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Modeling the stock price development as a geometric Brownian motion 
or, more generally, as a stochastic exponential of a diffusion, requires the 
use of specific statistical methods. For instance, the observations seldom 
reach us in the form of a continuous record and we are led to infer about 
diffusion coefficients from discrete time data. Next, often the classical 
assumption that the volatility is constant has to be dropped. Instead, a 
range of various stochastic volatility models is formed by the limiting 
transition from known volatility models in discrete time towards their 
continuous time counterparts. These are the main topics of the present 
survey. It is closed by a quick look beyond the usual Gaussian world in 
continuous time modeling by allowing a Levy process to be the driving 
process. 

1 Introduction 

The amount of literature on quantitative aspects in finance is huge, even if one 
restricts the attention to papers that have a strong mathematical flavor. The purpose 
of the present paper is to give a survey of some (rather recent) approaches to 
problems of a statistical nature that arise in the context of mathematical finance. 
Due to space limitations it is impossible to give an account of this subject that does 
fully give justice to all the efforts of the many researchers in this field. Necessarily 
we had to give up striving for completeness. The choice of subjects that we present 
reflects our own, perhaps slightly biased, interests. 

Nevertheless we attempt to present a rather coherent looking point of view based 
on the following principles. We mainly concentrate on models in continuous time 
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(however, these may be viewed as approximations of some explicit discrete time 
models that we also discuss). However, observations may reach us in the form of a 
continuous record or (more realistically) at discrete time instants only. The models 
we discuss are used to explain the behaviour of stock prices and of the volatility of 
these prices. Both are described by stochastic differential equations driven by Wiener 
processes. Parameters of interest are then found in the drift and diffusion coefficients 
and we will discuss various estimation methods that may be used in the different 
observations schemes that occur under different circumstances. We will only be 
concerned with finite dimensional parameters. We also discuss the relevance of using 
Wiener processes as the basic process on which the models are built and review 
alternatives. 

In a paper that has been forgotten for many decades-as an illustration of this we 
mention that the English translation appeared 64 years later-BACHELIER (1900) 
introduced Brownian motion as a basic stochastic process to account for the 
fluctuations of stock prices. The model he used also contained an additive drift term 
(a trend). Although this model had some appeal it suffered from the substantial 
drawback that at all moments prices could be negative with positive probability. This 
led SAMUELSON (1965) to use the same model for the logarithm of the stock price as 
Bachelier did for the stock price itself. Formulated in another way, he suggested to 
use geometric Brownian motion to model the evolution of stock prices. His model is 
reflected in equation (1) below, that is nowadays often attributed to BLACK and 
SCHOLES (1973) who used it in their seminal paper on option pricing that appeared 8 
years later than Samuelson's paper. If we denote by St the stock price at time t, the 
model suggested by Samuelson can be formulated in terms of the following 
stochastic differential equation 

dS1 = St(µdt +a dWt), So> 0 (1) 

where µ and a are constants and W is a standard Brownian motion. The parameter 
a is called the volatility parameter and measures how uncertain we are about future 
stock price movements. We find it back in the variance of infinitesimally small 
relative changes of the stock price. Informally, we have VardSt/S1 = a 2 dt. 

Using the Ito formula (see equation (3)) we find that log (S1/ So) = 
(µ - !<; 2)t +a W1 so that S1 is always positive, and that the log-return log(S1H./ S1) 

over an interval [t, t + ll.] is normally distributed and independent of the past values 
up to time t. Consequently we also get Varlog(S1+a/Sr) = a 21l.. Hence a 2 is in this 
model not only the variance oflog-returns over an interval of unit length, but also the 
conditional variance given the prices before such an interval. Other models that we 
will come across in the sequel are generalizations of the one in (1 ). This means that 
we will mainly work with diffusions. 

For future reference we briefly recall some terminology from the theory of 
stochastic processes. A good account of this theory can be found in KARATZAS and 
SHREVE (1991). 
(OWS,2000 
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By diffusion processes or diffusions we mean processes, X say, that can be 
represented by 

dXt = bt dt +at dW1 (2) 

with W a Brownian motion and b t and a 1 other stochastic processes that are usually 

of the form bt = b(Xt) and at = a(Xt) for certain functions b and a. In equations 

of the type of (2) we call b the drift coefficient and a the diffusion coefficient. 

One of the main reasons for modeling with diffusion processes is that functions of 

a diffusion are diffusions again. More precisely if f is a twice continuously 

differentiable function and X satisfies (2), then f(X) satisfies an equation of the same 

type, namely 

(3) 

The resulting differentiation formula in equation (3) is known as Ito's formula, an 

indispensable and powerful tool. 

Consider now a process X satisfying (2), with b 1 = b(X1) and a 1 = a(X1), i.e. X is 

the solution of the following stochastic differential equation. 

dX1 = b(X1) dt + a(Xi) dW1. (4) 

Weak solutions of such equations are Markov processes and under a condition that 

guarantees the existence of an invariant distribution also ergodic (see e.g. GIRMAN 

and SKOROHOD (1972) or ROGERS and WILLIAMS (1997)). The invariant measure of 

an ergodic diffusion has a density that can be expressed in terms of the coefficients 

as follows. Let 

s(x) = exp ( -2 J :2~;) dx} 
where the notation JJ(x) dx is used to denote any function whose derivative is f. 
Then the stationary density is proportional to 

s(x)a2(x) · 
(5) 

The rest of the paper is organized as follows. In section 2 we abandon the 

assumption that a in ( 1) is taken as a constant. Instead we discuss several ways of 

modeling a as a stochastic process, both in discrete and in continuous time and the 

relations between these models in terms of weak convergence of discrete time 

processes to a diffusion limit. Then we treat in section 3 parameter estimation for 

diffusion processes with full observations, by which we mean that we observe all 

components of this process in case it is multidimensional. Most attention is paid to 

the case where the observations are available at discrete times only. In section 4 we 

will have a look at an estimation problem for a partially observed diffusion. The 

financial context is that of a bivariate diffusion, whose components are stock price 

and volatility, while only the stock price is observed. Whereas most of the models 

that we will treat up to that section are based on a diffusion we change this point of 
© vvs, 2000 
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departure in section 5 where we discuss statistical problems that give rise to use a 

certain process other than Brownian motion as a driving process. 

2 Stochastic volatility models 

The underlying model to Samuelson, represented in (I), has a number of 

consequences. One is that the log-returns follow a normal distribution. Contrary to 

that it has been known since some time 1963) that empirical 

analysis of financial data reveals excess kurtosis. Hence many authors tried to 

model returns of financial data directly by means of other distributions. We will 

come back to this issue in section 5. 

Another issue is the constancy of the volatility parameter a. This has been 

criticized by a number of authors. To explain some of the criticism we introduce 

some First we define the price process R1 = log S1• Assuming ( l ), as 

we said before, it is given by R1 = Ro+ (.u - ~a 2 )t +a W1• Notice that we have that 

R1 - R., is independent of the past up to time s, so that the conditional variance 

:E1 - L5 of R1 - R, given this past equals a 2{t - s). Hence for this model we find that 

= a 2. In more general models we define the volatility a 1 at time t as the 

conditional standard deviation of an infinitesimal small increment of R1 given the 

whole past before time t. ln general then, the a 1 form a stochastic process, called 

the volatility process, or just volatility. Let us make this notion precise. Suppose that 

S is given by the following extension of ( l) 

(6) 

where µ and a are appropriate stochastic processes. Applying Ito's rule we get for 
R =logs 

-!a;) dt + 01 dW1. (7) 

Let Af be given by M 1 = J;; as d ij'5 and let ~ = (M), the quadratic variation pro

cess of ,\I. Then Li = 1; a; ds, with the interpretation that the conditional variance 

of R1+d1 - R1 given the past up to time t is given by ~t+dt - ~1 = a; dt. Hence the 

a 1 in equation ( 6) is indeed the volatility as we just defined it. 

For discrete time models \Ve follow a similar approach. Now the stock price is 

given a discrete time process S0, Si, .... As before R is the log-price process and 
the log-return process !J.R is defined by 6.R1 = log( Sr/ Sr-I), with !J.R1 = R1 - R1_ 1. 

In this case we define the volatility a 1 at time t as the conditional standard deviation 

of !J. R: given the past up to time t - l. Again we will call the process {a 1} the 
volatility (process). 

An empirical fact is that volatility evolves in clusters, there are periods of high 

volatility (a nervous market) followed by periods of low volatility (a calm market) 

and vice versa. Typically ARCH models (to be discussed in section 2.1) explain this 
behaviour in discrete time. 
,<;'. VVS. 2!l!Xl 
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Another empirical finding is that volatility movements are negatively correlated 
with stock price movements. This is called the leverage effect (BLACK, 1976). 

In practice people also work with what is called implied volatility. This is defined 
as follows. Suppose that Sis modeled according to equation (I). The Black-Scholes 
price of an option (see BLACK and SCHOLES (1973) or BJORK (1998), page 90) for 
the explicit formula) is a function of the volatility parameter a as well as a function 
of the exercise price. the time to maturity, the current price of the underlying asset 
and the interest rate. Keeping all the parameters constant except the a (a ceteris 

condition) one can invert the Black-Scholes formula to find a as a function 
of the market price of an option. The resulting value of a is called the implied 
volatility (parameter). Doing so for different options and different values of the 
exercise price, it has been observed that the implied volatility showed a typically not 
constant behaviour that is not compatible with the Samuelson-Black-Scholes 
assumption. As a matter of fact, if the exercise price is close to the actual stock price 
(this is called an 'at the money option') the implied volatility is relatively low as 
compared to the values obtained when the exercise price and stock price are far apart. 
This phenomenon is knovm as the smile pattern of implied volatility. 

The qualitative properties of financial data that we mentioned above are often 
referred to as stylized facts or stylized features of these data. Other examples of 
stylized features are heavy-tailedness and long-range dependence. In the next 
subsections we will discuss a number of alternative approaches that are aimed at 
mimicking the practically observed non constant behaviour of the volatility. Although 
efforts have been undertaken to model volatility as a deterministic function (see e.g. 
DUPIRE (1994)), these models suffer from some drawbacks especially when it 
concerns predictive performance DUMAS, FLEMING and WHALEY ( 1995). Neverthe
less these models also have a great advantage, since in this set up markets are 
complete. Therefore hedging strategies can be used to price derivatives and a unique 
price exists (see BJi:iRK, 1998, chapter 9 for a discussion of these concepts). 
Henceforth we will concentrate on stochastic models. 

2.1 Volatility models in discrete time 
As we have argued at the beginning of this section, the assumption that the 
volatility is a constant cannot be held. There is a variety of models that give 
alternative descriptions of the volatility as a stochastic process. In this subsection 
we present some of the more popular ones in discrete time. In the next subsection 
we present continuous time models. 

All models below belong to the class of so called (G)ARCH-processes or to some 
related class of processes. An introduction to modeling with (G)ARCH processes is 
given in the recent book by GOURIEROUX ( 1997) as well as in the survey papers 
BOLLERSLEV, CHOU and KRONER (1992) (which contains an extensive discussion of 
qualitative aspects and an economic interpretation of the ARCH-like methodology of 
modeling) and BOLLERSLEV, ENGLE and NELSON (1994) (where more attention is 
paid to mathematical and probabilistic properties of these models). 
('.' V\'S, ~OOO 
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Whereas in the 1970s modeling with ARMA processes (Box and JENKINS, 1976, is 
a widely used reference), which concentrates on mode ling conditional first moments 
of a time series, became very popular it was observed later on that a standard ARMA 
fit to financial data was poor. The by now classical paper of ENGLE (1982), where 
ARCH processes were introduced as a way to model conditional second order 
moments, was a first attempt to overcome this problem. Later on BOLLERSLEV (1986) 
observed that even the class of ARCH-processes was not always suitable for 
modeling, unless a large number of parameters was involved. In line with the 
parsimony doctrine of Box and JENKINS (1976), he extended the concept of ARCH 
to that of GARCH, in a way similar to the extension of AR models to ARMA ones. 
Indeed, GARCH models with few parameters often give a good fit, see e.g. 
BOLLERSLEV, CHOU and KRONER (1992). Note that (G)ARCH is just one of the 
possible ways of nonlinear mode ling of time series. 

We continue with an explanation of (G)ARCH modeling. Suppose one is given 
some sequence of observations, {Yi} say, for instance Yi = !:l.R1• The basic model is 
to write 

(8) 

Here we take e as a zero mean martingale difference sequence w.r.t some 
underlying filtration {.Yr} and µ 1 is then the conditional expectation of Y1 given the 
past up to time t - 1. In the ARCH modeling framework a model is specified for 
the innovations process e. The starting point for this is 

(9) 

where a is a nonnegative predictable process (i.e. a 1 is 9"1_ 1-measurable for all t) 
and z an i.i.d. sequence, usually standard normal. In this set up we find that a7 is 
the conditional variance of Yr given the past. In particular, if Y1 = !:l.R1 and 
assuming that a 1 ;:;;.: 0, we see that a 1 plays the role of the volatility process as we 
defined it for discrete time observations of the stock price. 

In the rest of this section we assume that the z 1 form a white noise sequence that is 
symmetric around zero, i.e. all the z 1 have the same symmetric distribution with 
Ez7 = 1 (and Ez1 = 0) and Ez1zs = 0 for t =/:- s. 

Recall that the kurtosis K of the distribution of a random variable X is defined by 
K = [E(X - EX)4]/(E(X - EX)2)2 if EX2 < oo and by oo if EX2 = oo. Notice that 
always K ;:.: 1 and that for a normal distribution K = 3. 

One feature that one wants to capture in a model for financial data is leptokurtosis 
(as compared to a Gaussian sequence), one way of expressing that the tails of a 
probability distribution are fatter than those of a (standard) normal distribution. It 
already follows from the general set up of equation (8) and the specification of the 
innovations as in (9) that this is the case, as we shall see now. 

Assuming that z is an i.i.d. sequence with finite fourth moments, we find that the 
conditional kurtosis of e 1, defined as E[ si l.9?"1-il / ( E[ s7 IY1-1 ])2 , is equal to the 
kurtosis of z 1, whereas the unconditional kurtosis of e 1 factorizes as the product of 
~) vvs, 2000 
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the kurtosis of a 1 and that of z 1 and is therefore bigger than the conditional kurtosis if 
a 1 is not deterministic. Moreover, assuming a standard normal law for the z" we find 
that the kurtosis of Et is equal to 3 times the kurtosis of a1 and hence bigger than 3. 

The contribution of Engle was to specify a functional relationship (called 
ARCH(q)) between a7 and past innovations as 

q 

a; = ao + L a;E;_i, 
i=l 

with the a; nonnegative, or equivalently with u 1 = E7 - a7 as 
q 

E; = a0 + l:a;E;_i +Ur. 
i=l 

(10) 

(11) 

where u is again a martingale difference sequence, provided that Ea7 is finite for 
all t. So the squares E7 satisfy an equation of the autoregressive type and in 
particular they also form a positively correlated sequence, as opposed to the 
uncorrelated sequence e. 

Assuming (weak) stationarity of e2 (it is then required that L:i=i a;< 1) we find 
Ee7 = ao/(1 - kj=1a;). 

It is not too difficult to compute the kurtosis of Et in the ARCH(l) case under the 
assumption that the z 1 are standard normals, see e.g. GoURIEROUX (1997). The result 
is 3(1 - aI)/(1 - 3aI), provided that 3ai < 1. It is clear that apart from explaining 
excess kurtosis, ARCH models are also appropriate to describe other stylized facts 
for financial time series such as volatility clustering, due to the positive correlation in 
the e7. Typically we find the tendency of small (large) absolute values of the E 1 's to be 
followed by large (small) values. 

The GARCH extension (G stands for generalized) introduced by Bollerslev then 
consists of adding past values of a 2 with positive weights to equation (2.10) to obtain 
the GARCH(p, q) specification 

q p 

a; = a0 + L a;E;_i + L b;a;_i, (12) 
i=l i=l 

with the b; nonnegative. With the u process as above this equation may be rewritten 
as 

max{p,q} p 

E; = ao + L (a;+ b;)E;_i + U1 - L b;Ut-i, (13) 
i=I i=I 

with the convention that a; = 0 for i > q and b; = 0 for i > p. This gives an 
ARMA-like represention for the e2 process. 

It has been reported that already a GARCH(l,l) model gave a good description of 
certain financial data (BOLLERSLEV, CHOU and KRONER, 1992). 

Among the many variations on the (G)ARCH theme we mention one, the so called 
EGARCH model proposed by NELSON (1990), see also NELSON (1991). In this case 
©WS,2000 
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we have a specification of the logarithm of the conditional variance process, viz. with 
v, =log a; 

p q 

v, = ao + L aiVt-i + L bi(Jzr-il - EJz1-il + CZt-i)· (14) 
i=i i=i 

An additional feature of EGARCH models is that they are capable of explaining the 
leverage effect, whereas (G)ARCH models cannot. To see the latter, notice that due 
to the independence property of the z process, we have that the increments of a 2 as 
modeled by a (G)ARCH process are uncorrelated with z,, since the correlation 
between z1 and z7 is zero. (G)ARCH depends on the past of e only through e2, so 
the magnitude of e, not its sign. Clearly, in EGARCH models for a 2, this is 
different. 

All these models that are used to describe or explain financial data are based on 
empirical analysis of these data. There is no structural dynamic economic theory that 
can be used as a basis for modeling. 

2.2 Stochastic volatility models in continuous time 
We continue with proposing some stochastic volatility models in continuous time. 
These models, all of them of the type of equation ( 4), can often be seen as diffusion 
approximations of discrete time models. This will be explained in subsection 2.3. 

Out of the many models that are currently used we have selected the following 
ones that are of prime interest (for the present paper). They all start from the model 
(1) for the stock price behaviour, but instead of assuming a to be constant a 
stochastic model in tenns of a suitable function of a is proposed for it. These models 
are 

da; = ba; dt + oa; dW1 (15) 

dloga; =(bi - b2 loga;)dt + o dW1 (16) 

da; =(bi - b2a;) dt + o dW1 (17) 

da; =(bi-b2a;)dt+oa,dW, (18) 

da; =(bi - b2a;) dt + oa; dW1 (19) 

Equation (15) models the volatility as a geometric Brownian motion and was used 
by HULL and WHITE (1987). In equation (16) an Omstein-Uhlenbeck process is 
used to model the logarithm of the volatility and was proposed as a model by 
WIGGINS (1987). It turned out to be an empirical relevant one, see BOLLERSLEV, 
ENGLE and NELSON (1994). We will come back to this model in subsection 2.3. 
The Ornstein-Uhlenbeck process of equation (17) is mainly used as a (popular) 
model for short term interest rates and has been proposed by VASICEK (1977). It is 
not suitable as a model for a2, since the solution of this equation takes on negative 
©WS,2000 
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values with positive probability. The model of equation ( 18) was suggested by 
HESTON ( 1993 ). It is the same as the one that Cox, INGERSOLL and Ross (l 985) 
used for the term structure of interest rates. Finally, equation ( 19) arises in a natural 
way as a limit of a GARCH(l, l) process, see subsection 2.3. From the examples 
above the conditions to ensure an ergodic solution are satisfied by all of them for 
proper choices of the parameters except for the geometric Brownian motion of ( 15). 

After some years in which the ARCH-type processes in discrete time had enjoyed 
an immense popularity, the question arose as to how such processes had to be defined 
in continuous time. A definition has been proposed by DROST and WERKER (1996) 
based on temporal aggregation for discrete time models or equivalently (for contin
uous time models) sampling at different frequencies to get a discrete time process. 
They also showed that the process of equation (19) satisfies their definition of a 
continuous time GARCH process. We will not go into details and subtleties 
concerning this topic and refer the reader to DROST and WERKER (1996) and the 
references therein. 

2.3 Continuous time approximations 
Although there had been many results for diffusion limits of discrete time processes 
around (most famous is perhaps the functional Central Limit Theorem, or Donsker's 
invariance principle, see (KARATZAS and SHREVE, 1991, theorem 2.4.20 or 
(BILLINGSLEY, 1968, theorem 2.10. l ), it was not until 1990, that limiting results 
for ARCH-type models were investigated. NELSON (1990) appears to be one of the 
first who made contributions in this direction and proved for instance a limit 
theorem for the GARCH( l, I) process. 

As examples we summarize some results in the literature and confine ourselves in 
doing so to the models we have discussed previously. 

The general scheme is the following. A sequence of random processes X", where 
xn = (X~, xg, .. . ) is available. With this sequence we associate a sequence .;n of 
continuous time processes as follows. Let (hn) be a sequence that converges to zero 
(often hn = 1/n) and consider 

.;~ = L X!. (20) 

k""it/ "· 

This way a sequence of processes is obtained that are (obviously) right continuous 
and have finite left limits at all time instants. The suitable space to consider weak 
convergence is therefore the Skorohod space D[O, l] (or D[O, oo)). General 
theorems on weak convergence in this setting can be found in e.g. the books 
ETHIER and KURTZ ( 1986), JACOD and SHIRYAEV ( 1987), BILLINGSLEY ( 1968), or 
STROOCK and Varadham ( 1979). 

We proceed with giving two examples, both taken from NELSON ( 1990). The first 
one concerns a GARCH (l,l) process with µ 1 = Y1_ 1 +co~ and o~ = ao + 
bo;_, + ae~_ 1. We assume that 0 < a + b < 1. The basic model given by (8) and (9) 
is then specified as follows: 
I: llVS, 2000 
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(21) 

and 

(22) 

where ;: is the i.i.d. sequence of section 2.1. This is a usual discrete time model 
with the time parameter t running through consecutive integers. A continuous time 
~~r'"'"'''""a"''" to it may arise only if we partition time more and more finely. In this 
W'a)' the following sequence of related models, indexed by n = l, 2, ... is treated. 
The mesh of the partition in the nth model is hn, like in (20). To describe thus the 

model, write for simplicity 

and give the upper index n to all the constants involved. From (21) and (22) we get 
at t = 

and 

vn vn _ c"an2 + 0 nz" 
l k - I k-J - k k k 

112 1'12 n ( 1 bn n) 112 + n0 n2 ( 112 1) a 1c - a .1:-1 = ao - - - a a k-1 a k-1 zk-1 - · 

We have deliberately written the increments on the left-hand side 
equations. It is now easy to take the sum like in (20) to get 

(23) 

(24) 

of these 

(25) 

and with ~k = (z:t2 - l)/J2 and the parameters 0 11 = v1.a 11 , en= (l -
bi! -

n 11 [ t] ()" ~ 112 h + .s.n ~ 112 11 a[r/h,J = ao h - ~ a k-1 n u ~ a k-l~k-1 
11 k.;;;t/ h. k,,;;,1/ h. 

(26) 

where all the coefficients are supposed to be convergent as n -+ oo so that 

we retain the notations of ( 19) for the limiting coefficients. The system (25) and 
(26), treated continuously in time for n = 1, 2, ... , yield the sequence of a 
bivariate piecewise constant process (Y~, 072) that may be imbedded in the 
Skorohod space D([O, T], !R2). To understand the weak limit of this sequence, first 
look at the sum in the first term on the right hand side of (25) or at the similar sum 
in the second term on the right hand side of (26). It is easy to recognize the usual 
Riemann sum which tends to converge to a corresponding Riemann integral. We 
shall display it soon. Look meanwhile at the second term on the right hand side of 
(25) or at the similar sum in the extreme right term of (26) - both weighted sums 
formed by the standardized iid sequences z and ~ (note that if z is the sequence of 
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independent standard normal variables, then ~ is a standardized iid sequence 
llllcorrelated with z; this anticipates the independence of the two Gaussian 
components which these two sequences yield in the limit). Here the matter is a bit 
more delicate-we leave out the details-and one needs to appeal to Donsker's 
invariance principle which explains occurrence of two stochastic integrals with 
respect to two independent standard Brownian motions W 1 and W2 in the following 
system of diffusion equations: 

Yt = c t a;ds + J~as dW! (27) 

a;= I(b1 - b2a;)dS + o Ia; dw;, (28) 

with the solution (Y, a 2) that is the resulting weak limit of the bivariate sequence 
of piecewise constant process (Yn, a n2)n=I,2, ... · Note that the second of these 
equations is the integral version of the stochastic differential equation (19). 

Under the conditions that b1 > 0 and 2b2 + o2 > 0 it follows from (28) that the 
process a-;2 has a stationary gamma distribution with parameters 1+2b2/o2 and 
2b1 / o2 . Furthermore, it can be shown that for the case where c = 0 the t-distribution 
with 2 + 4bif o2 degrees of freedom is the invariant distribution of Y. We will return 
to this in subsection 4.2. 

As a next example we briefly consider the EGARCH model (14) with p = q = 1 
and set (for simplicity) µt identically zero. The approach is similar in spirit to the 
previous example and we only give the result. The limiting diffusion process satisfies 
(for an appropriate choice of the coefficients) 

log a; = J~ (b1 - b2 log a;) ds + w;. (29) 

Unlike the situation of the previous example here the Brownian motion W2 has 
non-zero correlation with the Brownian motion that drives the return process. As a 
consequence this model also captures the leverage effect. We refer to NELSON 
(1990) for details. 

Equation (29) describes the logarithm of the volatility process in the same way as 
the model of WIGGINS, cf. (16). 

3 Inference for diffusion processes with full observations 

In this section we will consider parameter estimation when we have observations, 
either as a continuous record or as a finite set, from a diffusion process. We limit 
ourselves to estimation of finite dimensional parameters. Nonparametric procedures 
will not be treated. The reader who is interested in these is referred to work by AIT
SAHALIA ( 1996), for instance, where the important topic of nonparametric 
estimation of the volatility function is treated. 
©VVS,2000 
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The sequel of this section is divided into two parts. In the :first part (subsection 3.1) 
we discuss estimation procedures based on the likelihood of a diffusion that is 
continuously observed. In the second part (subsection 3.2) inference procedures 
based on the likelihood of discrete time observations of a diffusion will be treated. 

3 .1 Inference based on the continuous likelihood 

3.1.l MLEforcontinuous observations 
Consider the stochastic differential equation (SDE) 

d.X1 = b(Xi. O)dt+ a(Xt)dWt, X 0 = x, 0 ~ t :s;;; T, (30) 

where W is a standard Brownian motion, a > 0 and the drift b depends on an 
unknown parameter (}Ee~ R We suppose that the SDE has a weak solution for 
all 8, and that this solution is unique in law. We denote the law of such a solution 
by ? 9, that is a probability measure on the Borel sets of C[O, T]. The aim is to 
estimate () from the continuous observations {Xt}r.,.r. 

It is well known (see e.g. LIPTSER and SHIRYAYEV (1977)) that if for all() 

J
T b2(Xs, ()) ds 

o a2(Xs) < 00' 

?9-a.s., then there exists a probability measure ? 0 on C[O, T], equivalent to all the 
IP> 9 and such that for all () 

d!P>9 (X) = [Jr b(Xs, fJ) d.X _ ~ JT b2(Xs, fJ) dsl (3 l) 
d!P>o exp o a2(Xs) s 2 o a 2(Xs) ' 

IP>9-a.s. This fact follows from Girsanov's theorem (KARATZAS and SHREVE, 1991, 
theorem 3.5.l or JACOD and SHIRYAYEV, 1987, theorem III.3.24 for a more general 
result). The Radon-Nikodym derivative Lr(fJ) = dlP9/d!P0 is called the likelihood 
fanction and the maximum likelihood estimator (MLE) is defined as the point where 
() 1-+ Lr(O) attains its maximum. 

It is important to note that for the derivation of (31) it is essential that the diffusion 
coefficient a does not depend on the parameter. The dominating measure IP 0 is 
constructed by using Girsanov's theorem to remove the drift from X. In other words, 
IP>o is the law of the weak solution of the SDE 

d.Xr = a(Xt)dWi. Xo = x. 

Therefore, we can only use Girsanov's theorem to find the dominating measure IP0 

and the expression (31) when a does not depend on the parameter 9. In subsections 
3.1.3 and 3.2 we will discuss estimation problems when a depends on 9. 

For the study of the asymptotic properties of the MLE we refer to KUTOYANTS 
(1984). Suppose that the diffusion X is ergodic, with invariant law :rc9, and that b is 
differentiable with respect to (), denote the derivative by b. For all (), suppose that the 
following quantity is finite: 
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00 b(x, 0) (. )2 
1(0) = Loo a(x) Jle(dx). (32) 

This quantity is called the Fisher information. If 0 i---+ J(O) is bounded away from 0, 
then (under some extra regularity conditions) the MLE is consistent, and we have 
for all 0 that the law of VT(Or - 0) under IP8 converges to the normal law N(O, 
J(0)-1) as T--+ oo, i.e . 

.sf { ../T(Or - O)llPe}--+ N(O, I(0)- 1). (33) 

Hence, by the Cramer-Rao theorem, the estimator is asymptotically efficient. 

3 .1.2 Discretization of the likelihood 
Consider the ergodic diffusion X defined by (30) with the drift b that again satisfies 
some smoothness and growth conditions. But unlike the previous section, suppose 
that X is observed at certain equidistant instants f? = ihn, i = 0, 1, ... , n; hn > 0 
is called the discretization step. Put T = nhn, for simplicity. Let the sample size n 
increase unboundedly and consider again the problem of estimating the parameter 0 
of the drift. 

The first approach to this problem is based on the straightforward discretization of 
the continuous likelihood (31). We simply substitute the Lebesgue integral by the 
corresponding Riemann sum, and the stochastic integral by the corresponding 
ltosum. When the drift coefficient bis differentiable with respect to 0, we obtain the 
approximate score function 

- ~ b(Xt~ , 0) 
ln(O) = L.t 2(X1 ) [Xt~ - X1• - hnb(Xt~ , O)]. 

i=l a t;_l I i-1 z-1 
(34) 

We can now define the estimator On as the zero of the estimating function 
0 i---+ 1n(0). Asymptotic properties of the estimator strongly depend on the behaviour 
of the discretization step hn as n --+ oo. As is shown in FLORENS-ZMIROU (1989) the 
estimator is consistent if hn ~ 0 and T = nhn --+ oo as n--+ oo. If, in addition, 
nh~ --+ 0, then the estimator is also asymptotically normal and asymptotically 
efficient as T = nhn --+ oo in the sense that 

(35) 

where /(0) is the Fisher information (32); cf. (33). However, when hn is bounded 
away from 0 as n--+ oo, the estimator is not even consistent. 

3.1.3 Method of Bibby and Sgrensen 
As was mentioned in the preceding section, if the discretization step is independent 
of the sample size, i.e. hn = h, the estimation function (34) does not yield a 
consistent estimator. In this situation BIBBY and S0RENSEN suggest in BIBBY and 
S0RENSEN (1995) an adjustment of (34) to get a zero-mean martingale as a renewed 
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scoring function, and to remove thus the estimation bias. Departing in this manner 
from the likelihood function (31) and the corresponding score (34), Bibby and 
S0rensen allow the parameter 8 also to appear in the diffusion coefficient a. Thus 
the SOE considered in BIBBY and S0RENSEN (1995) is given by 

dX1 = b(X1, 8) dt + a(Xi, 8) dWr. Xo = x, (36) 

with the parameter 0 to be estimated from the observations { X d i=O,I,. .. , n at 
equidistant instants ti = ih. This results in an estimating function of the following 
form: 

where 

m(x, 0) = IEe[XhlXo = x]. (37) 

As it is well known, this conditional moment is related to the drift coefficient in the 
follow manner: 

m(x, 0) = x + hb(x, 0) + o(h). (38) 

Its explicit expression, however, is often unknown, in which case one cannot utilize 
the estimating function Gn. We will turn back to this situation later. 

Obviously, Gn is one particular choice out of the entire class of martingale 
estimating functions of the form 

n 

Gn(8) = L gi-1(0)[X11 - m(Xt,_p O)] (39) 
i=l 

where gi_1(0) is a certain function of observations Xo, ... , X 11_1> depending on the 
unknown parameter 0. Under certain regularity conditions, these estimating 
functions define a class of consistent and asymptotically normal estimators, see 
BIBBY and S0RENSEN (1995). Furthermore, they show that there is an optimal 
estimating function within the class (39) that yields the smallest possible 
asymptotic confidence interval around 8. By using arguments of HEYDE (1997) 
(cf. also DZHAPARIDZE and SPREIJ, 1993), this optimal estimating function is 
constructed as follows: 

(40) 

where 

(41) 

is the conditional variance. It is related to the diffusion coefficient as follows: 

m2(x, 8) = ha2(x, 9) + o(h). (42) 
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But its explicit expression is often unknown and the corresponding optimal 
estimator o:, the zero of ( 40), is impossible to find. This situation will be discussed 
in sections 3.2.2 and 3.2.3. 

3.2 Inference based on the discrete likelihood 

3.2.1 Transition probabilities 
Suppose meanwhile that not only the first two conditional moments (3 7) and ( 41) 
but the conditional distribution itself is known. That is the situation when necessary 
growth conditions on b and a are satisfied so that the solution of the SDE (36) is a 
Markov process (see KARATZAS and SHREVE, 1991, section 5.4.C) which is 
characterized by the transition densities p(t, x, y, 8) known up to the parameter 8 
to be estimated from observations {X rJi=O,l, ... ,n at certain instants 0 = To< 
Ti<···< Tn. We have for all t ~ 0, x E ~and BE~(~): 

IP(Xr E BIXo = x) = Lp(t, x, y, 8)dy. 

Given X 0 = Xo, the vector (X Tp ..• , X r.) has the product density 

(x1, ... , Xn) 1-+ p(T1 - To, Xo, Xi, 8) · · · p(Tn - Tn-i. Xn-1, Xn, 8). 

Hence the MLE fJn for the parameter 8 renders the likelihood 
n 

8 1-+ Ln(O) := IJ p(T; - T;-i. X T;-1> X r,, 8) (43) 
i=l 

as large as possible. To establish the consistency, asymptotic normality and 
asymptotic efficiency of this estimator one can apply the classical theory of 
statistical inference about ergodic Markov chains (see BILLINGSLEY, 1961), by 
checking requirements on transition densities in terms of b and a. For this purpose 
DACUNHA-CASTELLE and FLORENS-ZMIROV (1986) study the relationship between 
the diffusion X and the embedded Markov chain {X di=O,l, ... ,n· 

3.2.2 Pedersen 's method 
Consider the same estimation problem as in the preceding section, but now in a 
more realistic situation in which the transition densities of the process X are 
unknown. The matter becomes much more complicated. However, there are some 
possibilities to treat it. In this section we will describe one particular approach 
proposed by PEDERSEN (1995a, 1995b) and in the next section a different approach 
by KESSLER (1997). 

The theoretical part of PEDERSEN's (1995a) paper consists of constructing a certain 
'approximate log-likelihood', an approximation to the log-likelihood ln(8) = 
log Ln(8) of the previous section, cf. (43). This is based on the method developed by 
KLOEDEN and PLATEN (1992) for constructing approximations to the transition 
densities p(t, x, y, 8). The procedure begins with discretizing the SDE (36) accord
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ing to the so-called Euler scheme as follows: for fixed N ~ 1, define t k = k( t / N), 
for k = 0, ... , N. Then the process Y N = { Y ~} k=O, ... , N is defined recurrently by 

Y~ := x, Y~+i := Y~ + b(Y~, ()) ~ + a(Y~, ())(Wtk+i - Wik). (44) 

The process yN is called Euler approximation to the process {Xs}s.;; 1, under 
!Po= !Pox, see KLOEDEN and PLATEN (1992). Taking into consideration (44), we 
see that' the random variable Y~ = Y~ has a density y 1--+ PN(t, x, y, ()) with 
respect to the Lebesgue measure, given by 

(} (y - x - tb(x, ())) 
P1 (t, x, y, ) = </> .,/Ta(x, ()) (45) 

and 

PN(t, x, y, (}) = IEo,x PI(~, r;;,_I, y, (}), N ~ 2, (46) 

where cp is the standard normal density. These PN(t, x, y, ()) are the desired 
approximations to the respective transition densities p(t, x, y, fJ). Furthermore, the 
corresponding approximate log-likelihood function 

n 

l~ (())=I: log PN(T; - T;-1, X T;-i, X Tp (}) (47) 
i=I 

is such that/~((})---. ln((}) in IPo,x-probability, as N---. oo; see PEDERSEN (1995a) 
for more details. 

Surely, this is not enough to guarantee nice asymptotic properties of the approx
imate MLE, a maximizer of ( 4 7), which should share the asymptotic properties of the 
MLE of the previous section. Necessary arguments towards this conclusion can be 
found in PEDERSEN (1995b) though in this part of his work only some particular 
models are rigorously treated. 

Finally, note that in practice we need to evaluate /~ ( fJ), hence expressions of type 
PN(t - s, Xs, X1, 8) have to be evaluated. For N = 1 the expression (45) is explicit, 
so the problem arises for N ~ 2. But in the latter case we have ( 46). Taking this into 
consideration, Pedersen suggests to simulate according to (44) a large number of 
independent observations {Ym}m=l, ... ,M of Y~_ 1 and then to form the average 

1 M ( t ) 
M ;PI N' Ym, y, (} 

that approaches, with increasing M, the desired expectation on the right hand side 
of (46). Surely, this procedure is quite demanding numerically, since at every 
evaluation of the function 8 1--t l~ ( ()) the simulations are anew carried out. 
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3.2.3 Kessler's method 
Unlike the previous sections, we now consider the diffusion model with the drift 
and diffusion coefficients b and a depending on two different parameters 8 and rJ, 
respectively. In KESSLER (1997) the method of estimating these parameters 
a := (8, 71) is suggested by maximizing a certain contrast functional of obser
vations, that is a functional of the discretized trajectory { X q }o"'i"'n at equidistant 
instants t? = ih n. 

As in the previous section, the transition densities of the consecutive observations 
are supposed to be unspecified. This means, of course, that the first two conditional 
moments 

(48) 

and 

(49) 

are unspecified as well, cf. (37) and (41). If these moments were specified, one 
would be able to utilize the following contrast function: 

~ [(X1~ - m(X1~ , a))2 l 
~ Im (X n ·-~) +log m2(X17_1• a) . 
z=l 2 11-1' 

(50) 

The latter may be interpreted as a log-likelihood function, provided the unknown 
transition densities are approximated by Gaussian densities with the parameters (48) 
and (50). 

In the case of unknown m and m2, Kessler suggests to substitute in (50) their 
closed approximations. For instance, take into consideration (38) and (42) which 
yield the following approximations 

m(x, a)~ x+ hnb(x, 8) (51) 

and 

m2(x, a)~ hna2(x, rJ). (52) 

Upon this substitution, we get the contrast 

~ I l-1 n t-1' + 1 h 2(X n ) 
n [(Xr• - Xr• - h b(X1n 8))2 l 
~ h a2(X • ) og nO '1-1' 'fJ • 
i=I n '1-1' 'f} 

(53) 

The estimators an = (On, i/n) for the parameters a = (8, 7/) are then obtained by 
maximizing the contrast (53). Note that with rJ fixed, the maximization of (53) with 
respect to 8 leads to the same estimator 0 n as in section 3 .1.2, defined as the zero 
of (34). 

Suppose now that the sample size n increases unboundedly, while the discretization 
step hn tends to 0 in such a way that nhn --+ oo. The situation then is similar to that 
of section 3.1.2 and the maximum contrast estimators an =(On, i/n) are consistent, 
i.e. they converge in probability to the true value of the estimated parameters. If, in 
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addition, nh2 _, 0, then the estimators are asymptotically normal and asymptotically 
n -

efficient in the sense that ./iili:.(8n - ()) and.,/ n(ij n - rJ) are asymptotically indepen-

dent and distributed according to N(O, /(())- 1) and N(O, l(rJ)- 1), respectively. As 

usual !(8) and 1(17) are the corresponding Fisher information quantities: 1(8) is given 

by (32), while 

1Joo (a )2 
!(17) = 2 -oo Orf loga 2(x, rJ) ne(dx). (54) 

For the exact formulation of this result, see KESSLER (1997), theorem 1 on p. 216, 

and remark 2 on the same page concerning the Fisher information quantity (54); cf. 
also GENON-CATALOT and JACOD (1993 ). This is in fact a simple particular case of 

Kessler's theorem (which is in full agreement with the discussion in section 3.1.2 -

recall (35)). The general assertion is much more complicated. We do not want to 

carry the reader too far afield, therefore we restrict ourselves to a few remarks of a 

general nature. 
Note first that the condition nh~ -+ 0 tells us how frequent the observations should 

be. If the observations are less frequent so that only a less restrictive condition 

nh~ ---+ 0 with some p > 2 can be satisfied, then the contrast (53) fails and one has to 

construct finer approximation to (50). This construction, based on further expansion 

of m and m2 in powers of hn (the above approximations (51) and (52) involve only 

the first order term), is quite cumbersome to be presented here; cf. KESSLER (1997). 

We only note that the following result by FLORENS-ZMIROU (1989), lemma 1, plays a 

key role. Let La be the generator of the diffusion defined by 

at i 2 a2f 
Laf(x) = b(x, ())~(x) +-a (x, rJ) ;;i 2 (x) 

uX 2 uX 

and L~ its k1h iterate. Besides, let L~ be the identity operator. Then we get the 

following power series expansion up to the power h ~ say, of the conditional 

moments: for a sufficiently smooth function f 

(55) 

(for the remainder term, see FLORENS-ZMIROU (1989), formula (2.12)). Take, for 

instance, f(x) = x to get by (48) and (55) the desired expansion 

I hj 
m(x, a) ~ L -f L~f(x) 

j=O ]. 

where L~f(x) = x, L~f(x) = b(x, ()), L~f(x) = b(x, ())h(x, ()) + 1a2(x, rJ)b(x, ()) 
and so on. 
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4 Inference for partially observed diffusion processes 

4.1 Inference for continuous observations 

283 

Consider the situation where one deals with a bivariate diffusion process with only 
one observable component. Then one has first to replace the semimartingale 
decomposition of the bivariate diffusion that is given w.r.t. some underlying 
filtration with the decomposition that is associated with the filtration generated by 
the observed component. The specification of the drift and diffusion coefficients in 
this decomposition (call them the filtered drift and filtered diffusion coefficients) 
belongs to the realm of (non-linear) filtering theory, see LIPTSER and SHIRYAYEV 
(1977). The technical problem one is immediately faced with is the computation of 
these coefficients. This is only possible in rare circumstances of which the case, 
where one observes a bivariate Gaussian process that is the solution of a linear 
stochastic differential equation, is the most important. In this case the Kalman-Bucy 
filter applies, although still closed form solutions are not available. 

If one wants to estimate parameters, an obvious next step is to give an expression 
of the likelihood functional. This expression is similar to (31) and contains the 
filtered drift and diffusion coefficients, so a maximum likelihood approach is not 
straightforward. 

In the next subsection we will focus our attention to the seemingly even more 
complex situation in which the observed process is known at discrete time points 
only. However, under conditions that ensure ergodicity, solutions to this inference 
problem exist. 

4.2 Inference for discrete observations 
In this subsection we continue to investigate estimation problems for discretely 
observed diffusions. The difference with subsections 3.1 and 3.2 is that we allow 
the diffusion coefficient (with the interpretation of volatility) of the observation 
process to be a stochastic process itself, again a diffusion and moreover that this 
volatility process itself is unobserved. So we find ourselves in the framework 
described at the beginning of this section. 

In this part of the paper we focus on recent contributions by GENON-CATALOT et al. 
(1998, 1999) to estimate parameters in such a situation. Consider the following 
stochastic volatility model. For the log price process S we assume 

dSr =Or dBi, So= 0, 

whereas 

d Vi = b( Vi, 0) dt + a( V1, 0) d W1, 

with Vi = 07, describes the evolution of the volatility. Here B and W are assumed 
to be independent Brownian motions. Notice that this model is not capable of 
incorporating the leverage effect discussed in section 2; for this one needs 
correlated Brownian motions. 

We moreover assume that V is an ergodic diffusion on (0, oo ), with a stationary 
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density TC(). The aim is to estimate the parameter e based on the observations 

So, Sh, ... , Snh· 

Before we are going to discuss how to approach this problem, we wish to make a 

remark concerning the filtering problem that we briefly touched upon. Suppose, 

contrary to what we stated above, we would have a continuous record of observations 

from S1, whereas V1 is still unobserved. In filtering one of the issues is to find a 

stochastic differential equation for the conditional density (assuming that it exists) of 

V1 given Sr, r E [O, t]. Now, since Sis a Brownian martingale with (d/dt)(S) = V1, 

it follows that V1 is measurable w.r.t. the a-algebra generated by S,, r E [O, t]. In 

other words, along with S we also observe V. Hence the filtering problem in this 

situation becomes degenerate and for the parametric inference problem we can in 

principle use the methods of subsection 3 .1.1. The situation with discrete observa

tions of S that we introduced above is entirely different. There are interesting aspects 

of filtering problems, see e.g. BRIGO and HANZON (1998) for a recent contribution. In 
the present subsection filtering will not be considered anymore and we turn back to 

the parameter estimation problem outlined above. 
Define for k = 1, ... , n the random variables 

1 1 J~ 
Xk:= 11.(Skh-S(k-IJh)= 11. a1dB1. 

vh vh (k-l)h 

Then, given .97~, we find that Xk has a N(O, Vk) distribution, with 

- 1 Jkh 
Vk=h V1 dt. 

(k-l)h 

Hence it holds for the characteristic function of Xk that 

IEeiuX k = IEIE[ eiuX k l.97 ~] = 1Ee-tu2T\ 't/ u E IR. 

From this we see that for small hit holds that Vk ~ Vkh and hence we find that the 

characteristic function of X k is approximately equal to 

[e-1u2vkh = J e-tuzv.ne(v) du, 
~+ 

which is just the characteristic function of Ny'VQ, where N stands for a N(O, 1) 

distributed random variable, independent of Vo. For the density q8 of N fro it 
holds that 

qe(x) = J ~ exp(- 2x
2
)ne(v)dv, 

~+ v 2.n:v v 
(56) 

which yields the observation that Xk has approximately an absolutely continuous 

distribution with density q(), if h is small. Concerning the sampling time instants we 
make the following assumption. 

h = hn -t 0 and nhn -t 00. (57) 
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Then it is shown in GENON-CATALOT et al. (1998) by means of an ergodic theorem 
that under certain regularity conditions 

1 n pliJ 
-;; {; </>(Xk)-+ <P(x)qe(x)dx (58) 

for all <P in a class of (vector-valued) functions. 
If one imposes moreover that nh~ -+ 0, then one can show using a central limit 

theorem for ergodic processes, that under !P8 

Vnb.(~tif>(Xk)- Jif>(x)qe(x)dx) ~N(O, :!:) (59) 

where the covariance matrix~ depends in a certain way on <P and n8 (see GENON
CATALOT et al. (1999) for the relevant formulae). 

These asymptotic results led GENON-CATALOT et al. (1999) to studying M
estimators (also referred to as contrast estimators) that maximize a criterion of the 
type 

1 n 
M n(O) = - L m(O, Xk) 

n k=l 

or, alternatively, are zeros of such a criterion. The results of (58) and (59) imply 
that these estimators enjoy desirable asymptotic properties like consistency and 
asymptotic normality for hn -+ 0, nhn-+ oo and nh~ -+ 0. 

For example, based on the fact that X k approximately has density qe for small h, 
Genon-Catalot et al. consider the estimator On that maximizes 

1 n 
8 1--+ - L log qe(X k)· 

n k=l 

(60) 

In this case, the criterion function depends on the parameter () only through the 
stationary density ne (see equation (56)). This implies in particular that only the 
parameters that are evolved in ne can be identified by this criterion. Genon-Catalot 
et al. apply this for instance to the model described in section 2.3 by equations (27) 
and (28), with c = 0, b1 > 0 and 2b2 + Cl2 > 0. As is mentioned in section 2.3, in 
this case the stationary distribution of V is inverse gamma with parameters 
81 = 1+2b2/Cl2 and 82 = 2b1/o2• In terms of the parameter 8 = (Oi, 82) the 
criterion (4.5) then takes the form 

8 1--+ _!_ t [81log82 - log r ~(Ol) ! - (01 + ~) log(82 + !Xi )] · 
n k=l ( 1 + 2) 

If (57) holds as n -+ oo, the maximizer On of this expression is a consistent 
estimator of 8. If moreover nhn -+ 0 as n-+ oo, the estimator is asymptotically 
normal. 
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In general an analytic expression for qe will not be available. But, since qe depends 
on ne through (56) and TC() depends on the known functions b(·, 0) and a(-, 8) 
through (5), numerical integration and optimization can in principle be carried out. 
The same remark applies to the alternative approach outlined below. 

Another approach is to estimate the moments of the stationary distribution. 
Observe that it follows from equation (56) that under the condition that ne has a 
finite moment of order a 

Jx2aqe(x)d.x = C2aDe(a), (61) 

where C2a is the moment of order 2a of the N(O, 1) distribution and De(a) the 
moment of order a of TCe. Then, if n-+ oo (57) it follows from (58) that 

1 ~ 2a P8 ) c L.,xk -+De(a, 
n 2a k=l 

and consequently 

' 1 ~ 2a 
D(a)n,h :=c L.,xk 

n 2a k=I 

is a consistent estimator of De( a), that is moreover asymptotically normal under the 
condition that nh~ -+ oo. Because (58) and (59) are valid for vector-valued 
functions c/J, one is able to estimate several moments of Jte simultaneously with 
consistent, asymptotically normal estimators. If the parameter () happens to be a 
smooth function of some moments of ne, then we can apply the delta-method to 
find a consistent, asymptotically normal estimator of () if we define e as the same 
smooth function of the sample moments. 

5 Outside the Brownian world 

As we have already mentioned in section 2, the Black-Scholes-Samuelson 
framework has been proved to be too rigid to account for various phenomena that 
have been observed in practice. In this section we focus on one of the alternatives/ 
relaxations of this model, although it should be said that there are plenty of 
alternatives. Not only in stochastic modeling (stable processes, long range 
dependence, fractionally integrated processes), but also in deterministic modeling 
(dynamical systems, chaos). 

The idea that we follow in this section, is to replace the Brownian motion with 
another process, or rather a member of a class of processes of which Brownian 
Motion is a member too, the Levy processes. We like to point out at this stage that 
the Levy process that is going to be used (the hyperbolic Levy motion) is not a 
generalization of Brownian motion, since it has no Gaussian component, as we shall 
see later on. 
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Consider again the stock price evolution according to the SDE that describes S as 
a geometric Brownian motion: 

dS1 =Sr(µ dt +a dWr). 

Alternatively, we have that log (Sr/ Ss) follows a normal distribution with mean 
(µ - !a 2)(t - s) and variance a 2(t - s) for all t > s, the log-returns are normally 
distributed. Many attempts have been made to model these returns by means of 
other distributions, e.g. Pareto distributions as suggested by MANDELBROT ( 1963 ). 
These attempts were not always successful, but recently a new class of distributions 
has enjoyed some popularity and promising results have been reported. This class is 
that of the hyperbolic distributions and was introduced by Barndorff-Nielsen in a 
context (turbulence theory) that is completely different from financial modeling (see 
e.g. BARNDORFF-NIELSEN (1986) In EBERLEIN and KELLER (1995) have made an 
attempt to use this class to fit financial data. In the sequel we outline their 
approach. 

First we have to observe that typical path properties of Brownian motion are 
invariant under time and space scaling. Hence Eberlein and Keller argue, that if one 
uses Brownian motion as a vehicle to model stock prices, we should observe a similar 
invariance under change of time scale. In particular, they looked at intradaily data, 
and what one observes then is (not surprisingly of course) a piecewise constant 
behaviour of stock prices. This is a first indication to use jump processes for 
modeling. 

Eberlein and Keller used daily BASF and Deutsche Bank data to test the normality 
hypothesis by different methods. Qualitatively, QQ-plots and density plots already 
showed a large discrepancy between the empirical and fitted normal distributions. 
But also x2 tests and tests based on kurtosis and skewness rejected the normal 
hypothesis at very small significance levels. Therefore we have to look for alter
natives, for instance a-stable distributions. As a reminder we mention that symmetric 
a-stable distributions are those whose characteristic functions </> are of the form 
</>(t) = exp(-(cl tlr), with c > 0 and 0 <a~ 2. Notice that for a= 2 we get a 
normal and for a = 1 we get a Cauchy distribution. A survey of modeling with 
Pareto and stable distributions and distributions with other stability properties can be 
found in MITTNICK and RA.CHEY (1993). 

One of the tests to see whether stable distributions are capable of explaining data is 
based on the following observation. If Xi, ... , X n are independent drawings from 
the same a-stable distribution, then also linear combinations 2::7=1 a;X; have a stable 
distribution with same coefficient a. What several authors have done is to base tests 
on estimators of a that use sums of data of different lengths. It turned out that the 
estimators of a had a tendency to grow with the sum length and quite often this 
resulted in numerical values close to 2 for relatively moderate lengths, indicating that 
(at least from this point of view) normality seems to be a reasonable assumption for 
modeling data over longer time intervals. 

We now turn to hyperbolic distributions. From the observation that the log density 
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of the normal distribution is a parabola, the name of the hyperbolic distribution stems 
from the fact that the log density is a hyperbola. Explicitly, the formula for this 
density is given by 

Ja2 -/32 exp(-aJo2 + (x - µ)2 + f3(x - µ)). 
2aoK1(0Ja2 -/32) 

In this expression K 1 is the so-called modified Bessel function of the third kind 
with index 1 (a more precise description is not relevant for the present paper). The 
parameters a and f3 satisfy the restriction a > f3 and are called the shape 
parameters. The o and µ are the location and scale parameters. One often uses a 
different parametrization by leaving µ and o unchanged and by using ~ = 
(1 + o .J a 2 - {32>-112 and x = ~/3 /a. This has the advantage that the new shape 
parameters ~ and x are location and scale invariant. They satisfy the restrictions 
lxl < ~ < 1, describing the so called 'shape triangle'. It follows from properties of 
the Bessel function and the characteristic function of the hyperbolic distribution 
that in the limit situations corresponding to the cases ~ -+ 0, ~ -+ 1, x -+ ±~ one 
gets the normal distribution, the Laplace distribution and the generalized inverse 
Gaussian distribution. This shows that hyperbolic distributions form a rather flexible 
class of distributions, which already (partly) explains why good data fit has been 
found in a number of circumstances. 

For future use we mention that hyperbolic distributions can be obtained as mixtures 
of normals, where the mixing distribution (a generalized inverse Gaussian distribu
tion) influences both mean and variance of the normals. 

Estimation of the parameters using the same data set that has been reported above 
yielded the following conclusions. The estimated hyperbolic distribution was nearly 
symmetric and the shape parameters were far from the values that correspond to 
normality. The QQ and density plots corresponding to the fitted hyperbolic distribu
tion showed a remarkable fit and using chi-square and Kolmogorov-Smirnov tests 
the hypothesis that the underlying distribution was a hyperbolic one turned out to be 
acceptable as well. Besides, larger data sets were used to carry out similar estimation 
procedures and one of the conclusions was that for aggregation (or increasing the 
time lags over which the returns were calculated) the fitted hyperbolic distribution 
was close to a normal one (estimated ~ and x close to zero), in agreement with the 
estimation results for the stability index of a stable distribution under temporal 
aggregation that we mentioned above. 

However one must take care with fitting hyperbolic (or other light-tailed) distribu
tions, especially when outliers have been observed, possibly caused by the fact that 
the underlying distribution is heavy-tailed. In this case one still often gets a good fit 
of a such a distribution, especially when it has many parameters, in the center of the 
observations, but in the tails it may be poor. 

Having established the fact that hyperbolic distributions form a flexible class that 
showed a good fit to the data, the next step Eberlein and Keller undertook was to 
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come up with a dynamical model that explains a hyperbolic distribution of the data. 
Barndorff-Nielsen and Halgreen (see also HA.LOREEN (1979)) showed infinite 
divisibility of the generalized inverse normal distribution and this together with the 
characterization of a hyperbolic distribution as a mixture of normals with the gen
eralized inverse normal distribution as the directing one yields that also the 
hyperbolic distributions are infinitely divisible. This property calls for the use of 
Levy processes as a dynamical model. 

To simplify things we will in view of the previously observed fit of a symmetric 
distribution henceforth assume that the hyperbolic distributions are centered around 
the origin, so f3 = µ = 0. With s = ao we get the following density 

hyp~•(x) = 26~,«) exp(-1;J1 + :,). 

Consider now the Levy process Z (which by definition has stationary and 
independent increments) that is such that Zo = 0 and such that 2 1 has the 
hyperbolic density hypi;,a· The choice of t = 1 as the time instant to impose the 
hyperbolic distribution is motivated as follows. Observations come to us at 
equidistant times. Then we normalize the time intervals such that they have unit 
length. Hence all Zt - Zt-l now have a hyperbolic distribution and for integers 
t =I- s the random variables Zs - Zs-I and Zt - Zt-l are independent; in particular 
the conditional distribution of Z 1 - z1_ 1 given 2 1, ••• , z,_1 is the same as the 
unconditional one. Notice that we now also determined the distribution of a (finite) 
sequence Z i, .. ., Z n for any n E N. 

The process Z is called the hyperbolic Levy motion. It can be shown that Z t has 
moments of all orders, whereas only the distribution of 2 1 belongs to the hyperbolic 
ones. Another feature of this Levy process is that it has no Gaussian part, so it is a 
pure jump process. 

It is possible (see EBERLEIN and KELLER (1995)) to give an expression for the 
density g of the Levy measure. This expression is rather complicated in that it 
involves two more Bessel functions. But one can deduce that in a neighborhood of 
the origin g(x) behaves like l/x2 , indicating that Z (like many other Levy processes) 
has infinitely many small jumps in every time interval. This already shows that such 
a Levy process is a natural candidate to model financial data that evolve in such a 
way that small changes frequently occur. 

In principle there are two natural candidate models for stock price evolution based 
on a hyperbolic Levy motion. The first model arises when we replace the Brownian 
motion in the Samuelson model by the hyperbolic Levy motion, thus 

dSc = pS1_ dt + S,_ dZ1• (62) 

The problem with this equation is that log-returns over intervals of unit length do 
not have the hyperbolic distribution we started with and that S also takes on 
negative values. So we need to use another model that does not have these 
drawbacks. This happens for 
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S1 = Soexp(pt + Z1). (63) 

Eberlein and Keller suggest to use this model, but they immediately point out a 
drawback to use it. This model describes an incomplete market, in the sense that 
there is no unique equivalent martingale measure and hence a problem arises if one 
uses this model to price financial derivatives like options. In EBERLEIN and KELLER 
(1995) one particular equivalent martingale measure is constructed using so called 
Esscher transforms and a pricing formula for a European call option is given. In 
EBERLEIN and JACOD (1987) the whole set of possible option prices corresponding 
to the set of equivalent martingales measures is characterized. 

Not only hyperbolic Levy motion as a background driving process results in 
hyperbolic distribution of the returns. In BIBBY and S0RENSEN (1998) another model 
is proposed to get hyperbolic distributions. They assume that the price process is 
described by an ergodic diffusion, where the drift and diffusion coefficients are such 
that the invariant distribution is hyperbolic. To be explicit, we assume that 

dS, = b(S1)dt+ a(S1)dW1. 

Then as we mentioned in subsection 2.2, under certain stationarity and ergodicity 
conditions, the solution has an absolutely continuous stationary distribution with 
density proportional to 

1 
(64) 

s(x)a2(x) · 

What has to be done then, is to choose drift and diffusion terms in such a way that 
(64) is the density of a hyperbolic distribution up to a normalizing constant. This 
can be accomplished by choosing 

1 d 
b(x) = 2 v(x) dx log(f(x)v(x)) (65) 

a 2(x) = v(x), (66) 

where f is a function proportional to the density of a hyperbolic distribution and v 
is such that the conditions for ergo9i,city are satisfied (which happens if 
v(x) = f(x)'Y for some y E (0, l]). With the special choice y = 1 and estimated 
parameters a good fit of a hyperbolic distribution to prices of VW stock was found 
in BIBBY and S0RENSEN (1998). 

References 

Al'T-SAHALIA, Y. (1996), Nonparametric pricing of interest derivative securities, Econometrica 64, 
527-560. 

BACHELIER, L. (1900), Theorie de la speculation. Reprinted in P. COOTNER (ed.), The random 
character of stock market prices, 1 7-78. Cambridge, MA: MIT Press ( 1964 ). 

BARNDORFF-NIELSEN, 0. E. (1986), Sand, wind and statistics, Acta Mechanica 64, 1-18. 
BARNDORFF-NIELSEN, 0. E. and 0. HALGREEN (1977), Infinite divisibility of the hyperbolic and 
©WS,2000 



Statistical inference and financial models 291 

generalized inverse Gaussian distributions, Zeitschrift fiir Wahrscheinlichkeitstheorie und Ver
wandte Gebiete 38, 309-312. 

BIBBY, B. M. and M. S0RENSEN (1995), Martingale estimation functions for discretely observed 
diffusion processes, Bernoulli 1, 17-39. 

BIBBY, B. M. and M. SeJRENSEN (1998), Simplified estimating functions for diffusion models with a 
high dimensional parameter, working paper 17, Centre for Analytical Finance, University of 
Aarhus. 

BILLINGSLEY, P. (1961), Statistical inference for Markov processes, Wiley. 
BILLINGSLEY P. (1968), Convergence of probability measures, Wiley. 
BJoRK, T. (1998), Arbitrage theory in continuous time, Oxford University Press. 
BLACK, F. (1976), Studies in stock price volatility change, in Proceedings of the 1976 Business of 

the Business and Economics Statistics Selection, American Statistical Association, 171-181. 
BLACK, F. and M. SCHOLES (1973), The pricing of options and corporate liabilities, Journal of 

Political Economy, 81, 637-654. 
BOLLERSLEV, T. (1986), Generalized autoregressive conditional heteroscedasticity, Journal of 

Econometrics 31, 307-321. 
BOLLERSLEV, T., R. Y. CHOU and K. F. KRONER (1992), ARCH modelling in finance, Journal of 

Econometrics 52, 5-59. 
BOLLERSLEV, T., R. F. ENGLE and D. B. NELSON (1994), ARCH models, Handbook of econometrics 

Vol. IV, eh. 49, 2959-3038. 
BOX, G. E. P. and G. M. JENKINS (1976), Times series analysis.forecasting and control, Wiley. 
BRIGO, D. and B. HANZON ( 1998), On some filtering problems arising in mathematical finance, 

Insurance Mathematics and Economics, to appear. 
Cox, J., J. INGERSOLL and S. Ross (1985), A theory of the term structure of interest rates, 

Econometrica 53, 385-407. 
DACUNHA-CASTELLE D. and D. FLORENS-ZMIROV (1986), Estimation of the coefficients of a 

diffusion from discrete observations, Stochastics 20, 263-284. 
DROST, F. C. and B. J.M. WERKER (1996), Closing the GARCH gap: continuous time GARCH 

modelling, Journal of Econometrics 14, 31-57. 
DUMAS, B., J. FLEMING and R. E. WHALEY (1995), Implied volatility functions: empirical tests, 

preprint Duke University. 
DUPIRE, B. (1994), Pricing with a smile, RISK1, 1-28. 
DZHAPARIDZE, K. and P. J. C. SPREIJ, (1993), On optimality of regular projective estimators in 

semimartingale models, Stochastics 43, 161-178. 
EBERLEIN E. and U. KELLER (1995), Hyperbolic distribution in finance, Bernoulli 1, 281-299. 
ENGLE, R. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance of 

U.K. inflation, Econometrica 50, 987-1008. 
ETHIER, S. N. and T. G. KURTZ (1986), Markov processes: characterization and convergence, 

Wiley. 
FLORENS-ZMIROV F. (1989), Approximate discrete-time schemes for statistics of diffusion pro

cesses, Statistics 20, 547-557. 
GENON-CATALOT, V., T. JEANTHEAU and C. LAREDO (1998), Limit theorems for discretely observed 

stochastic volatility models, Bernoulli 4, 283-303. 
GENON-CATALOT, V., T. JEANTHEAU and c. LAREDO (1999), Parameter estimation for discretely 

observed stochastic volatility models, Bernoulli 5, 855-872. 
GENON-CATALOT, V. and J. JACOD (1993), On the estimation of the diffusion coefficient for multi-

dimensional diffusion processes, Annales Henri Poincare 29, 119-151. 
GIHMAN, I. I. and A. V. SKOROHOD (1972), Stochastic differential equations, Springer. 
GoURIEROUX, C. ( 1997), AR CH models and financial economics, Springer. 
HALGREEN, C. (1979), Self-decomposability of the generalized inverse Gaussian and hyperbolic 

distributions, Zeitschrift far Wahrscheinlichkeitstheorie und Verwandke Gebiete 47, 13-17. 
HESTON, S. L. (1993), A closed-form solution for options with stochastic volatility with applica

tions to Bond and Currency options, The Review of Finacial Studies 6, 327-343. 

© VVS,2000 



292 K. Dzhaparidze, P. J. C. Spreij and J. H. van Zanten 

HEYDE, C. C. (1997), Quasi-likelihood and its application, Springer. 
HULL, D. and A. WHITE (1987), The pricing of options on assets with stochastic volatilities, 

Journal of Finance 42, 281-300. 
EBERLEIN, E. and J. JACOD (1987), On the range of option prices, Finance and Stochastics 1, 

131-140. 
JACOD, J. and A. N. SHIRYAYEV (1987), Limit theorems for stochastic processes, Springer. 
KARATZAS, I. and S. E. SHREVE (1991), Brownian motion and stochastic calculus, 2nd Edition, 

Springer. 
KESSLER, M. (1997), Estimation of an ergodic diffusion from discrete observations, Scandinavian 

Journal of Statistics 24, 211-229. 
KLOEDEN, P. E. and E. PLATEN (1992), Numerical solution of stochastic differential equations, 

Springer. 
KUTOYANTS, Yu. A. (1984), Parameter estimation for stochastic processes, Heldermann. 
LIPTSER, R. Sh. and A. N. SHIRYAYEV (1977), Statistics of random processes I, Springer. 
MANDELBROT, B. (1963), The variation of certain speculative prices, Journal of Business 36, 

394-419. 
MITTNIK, S. and S. T. RACHEV (1993), Modelling asset returns with alternative stable distributions, 

Econometric Reviews 12, 261-330. 
NELSON, D. B. (1990), ARCH models as diffusion approximations, Journal of Econometrics 45, 

7-38. 
NELSON, D. B (1991), Conditional heteroscedasticity in asset returns: a new approach, Econo

metrica 59, 347-370. 
PEDERSEN, A. R. (1995a), A new approach to maximum likelihood estimation for stochastic 

differential equations based on discrete observations, Scandinavian Journal of Statistics, 22, 
55-71. 

PEDERSEN, A. R. (1995b), Consistency and asymptotic normality of an approximate maximum 
likelihood estimator for discretely observed diffusion processes, Bernoulli 1, 257-279. 

ROGERS, L. C. G. and D. WILLIAMS (1997), Diffusions, Markov processes and martingales, Wiley. 
SAMUELSON, P. (1965), Rational theory of warrant pricing, Industrial Management Review 6, 

13-32. 
STROOCK, D. W. and S. R. S. VARADHAN (1979), Multidimensional diffusion processes, Springer. 
VASICEK, 0. (1977), An equilibrium characterization of the term structure, Journal of Financial 

Economics 5, 177-188. 
WIGGINS, J. B. (1987), Option valuation under stochastic volatility, Journal of Financial Eco

nomics 19, 351-372. 

Received: April 1999. Revised: December 1999. 

©VVS,2000 


