
I JOURNAL OF
COMPUTATIONAL AND
APPLIED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 85 (1997) 145-167

Parallel iterative linear solvers for multistep
Runge-Kutta methods

Eleonora Messinaa, Jacques J.B. de Swarth,*, 1, Wolter A. van der Veenb,I
• Dipartimento di Matematica e App/icazioni 'R. Caccioppoli' University of Naples 'Federico lJ' Via Cintia,

I-80126 Naples, Italy
bCWI, P. 0. Box 94079, 1090 GB Amsterdam, The Netherlands

Received 20 September 1996; received in revised form 20 July 1997

Abstract

This paper deals with solving stiff systems of differential equations by implicit Multistep Runge-Kutta (MRK) methods.
For this type of methods, nonlinear systems of dimension sd arise, where s is the number of Runge-Kutta stages and d
the dimension of the problem. Applying a Newton process leads to linear systems of the same dimension, which can be
very expensive to solve in practice. With a parallel iterative linear system solver, especially designed for MRK methods,

we approximate these linear systems by s systems of dimension d, which can be solved in parallel on a computer with s
processors. In terms of Jacobian evaluations and LU-decompositions, the k-step s-stage MRK applied with this technique
is ons processors equally expensive as the widely used k-step Backward Differentiation Formula on 1 processor, whereas
the stability properties are better than that of BDF. A simple implementation of both methods shows that, for the same
number of Newton iterations, the accuracy delivered by the new method is higher than that of BDF.

Keywords: Numerical analysis; Newton iteration; Multistep Runge-Kutta methods; Parallelism

AMS classification: Primary: 65L05; Secondary: 65F05; 65F50

l. Introduction

For solving the stiff initial value problem (IVP)

y'(t) = f(y(t)),

a widely used class of methods is that of the backward differentiation formulae (BDFs)

Yn =(KT 0 /)y(n-l) + h,JJJ(Yn).

• Corresponding author. E-mail: jacques@cwi.nl
1 Supported by Dutch Technology Foundation STW, grant no. CWI22.2703.

0377-0427/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
Pll S0377-0427(97)00135-0

(1)

146 E. Messina et al. /Journal of Computational and Applied Mathematics 85 {1997) 145-167

Here, © denotes the Kronecker product, the vector y<n- 1 > is defined by (Y!-k, . .. , YI- 1 l, where yj
approximates the solution at t = tj and k is the number of previous step points that are used for the
computation of the approximation in the current time interval. The stepsize tn+l - tn is denoted by
hn. The scalar {3 and the k-dimensional vector K contain the method parameters. They depend on
h<n>, which is the vector with k previous stepsizes defined by h(nl:=(hn-k+l>···,hn?· In the sequel,
I stands for the identity matrix and e; for unit vector in the ith direction. The dimensions of I and
ei may vary, but will always be clear from the context. For example, the popular codes DASSL [16]
and VODE [2] are based on BDFs. A drawback of BDFs is the loss of stability if the number of
step points k increases. As a consequence of Dahlquist's order of barrier, no A-stable BDF can
exceed order 2. Moreover, BDFs are not zero-stable for k > 6.

A promising class of methods that can overcome these drawbacks of BDFs are the multistep
Runge-Kutta (MRK) methods, which are of the form

(2)

where Y,, is the solution of the equation

R(Y,,) = 0, R(Y,,) := Y,, - (G ® l)ytn-I) -hn(A ®l)F(Y,,). (3)

Here, Y,, is the so-called stage vector of dimension sd, whose components Yn; represent approxima
tions to the solution at t=tn-i +c;hn, where c:=(c1,. .. ,cs)T is the vector of abscissae and sis the
number of Runge-Kutta stages. The vector F(Y,,) contains the derivative values /(Y,,;). The vectors a
and x, and the matrices A and G contain method parameters and are of dimension s x 1, k x 1, s x s
and s x k, respectively. These parameters and the abscissae c; depend on h(n). We remark that a way
of circumventing this dependence on h(n) is interpolating the previous step points, so that they are
equally spaced. However, this strategy adds local errors and does not allow good stepsize flexibility,
see [17, p. 68].

Stability of MRKs has been investigated for fixed stepsizes in the literature. Even for large values
of k, these methods have 'surprisingly' good stability properties [10, p. 296]. For example, MRKs of
Radau type with s = 3 remain stiffly stable for k~28 and have modest error constants [17, p. 13].

A drawback of using MRKs is the high cost of solving the nonlinear system (3) of dimension
sd every time step. Normally, one uses a (modified) Newton process to solve this non-linear sys
tem. This leads to a sequence of iterates Y.z(0l, f.i(I\ ... , y~m) which are obtained as solutions of the
sd-dimensional linear systems

(4)

where Jn is the Jacobian of the function f in (1) evaluated in tn, the starting vector Y~0> is
defined by some predictor formula, and r,,<ml is accepted as approximation to Y,,. If we use Gaussian
elimination to solve these linear systems, then this would cost ~s3d3 arithmetic operations for the
LU-decompositions.

In order to reduce these costs, one can bring the Newton matrix I -A© hnJn to block diagonal
form by means of similarity transformations [3] resulting in

(I - r- 1AT © h,,Jn)(X;j) -x;j-l)) = -cr- 1 ©I)R(:i:j-ll),

v(J) -(TIV\f\V(j) 1· - 1 2 m
,1. n - \C:I Y1-n ' - ' '· • ·,. ~ (5)

E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167 147

Here, r- 1AT is of (real) block diagonal form. Every block of r- 1AT corresponds with an eigenvalue
pair of A. If the eigenvalue of A is complex, then the block size of the associated block in r- 1AT
is 2, if the eigenvalue is real, then the block size is 1. The LU-costs are now reduced to ~d3 and
lf-d3 for the blocks of size 1 and 2, respectively. Hairer & Wanner used this approach in their
code RADAU5 [11]. The blocks of the linear system (5) are now decoupled, so that the use of a
processors reduces the effective costs to lf-d3, where <I is the nwnber of blocks in r-1AT. Notice
that pairs of stage values can be computed concurrently, i.e. it is possible to do function evaluations,
transformations and vector updates for pairs of stages in parallel if <T processors are available.

By exploiting the special structure of the 2d-dimensional linear systems in (5), it is possible to
reduce the costs of solving these systems (see, e.g., [l]). Let ej ± i17j be an eigenvalue pair and
assume that the matrix of the corresponding linear system is of the form

[/ - ejhnln -rvhnJn l ·
rlJhnJn I - ejhnJn

(6)

One easily checks that the inverse of (6) is

(I® r-1) [/ - ejhnln 1'fihnln l ·
-rfjhnJn I - e1hnJn

(7)

Using a processors, the (!J(d3) costs of this approach are ~d3 (2d3 for the computation of 1; and
~d3 for the LU-decomposition of I'). On <J processors, and MRK. using this implementation strategy
is 4 times more expensive in terms of (!J(d3) costs than an BDF, for which we only have to solve
linear systems with a matrix of the form I - hnf3Jn.

In this paper we reduce the implementational costs of MRKs further by following the approach
of (19]. Here, the matrix A is approximated by a matrix B with positive distinct eigenvalues and the
iterates Y~i> in (4) are computed by means of the inner iteration process

(I - B® hnJn)(Y;J.•> - y"U,v-l)) =-(I -A® hnJ,,)Y;j.v-1) + C~J- 1 >,

C~J-l> :=(I -A® hnln)y;j-ll -R(f.i<J-l)).
(8)

The index v runs from l to r and ynU,r> is accepted as the solution y;,u> of the Newton process (4).
Furthermore, y;,u.o> = y;,u- 1>. Since the matrix B in (8) has distinct eigenvalues, applying a similarity
transfonnation Q that diagonalizes B, i.e. BQ = QD where D is a diagonal matrix, leads to:

(I - D@ hnJ,,)(X,.(j,v) -X~j,v-1)) =-(I - Q-IAQ ®hnJ,,)X~j,v-1)

(9)

The system (9) consists of s decoupled systems of dimension d which can be solved in parallel.
Every processor computes a stage value. The costs for the LU-decompositions are now reduced to
~d3 on s processors. Notice that in order to ensure the non-singularity of the matrix (/ - D ® hnJ,,)
the positiveness of the eigenvalues of B is required. In analogy with (19] we will refer to (8) as
PILSMRK., Parallel Linear System solver for Multistep Runge-Kutta methods. The combination of
modified Newton and PILSMRK. will be called the Newton-PILSMRK. method.

We will discuss several strategies to choose B such that the inner iterates in (8) converge quickly
to the Newton iterates in (4). Experiments show that, if we apply more than 2 Newton iterations,

148 E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167

then only l inner iteration suffices to find the Newton iterate. This means that in terms of LU
decompositions and Jacobian evaluations a k-step, s-stage Newton-PILSMRK on s processors is as
expensive as a k-step BDF on I processor, whereas the stability properties of Newton-PILSMRK
are better. If both methods perform the same number of function evaluations, then the accuracies
delivered by Newton-PILSMRK are also higher than that of BDF. It turns out that the convergence
behavior of the inner iteration process becomes better if k increases. In particular, the inner iteration
process for MRKs converges faster than that for the one-step RK methods proposed in [19].

The outline of the paper is as follows. Section 2 briefly describes how to determine the MRK
parameters. In Section 3 we investigate the convergence of the inner iteration process for several
choices of the matrix B, and we consider the stability of the overall method in Section 4. Numerical
experiments in Section 5 show the performance of the proposed methods on a number of test
problems. Finally, we draw some conclusions in Section 6.

2. Construction of MRKs

A large class of multistep Runge-Kutta methods consists of multistep collocation methods, which
were first investigated by Guillou and Soule [8]. Later, Lie and Nersett [13] considered the MRKs of
Gauss type and Hairer and Wanner [10] those of Radau type. In the useful thesis of Schneider [17]
on MR.Ks for stiff ODEs and DAEs a lot of properties of MR.Ks and further references can be found.

For the convenience of the reader we briefly describe here how one can compute c, G and A.
Alternative ways of deriving these parameters can be found in [10, 17]. In a multistep collocation
method, the solution is approximated by a so-called collocation polynomial. Given y<n), h(n) and c,
we define the collocation polynomial u(t) of degree s + k - I by

u(tj)=y1, j=n-k+l, ... ,n,

u'(tn + C;hn) = J(u(tn + c;hn)), i = I, ... ,s.

The stage vector Yn is then given by (u(tn+c1h,.?, ... ,u(tn+cshn?)T. In order to compute u(t), we
expand it in terms of polynomials </>; and t{t; of degree s + k - I, given by

</>;(-cJ) = l>;1, j = I, ... , k, i = 1, ... , k,

cf>;(cj)=O, j=l, ... ,s, i=I, ... ,k,

l/t;(-c1) = 0, j =I, ... ,k, i =I, ... ,s,

ih'(c1)=l>;j, j=l, ... ,s, i=l, ... ,s.

Here, b;1 denotes the Kronecker tensor, r is the dimensionless coordinate (t - tn)/h,. and r:1 =
Ctn-k+J - tn)/h,.,j = 1,. .. ,k. In terms of these polynomials the expansion of u(t) is given by

k s

u(t,. + 1:h) = L <Pi ..) Yn-k+j + hn L t/IJ(1:)u' (tn + Cjhn)
j=l J=l

k s

= L </JJ(-r:)Yn-k+J +hn L t/IJ(r:)J(u(t,. + Cjhn)),
j=l J=l

E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167 149

Clearly, the MRK parameters read Gij = </>j(c1), Aij = 1/1.;(ci), ai = c/>j(l) and x = 1/1.;(I). Notice that
the order of the approximations u(tn + cih11), the so-called stage order of the MRK, is s + k - 1.

To construct the polynomials <f>i(r) and lf!j(r), we expand them as

s+k-1 s+k-1

</>kc)= I: d!,irn and r/li(•) = L d~.irn.
m=O m=O

Substituting the first expression into the defining conditions yields

T1 ,2
I

,3
I

r,+k-1
I

,2 ,3 ~+k-1
dt,

l 'Ck k k

(:) =e,. (10)
0 2c1 3c2 (s + k - l)c[+k-2

I

dt+k-1,i

0 l 2cs 3c2
s (s + k - I)c:+k-2

The matrix of order s + k in (10) will be denoted by W. For the polynomials •M -r:) we derive
analogously

(
dt.1)

W I/I: =ek+i·

ds+k-1,i

To compute the A and the G, we evaluate c/>l•) and l/Jkr) in r:=ci for j= l, ... ,s, yielding

<Mc1) = [1 Cj ... crk-11w-1ej,

,/,() [1 s+k-11w-1
"'' ci = c1 · · · cj ei+k·

Introducing

V= [i
the matrices G and A are respectively given by

G= vw-1[e1 ·· ·ek] and A= vw-1[ek+1 ···ek+sl

We now construct the abscissae vector c such that we have superconvergence in the step points.
Only stiffly accurate Multistep Runge-Kutta methods will be considered, i.e. Cs = l. This means
that we can omit step point formula (2) and obtain Yn+L from Yn+1 = (e'J ®l)Yn. A well known
subclass of stiffly accurate MRK methods are the multistep Rad.au methods, which are A(ix)-stable.

150 E. Messina et al. !Journal of Computational and Applied Mathematics 85 (1997) 145-167

Their set of collocation points ci, ... ,cs-t is given (see [10, p. 294]) as the roots in the interval
[O, 1] of

k 1 s 2 2::--+ 2::-- =0, i= I, ... ,s-1.
j=l C; - 'rj j=l C; - Cj

j=/i

We call the order of approximation Yn+i to y(tn+i) the step point order or, more loosely, the order
of the MRK. This choice of c leads to step point order 2s + k - 2.

The appendix to this paper lists the MRK. parameters for sE { 2, 4} and k E { 2, 3}.

3. Convergence of the inner iteration process

We now discuss the choice of the matrix B in (8) such that the inner iteration process converges
rapidly. If we define the inner iteration error by e~i· •l := ~i.•> - ~j), then (4) and (8) yield the
recursion

e(},v) = Z(h .l)e(J,v-I)
n n n n •

Applying the method to Dahlquist' s test equation

y'=A.y, (11)

this recursion reduces to •

eU· •l = Z(z)e<i· v- t l n n n , (12)

Let µ(·) be the logarithmic nonn associated with the Euclidean norm, which can be expressed as
µ(S) := ~A.max(S +ST), where A.na.xO denotes the algebraically largest eigenvalue of a matrix (see,
e.g., [9, p. 61]). For dissipative problems µ(Jn) ~O. The following lemma states that the inner
iteration process converges for dissipative problems at least as fast as for the 'most unfavourable'
linear test equation. For the proof of this lemma we refer to [15].

In Sections 3.1 and 3.2 we treat two choices for the matrix B that make Z(zn) 'small' in some
sense. To measure Z(z11) we use the following quantities:
- pCJl(zn), the (averaged) rate of convergence after j iterations in Zn, defined by

- p';f,], the stiff convergence rate after j iterations, defined by

Zoo will be referred to as the stiff amplification matrix.

E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167 151

Table I
Values of pU) for several PILSMRK(L,J) methods with constant stepsizes

s k Order j=l j=2 }=3 }=4 J=oo

2 3 0.24 0.21 0.20 0.19 0.18
2 4 0.19 0.17 0.16 0.16 0.15
3 5 0.17 0.15 0.15 0.14 0.14

4 7 0.59 0.54 0.53 0.52 0.51
2 8 0.54 0.50 0.49 0.48 0.47
3 9 0.52 0.48 0.47 0.46 0.44

8 I 15 1.03 0.94 0.91 0.90 0.86
2 16 0.98 0.92 0.89 0.88 0.84
3 17 0.97 0.92 0.89 0.87 0.82

- pUl, the maximal convergence rate after j iterations, defined by

Since all eigenvalues of the matrix B are positive, all the poles of the function Z(z) are in the
right-half complex plane. Consequently, zU>(z) is analytic in the left-half complex plane and on the
imaginary axis. Therefore, we can invoke the maximum principle:

(It suffices to confine ourselves to the positive imaginary axis, because JJZ(z)ll is symmetric with
respect to the real axis.) Taking the jth square root on both sides, it follows that

µUl = max µU>(ixn).
Xn~O

Since A depends on h<n>, B also depends on h(n). Consequently, the procedure for constructing B has
to be carried out every time h(n) changes and should not be too expensive.

3.1. Constructing B: Crout decomposition

Let L be the lower triangular matrix of the Crout decomposition of A, i.e. L is lower triangular
such that L - 1 A is upper triangular with ones on the diagonal. As proposed in [20], we choose
B = L. The stiff amplification matrix takes the form I -L-1A, which is strictly upper triangular.
Consequently, p<,fj = 0 for j ~ s. For reasons that will become clear in Section 3.2, we will refer to
this inner iteration process as PILSMRK(L,/).

Table I lists the values of pU> for a few PILSMRK.(L,/) methods for the case with constant
stepsizes. As a reference we included the one-step Radau IIA methods. From this table we see
that, for the worst-case situation, the convergence of the MR.Ks is better than that of the one-step
Runge-Kutta methods.

152 E. Messina et al I Journal of Computational and Applied Mathematics 85 (1997) 145-167

0.5

t

0.1

-2

j=L·:~.
j = 2:
j=3: :--
j=4: •···
j = 00 ::-

.. , . .

~ ·-·- ---··-·-·-·-·~ --- - --~--

'••
8

Fig. 1. p<il(ixn) for PILSMRK(L, /) with k = 3, s = 4.

In practice, the rate of convergence in other points of the complex plane is also of interest.
Fig. 1 shows pU>(zn) along the imaginary axis Zn = ixn, Xn E IR for the PILSMRK(L,J) method with
(k = 3, s = 4) and constant stepsizes for j = 1,2,3,4 and j = oo. From this figure we clearly see
that p'r},/ = 0 for j ~ s.

In order to see the effect of variable stepsizes on the convergence rate, we define

W; = hi/h;_1 for i = n - k + 2,. . .,n

and plotted µUl as function of ro; for several PILSMRK. methods. Here, ru; E [0.2, 2], since in an
actual implementation, a reasonable factor by which subsequent stepsizes are multiplicated lies
in this interval. These plots revealed that the influence of variable stepsizes on the rate of con
vergence is modest. E.g., for k = 2, s = 4, p<i> E [0.45, 0.58], Vj, and for k = 3, s = 4, p<n E
[0.495, 0.525], VJ.

3.2. Constructing B: Schur-Crout decomposition

Before approximating the matrix A by the lower factor of the Crout decomposition, we first
transform A to 'a more triangular form', the real Schur form. The next theorem shows that this
leads to a damping of the stiff error components that is optimal in some sense. Since most MRKs
of interest have matrices A with at most one real eigenvalue, we restrict ourselves to this class. The
theorem makes use of the following definition.

E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167 153

Definition 2. For any s x s matrix A with at most one real eigenvalue the matrix class .AA consists
of matrices M with the property that there exists an orthogonal matrix U such that

i = l, ... ,s/2, for s =even,

i = 1, ... , (s - l)/2, for s = odd.

Theorem 3. Let A have at most one real eigenvalue. There can be constructed a matrix BE.lt.-1
for which

(i) p<.,}c} = 0 for j> 1,
(ii) VME.AtA: p~ ~ III - M- 1All2.

Proof. Since there is freedom in the real Schur form of the matrix A, we first specify how we
construct it. Let y be the vector with eigenvalues of A, and (and 11 be the real and imaginary part
of y, respectively, i.e. y = ~ + i17. Order the components of y as follows (we will motivate this choice
later):

(13)

In addition, if l11f/~;l=l1J?+ 1 /(;+1I, then 11;>0. This sequence is such that, ifthere is a real eigenvalue,
then it has the lowest index in y and complex eigenvalues are ordered in conjugated pairs by
increasing value of 11J / ~j; the eigenvalue with positive imaginary part comes first within a pair.

Let eJ + ie) be the eigenvector belonging to y1, such that lleI + iej\\ 2 = 1 and e)i = 0. Define

E [r i r i r i} = e1 e1 e3 e3 · · · es-1 es-1 '

if A has only complex eigenvalues, and

if A has one real eigenvalue with eigenvector er. One easily verifies that the matrix E- 1 AE is block
diagonal with 2 x 2 blocks

[~· -~j
Y/j]
(1 ,

and one block equal to ~ 1 if 'Ii = 0. We orthononnalize the columns of E by a Gram-Schmidt
process, i.e., we construct a lower block triangular matrix K such that EK is orthogonal. This matrix

EK transforms A to a matrix H:

(14)

Since K is lower triangular and E- 1AE is block diagonal, H is lower block triangular. We now
rotate the diagonal blocks of H by means of a matrix e given by

e = diag(e1), 81 = 1 if f/1 = 0.

154 E. Messina et al. !Journal of Computational and Applied Mathematics 85 (1997) 145-167

Here, jE{2,4, .. . ,s - I} if '1i = 0, and j E {1,3, .. . ,s - 1} if 171 =tO. We will select the angles f)j
such that the second assertion of the theorem will be fulfilled. If we define S := e-1 He= UTAU,
with U :=EK@, then S is the desired Schur form of A. We denote the lower factor of the Crout
decomposition of S by L. Setting B := ULUT yields a stiff amplification matrix that is similar to
I - L-1 S. Consequently, BE.4tA and Zlx, vanishes for j > l, thereby proving the first part of the
theorem.

We choose the parameters ~- such that p~l = max {I {)1 I} is minimized. A straightforward analysis
shows that

{). = -S· ·+1/S J],)),}'

where

Sj,J = ! ((H1,1 -HJ+1,J+1)cos(281) + (-H1,;+t - H;+t,;) sin(281) + (H1,1 + H1+1,;+1)),

Sj,J+I = ! ((HJ+l,J + HJ,J+l) cos(281) + (H;,J - H1+1,J+1) sin(2&1) + (HJ,J+I + H1+1.j)),

and the diagonal blocks of H and S are of the form

[:+1
·; :+1·;+ ~ 1] and

J ,] J ,)

Using Maple [4] we established that J'!91J is minimized for

H1,1H1+1,1 + HJ.J+1HJ+I.J+1 + .jdet(H)(JJHJJ}- 2det(H))
81 = arctan 2 2 mod n,

H1+i,J + HJ+l,J+I - det(H)

(15)

where 11 · llF denotes the Frobenius norm. Using these values for rJ1 in the construction of B leads to
the second assertion of the theorem. D

Remarks
- Applying a similarity transformation Q such that BQ = QD, we again arrive at scheme (9). There

is freedom in the choice of the transformation matrix Q that diagonalizes B. If X is a matrix
with eigenvectors of B, and I: and Pare diagonal and permutation matrices, respectively, then for
every matrix Q of the form

Q=ITP, (16)

we have that BQ= QD. Starting with a fixed matrix X, we detennine I: and Pin (16) such that
the elements of Q and Q- 1 are not too large.

- Unlike for the usual eigenvalue problem, where the eigenvalues and eigenvectors are unknown,
here we are faced with the problem of computing a real Schur form, given the eigenvalues
and eigenvectors of A. The proof serves as a recipe how to construct B. We remark that the
construction of the real Schur form is not developed to be cheap, but such that we are able to
exploit the freedom in the real Schur form.

- Another approach for finding a suitable matrix B, based on rotations that minimize p(l>, can be
found in [18].

E. Messina et al I Journal of Computational and Applied Mathematics 85 (1997) 145-167 155

Table 2
Values of p<JJ for several PILSMRK(L, U) methods with constant stepsizes

s k Order J=l }=2 j=3 j=4 J=oo

2 3 0.24 0.21 0.20 0.19 0.18
2 4 0.18 0.16 0.16 0.15 0.15
3 5 0.15 0.14 0.13 0.13 0.13

4 1 7 0.55 0.49 0.47 0.47 0.44
2 8 0.50 0.45 0.43 0.43 0.41
3 9 0.47 0.42 0.41 0.40 0.39

8 1 15 0.91 0.78 0.74 0.72 0.65
2 16 0.88 0.76 0.72 0.70 0.62
3 17 0.86 0.74 0.70 0.68 0.61

- The linear system solver resulting from this Schur-Crout approach will be referred to as PILSMRK
(L, U), where the U indicates that we have transformed A before approximating it by L.

We now illustrate the idea that moved us to sort the eigenvalues as in (13). For simplicity of
notation, we assume here that s = 4. If the first order expansion of Z(z11) for small z11 is given by

Z(zn) := ZnZo + <9(z;),

then Z0 =A - B. It can be verified that for the Schur-Crout approach Z0 is of the form

lo C12 o
0 (22 0

Zo=U
0 (32 0

0 (42 0

0 I Q T
U,

(34

(44

where

In order to keep the lower triangular part of Z0 as small as possible, the best we can do is sorting
the eigenvalues such that those with the smallest value of 11U~k come first.

Table 2 and Fig. 2 are the analogues of Table I and Fig. I for PILSMRK(L, U). In Fig. 2 we
clearly see that p(j} vanishes for j > I. The worst-case p(j)-values in Table 2 are smaller than those
in Table 1. The difference between PILSMRK.(L,J) and PILSMRK(L, U) becomes larger in favour
of PILSMRK.(L, U) as s increases. This. can be understood by realizing that for the Crout option,
we approximate the matrix A with s2 parameters by a matrix B with !s(s + I) entries, whereas for
the Schur-Crout case, the matrix urAu with !s(s + 1) + l nonzero entries, where l is the number
of complex conjugated eigenvalue pairs, is approximated by ur BU with ls(s + 1) parameters. The
extra price that we have to pay is the construction of the real Schur decomposition of A every time
roi changes for some j. Since in practice s«d, we do not consider this as a serious drawback.

The matrices D and Q that result from the Crout and Schur-Crout approaches are given in the
appendix to this paper for several values of k and s.

156 E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167

0.5

t

0.1

4. Stability

., '
·::-:- ... ~'.:::-. - -

-2 0 4

j =l: .. ~.
j = 2:
j = 3:
j = 4:
j==oo:-

8

Fig. 2. pU\ixn) for PILSMRK(L, U) with k = 3, s = 4.

We now investigate the stability of the corrector formula (3) and the PILSMRK method given
by (8) for test equation (11) solved with constant stepsizes h. We only consider stiffiy accurate
methods, i.e., Yn = (eI ®l)Y~m,r).

Following [17], we write (3) in the form

where the (k - 1) x k matrix N is given by

0 1 0

N=

0
1
0

0

0
I

The stability region is defined by

Y := {z EC I p(M(z)) < 1 },

z := h).,

(17)

E. Messina et all Journal of Computational and Applied Mathematics 85 (1997) 145-167 157

where p(·) denotes the spectral radius function. We use the quantity j)(mr) to measure the stability
region (see [10, p. 268]), where

D := - inf {Re(z) I z fl. 9'}.

In practice, the PILSMRK method will be used to solve the corrector only approximately. Therefore
we do not attain the stability of the corrector. For conducting a stability analysis for the PILSMRK.
methods we assume that in each step m outer and r inner iterations are carried out. In addition
we assume that the predictor is only based on the stage vector in the previous step point,

y:(O,r) = (P '°' J)Y.(m,r)
n 'Cl n-1 •

where P is ans x s matrix. From (12) and (3) we derive a recursion in v:

~j.•)=Z(z)Y~j,v-J) +(I -zB)-1Gytn- 1>.

An elementary manipulation in which we use y:u.o>= y:u-t,rl leads to a recursion in;·· , n n ' ~

y~j,rl=zr(z)Y;j-1,r) + (/ - zr(z))(J - zA)-1Gy<n-1>.

Substituting (18) yields the following recursion in time:

~m.r>=zmr(z)P~.~r + (J - zm'(z))(/ - zAr1aycn-1>,

which we write in the form

From (19) we see that

Since we restrict ourselves here to stiffly accurate methods,

<mr> [N l
Ml 1 = TM(mr) '

es 21

(mr) [OJc-1,s l
M12 = TM(mr) '

es 22

(18)

(19)

where Oij denotes an i x j zero matrix. Notice that this linear stability analysis does not distinguish
between outer and inner iterations. In analogy with (17) we define the stability region after mr
iterations by

y(mr) := {z EC j p(M(mr)(z)) < 1}

and the stability measure

i)<mr>:=-inf{Re(z)jz '/. ycmr>}.

158 E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167

Table 3
Values of f,<mr> for PILSMRK(L,J) with k steps and s stages

s k mr=l mr=2 mr=4 mr=6 mr=8 mr=10 mr=20 mr=oo

2 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

3 0 0.0094 0.0823 0.0838 0.0838 0.0838 0.0838 0.0838
4 0 0.3435 0.4601 0.4610 0.4610 0.4610 0.4610 0.4610

4 * * 0 0 0 0 0 0

2 * * 0 0 0 0 0 0
3 * * 0 0 0.0006 0.0021 0.0025 0.0025
4 * * 0 0 0.0120 0.0180 0.0192 0.0192

8 1 0 0 0.0677 0.0480 0.0239 0.0103 0 0
2 0 0 0.0624 0.0405 0.0188 0.0076 0 0

3 0 0 0.0590 0.0363 0.0162 0.0064 0 0
4 0 0 0.0565 0.0335 0.0145 0.0057 0.0004 0.0003

Table 4
Values of f>(mr) for PILSMRK(L, U) with k steps and s stages

s k mr== 1 mr=2 mr=4 mr=6 mr=8 mr=IO mr=20 mr=oo

2 I 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0.0216 0.0827 0.0838 0.0838 0.0838 0.0838 0.0838
4 0 0.3762 0.4605 0.4610 0.4610 0.4610 0.4610 0.4610

4 * * 0.2214 0 0 0 0 0
2 * * 0.2239 0 0.0001 0 0 0
3 * * 0.2784 0 0.0031 0.0030 0.0025 0.0025
4 * * 0.3474 0.0001 0.0169 0.0194 0.0192 0.0192

8 1 0 0.1060 0.0636 0.0254 0.0212 0.0101 0 0
2 0 0.1056 0.0557 0.0227 0.0179 0.0080 0 0
3 0 0.1051 0.0510 0.0210 0.0161 0.0075 0 0
4 0 0.1046 0.0477 0.0199 0.0152 0.0075 0.0003 0.0003

It is clear that

Inn iJ.mri ==:D.
mr->oo

Tables 3 and 4 list .D<mr>-values for the k-step s-stage MRK. of Radau type for kE{l,2,3,4} and
s E {2,4,8} with PILSMRK.(L,l) and PILSMRK(L, U), respectively. For s~4, we used the predic
tor that extrapolates the previous stage values, i.e. we determined P in (18) such that ~(O,r) has
maximal order. Since extrapolating 8 stages leads to very large entries in P, the predictor for the
8-stage methods was chosen to be the last step value predictor. If i)<mr) > 4, then this is indicated
by*·

E. Messina et al. /Journal of Computational a:nd Applied Mathematics 85 (1997) 145-167 159

25

...... ·.

20

15 --~·-:_·- -·-

10

5

~
'--"' 0 s mr=oo
.......

-5 '.

-10 "·
I

,.,·'mr=5
-15

··mr=3

-20
··· ····

.

-25
-5 0 5 10 15 20

Re(z)
25 30 35 40

Fig. 3. g<mrl for PILSMRK(L, U) with k=3, s=4.

The j)Cmrl_values for BDF are independent of mr, because for the linear test problem the corrector
equation is solved within 1 iteration. Fork= 1,2,3 and 4 these values are 0, 0, 0.0833 and 0.6665,
respectively.

From these tables we see that for s~4 the stability of PILSMRK(L,J) is better than that of
PILSMRK(L, U). For s=8 the D-values are comparable. Relatively to its order, the stability of
PILSMRK is much better than that of BDF. As expected, we see that increasings and decreasing k
improves the stability of MRK. If we solve the corrector equation only approximately, then sometimes
the stability of the resulting method is even better than that of MRK. For s=4 and mr~2, the method
is not stable, due to the extrapolation predictor, which is very unstable as stand-alone method. Notice
that the ..B< 00 l-values are the values for the underlying MRK corrector.

To get an idea of the shape of g<mrl, Fig. 3 shows gCmrl for PILSMRK(L, U) with 3 steps and 4
stages, where mr E {3, 5, oo }.

5. Numerical experiments

In this paragraph we study the performance of Newton-PILSMRK numerically for more difficult
problems then the linear test problem. We conduct three types of experiments. Firstly, we investigate
how many inner iterations PILSMRK. needs to find the Newton iterate. For this objective, we imple
ment Newton-PILSMRK with fixed stepsizes, a fixed number of Newton and PILSMRK iterations
per step and fixed values of s and k.

160 E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167

Secondly, we compare the Newton-PILSMRK method with a BDF formula using modified Newton.
Since we expect that both methods will benefit to the same extent from control strategies (i.e.
dynamic Newton iteration strategy, stepsize control, etc.), we again perform this experiment using
fixed values of h,s,k,r and m. For a comparison of IvfRK. codes with one-step Runge-Kutta codes
and BDF codes, we refer to Schneider [17], who gives an excellent overview of this subject.

Finally, the parallel performance of Newton-PILSMRK will be investigated.
Two problems from the 'Test Set for IVP Solvers' [14] are integrated. Our first test example

is a problem of Schafer (called the HIRES problem in [10, p. 157]) and consists of 8 mildly-stiff
non-linear equations on the interval [5, 305]. (We adapted the initial condition here such that the
integration starts outside the transient phase.) We used stepsize h= 15. The second test problem
originates form circuit analysis and describes a ring modulator. We integrate this highly stiff system
of 15 equations on the interval (0, 10-3] with stepsize h=2.5 x 10-1• Homeber [12] provided this
problem.

For s > 1 we implemented the extrapolation predictor as defined before, i.e. based on the previous
stage vector. For BDF we used the last step point value as predictor. We tried extrapolation of
more step points, but this did not give satisfactory results for both test problems. The starting values
y 1, y2, ••• , Yk- i were obtained using the 8-stage Radau IIA method, in order to be sure that the
integration is not influenced by some starting procedure. In the implementation of BDF we solved
the nonlinear equation of dimension d with modified Newton, using m iterations per time step.

In the tables we list the minimal number of correct digits cd of the components of the numerical
solution in the endpoint, i.e. at the endpoint, the absolute errors are written as io-cd. Negative cd
values are indicated with *· The numbers of stages, steps, inner and outer iterations are given by
s, k, r and m, respectively.

Tables 5 and 6 show that the PILSMRK iterates for r= I are (almost) of the same quality as the
Newton iterates, provided that we perfonn more than 2 Newton iterations.

We also see that the performance of PILSMRK(L, U) is comparable to that of the (L,J) vari
ant. Although PILSMRK(L, U) converges faster than PILSMRK(L,J), the latter has better stability
properties for s ~ 4. Apparently, these effects neutralize each other for these test problems. However,
Tables 1-4 indicate that PILSMRK(L, U) can become better than PILSMRK(L,/) for s>4.

For the 4-stage Newton-PILSMRK, the k=3 results are not better than the k=2 results. Performing
not more then 10 Newton iterations, which is not sufficient to solve the corrector equation, is
responsible for this. Experiments confinned that using more than 10 iterations for the 3-step 4-stage
:.1RK yields higher accuracies than for the 2-step 4-stage method.

From comparing Table 7 with Tables 5 and 6 we learn that Newton-PILSMRK reaches higher
accuracies than BDF for the same number of Newton iterations. However, if we want to solve
the corrector equation entirely, one would have to perform more Newton iterations for Newton
PILSMRK than for BDF, since the latter is of lower order. Solving the ring modulator, BDF suffers
from stability problems for k = 6, whereas the methods with k ~ 4 give cd-values, that might be too
low in practice.

For a fair comparison of BDF with the new method one should talce into account the costs of the
Butcher transformations as well. Experiments in [20, Table 4.4], show that for the ring modulator
problem, these costs are less than 10%. Since the sequential costs ons processors are C9(sd) for the
transformation costs, (J)(d2) for the forward-back substitutions and (J)(d 3) for the LU-decompositions,
we expect that the contribution of the transformation costs will rapidly decrease for larger problem

M

~ s·
I:)

~
Table 5 !:)

Results of PILSMRK(L,l) on test problems
,_
.._
~

HIRES Ring Modulator
;;:
3

k m=l m=2 m=3 m=4 m=IO m=I m=2 m~3 m=4 m=lO
~

s r
.....
~

2 2 I 3.3 3.7 4.2 4.7 4.9 * 2.8 3.9 3.8 3.8 9
2 3.2 3.8 4.3 s.o 4.9 * 3.6 3.8 3.8 3.8 ~

IO 3.2 3.8 4.3 5.0 4.9 * 3.6 3.8 3.8 3.8 i;:

§
3 l 3.3 3.7 4.2 4.6 S.2 * 3.0 4.1 4.2 4.3 ~·

2 3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3 :::i
I:) -IO 3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3 I:.
;:s
~

4 2 l * 4.6 4.8 5.1 7.3 * * 6.1 6.5 8.2
~

2 * 4.3 4.9 5.3 7.9 * * 5.8 6.5 8.2 '15

10 3.7 4.4 4.9 5.4 7.9 * * 5.8 6.4 8.2 [
3 l * 4.6 4.8 5.1 7.2 * * 6.1 6.5 8.1

~ 2 * 4.3 4.9 5.3 7.8 * * 5.8 6.5 8.1 ;;.
10 3.7 4.4 4.9 5.4 7.8 * * 5.8 6.4 8.1 "' ~ ...

~·
Oo
Vi

--.. ._
'O
'O

~
._
-l>.. v.
I ._
°' 'l

~
~

.....
?j

Table 6 M Results of PILSMRK(L, U) on test problems

~
HIRES Ring Modulator ~

s k r m=l m=2 m=3 m=4 m=lO m=l m=2 m=3 m=4 m=lO ~·

~

2 2 1 3.3 3.8 4.2 4.8 4.9 * 2.8 3.9 3.8 3.8 s::i ,_
2 3.2 3.8 4.3 5.0 4.9 * 3.6 3.8 3.8 3.8 -~

10 3.2 3.8 4.3 5.0 4.9 * 3.6 3.8 3.8 3.8 ;:

3 1 3.3 3.8 4.2 4.7 5.2 * 3. l 4.1 4.3 4.3 ~
2 3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3 ~

10 3.2 3.8 4.3 4.8 5.2 * 3.8 4.2 4.3 4.3 g
4 2 I * * 4.9 5.1 7.2 * * 5.8 6.3 8.2 ~

2 2.6 4.4 4.9 5.4 7.9 * * 5.8 6.4 8.2 ;:
£)

10 3.7 4.4 4.9 5.4 7.9 5.8 6.4 8.2
* * (5•

3 I * * 4.9 5.2 7.2 * * 5.8 6.3 8.1 l
2 3.6 4.4 4.9 5.4 7.8 * * 5.8 6.4 8.1 §

10 3.7 4.4 4.9 5.4 7.8 * * 5.8 6.4 8.1 i::i..
~

~ -~·
i::i..

Table 7
~ Results of BDF on test problems ;;.

HIRES Ring Modulator
~
~

s k r m=l m=2 m=3 m=4 m=IO m=I m=2 m=3 m=4 m=lO ~·

~
2 I 2.9 3.5 3.1 3.0 3.0 1.1 1.1 1.1 1.1 l.1 -.....
3 1 2.8 3.7 3.6 3.4 3.3 l.6 1.5 l.6 1.6 l.6

.....
'O
'O

4 I 2.8 3.4 4.4 3.8 3.6 1.8 1.9 1.9 1.9 1.9 ;::'.

5 1 2.7 3.3 4.2 4.1 3.8 2.4 2.9 2.9 2.9 2.9
-I>.

6 I 2.8 3.4 4.1 3.9 3.7 2.4 * 2.9 * 2.9 '('
......

°' "I

E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167 163

Table 8
Speed-up factor of 3-step 4-stage Newton-PILSMRK(L, /)
for ring modulator

Actual speed-up
Optimal speed-up

m=3

3.3
3.9

m=4

3.3
3.9

m=lO

3.2
3.9

dimensions. For tests of the behavior of the linear algebra part on ODEs of higher dimension,
we refer to [7], which studies the linear algebra costs as function of the problem dimension (up to
dimension 660) for a method that is comparable to PILSMRK in terms of the solution of linear
systems.

In order to show how the Newton-PILSMRK method performs on ans-processor computer, we im
plemented the 3-step 4-stage Newton-PILSMRK.(L,I) on the Cray C98/4256 and integrated the ring
modulator, using again 4000 constant integration steps. The Cray C98/4256 is a shared memory
computer with four processors. Table 8 lists the speed-up factors of the runs on four processors with
respect to the runs in one-processor mode. Since we did not have the machine in dedicated mode
during our experiments (on the average we used 2.5 processors concurrently), we used a tool called
A TExpert [6] to predict the actual speed-up factors on four processors. In practice these values turn
out to be very reliable. Denoting the fraction of the code that can be done in parallel by fp, the opti
mal speed-up on N processors according to Amdahl's law is given by the formula 1/(1- fp+ fp/N).
ATExpert produces these optimal speed-up values, based on estimates of the parallel fraction fp.
These values are also listed in Table 8.

We compiled the codes using the flags -dp, -ZP and -Wu"-p". The environment variables NCPUS

and MP...DEDICATED were valued 4 and l, respectively. We refer to the Cray C90 documentation [5]
for the specification of these settings.

From Table 8 we conclude that the Newton-PILSMRK methods have a satisfactory parallel per
formance. With respect to the scalability of the method, we remark that the number of processors
involved equals the number of stages s. Since the step point order is given by 2s + k - 2, using
more than four processors leads to an order that might be too high for most practical applica
tions. Therefore, we aim at two or four processors, which are natural numbers for many computer
architectures.

6. Summary and conclusions

In this paper we proposed the Newton-PILSMRK method, which is a combination of a Newton
process applied to a Multistep Runge-Kutta method with a Parallel Iterative Linear System solver.
The non-linear equations that arise in an MRK. are usually solved by a modified Newton process,
in which we have to solve linear systems of dimension sd, where s is the number of Runge-Kutta
stages of the MRK and d the dimension of the problem. PILSMRK computes the solutions of
these linear systems by means of an inner iteration process, in which we solve s decoupled systems
of dimension d. To achieve this decoupling, we have to approximate a matrix A with complex
eigenvalues by a matrix B with positive distinct eigenvalues. It turns out that:

164 E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167

- The most efficient parallel implementation of an MRK with a Newton process is 4 times more
expensive than Newton-PILSMRK ons processors in terms of (!)(d 3) costs.

- If we apply more than 2 Newton iterations, then in practice PILSMRK with only l inner iteration
often suffices to find the Newton iterate.

- In terms of Jacobian evaluations and LU-decompositions, the k-step s-stage Newton-PILSMRK on
s processors is equally expensive as the k-step BDF on 1 processor, whereas the order is higher
and the stability properties are better than that of BDF.

- Tests with implementations of Newton-PILSMRK and BDF without control strategies on two
problems from the CWI test set show that for the same number of sequential function evaluations,
Newton-PILSMRK delivers higher accuracies than BDF, although Newton-PILSMRK did not solve
the corrector equation entirely.

- Increasing the number of previous step points k, leads to a better convergence behavior of
PILSMRK, but worse stability properties of the MRK.

- In a linear stability analysis, performing more than 3 iterations (inner or outer) suffices to attain
at least the stability of the MRK corrector, if s ~ 4.

- Of the two options proposed here for choosing the matrix B, Crout and Schur-Crout, the latter
has a better convergence behavior, but its stability properties are worse for s ~ 4.

Acknowledgements

The authors are grateful to Prof. Dr. P.J. van der Houwen for his careful reading of the manuscript
and for suggesting several improvements.

Appendix

In this appendix we list the parameters c, G and A in (3) for the k-step s-stage MRK method of
Radau type for kE{2,3} and sE{2,4}. Moreover, we provide the PILSMRK parameters band Q,
where f> = diag(D) and D, Q are the matrices in (9), for both the Crout approach PILSMRK(L,J)
and the Schur-Crout approach PILSMRK(L, U).
s =2,k=2:

CT = (0.39038820320221 1.00000000000000],

G = [-0.04671554852736 1.04671554852736]
-0.02010509586877 1.02010509586877 ,

A= [0.40044075113659 -0.05676809646175]
0.77072385847003 0.20917104566120 .

Crout:

bT = (0.40044075113659 0.31843196932797],

Q = [1.00000000000000 0]
9.39806495685529 1.00000000000000 .

E. Messina et al.I Journal of Computational and Applied Mathematics 85 (1997) 145-167 165

Schur-Crout:

[JT = [0.36028586267747 0.35392212182843],

Q = [0.06418485435680 0.05604152383747]
0.99793802636797 0.99842843890084 .

s = 2,k= 3:

CT = (0.42408624230810 1.00000000000000],

G = [0.01290709720739 -0.10843463813621 1.09552754092881]
0.00354588047065 -0.04623386039657 1.04268797992593 '

A = [0.38745055226697 -0.04598475368028]
0.77239469511979 0.18846320542493 .

Crout:

[JT = [0.38745055226697 0.28013523838816],

Q = [1.00000000000000 0 J
7.19743219492460 1.00000000000000 .

Schur-Crout:

[JT = [0.33129449207677 0.32761955124138),

Q = [0.08083975113162 0.07616492879483]
0.99672711141866 0.99709523297510 .

s=4,k=2:

CT = [0.09878664634426 0.43388702543882 0.80169299888049 1.00000000000000),

[
-0.00087353889029 1.00087353889029 l

G = 0.00062121019919 0.99937878980081
-0.00032939714868 1.00032939714868 '
-0.00003663563426 1.00003663563426

[

0.11996670457577
A= 0.26010642038045

0.23561500946812
0.24141835002666

Crout:

-0.03384322082318
0.20159324902943
0.41088455735437
0.38984924120599

0.01835753398261
-0.03956525951247

0.17597260265111
0.31101721961059

-0.00656791028123 l
0.01237382574059

-0.02110856774179 .
0.05767855352250

[JT = [0.10617138884400 0.27770096849016 0.27497060030028 0.1199667045577),

Q= 0 [
o

~ .00000000000000

0
0
0.38896861370956
0.92125100681023

0 0.01481904140434]
0.00220678551539 -0.02486729636785

-0.38581432071631 0.05312025222596 .
-0.92257381278026 -0.99816844890362

166 E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167

Schur-Crout:

fJT = [0.17879165196884 0.15567835604316 0.18725864804630 0.18660124038403],

[

-0.05047735457027 -0.05698986733483 0.04780729735701 0.04801402184956]

Q- 0.17096598389037 0.17933373843615 -0.16592112501907 -0.16634392504346
- -0.15139062605533 -0.08731023751861 0.17251778528806 0.17091936180350 .

-0.97226722014607 -0.97824 76617 4222 0.9697 5370911955 0.96995408348419

s=4,k=3:

CT = [0.10504182884419 0.44825417107884 0.80977028814179 1.00000000000000),

[
0.00007487445528 -0.00195646912651 1.00188159467123]

G- -0.00007345206497 0.00148038414152 0.99859306792346
- 0.00003966973124 -0.00083011136249 1.00079044163125 '

0.00000077039880 -0.00008665832447 1.00008588792568

[

0.12388725564952
A _ 0.27600575210564

- 0.24659262259186
0.25397302181219

Crout:

fJT = [0.09980104557325

[
o
0

Q= 0

1.00000000000000

Schur-Crout:

-0.03052720746880
0.19832624728391
0.41336961213203
0.39037260118042

0.01502960651127 -0.00515454606376]
-0.03534802573852 0.01060367743938

0.16850574024079 -0.01944845872291 .
0.30064393200968 0.05492532747083

0.26112476902731 0.26633715617793 0.12388725564952],

0
0
0.38485479574542
0.92297713199827

0
0.00429974 732457
0.39111661588660
0.92033108442036

0.01885332656568 l
-0.03652952061848

0.09232717942550 .
0.99487981090186

ll = [0.17281106755693 0.15348751145786 0.18030166423062 0.17980311756297],

[
-0.03747602767829 -0.04253832729434 0.03538720965186 0.03552524964325 l

Q = 0.15438230915055 0.16281308949598 -0.14969201305536 -0.15002487334226
-0.16907928673314 -0.11582715575719 0.18786790085145 0.18664755906307 .
-0.97271467798559 -0.97891085323 893 0.97007509938672 0.97025418458887

References

(l] Z. Bing, A-stable and £-stable block implicit one-block methods, J. Comput. Math. 3 (4) (1985) 328-341.
[2] P.N. Brown, A.C. Hindmarsh, G.D. Byrne, VODE: a variable coefficient ODE solver, August 1992, Available at

http:J/www.netlib.org/ode/vode.f.
(3] J.C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT 16 (1976) 237-240.
[4] B.W. Char, K.O, Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt, Maple V Language Reference

Manual, Springer, New York, 1991.

E. Messina et al. I Journal of Computational and Applied Mathematics 85 (1997) 145-167 167

[5] Cray Research, Inc. CF77 Commands and Directives, SR-3771 6.0 edition, 1994.
[6] Cray Research, Inc. UNICOS Performance Utilities Reference Manual, SR-2040 8.0 edition, 1994.
[7] J.J.B. de Swart, J.G. Blom, Experiences with sparse matrix solvers in parallel of software, Comput. Math. Appl. 31

(9) (1996) 43-55.
[8] A. Guillou, J.L. Soule, La resolution numenque des problemes differentiels aux conditions initiales par des methodes

de collocation, R.l.R.O. R-3 (1969) 17-44.
(9) E. Hairer, S.P. Nm-sett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd revised ed.,

Springer, Berlin, 1993.
[lOJ E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems, Springer,

Berlin, 1991.
[11) E. Hairer, G. Wanner, RADAU5, July 1996, Available at ftp://ftp.unige.ch/pub/doc/math/stiff/

radau5.f.
[12) E.H. Homeber, Analyse nichtlinearer RLCU-Netzwerke mit Hilfe der gemischten Potentialfunktion mit einer

systematischen Darstellung der Analyse nichtlinearer dynamischer Netzwerke, Ph.D. Thesis, Universitiit
Kaiserslautem, 1976.

[13) I. Lie, S.P. N0rsett, Superconvergence for multistep collocation, Math. Comput. 52 (1989) 65-79.
[14] W.M. Lioen, J.J.B. de Swart, W.A. van der Veen, Test set for !VP solvers, Report NM-R9615, CWI, Amsterdam,

1996, Available at http: //wwv. cwi. nl/cwi/pro j ects/IVPtestset.
(15] 0. Nevanlinna, Matrix valued versions of a result of Von Neumann with an application to time discretization,

J. Comput. Appl. Math. 12 & 13 (1985) 475-489.
[16] L.R. Petzold, DASSL: A Differential/ Algebraic System Solver, June 1991, Available at http://www. net lib.

org/ode/ddassl.f.
[17] S. Schneider, Integration de systemes d'equations differentielles raides et differentielles-algebriques par des methodes

de collocations et methods generales lineaires, Ph.D. Thesis, Universite de Geneve, 1994.
[18) P.J. van der Houwen, E. Messina, Parallel linear system solvers for Runge-Kutta-Nystrom methods, Technical Report

NM-R9613, CWI, Amsterdam, 1996, submitted for publication.
[19) P.J. van der Houwen, J.J.B. de Swart, Parallel linear system solvers for Runge-Kutta methods, Adv. Comput. Math.

7 (1997) 157-181.
[20] P.J. van der Houwen, J.J.B. de Swart, Triangularly implicit iteration methods for ODE-IVP solvers, SIAM J. Sci.

Comput. 18 (!) (1997) 41-55.

