N-th Fourier partial sum by

$$
S_{N} f=\sum_{k \in J_{N}} c_{k}(f) \mathrm{e}^{\mathrm{i} k}
$$

For cardinal interpolation, one can use the Strang-Fix conditions [20, 26] on the fundamental interpolant in order to characterize the reproduction of polynomials and therefore the order of interpolation, too. Up to now there is no complete periodic counterpart.
But we can use the concept of periodic Strang-Fix conditions introduced by Pöplau [2,14] for L_{2}-error estimates. Here, the behaviour of the fundamental interpolant is characterized by a certain decay of the Fourier coefficients of Λ_{N}.

Definition 3.1. Let $\Lambda_{N} \in A\left(\mathbb{T}^{n}\right)$ be a fundamental interpolant with respect to \mathcal{T}_{N}. Then Λ_{N} satisfies the periodic Strang-Fix conditions of order $m>0$ if for all $k \in J_{N}$ the inequalities

$$
\begin{aligned}
\left|1-N^{n} c_{k}\left(\Lambda_{N}\right)\right| & \leq b_{0}|k|_{2}^{m} N^{-m} \\
\left|N^{n} c_{k+\ell N}\left(\Lambda_{N}\right)\right| & \leq b_{\ell}|k|_{2}^{m} N^{-m}, \quad \ell \in \mathbb{Z}^{n} \backslash\{0\}
\end{aligned}
$$

hold for some sequence $\left\{b_{\ell}\right\}_{\ell \in \mathbb{Z}^{n}} \in \ell_{2}\left(\mathbb{Z}^{n}\right)$ of non-negative numbers.
The periodic Strang-Fix conditions can be seen as the periodic counterpart of the strong Strang-Fix conditions for cardinal interpolation [6].
Theorem 3.2. Let the fundamental interpolant $\Lambda_{N} \in A\left(\mathbb{T}^{n}\right)$ satisfy the periodic Strang-Fix conditions of order $m>0$. Let $n / 2<s<m$. Then there exists a constant C (independent of N) such that

$$
\left\|f-L_{N} f\left|L_{2}\left(\mathbb{T}^{n}\right)\left\|\leq C N^{-s}\right\| f\right| B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)\right\|
$$

holds for all $f \in B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)$.
Proof. Step 1. We investigate the case $f \in T_{N}$ first. Some computations and the periodic Strang-Fix conditions yield

$$
\begin{aligned}
& \| f-L_{N} f \mid L_{2}\left(\mathbb{T}^{n}\right) \|^{2} \\
&=\left\|\sum_{k \in \mathbb{Z}^{n}}\left(c_{k}(f)-N^{n} c_{k}^{N}(f) c_{k}\left(\Lambda_{N}\right)\right) \mathrm{e}^{\mathrm{i} k \cdot} \mid L_{2}\left(\mathbb{T}^{n}\right)\right\|^{2} \\
&= \| \sum_{k \in J_{N}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot}\left(\left(1-N^{n} c_{k}\left(\Lambda_{N}\right)\right)\right. \\
&\left.\quad-\sum_{\ell \in \mathbb{Z}^{n} \backslash\{0\}} N^{n} c_{k+\ell N}\left(\Lambda_{N}\right) \mathrm{e}^{\mathrm{i} \ell N \cdot}\right) \mid L_{2}\left(\mathbb{T}^{n}\right) \|^{2} \\
&= \sum_{k \in J_{N}}\left|c_{k}(f)\right|^{2}\left(\left|1-N^{n} c_{k}\left(\Lambda_{N}\right)\right|^{2}+\sum_{\ell \in \mathbb{Z}^{n} \backslash\{0\}}\left|N^{n} c_{k+\ell N}\left(\Lambda_{N}\right)\right|^{2}\right) \\
& \leq \sum_{k \in J_{N}}\left|c_{k}(f)\right|^{2}|k|_{2}^{2 m} N^{-2 m} \sum_{\ell \in \mathbb{Z}^{n}} b_{\ell}^{2} .
\end{aligned}
$$

Let $2^{r-1} \leq N<2^{r}$. Then

$$
\begin{aligned}
\sum_{k \in J_{N}}|k|_{2}^{2 m}\left|c_{k}(f)\right|^{2} & =\sum_{\ell=0}^{r} \sum_{k \in Q_{\ell}^{n}}|k|_{2}^{2 m} 2^{-\ell s} 2^{\ell s}\left|c_{k}(f)\right|^{2} \\
& \leq 2^{2 m} n^{m} \sum_{\ell=0}^{r} 2^{2(m-s) \ell} 2^{2 l s} \sum_{k \in Q_{\ell}^{n}}\left|c_{k}(f)\right|^{2}
\end{aligned}
$$

We apply Hölder's inequality and obtain

$$
\begin{aligned}
\left.\sum_{k \in J_{N}}\left|k 2_{2}^{2 m}\right| c_{k}(f)\right|^{2} & \leq 2^{2 m} n^{m}\left(\sum_{\ell=0}^{r} 2^{2(m-s) \ell}\right) \sup _{\ell=0, \ldots, r} 2^{2 l s} \sum_{k \in Q_{\ell}^{n}}\left|c_{k}(f)\right|^{2} \\
& \leq C_{1} N^{2(m-s)}\left\|f \mid B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)\right\|^{2}
\end{aligned}
$$

This means that, for $f \in T_{N}$, we proved

$$
\begin{equation*}
\left\|f-L_{N} f\left|L_{2}\left(\mathbb{T}^{n}\right)\left\|\leq C_{2} N^{-s}\right\| f\right| B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)\right\| \tag{3.1}
\end{equation*}
$$

where C_{2} does not depend on f.
STEP 2. We investigate the general case $f \in B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)$. Because of $s>n / 2$ it holds that $B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right) \hookrightarrow B_{2,1}^{n / 2}\left(\mathbb{T}^{n}\right) \hookrightarrow A\left(\mathbb{T}^{n}\right)$. The interpolation is welldefined and aliasing is applicable. Using the periodic Strang-Fix conditions with $n / 2<s^{\prime}<s$ and Cauchy-Schwarz inequality, it follows

$$
\begin{aligned}
&\left\|L_{N}\left(f-S_{N} f\right) \mid L_{2}\left(\mathbb{T}^{n}\right)\right\|^{2} \\
&= \sum_{k \in \mathbb{Z}^{n}}\left|N^{n} c_{k}\left(\Lambda_{N}\right) \sum_{\ell \in \mathbb{Z}^{n}} c_{k+\ell N}\left(f-S_{N} f\right)\right|^{2} \\
&= \sum_{k \in J_{N}} \sum_{r \in \mathbb{Z}^{n}}\left|N^{n} c_{k+r N}\left(\Lambda_{N}\right) \sum_{\ell \in \mathbb{Z}^{n}} c_{k+r N+\ell N}\left(f-S_{N} f\right)\right|^{2} \\
& \leq C_{3} \sum_{k \in J_{N}} \sum_{r \in \mathbb{Z}^{n}} b_{r}^{2}|k|_{2}^{2 s^{\prime}} N^{-2 s^{\prime}}\left|\sum_{\ell \in \mathbb{Z}^{n}} c_{k+\ell N}\left(f-S_{N} f\right)\right|^{2} \\
& \leq C_{3} N^{-2 s^{\prime}}\left\|\left\{b_{r}\right\} \mid \ell_{2}\left(\mathbb{Z}^{n}\right)\right\|^{2} \\
&\left.\sum_{k \in J_{N}}|k|\right|_{2} ^{2 s^{\prime}} \sum_{\ell \in \mathbb{Z}^{n}}|k+\ell N|_{2}^{2 s^{\prime}}\left|c_{k+\ell N}\left(f-S_{N} f\right)\right|^{2} \sum_{r \in \mathbb{Z}^{n}}|k+r N|_{2}^{-2 s^{\prime}} .
\end{aligned}
$$

Next we use that for $s^{\prime}>n / 2$

$$
\sup _{k \in J_{N}}|k|_{2}^{2 s^{\prime}} \sum_{r \in \mathbb{Z}^{n}}|k+r N|_{2}^{-2 s^{\prime}}=\sup _{k \in J_{N}}\left|\frac{k}{N}\right|_{2}^{2 s^{\prime}} \sum_{r \in \mathbb{Z}^{n}}\left|\frac{k}{N}+\tau\right|_{2}^{-2 s^{\prime}}=C_{4}<\infty .
$$

This proves

$$
\begin{aligned}
& \left\|L_{N}\left(f-S_{N} f\right) \mid L_{2}\left(\mathbb{T}^{n}\right)\right\|^{2} \\
& \quad \leq C_{3} C_{4} N^{-2 s^{\prime}}\left\|\left\{b_{r}\right\}\left|\ell_{2}\left(\mathbb{Z}^{n}\right) \|^{2} \sum_{k \in J_{N}} \sum_{\ell \in \mathbb{Z}^{n}}\right| k+\left.\ell N\right|^{2 s^{\prime}}\left|c_{k+\ell N}\left(f-S_{N} f\right)\right|^{2}\right. \\
& \quad \leq C_{5} N^{-2 s^{\prime}}\left\|f-S_{N} f \mid H_{2}^{s^{\prime}}\left(\mathbb{T}^{n}\right)\right\|^{2},
\end{aligned}
$$

where $H_{2}^{s^{\prime}}\left(\mathbb{T}^{n}\right)$ denotes the fractional order Sobolev space with the norm

$$
\left\|\left.f\left|H_{2}^{s^{\prime}}\left(\mathbb{T}^{n}\right) \|^{2}:=\sum_{k \in \mathbb{Z}^{n}}\left(1+|k|_{2}^{2}\right)^{s^{\prime}}\right| c_{k}(f)\right|^{2}\right.
$$

In case $s>s^{\prime}$ one knows

$$
\begin{equation*}
\left\|f-S_{N} f\left|H_{2}^{s^{\prime}}\left(\mathbb{T}^{n}\right)\left\|\leq C_{6} N^{s^{\prime}-s}\right\| f\right| B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)\right\| \tag{3.2}
\end{equation*}
$$

cf. e.g. [11]. This yields

$$
\begin{equation*}
\left\|L_{N}\left(f-S_{N} f\right)\left|L_{2}\left(\mathbb{T}^{n}\right)\left\|\leq C_{7} N^{-s}\right\| f\right| B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)\right\| \tag{3.3}
\end{equation*}
$$

where again the constant C_{7} does not depend on N and f. To finish the proof, observe that (3.1), (3.2) and (3.3) (applied with $s^{\prime}=0$) imply

$$
\begin{aligned}
& \left\|f-L_{N} f \mid L_{2}\left(\mathbb{T}^{n}\right)\right\| \\
& \leq\left\|f-S_{N} f\left|L_{2}\left(\mathbb{T}^{n}\right)\|+\| S_{N} f-L_{N}\left(S_{N} f\right)\right| L_{2}\left(\mathbb{T}^{n}\right)\right\| \\
& \quad+\left\|L_{N}\left(f-S_{N} f\right) \mid L_{2}\left(\mathbb{T}^{n}\right)\right\| \\
& \leq C N^{-s}\left\|f \mid B_{2, \infty}^{s}\left(\mathbb{T}^{n}\right)\right\| .
\end{aligned}
$$

This proves the theorem.
Remark. We note that the most constants appearing in the proof only depend on the dimension n and on the smoothness s of the function to be interpolated. The dependency on the used fundamental interpolant Λ_{N} is reflected in the constants by the term $\left\|\left\{b_{r}\right\} \mid \ell_{2}\left(\mathbb{Z}^{n}\right)\right\|$ from the Strang-Fix conditions.

Remark. Recall, if X is a Banach space and W a subspace of X, then the linear N-width is defined as

$$
\lambda_{N}(W, X)=\inf _{\substack{U_{N} \in \operatorname{Lin}_{N}(X) \\ P \in \mathcal{L}\left(X, U_{N}\right)}} \sup _{f \in W}\|f-P f \mid X\|
$$

where the infimum is taken over all subspaces U_{N} of X of finite dimension $\leq N$ and all linear operators P from X to U_{N}. Here we are interested in $X=L_{2}$ (TI) and W the unit ball in the Nikol'skij-Besov space $B_{2, \infty}^{s}(\mathbb{T})$, denoted by $B_{2}^{s}(\mathbb{T})$. If $s>0$, then

$$
\lambda_{N}\left(B_{2}^{s}(\mathbb{T}), L_{2}(\mathbb{T})\right) \sim N^{-s}
$$

cf. [9, Theorem 14.3.8]. In this sense, approximation of univariate functions with those interpolation operators L_{N} is nearly optimal (nearly optimal means
the order of approximation is correct but may be not the constants). More details about widths may be found in [9, 27].

Remark. An interesting limiting case has been observed by Pöplau [2, 14]. If Λ_{N} is a fundamental interpolant which satisfies the periodic Strang-Fix condition of order $m>n / 2$, then there exists a constant C (independent of N) such that

$$
\left\|f-L_{N} f\left|L_{2}\left(\mathbb{T}^{n}\right)\left\|\leq C N^{-m}\right\| f\right| B_{2,2}^{m}\left(\mathbb{T}^{n}\right)\right\|
$$

holds for all $f \in B_{2,2}^{m}\left(\mathbb{T}^{n}\right)$. For a generalization in various directions, including different function spaces (defined by using decay properties of the Fourier coefficients), we refer to [23, 24].
Corollary 3.3. Let the univariate fundamental interpolant $\Lambda_{N} \in A(\mathbb{T})$ satisfy the periodic Strang-Fix conditions of order $m>0$. Let $L_{N} \otimes L_{N}$ be the interpolation operator associated with the bivariate fundamental interpolant $\Lambda_{N} \otimes \Lambda_{N}$. Let $1<s<m$. Then there exists a constant C (independent of N) such that

$$
\left\|f-\left(L_{N} \otimes L_{N}\right) f\left|L_{2}\left(\mathbb{T}^{2}\right)\left\|\leq C N^{-s}\right\| f\right| B_{2, \infty}^{s}\left(\mathbb{T}^{2}\right)\right\|
$$

holds for all $f \in B_{2, \infty}^{s}\left(\mathbb{T}^{2}\right)$.
Proof. Because $c_{k}\left(\Lambda_{N} \otimes \Lambda_{N}\right)=c_{k_{1}}\left(\Lambda_{N}\right) c_{k_{2}}\left(\Lambda_{N}\right)$, one proves easily that also the bivariate fundamental interpolant $\Lambda_{N} \otimes \Lambda_{N}$ satisfies periodic Strang-Fix conditions of order m. Then, Theorem 3.2 is applicable.

Example: B-Splines

As an example, we may use the interpolation by the 2π-periodized centered B-Spline $\mathcal{M}_{N, r}$ of order $r \in \mathbb{N}$. Its Fourier coefficients are known as

$$
c_{k}\left(\mathcal{M}_{N, r}\right)=\frac{1}{N}\left(\sin c \frac{\pi k}{N}\right)^{r}, \quad k \in \mathbb{Z}
$$

with $\sin t:=\sin t / t$. The fundamental interpolant $\Lambda_{N, r}$ corresponding to the $2 \pi-$ periodic centered B -spline of order r can be computed from

$$
\begin{equation*}
c_{k}\left(\Lambda_{N, r}\right):=\frac{c_{k}\left(\mathcal{M}_{N, r}\right)}{N c_{k}^{N}\left(\mathcal{M}_{N, r}\right)}, \quad k \in \mathbb{Z} . \tag{3.4}
\end{equation*}
$$

Then, $\Lambda_{N, r}$ satisfies the periodic Strang-Fix conditions of order r (cf. [14]) with the constants

$$
b_{0}= \begin{cases}\frac{1}{2^{r+1}} & \text { for } r \text { odd } \\ \frac{1}{2\left(2^{r}-1\right)} & \text { for } r \text { even },\end{cases}
$$

and

$$
b_{\ell}=\frac{1}{\pi^{r}(2|\ell|-1)^{r}} \begin{cases}1 & \text { for } r=1, \\ \frac{(r-1)!}{E_{(r-1) / 2}} & \text { for } r>1, \text { odd, } \\ \frac{r!}{2^{r}\left(2^{r}-1\right) B_{r / 2}} & \text { for } r \text { even, }\end{cases}
$$

for $\ell \neq 0$. Here, B_{s} and $E_{s}(s \in \mathbb{N})$ denote the corresponding Bernoulli and Euler numbers.

Example: Trigonometric Interpolation

Another example is the trigonometric interpolation. The de la Vallée Poussin means $\mathcal{V}_{N}^{K}(N, K \in \mathbb{N}, N>K)$ of the Dirichlet kernel are given by

$$
\mathcal{V}_{N}^{K}(x):=\frac{1}{4 K N} \sum_{\ell=N-K}^{N+K-1}\left(\sum_{k=-\ell}^{\ell} \mathrm{e}^{\mathrm{i} k x}\right) .
$$

They are fundamental interpolants for the grid $\tau_{2 N}$. So, we have a lot of different fundamental interpolants for the grids \mathcal{T}_{N} (N even) belonging to different parameters K. We denote them by $\Lambda_{N, K}:=\mathcal{V}_{N / 2}^{K}$ for $N / 2, K \in \mathbb{N}, N / 2>K$. Since the de la Vallée Poussin means are trigonometric polynomials they of course satisfy Strang-Fix conditions of arbitrary order. But the constants of the Strang-Fix conditions depend on the quotient of the parameters K and N. For $K=1$, we obtain the best constants since $\Lambda_{N, 1}$ is only a slight modification of the Dirichlet kernel whose Fourier coefficients are compared with the Fourier coefficients of the fundamental interpolant. For $K=N / 2-1$, the corresponding de la Vallée Poussin mean is already very close to the Fejér kernel and the constants are much bigger (for details we refer to [23, 24]).

Example: Radial Basis Functions

A nice n-variate example can be found in [15]. Let the n-variate radial basis function φ be given by its Fourier coefficients

$$
N^{n} c_{k}(\varphi):=|k|_{2}^{-\alpha}, \quad k \in \mathbb{Z}^{n} \backslash\{0\}
$$

for a fixed $\alpha>d$. In case $\alpha \in 2 \mathbb{N}$, we obtain the periodized version of the cardinal polyharmonic splines [10]. The associated fundamental interpolant can be constructed analogously to the spline case (3.4) from its Fourier coefficients

$$
N^{n} c_{k}\left(\Lambda_{N, \varphi}\right):= \begin{cases}\frac{|k|_{2}^{-\alpha}}{\sum_{\ell \in \mathbb{Z}^{n}}|k+\ell N|_{2}^{-\alpha}} & \text { for } k \in \mathbb{Z}^{n} \backslash N \mathbb{Z}^{n} \\ 1 & \text { for } k=0 \\ 0 & \text { for } k \in N \mathbb{Z}^{n} \backslash\{0\}\end{cases}
$$

Because of $\alpha>d$, this fundamental interpolant $\Lambda_{N, \varphi}$ belongs to the Wiener algebra. Furthermore, it satisfies the periodic Strang-Fix conditions of order α with the constants

$$
b_{0}=2^{\alpha} \sum_{r=1}^{n}\binom{n}{r} \frac{1}{r^{\alpha / 2}}\left(\frac{2 \alpha-r}{\alpha-r}\right)
$$

and

$$
b_{\ell}=2^{\alpha}|v(\ell)|_{2}^{-\alpha}, \quad \ell \in \mathbb{Z}^{n} \backslash\{0\}
$$

where the vector v has the components $v_{r}(\ell)=\delta_{0, \ell_{r}}\left(2\left|\ell_{r}\right|-1\right)$ for $r=1, \ldots, n$. In addition to these examples, one can find more examples of bivariate functions in $[13,14]$ (3- and 4-direction box splines) satisfying periodic Strang-Fix conditions of certain order.

4 Interpolation on Sparse Grids

Now we want to define the interpolation operators for interpolation on sparse grids and give error estimates. The definition of the blending interpolation operator and its basic properties can be found e.g. in [1, 4]. This definition needs the notation of a chain of projectors.
The ordering relation $P \leq Q$ for projectors holds if $P Q=Q P=P$. A family of projectors $\left\{P_{j}\right\}_{j=0}^{\infty}$ forms a chain if $P_{j} \leq P_{j+1}, j \in \mathbb{N}_{0}$. For two interpolation projectors L_{K} and L_{N}, the ordering $L_{K} \leq L_{N}$ holds if and only if the images $\operatorname{Im} L_{K} \subset \operatorname{Im} L_{N}$ as well as the grids $\mathcal{T}_{K} \subset \mathcal{T}_{N}$ are ordered.

Fix $d \in \mathbb{N}$. By the choice $N_{j}:=d 2^{j}$, we immediately insure $\mathcal{T}_{N_{j}} \subset \mathcal{T}_{N_{j+1}}$. Furthermore, we assume

$$
\begin{equation*}
\operatorname{Im} L_{N_{j}} \subset \operatorname{Im} L_{N_{j+1}} \tag{4.1}
\end{equation*}
$$

This property has to be proved for every example by hand. Then, we have a chain

$$
\begin{equation*}
L_{N_{0}} \leq L_{N_{1}} \leq \cdots \leq L_{N_{j}} \leq L_{N_{j+1}} \leq \cdots \tag{4.2}
\end{equation*}
$$

of interpolation operators.
Given a chain (4.2) of interpolation operators $L_{N_{j}}, j \in \mathbb{N}_{0}$, for univariate functions. For bivariate functions, we will consider the j-th order blending operator defined by the j-th order Boolean sum

$$
B_{j}:=\bigoplus_{r=0}^{j} L_{N_{r}} \otimes L_{N_{j-r}}
$$

where $A \oplus B:=A+B-A B$. The representation of B_{j} in terms of ordinary sums is known to be

$$
B_{j}=\sum_{r=0}^{j} L_{N_{r}} \otimes L_{N_{j-r}}-\sum_{r=0}^{j-1} L_{N_{r}} \otimes L_{N_{j-r-1}}
$$

Figure 1: Sparse grid $\mathcal{T}_{5}^{\mathbf{B}}$ for $d=1$.

The Boolean sums have the range $\operatorname{Im} B_{j}=\sum_{r=0}^{j} \operatorname{Im} L_{N_{r}} \otimes \operatorname{Im} L_{N_{j-r}}$. They interpolate on the sparse grid $\mathcal{T}_{j}^{\mathrm{B}}:=\bigcup_{r=0}^{j} \mathcal{T}_{N_{r}} \times \mathcal{T}_{N_{j-r}}$ which has $d^{2}\left(j 2^{j-1}+2^{j}\right)$ nodes which is essentially less than the $d^{2} 2^{2 j}$ nodes in the equidistant grid $\mathcal{T}_{N_{j}} \times \mathcal{T}_{N_{j}}$.
Theorem 4.1. Suppose that the interpolation operators $L_{N_{j}}, j \in \mathbb{N}_{0}$, form a chain (4.2) and satisfy

$$
\sup _{j \in \mathbb{N}_{0}} N_{j}^{s_{k}}\left\|f-L_{N_{j}} f\left|L_{2}(\mathbb{T})\left\|\leq C_{k}\right\| f\right| B_{2, \infty}^{s_{k}}(\mathbb{T})\right\|
$$

with constants C_{k} independent of f and for some fixed s_{1}, s_{2} with $s_{1}, s_{2}>1 / 2$. Then in case $s_{1}=s_{2}=s$, we find

$$
\left\|f-B_{j} f\left|L_{2}\left(\mathbb{T}^{2}\right)\left\|\leq C(j+1) N_{j}^{-s}\right\| f\right| \tilde{S}_{2, \infty}^{s, s} B\left(\mathbb{T}^{2}\right)\right\|
$$

for all $f \in \widetilde{S}_{2, \infty}^{s, s} B\left(\mathbb{T}^{2}\right)$, whereas in case $s_{1} \neq s_{2}$, it holds that

$$
\left\|f-B_{j} f\left|L_{2}\left(\mathbb{T}^{2}\right)\left\|\leq C N_{j}^{-\min \left(s_{1}, s_{2}\right)}\right\| f\right| \widetilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)\right\|
$$

for all $f \in \widetilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)$. In both situations, C denotes a constant independent of j and f.
Proof. Because of $\tilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right) \hookrightarrow A\left(\mathbb{T}^{2}\right) \hookrightarrow C\left(\mathbb{T}^{2}\right)$ for $s_{1}, s_{2}>1 / 2$, interpolation is well-defined. The remainder ($P^{c}:=I-P$) of the blending interpolation has the representation

$$
B_{j}^{c}=L_{N_{j}}^{c} \otimes I+I \otimes L_{N_{j}}^{c}-\sum_{r=0}^{j} L_{N_{r}}^{c} \otimes L_{N_{j-r}}^{c}+\sum_{r=0}^{j-1} L_{N_{r}}^{c} \otimes L_{N_{j-r-1}}^{c}
$$

cf. [4]. With this, the assertion follows from the triangle inequality, the uniformity of the norms (see (2.3)) and the assumption on the error for the univariate interpolation.
Corollary 4.2. Let the 2π-periodic fundamental interpolants $\Lambda_{N_{j}} \in A(\mathbb{T})$ satisfy the periodic Strang-Fix conditions of order $m>0$ with same sequence $\left\{b_{\ell}\right\}$ of constants. The corresponding interpolation operators $L_{N_{j}}, j \in \mathbb{N}_{0}$, form a chain (4.2). Let $1 / 2<s_{1}, s_{2}<m$.
Then, in case $s_{1}=s_{2}=s$, we can estimate

$$
\left\|f-B_{j} f\left|L_{2}\left(\mathbb{T}^{2}\right)\left\|\leq C(j+1) N_{j}^{-s}\right\| f\right| \tilde{S}_{2, \infty}^{s, s} B\left(\mathbb{T}^{2}\right)\right\|
$$

for all $f \in \widetilde{S}_{2, \infty}^{s, s} B\left(\mathrm{~T}^{2}\right)$.
In case $s_{1} \neq s_{2}$, it holds that

$$
\left\|f-B_{j} f\left|L_{2}\left(\mathbb{T}^{2}\right)\left\|\leq C N_{j}^{-\min \left(s_{1}, s_{2}\right)}\right\| f\right| \widetilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)\right\|
$$

for all $f \in \widetilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathrm{~T}^{2}\right)$. In both situations, C denotes a constant independent of j and f.

The same ideas as before yield the following estimate. It shows that the order of the interpolation error for equidistant grids does not improve for the smoother functions with dominating mixed smoothness properties in comparison to the isotropic case. For the functions with dominating mixed smoothness the error of interpolation on sparse grids is only by a logarithmic factor worse the result for equidistant grids.
Corollary 4.3. Let the univariate fundamental interpolant $\Lambda_{N} \in A(T \Gamma)$ satisfy the periodic Strang-Fix conditions of order $m>0$. Let $L_{N} \otimes L_{N}$ be the interpolation operator associated with the bivariate fundamental interpolant $\Lambda_{N} \otimes \Lambda_{N}$. Let $1 / 2<s_{1}, s_{2}<m$. Then there exists a constant C (independent of N) such that

$$
\left\|f-\left(L_{N} \otimes L_{N}\right) f\left|L_{2}\left(\mathbb{T}^{2}\right)\left\|\leq C N^{-\min \left(s_{1}, s_{2}\right)}\right\| f\right| \tilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathbb{T}^{2}\right)\right\|
$$

holds for all $f \in \widetilde{S}_{2, \infty}^{s_{1}, s_{2}} B\left(\mathrm{~T}^{2}\right)$.

Example: B-Splines

The fundamental interpolants $\Lambda_{N_{j}, r}$ belonging to the 2π-periodic centered B spline of even order $r \in \mathbb{N}$ satisfy (4.1) automatically since at the step from j to $j+1$ only some new spline knots are added. Therefore, the corresponding interpolation operators form a chain (4.2). The constants for Strang-Fix conditions given in the previous section do not depend on N_{j}.

The fundamental interpolants $\Lambda_{N_{j}, r}$ belonging to the 2π-periodic centered B spline of odd order $r \in \mathbb{N}$ do not satisfy (4.1). For splines for the grid $\mathcal{T}_{N_{j+1}}$ only totally new spline knots are used compared to the j-th grid.

Example: Trigonometric Interpolation

The de la Vallée Poussin means $\Lambda_{N_{j}, K_{j}}$ satisfy the chain condition (4.1) only under certain restrictions on K_{j} and N_{j}. In [17], it was shown that for N_{j} as
before and

$$
K_{j}:=\left\{\begin{array}{ll}
2^{j-\kappa-1} & \text { for } j>\kappa, \\
1 & \text { for } j \leq \kappa,
\end{array} \quad \kappa \in \mathbb{N}, 3 \leq d 2^{\kappa}\right.
$$

condition (4.1) is satisfied. The case $\kappa=\infty$ is allowed. With this choice of the parameters N_{j} and K_{j}, one can estimate the constants of the Strang-Fix conditions of order m uniformly by

$$
b_{\ell}= \begin{cases}\frac{3^{m}}{2(2 \pi)^{m}} & \text { for } \ell=-1,0,1 \\ 0 & \text { otherwise }\end{cases}
$$

Example: Radial Basis Functions

The fundamental interpolants $\Lambda_{N_{j}, \varphi}$ constructed from the radial basis function φ satisfy the periodic Strang-Fix conditions with constants not depending on N_{j}. Now we restrict ourselves to the univariate case. One can find constants $a_{k}, k=0, \ldots, N_{j+1}-1$, such that

$$
c_{k+\ell N_{j+1}}\left(\Lambda_{N_{j}, \varphi}\right)=a_{k} c_{k+\ell N_{j+1}}\left(\Lambda_{N_{j+1}, \varphi}\right), \quad \ell \in \mathbb{Z}, k=0, \ldots, N_{j+1}-1
$$

These constants are $a_{0}=1, a_{N_{j}}=0$, and $a_{k}=1 / 2\left(\sum_{\ell \in \mathbb{Z}}\left|k+2 \ell N_{j}\right|^{-\alpha}\right) /$ ($\sum_{\ell \in \mathbb{Z}}\left|k+\ell N_{j}\right|^{-\alpha}$), otherwise. This yields the chain property (4.1), cf. [12].

References

[1] G. Baszenski, F.-J. Delvos: A discrete Fourier transform scheme for Boolean sums of trigonometric operators, in: Multivariate Approximation Theory IV, C. K. Chui, W. Schempp, and K. Zeller (eds.) ISNM 90, 15-24, Birkhäuser, Basel 1989.
[2] G. Brumme: Error estimates for periodic interpolation by translates, in: Wavelets, Images, and Surface Fitting, P. J. Laurent, A. Le Méhauté, and L. L. Schumaker (eds.), 75-82, AK Peters, Boston 1994.
[3] F.-J. Delvos: Approximation properties of periodic interpolation by translates of one function, Math. Model. Numer. Anal. 28 (1994), 177-188.
[4] F.-J. Delvos, W. Schempp: Boolean Methods in Interpolation and Approximation, Pitman Research Notes in Mathematics Series 230, Longman Scientific \& Technical, Harlow 1989.
[5] R. A. DeVore, S. V. Konyagin, V. N. Temlyakov: Hyperbolic wavelet approximation, Constr. Approx. 14 (1998), 1-26.
[6] K. Jetter: Multivariate approximation from the cardinal point of view, in: Approximation Theory VII, E. W. Cheney, C. K. Chui, and L. L. Schumaker (eds.), 131-161, Academic Press, New York 1992.
[7] W. A. Light, E. W. Cheney: Approximation Theory in Tensor Product Spaces, Lecture Notes in Mathematics 1169, Springer, Berlin 1985.
[8] F. Locher: Interpolation on uniform meshes by translates of one function and related attenuation factors, Math. Comp. 37 (1981), 404-416.
[9] G. G. Lorentz, M. von Golitschek, and Y. Makovoz: Constructive Approximation: Advanced Problems, Springer, Berlin 1996.
[10] W. R. Madych, S. A. Nelson: Polyharmonic cardinal splines, J. Approx. Theory 60 (1990), 141-161.
[11] A. Pietsch: Approximation spaces, J. Approx. Theory 32 (1981), 115-134.
[12] G. Plonka, M. Tasche: A unified approach to periodic wavelets, in: Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L. Montefusco, and L. Puccio (eds.), 137-151, Academic Press, 1994.
[13] G. Pöplau: Fast direct solvers for PDE's in shift-invariant spaces, in: Approximation Theory VIII, vol. 2: Wavelets and Multilevel Approximation, C. K. Chui and L. L. Schumaker (eds.), 325-333, World Scientific Publishing, Singapore 1995.
[14] G. Pöplau: Multivariate periodische Interpolation durch Translate und Anwendungen, Doctoral thesis, Universität Rostock 1995.
[15] G. Pöplau: Fast solvers for elliptic PDE's with radial basis functions, Preprint 96/10, Universität Rostock 1996.
[16] G. Pöplau, F. Sprengel: Some error estimates for periodic interpolation on full and sparse grids, in: Curves and Surfaces with Applications in CAGD, A. Le Méhauté, C. Rabut, and L. L. Schumaker (eds.), 355-362, Vanderbilt University Press, Nashville 1997.
[17] J. Prestin, K. Selig: Interpolatory and orthonormal trigonometric wavelets, in: Signal and Image Representation in Combined Spaces, J. Zeevi and R. Coifman (eds.), 201-255, Academic Press, 1998.
[18] H.-J. Schmeißer: An unconditional basis in periodic spaces with dominating mixed smoothness properties, Anal. Math. 13 (1987), 153-168.
[19] H.-J. Schmeißer, H. Triebel: Topics in Fourier Analysis and Function Spaces, Akadem. Verlagsgesellschaft Geest \& Portig, Leipzig 1987.
[20] I. J. Schoenberg: Contributions to the problem of approximation of equidistant data by analytic functions. Part A: On the problem of smoothing or graduation. A first class of analytic formulae, Quart. Appl. Math IV (1946), 45-99.
[21] W. Sickel: Tensor products of Besov spaces, Jenaer Schriften zur Mathematik und Informatik 99/04, 1999.
[22] W. Sickel, F. Sprengel: Interpolation on sparse grids and tensor products of Nikol'skij-Besov spaces, J. Comput. Anal. Appl. 1 (1999), to appear.
[23] F.Sprengel: Interpolation und Waveletzerlegung multivariater periodischer Funktionen, Doctoral thesis, Universität Rostock 1997.
[24] F. Sprengel: A class of function spaces and interpolation on sparse grids, Preprint 98/13, Universität Rostock 1998.
[25] F.Sprengel: A tool for approximation in bivariate periodic Sobolev spaces, in: Approximation Theory IX, vol. 2: Computational Aspects, C. K. Chui and L. L. Schumaker (eds.), 319-326, Vanderbilt University Press, Nashville 1998.
[26] G. Strang, G. Fix: A Fourier analysis of the finite element variational method, in: Constructive Aspects of Functional Analysis, G. Geymont (ed.), 793-840, C.I.M.E., 1973.
[27] V. M. Tichomirov: Approximation theory, in: Encyclopedia of Math. Science: Analysis II, vol. 14, R. V. Gamkrelidze (ed.), 93-244, Springer, Berlin 1990.
[28] C. Zenger: Sparse grids, in: Notes on Numerical Fluid Mechanics, vol. 31, W. Hackbusch (ed.), 297-301, Vieweg, Braunschweig 1991.

Addresses:

Winfried Sickel
Mathematisches Institut
Friedrich-Schiller-Universität Jena
D-07740 Jena
Germany
Frauke Sprengel
Centrum voor Wiskunde en Informatica
P.O.Box 94079

NL-1090 GB Amsterdam
The Netherlands

[^0]: Advances in Multivariate Approximation; W. Haubmann, K. Jetter and M. Reimer (eds.)
 Mathematical Research, Vol. 107, pp. 269-287, ISBN 3-527-40236-5
 © WILEY-VCH, Berlin 1999

