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Abstract 

Using periodic Strang-Fix conditions, we can give an approach to error 
estimates for periodic interpolation on equidistant and sparse grids for 
functions from certain Besov spaces. 

1 Introduction 

We investigate the L2--error of interpolation on equidistant and sparse grids 

for periodic functions from isotropic Lz-Besov spaces and L2-Besov spaces of 
functions with dominating mixed smoothness properties. 

The interpolation of periodic functions by translates of a given function and 
the corresponding error estimates have been analyzed by several authors (e.g. 
[3, 8, 14]) in the univariate as well as in the multivariate case. The periodic 

Strang-Fix conditions were introduced in [2, 14). There, they were used to find 
Lrerror estimates for functions from isotropic L2-Sobolev spaces. 

The approximation of functions on sparse grids and the related field of hy
perbolic approximation have a fairly long tradition (e.g. [4, 5, 28]) as well. 

For bivariate functions, the number of interpolation knots can be reduced to 
O(N log2 N) for the sparse grids where the equidistant grid has O(N2 ) points. 

Nevertheless, the interpolation on sparse grids yields error estimates for func

tions with dominating mixed smoothness properties which are asymptotically 

only by a logarithmic term worse than the error estimates for the interpolation 
on the corresponding equidistant grids. 

The a.im of this paper is to give error estimates for periodic interpolation for 
functions from L2-Besov spaces which extend the results for the L2-Sobolev 
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spaces [2, 14, 16] on one hand. On the other hand, there already exist er
ror estimates for interpolation on spa.rse grids for functions from Besov spaces 
[22]. But there, for the general Lp-case, we needed conditions on the cardi
nal fundamental interpolant from which the periodic fundamental interpolant 
was constructed via periodization. In the L2-ca.se, we do not need the long 
way around with cardinal interpolation but can use conditions on the periodic 
fundamental interpola.nt directly. 

2 Besov Spaces 

We start with recalling the definition and some basic properties of the function 
spaces to be dealt with. For this, we follow (19, Chap. 3]. By '11'"1, we denote 
then-dimensional torus represented by the cube 

'Il'n := {x = (xi, ... ,xn) E m.n; l:crl :$ 11", r = 1, ... , n}. 

Let D('Il'") and D'('Il'") denote the set of all complex-valued, 21i'-periodic 
(in each component), and infinitely differentiable functions a.nd its dual space, 
respectively. The Fourier coefficients of a distribution g E D'('Il'"} are 

c1;(g) := g(e-ik") 

for k E 'lln. With the help of the inner product in L2('1I'n ), 

If -(/,g}Tn := (21r}n f(x)g(x) dx, 
T" 

the Fourier coefficients for functions g E L1 ('Il'n) can be written as 
c1;(g) = {g, eik·)T"· Then any f E D'('Il'n) can be represented by its Fourier 
series 

f = E c1;(/) eik· (convergence in D' ('Il'n)) 
ke'll" 

and the Fourier coefficients satisfy an inequality of the type 

k E 'lln, (2.1} 

for some M E JN. Here and in the sequel, lkl2 := (k~ + k~ + .. · + k!)112 

is the Euclidian norm. Conversely, each formal Fourier series with polynomi
ally bounded Fourier coefficients as in (2.1) can be interpreted as a periodic 
distribution in D'('Il'n ). 
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The Wiener algebra of functions with absolutely summable Fourier series we 
denote by A('JI'n ). 

In the following, we restrict our definitions to the L2-ca.se because a.11 the 
estimates in the forthcoming sections hold in this case only. We need the index 
sets 

Qo = {O}, 
Qj = {k E 'll/"; lkrl < 2i,r = l, ... ,n} 

\ {k E 'lln; lkrl < 2i-1 ,r = 1, ... ,n}. 

Definition 2.1. Let 1 ::; q :$ oo and s E IR. Then we define the isotropic 
periodic L2-Besov space Btq('Il'n) as 

B2,q('lfn) := {J E D'('Il'n) i II/ I B2,q('Il'n)ll = 

(E 2Jsq II L c1c(f)eik· 1L2('Il'n)lnl/q<00} 
i=O kEQ'J 

for q < oo and 

B2,00 ('II'n) ·- {J E D'('Il'n) i llJ I B2,oo('Il'n)ll = 

~up 2is 11Ec1c(f)eik·1L2('Il'n)ll<00 }, 
JEl'lo kEQ'! , 

respectively. 

For the definition of the spaces of functions with dominating mixed smoothness 
properties, we restrict ourselves to the two-dimensional situation. We put the 
index sets 

Pj1 ,j2 = Q}1 x Q}2 , ji,h E 1No. 

As a consequence, we have the splitting 

00 00 

'll2 = LJ LJ P;1 ,J2 with 
i2=0 i1=0 

Definition 2.2. Let 1 :$ q :$ oo and ri, r2 E JR. Then the L2-Besov space 
s;:t2 B('Il'2 ) of bivariate periodic functions with dominating mixed smoothness 
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properties is defined as 

s;~~r2 B(1f2) := {! E D'(TI'2); II/ I s;~~r2 B(1f2)11 = 

( f 2U1r1 +i2r2)q II L Ck(j) eik· 1 L2(11'2)11q)1/q < 00} 
ii ,fr=O kEPJ1 ,J:i 

for q < oo and 

s;~;.;;2 B(11'2 ) .- {! E D'('II'2); Iii I s;~;.;;2 B(T2)i1 = 

. ~up 2U1r1+i2r2) II L c1:(f)eik· 1L2('11'2)11<00 }, 
J1,nENo kEPJ , 1•12 

respectively. 

Equivalent definitions of the Besov spaces using the moduli of smoothness and 
further characterizations can be found in [18, 19, 21]. 

By construction, it holds that 

and (2.2) 

The Besov spaces of bivariate functions with dominating mixed smoothness 
properties can be characterized as tensor products 

of the corresponding univariate Besov spaces for q < oo (equivalent norms). 
Here, the norm b which was used for the completion of the algebraic tensor 
product is the usual Besov norm b := II· I S~~t2 B('II'2 )11· In the sequel, we 
will use tensor product spaces where the the completion is taken due to the 
2-nuclear norm a2 ( cf. [7]) 

5s1 ,s2 B(1f2) ·= Bs1 ('If) IV. Bs2 ('If) 
2,q • 2,q '<>'a2 2,q • 

The 2-nudear norms have the ma.in advantage to be uniform crossnorms, cf. 
e.g. [7, 21]. This means (together with (2.2)) in particular that, for two 
operators P E .C(Btq('Il'), L2(TI')) and Q E .C(B~~9 ('Il'), L2 ('II')), the tensor 
product operator P ® Q given by 

(P ® Q)(J 0 g) := P(f) ® Q(g) 
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is bounded, i.e. P 0 Q E .C(s;:t2 B('Il'2), L2(11'2)), and its norm can be esti
mated as 

llP ® Q 1 c(s;:/2 n(11'2),L2('II'2))ll (2.3) 

:5 c llP I .C(Btq(1I'),L2('II'))ll llQ I .C(B;~q('Il'), L2('II'))ll 

with some constant C independent of P and Q. 

Remark. Now, the question arises how the spaces st;s2 B(11'2) are related to 
the usual Besov spaces s;:t2 B('II'2). For q = 2, the L2-Besov spaces equal the 
L2-Sobolev spaces B2,2(11') = H2(11'). In this case, we know from the results 
in [21, 25J that the spaces coincide 

5s1,s2 B('II'2) = 5s1,s2 B(11'2) 2,2 2,2 

(equivalent norms). Because of the imbeddings B2,q('Ifn) <---> B2,00 ('II'11 ) for 
1 :$ q < oo we may restrict our error estimates in the following sections to 
the most interesting case q = oo. Here, the 2-nuclear norm of the spaces 
s;:~2 B(11'2) turns out to be stronger than the original Besov norm 

what has been proved in [21]. 

3 Interpolation on Equidistant Grids 

This section is devoted to error estimates for periodic interpolation on equidis
tant grids. We can apply the concept of periodic Strang-Fix conditions on the 
fundamental interpolant in order to find such error estimates. 

Let N be a natural number and denote by 

a related set of indices. Further 

TN = { L T/k eik· ; 'f/k E «:} 
kEJN 
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denotes a corresponding set of trigonometric polynomials. The discrete Fourier 
coefficients of a. continuous function f a.re given by 

N(f) 1 '°' f (21rf) 27rikl/N ck = N L..J N e , 
lEJN 

Discrete Fourier coefficients and Fourier coefficients are connected by aliasing 

c1: (!) = L ck+mU), 
!.E'l.Ln 

as long as f E A('II'n ). We consider interpolation on equidistant grids of type 

{ 27rk } 
TN= N; kEJN. 

The continuous and 27r-periodic function AN is called a fundamental inter
polant for TN if 

( 27rk) 
AN N = 80,k, 

The associated Lagrange interpolation operator LN is defined as 

The Fourier coefficients of LN f can be easily computed: 

ck(LN/) = Nnc1:(f)ck(AN) = Nnck(AN) L Ck+mU) 
lE'U.. 

for f E A('Il'n). Finally, we denote the N -th Fourier partial sum by 

SN!= L ck(!) eik·. 
kEJN 

For cardinal interpolation, one can use the Strang-Fix conditions (20, 26] on 
the fundamental interpolant in order to characterize the reproduction of poly
nomials and therefore the order of interpolation, too. Up to now there is no 
complete periodic counterpart. 

But we can use the concept of periodic Strang-Fix conditions introduced by 
Poplau [2, 14] for L2-error estimates. Here, the behaviour of the fundamental 
interpolant is characterized by a certain decay of the Fourier coefficients of AN. 
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Definition 3.1. Let AN E A('Il'n) be a fundamental interpolant with respe.ct 
to TN. Then AN satisfies the pe.riodic Strang-Fix conditions of order m > 0 if 
for all k E JN the inequalities 

11-Nnck(AN)I :5 bolkl2N-m, 

l E 'lln \ {O}, 

hold for some sequence {b.dtezn E l2(1ln) of non-negative numbers. 

The periodic Strang-Fix conditions can be seen as the periodic counterpart of 
the strong Strang-Fix conditions for cardinal interpolation [6]. 

Theorem 3.2. Let the fundamental interpolant AN E A('Il'n) satisfy the 
pe.riodic Strang-Fix conditions of order m > 0. Let n/2 < s < m. Then there 
exists a constant C ( indepe.ndent of N) such that 

II/ - LNJ I L2{'Il"1)11 :5 C N-11 llJ I B2,00 {'Il'n)ll 
holds for all f E B:l,00('Il'n). 

Proof. STEP 1. We investigate the case J E TN first. Some computations 
and the periodic Strang-Fix conditions yield 

II/ - LN J I L2(1l'n)ll2 

= II L (c1c(f)- Nncf (f)q(AN)) eik· 1 L2('Il'n)jj2 
kE7J:" 

= II E c1c(/)eik·((1- Nnck(AN)) 
kEJN 

L Nnc1c+m(AN )eilN·) j L2(1l'n)ll2 
te?J:n \{O} 

= L lc1c(/)12(ll - Nnc1c(AN)l 2 + L INnCJc+tN(AN )12) 
kEJN lE1l" \{O} 

:5 L lc1c(f)l2lkl~m N-2m L b~. 
kEJN lE1l" 

Let 2r-l :5 N < 2r. Then 
T 

L lkl~m lck(/)12 = EL lklimrt•2t11 1ck(f)l2 

kEJN l=OkEQ'/ 

T 

:5 22mnm E 22(m-a)l 22111 L lc1c(f)l2. 
l=O kEQ'/ 
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We apply Holder's inequality and obtain 

r 

L lkl~mlc1c(f)l 2 $ 22mnm (L 22(m-s)l) sup 22ls L jc,.(!)12 
l=O l=O, ... ,r kEQl' kEJN 

$ C1N2(m-s)ll/ I B2,oo('Il'n)ll2• 

This means that, for f E TN, we proved 

where C2 does not depend on f. 
STEP 2. We investigate the general case f E B2,00 ('II'n). Because of s > n/2 

it holds that B2,00 ('Il'n) <--+ B;(i2('JI'n) <--+- A('Il'n). The interpolation is well
defined and aliasing is applicable. Using the periodic Strang-Fix conditions 
with n/2 < $ < .s and Cauchy-Schwarz inequality, it follows 

llLN(/- SN/) I L2('Il'n)ll2 

= L INnck(AN) L Ck+mU- SN!)l2 

kezn te7J,n 

L L IN11ck+rN(AN) L Ck+rN+m(/- SN/)12 

kEJ N rE7J,n lEZn 

$ C3 E L b; lkl~·' N-2•'1 L ck+mU- SN/)12 

kEJ N rezn tezn 

$ C3N-281 ll{br} I l2{1ln)l12 

L lkl~81 L lk+lNl~81 lck+lN(J-SN/)l2 L lk+rNl2281
• 

kEJN (E7l" rezn 

Next we use that for s' > n/2 

This proves 

llLN(/ - SN J) I L2('Il'n)ll2 

< C3C4N-2a'll{br} ll2(1ln)ll2 L L lk+lNl2"1 lck+lN(/-SNJ)l2 

kEJN .tezn 

$ Cs N-2s' II/ - SN f I Ht ('Il'n)ll2, 
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where H{ ('II'n) denotes the fractional order Sobolev space with the norm 

Ill I nt ('Il'n)ll2 := L (1 + lkl~)"' lc,,,(!)12. 
kE'.1Z" 

In ca.se s > s' one knows 

Ill - SN! I H2 1 ('.II'n)ll $ c6Ns'-s111 I B2,oo('II'n)ll, (3.2) 

cf. e.g. [11). This yields 

where again the constant C7 does not depend on N and f. To finish the proof, 
observe that (3.1), (3.2) and (3.3) (applied with s' = 0) imply 

II! - LNf I Lz('II'n)ll 
< II/- SNJ I L2('lfn)ll + llSNf-LN(SNf) I L2('II'n)ll 

+ llLN(f - SNJ) I L2('.II'n)ll 
=:; C N-s llJ I B2 00 ('.II'n)ll. 

' 
This proves the theorem. 0 

Remark. We note that the most constants appearing in the proof only 
depend on the dimension n and on the smoothness s of the function to be 
interpolated. The dependency on the used fundamental interpolant AN is 
reftected in the constants by the term ll{br} I l2(7ln)ll from the Strang-Fix 
conditions. 

Remark. Recall, if X is a Banach space and W a subspace of X, then the 
linear N-width is defined as 

where the infimum is taken over all subspaces UN of X of finite dimension =:; N 
and all linear operators P from X to UN. Here we are interested in X = Lz('If) 
and W the unit ball in the Nikol'skij-Besov space B~100(1I'), denoted by B~('Il'). 
Ifs> 0, then 

AN(B2(1I'),L2('Il')),.., N-6, 

cf. [9, Theorem 14.3.8). In this sense, approximation of univariate functions 
with those interpolation operators LN is nearly optimal (nearly optimal means 
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the order of approximation is correct but may be not the constants). More 
details about widths may be found in [9, 27]. 

Remark. An interesting limiting case has been observed by Popla.u [2, 
14). If AN is a fundamental interpolant which satisfies the periodic Strang-Fix 
condition of order m > n/2, then there exists a constant C (independent of 
N) such that 

holds for all f E B2,2(1rn). For a generalization in various directions, includ
ing different function spaces (defined by using decay properties of the Fourier 
coefficients), we refer to [23, 24]. 

Corollary 3.3. Let the univariate fundamental interpolant AN E A('Il') 
satisfy the periodic Strang-Fix conditions of order m > 0. Let LN ® LN be 
the interpolation operator associated with the bivariate fundamental interpolant 
AN ® AN. Let 1 < s < m. Then there exists a constant C (independent of N) 
such that 

holds for all f E B2,00 ('Il'2 ). 

Proof. Because ci.(AN ®AN)= Ck1 (AN)c~(AN), one proves easily that also 
the bivariate fundamental interpolant AN® AN satisfies periodic Strang-Fix 
conditions of order m. Then, Theorem 3.2 is applicable. O 

Example: B-Splines 

As an example, we may use the interpolation by the 21r-periodized centered 
B-Spline MN,T of order r E 1N. Its Fourier coefficients a.re known as 

1 ( 1rk)T Ck(MN,r) = N sine N , k E 'll, 

with sine t := sin t/t. The fundamental interpola.nt AN,T corresponding to the 
211"-periodic centered B-spline of order r can be computed from 

( ck(MN,r) 
Ck AN,T) := N c':!(M ) ' 

k N,r 
kE'lL. (3.4) 



Some Error Estimates for Periodic Interpolation 279 

Then, AN,r satisfies the periodic Strang-Fix conditions of order r ( cf. [14]) 
with the constants 

and 

bo={~l 
2(2r - 1) 

1 

(r - 1)! 

E(r-1)/2 
r! 

for r odd, 

for r even, 

for r = 1, 

for r > 1, odd, 

for r even, 

for l =/:- 0. Here, Ba and Es ( s E IN) denote the corresponding Bernoulli and 
Euler numbers. 

Example: Trigonometric Interpolation 

Another example is the trigonometric interpolation. The de la Vallee Poussin 
means V/S ( N, K E lN, N > K) of the Dirichlet kernel are given by 

1 N+K-1 ( l ) 
V/S(x) := 4KN L L eikx . 

l=N-K k==-l 

They a.re fundamental interpola.nts for the grid 72N. So, we have a lot of differ
ent fundamental interpolants for the grids TN (N even) belonging to different 
p~rameters K. We denote them by AN,K := VJS12 for N /2, K E IN, N /2 > K. 
Smee the de la Vallee Poussin means are trigonometric polynomials they of 
course satisfy Strang-Fix conditions of arbitrary order. But the constants of 
the Strang-Fix conditions depend on the quotient of the parameters K and N. 
For K = 1, we obtain the best constants since AN,l is only a slight modification 
of the Dirichlet kernel whose Fourier coefficients are compared with the Fourier 
coefficients of the fundamental interpolant. For K = N/2 - l, the correspond
ing de la Vallee Poussin mean is already very close to the Fejer kernel and the 
constants are much bigger (for details we refer to [23, 24]). 
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Example: Radial Basis Functions 

A nice n-va.riate example can be found in [15]. Let the n-variate radial basis 
function cp be given by its Fourier coefficients 

k E 71.,n \{O}, 

for a fixed a > d. In case a E 2IN, we obtain the periodized version of the car
dinal polyharmonic splines (10]. The associated fundamental interpolant can 
be constructed analogously to the spline case (3.4) from its Fourier coefficients 

{ 
lkl-Ct 

---'--'-'2'---- for k E 71.,n \N 'lln 
Nnck(AN ) := Lte:lZn lk + fNlz"' ' 

'"' 1 for k = 0, 
0 for k E N 'lln \ { 0}. 

Because of a > d, this fundamental interpola.nt AN,cp belongs to the Wiener 
algebra. Furthermore, it satisfies the periodic Strang-Fix conditions of order 
a with the constants 

bo = 2o: ~ (n) _1 (20: - r) 
£..., r r0tf2 a - r 
r=l 

and 

where the vector v has the components vr(l) = 6o,tr(2llrl - 1) for r = 1, ... , n. 

In addition to these examples, one can find more examples of bivariate func
tions in [13, 14] (3- and 4-direction box splines) satisfying periodic Strang-Fix 
conditions of certain order. 

4 Interpolation on Sparse Grids 

Now we want to define the interpolation operators for interpolation on sparse 
grids and give error estimates. The definition of the blending interpolation 
operator and its basic properties can be found e.g. in [l, 4]. This definition 
needs the notation of a cha.in of projectors. 

The ordering relation P $ Q for projectors holds if PQ == Q P == P. A 
family of projectors {Pj}~0 forms a cha.in if Pj $ Pj+I, j E IN0 • For two 
interpolation projectors LK and LN, the ordering LK $ LN holds if and only 
if the images Im LK C Im LN as well as the grids TK C TN are ordered. 
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Fix d E IN. By the choice N; := d 2i, we immediately insure TNi C TNi+i. 

Furthermore, we assume 

(4.1) 

This property has to be proved for every example by hand. Then, we have a 
chain 

(4.2) 

of interpolation operators. 

Given a cha.in (4.2) of interpolation operators LN;,j E 1No, for univariate 
functions. For bivariate functions, we will consider the j-th order blending 
operator defined by the j-th order Boolean sum 

j 

B; ;= 6' LNr ® LNj-r' 
r=O 

where A Ea B :=A+ B - AB. The representation of B; in terms of ordinary 
sums is known to be 

j j-1 

B; = E LN.- ® LN;-r - E LN,. ® LNj-r-1' 
r=O r=O 

5 

4 

. . . . . . . . . . . . 
3 

2 

• • 

l 

1 3 4 5 6 

Figure 1: Sparse grid 'I? for d = 1. 
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The Boolean sums have the range Im Bj = E~=O Im LNr ®Im LNi-r" They 

interpolate on the sparse grid Tj := LJ!=o TNr x TNi-r which has d2(j2i-1 +2i) 
nodes which is essentially less than the d2 22i nodes in the equidistant grid 
TNj x TNj· 

Theorem 4.1. Suppose that the interpolation operators LN,, j E lNo, form 
a chain ( 4.2) and satisfy 

with constants Ck independent off and for some fixed si, s2 with si, s2 > 1/2. 

Then in case s1 = s2 = s, we find 

for all f E S~·.:,B(TI'2 ), whereas in case s1 =/= s2, it holds that 
' 

for all f E S~~~:z B(TI'2 ). In both situations, C denotes a constant independent 
ofjandf. 

Proof. Because of s~:~2 B(1I'2 ) '--+- A('Il'2 ) '--+- C('Il'2) for Si, Sz > 1/2, in
terpolation is well-defined. The remainder (pc :== I - P) of the blending 
interpolation has the representation 

j j-1 

Bj =Liv,@ J + f@ Liv, - LLlvr@ Llv;-r + LLNr ® Llv;-r-l' 
r=O r=O 

cf. [4]. With this, the assertion follows from the triangle inequality, the unifor
mity of the norms (see (2.3)) and the assumption on the error for the univariate 
interpolation. o 

Corollary 4.2. Let the 27r-periodic fundamental interpolants AN, E A(TI') 
satisfy the periodic Strang-Fix conditions of order m > 0 with same sequence 
{ bt} of constants. The corresponding interpolation operators LN;, j E lNo, 
form a chain (4.2). Let 1/2 < si,.s2 < m. 

Then, in case s1 = s2 = s, we can estimate 
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for all f E s;;~B('Il'2 ). 

In case s1 ::/; s2, it holds that 

Ill - B;f I L2('Il'2)11 s c N;-min(si,s'.1) II/ I s;~~2 B('Il'2)11 

for all J E s;~~2 B('Il'2). In both situations, C denotes a constant independent 
of j and f. 
The same ideas a.s before yield the following estimate. It shows that the order of 
the interpolation error for equidistant grids does not improve for the smoother 
functions with dominating mixed smoothness properties in comparison to the 
isotropic case. For the functions with dominating mixed smoothness the error 
of interpolation on sparse grids is only by a. logarithmic factor worse the result 
for equidistant grids. 

Corollary 4.3. Let the univariate fundamental interpolant AN E A('Jf) 
satisfy the periodic Strang-Fix conditions of order m > O. Let LN ® LN be 
the interpolation operator associated with the bivariate fundamental interpolant 
AN ® AN. Let 1/2 < .s1 , s 2 < m. Then there exists a constant C (independent 
of N) such that 

II/ - (LN ® LN )f I L2('Il'2)1l s c N- min(si,B:l) Ill I s;~~B'l B('Il'2)11 

holds for all/ E s;:~2 B('Il'2 ). 

Example: B-Splines 

The fundamental interpolants AN,,r belonging to the 211"-periodic centered B
spline of even order r E JN satisfy ( 4.1) automatically since at the step from 
j to j + 1 only some new spline knots a.re added. Therefore, the correspond
ing interpolation operators form a cha.in (4.2). The constants for Strang-Fix 
conditions given in the previous section do not depend on N;. 

The fundamental interpolants AN;,r belonging to the 211"-periodic centered B
spline of odd order r E lN do not satisfy (4.1). For splines for the grid TN1+i 

only totally new spline knots are used compared to the j-th grid. 

Example: Trigonometric Interpolation 

The de la Vallee Poussin means AN;.K; satisfy the chain condition (4.1) only 
under certain restrictions on K; and N;. In [17), it was shown that for N; a.s 
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{ 
2j-11:-l for j > K., 

K··-
3 ·- 1 for j ~ K., 

condition ( 4.1) is satisfied. The case "' = oo is allowed. With this choice of 
the parameters Ni a.nd Kj, one can estimate the constants of the Strang-Fix 
conditions of order m uniformly by 

{ 
3m 

b ( ) for l = -1,0,1, 
l = 2 211" m 

0 otherwise. 

Example: Radial Basis Functions 

The fundamental interpolants AN;,"' constructed from the radial basis function 
ip satisfy the periodic Strang-Fix conditions with constants not depending on 
Ni. Now we restrict ourselves to the univariate case. One can :find constants 
ak, k = 0, ... , Nj+1 - 1, such that 

l E 'll, k = 0, ... , Nj+1 - 1. 

These constants are ao = 1, aN, = 0, and ak ::: 1/2 (l:le7l lk + 2£Nil-a)/ 
(Lle7.l lk + lN;l-a), otherwise. This yields the chain property (4.1), cf. [12). 
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