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De C -Collocatie-Galerkin-methode kan gezlen worden als een C

O

L

Galerkin-methode met gebruik wvan Lobatto-kwadratuur,

J.C. Diaz, 4 Collocation-Galerkin Method for the Two Point Boundary

Value Problem Using Continuous Piecewise Polynomal Spaces, SIAM

J. Numer. Anal.

IT

Zi1j] gegeven het Stefan-probleem

14 (1977), pp. 844-858.

)z—mz

t > 0; 2z € (O,ZO)\{S(t)};

3

(= 300%K) ;

(= 1685°K)

m

als T(O,t) > Tm;

t~t
~( 0
5T _ 9 5T o h
cp =o 5z (K(T)g—g) + &Io(l R)e
ST 0,t) = 0 T(z.,t) = T(z,0) = T
dZ ? ? 0? ? 0
s(0) = 0; T(s(t),t) = Tm’ als s(t) > 0O;
1 O , als T(O,t) =T
ds (£) _ )
dt TmT+
— k(D] ",
L4oP =T~
m
k(T) > O, T = TO 3

c, P, O, IO’ tyo h, 2> R positleve parameters.

Voor de oplossing van bovenstaand probleem is de methode van Bonerot

en Jamet [ 2] minder geschikt. Een goede methode om dit probleem op

te lossen 1s de substitutie

‘xs (t), x € (0,1),

(1-x)s(t) + X2y, X € (0,1),

als z € (0,s(t)):

als z ¢ (s(t),zo);

waarna de gekoppelde stelsels begin-randwaardeproblemen opgelost

kunnen worden door een combinatie van de '""Backward Euler" methode

en de eindige differentie— of eindige elementen methode [1].

[ 1]

M. Bakker, F.W. Saris & Z.L. Wang, Laser—Amnealing as a Moving

Boundary Problem, verschijnt begin 1983.

[2]

R. Bonerot & P. Jamet, 4 Second Order Fintte Flement Method for

the One-Dimensional Stefan Problem, Internal. J. Numer. Methods

Engrg. 8 (1974), pp. 811-820.
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De bewering van M.F. Wheeler c.s. dat ComGalerkin*methcden voor cirkel-

en bolsymmetrische gebieden superconvergent zijn in de roosterpunten 1is

onjuist wat het middelpunt van de bol of de cirkel betreft.

G.F. Carey, D. Humphrey & M.F. Wheeler, Galerkin and Collocation—-Galerkin
Methods with Superconvergence and Optiral Fluxes, Internat. J. Numer.
Methods fngrg. 17 (1981), pp. 939-950.

[ ——_—

IV

Het spectrum van de Boltzman botsingsoperator van een gas met harde
bollen bestaat ult een continu en een discreet gedeelte. De bewering

van Résibois en De Leener dat het spectrum discreet 1s, 1s derhalve

niet juist,

P. Résibois & M. de Leener, (lassical Kinetic Theory of Flutds,
Wiley and Sons, New York, 1977.

In [2] verklaart Wood dat bij laser-annealing de grootte van de
absorptiecoefficient vanaf 2.0]04 cmﬂl niet meer van invloed is
op de smeltdiepte en dat dit wordt bevestigd door de resultaten
van het computerprogramma HEATING5. Deze bewering 1s 1n tegen-—

spraak met de resultaten van het computerprogramma WANG [1].

[1] M. Bakker, F.W. Saris & Z.L. Wang, Laser—-Annealing as a
Moving Boundary Problem, verschijnt begin 1983.
[2] R.F. Wood & G.E. Giles, Macroscopic Theory of Pulsed Laser

Annealing, Phys. Rev. B (3) (1981), pp. 2923-2942.

VI

o

‘ Z Cos ¢ L2
— Jzu(?_z sin ¢)e de¢ = Iv(z), z ¢ C.




VII

Laat Turkin's functie Tm(z,u) gedefinieerd zijn door

o0 Jn(z)Jn~m(z)
(1) Tm(z,cr.) = Z g5 W€ Z , aé Z, z ¢ C;

n= el ¥

waarin Jv(z) de bekende Besselfunktie voorstelt. Voor Tm(z,a)
geldt de 1nhomogene recursie
2(a-m)

2
oo (250) = == T _(z,8) + < 8, ; me Z

(2) T (z,a) + T

waarby Sjm.het symbool van Kronecker is. Op grond van

(1) en (2) kan de bewering van Newberger dat

(3) T.(z,0) = GD™ 5 (2)3 (2)

niet correct ziijn voor alle m ¢ Z.

B.S5. Newberger, New sum rule for products of Bessel functions

with application to Plasma Physics, J. Math. Phys. 23 (1982),
1278-1281.

VIII

Als de voorstellen van de tweede Commissie~Wagner om de ontslag-
procedures te vereenvoudigen, worden uitgevoerd, zal het verschil

in rechtspositie tussen overheidsdienaren en andere werknemeners

nog groter worden.

NRC/Handelsblad, 30 juni 1982.

IX

Het i1n wetsartikelen gericht tegen discriminatie met name noemen

van één of meer speciale categorieén, is discriminerend in positieve

zin ten opzichte van elke niet genoemde categorie.

De nieuwe wet op het basisonderwijs, welke beoogt het onderwijspeil
te verhogen, zal in de praktijk zoveel extra werk voor het onder—

wijzend personeel met zich meebrengen dat te vrezen valt dat het

onderwijspeil door deze wet zal dalen.
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This thesis consists of five scientific papers [A-E]. They all relate to the numerical solution
of parabolic or elliptic partial differential equations by means of the Finite Element Method.

The papers [A-C] deal with the Finite Element solution of (initial) two-point boundary value
problems. Paper [D] describes a computer program to solve a two-dimensional elliptic problem
arising from plasmaphysics. Paper [E] describes a computer program to solve a one-dimensional
moving boundary problem arising from laser annealing. Papers [D-E] were written in cooperation
with the physicists M.S. van den Berg and D. Hoonhout, respectively, who in their turn used the
programs to produce numerical results for their theses [2,19].

In order to outline the framework into which the five papers fit, they are preceded by a short
sketch of the Finite Element Method with a brief history of its origins.

2. THE FINITE ELEMENT METHOD

The Finite Element Method is a now-a-days highly popular method to solve partial
differential equations by computer. Especially in the field of elliptic problems (potential theory,
elasticity theory) and parabolic problems (heat and mass transport), 1t has become a powerful
competitor of the Finite Difference Method. It was not, however, before the 1970s, that the Finite
Element Method gained wide popularity among applied mathematicians, while it already existed
in the 1950s (or in the 1940s, if Courant’s early paper [6] is taken into account). This was largely

due to the fact that (see also [23]) the Finite Element Method was originally developed by a group
of mathematical outsiders: the engineers.

In the 1950s, with the advance of the electronic computers, aeronautic engineers developed
numerical methods to solve complicated problems in structural mechanics. These Finite Flement
Methods, as they were called, were effective but were not yet based on (solid) mathematical foun-
dation. It lasted until the late 1960s, before it gradually became clear that the engineers were
practicing a modern version of an old mathematical method: the Galerkin method, also called
Ritz-Galerkin or Rayleigh-Ritz-Galerkin method. In this field of approximation theory, extensive
literature was already available (see [24,28] for references). Once the mathematical basis became
clear, the Finite Element Method was felt mathematically acceptable and became increasingly
popular, witness the rising number of publications on this subject since the early 1970s. For that
break-through, much of the credit must be given to the engineers Argyris, Clough and Zienkiewitz.

The Finite Difference Method, on the other hand [7,14], was already known to applied
mathematicians since the 1920s and had proved to be an efficient and accurate method to solve
many kinds of differential equations. For this reason and because the two methods showed many
similarities, it was rather remarkable that the Finite Element Method gained so much ground in
the field of elliptic and parabolic problems. Reasons were a.o.

- problems with complex domains and complex meshes could readily be solved;

- matnx and right hand side vector of Finite Element schemes were constructed in a Sys-
tematic and efficient way [13,28];

- the error analysis had a broad foundation in approximation theory and functional analysis
[3,5,24,28].

Still, there are fields where the Finite Element Method is performing less well, such as first order
wave equations with discontinuous initial conditions. Therefore, it seems necessary for a numerical
analyst who wants to solve partial differential equations, to be familiar with both methods.
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(a)

U((x)

(b)

¢ (x)

Figure 1.

(a) profile of U(x); (b) profile of ¢, (x)

XN —1

XN
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[he essence of the method.

Many partial differential equations arising from engineering prohlems can be formulated in
variational form: find a function «(x) that minimizes some energy expresston £ (v ), r.e. find u(x)
such that E(u) < E(v) for all "admissible” functions v. For example, the solution u of the two-
point boundary value problem

d*u N S . -

— = f(x), xe(O, 1) w(O0) = u(l) = 0 (1)

dx |
mimimizes the energy functional £(v) defined by

|

E) = fo [(v’)z--va lddx : | (2a)
over the space

V = {v| veH'(0,1); v(0) = v(1) = 0). ~(2b)

N
In 1915, Galerkin [15] initiated the idea of approximating « by a U(x) = Zc,- ¢; (x) that minim-
=

N
izes E( D ¢;9;(x)) for all possible real numbers g1. - .gn- Here the set {¢,}/, is a basis of an
P =1
a priori selected subspace of admissible functions. Examples of such basis functions are: tri-
gonometric functions, Bessel functions and Legendre functions. In this way, the problem can be
solved by minimizing a function of several variables. In its classical form, the Galerkin method is
successful as long as {¢, ,-N.,,_:l are eigenfunctions of the differential operator and are hence orthogo-
nal with respect to some weight factor. In that case. the Hessian matrix (3°F ¢, A, ) 1s diagonal
and computation of ¢, ... .cy is rather simple. If it is not possible to construct a set of eigen-

functions, application of the classical Galerkin method may become difficult. if not impossible.

The modern Galerkin method, on the other hand, uses a basis of ”near-orthogonal” func-
tions: the Hessian matrix is sparse. This sparseness is due to the simple fact that the basis func-
tions have small suppor:, i.e. each of them is only non-identically zero on a small part of the

domain of the function. In this form, the Galerkin method is also known as the Finite Flement
Method.

In the simplest form of the Finite Element Method, a function of one variable is approxi-
mated b% a piecewise linear function (fig. 1a). In that case, the functions ¢; of the representation

U(x)= 2,c;$;(x) are the hat or chapeau functions (fig. 1b). The weights ¢; have direct physical
i=1

meaning: they correspond with the values of U(x) at x;. The profile of U(x) is a polygon with
vertices on the lines x = x;.

There are numerous ways to generalize the example of the hat functions. For instance, the
¢; can be piecewise quadratics or piecewise cubics. In the case of two-dimensional problems, the
¢; are pyramudal functions, etc. [22,24,28]. But, no matter how complicated they are, all these
spline functions are generally constructed in basically the same way:

- the domain of the function to be approximated is divided into small pieces, also called seg-
ments or finite elements. In R', these elements are plain intervals, in R?, they are triangles,

quadrangles, etc., in R’, they are tetrahedra, blocks, etc.;

- the basis functions are piecewise polynomial, i.e. they are of polynomial form on every seg-
ment of the mesh (fig. 1b); |

- only on a few adjacent elements, these functions are non-identically zero (fig. 1b); they are
said to have small support;
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- at specific points, the nodes or nodal points, the ¢; or their partial derivatives have

N
prescribed values, usually 0 or 1 (hig. 1b); this property gives the coefficients ¢; of 2 ¢ (x)

i=1
their direct physical meaning;
- depending on the energy function to be minimized, the ¢; have to satisfy some smoothness
conditions, such as continuity, differentiability, etc., with discontinuities of the first or second
derivatives at the interfaces of the segments,

This way of approximating a function is an essential part of most versions of the Finite Flement
Method. Of course, there exist more sophisticated versions, such as exponentially fitted methods
for boundary layer problems [17] or isoparametric methods for domains with curved boundaries
[28], but they share the properties of basis functions with small support and prescribed function
(and derivative) values at the nodes.

2.2. Properties of the method.

In this section, some properties of the Finite Element Method are mentioned that may
explain why it has become so popular. '

Robustness.

In practice, it is almost always possible to generate a mesh and to construct a basis of spline
functions to approximate the solution.

Sparse-matrix systems.

For many problems, application of the Finite Element Method leads to a (linear or non-
linear) system of the form

Ff(cl.:'*'aCN)moﬁmea"'5N; (3)

where the Jacobian matrix (0F; / dc;) is sparse and of banded structure. E.g., it 1s easily verified
that minimization of E(v) defined by (2), over a space of piecewise linear functions leads to a tridi-
agonal system of linear equations. In more dimensions, the Jacobian has a more complex but
nonetheless clear structure and is still sparse. By its sparseness, (3) can be solved by relatively

cheap and fast methods, such as iterative methods (SOR, GS [32], CG [27], MG [18LICCG [21)) or
direct methods (LU decomposition [31], nested dissection [16,25]).

Error estimates.

Most Finite Element Methods have the property that the rate by which the Galerkin approx-
imation converges to the true solution in some Specific sense, is a priori known. For instance, let

U be the piecewise linear function that minimizes the energy functional E (v) defined by (2). Then
it is known that [4,17,24)

[lu = U] 30, < Cu)h?; (4)

where 4 is the mesh-size: the maximum of the elements’ diameters. C is independent of /. This

property makes it possible to estimate the L2 error or to improve the Galerkin approximation by
some refinement method, e.g. Richardson extrapolation. Error bounds like (4) are very common-

- place in Finite Element theory. They are usually of the form Ch**!; k is called the degree of the

Galerkin approximation because for piecewise k -th degree polynomials | jlu — U | Lg) vanishes.

For the proofs of (4) and similar bounds, the theory of Sobolev spaces is amply used, because the
space of admissible functions for the minimization of (2) is a Sobolev space WZ¥(Q) . ie. a
Banach space of functions that, together with their first m distributional partial derivatives, are L?
integrable over the domain © and which satisfy certain boundary conditions. For V defined by
(2b), p =2, m =1,Q = (0,1). Itis especially the approximation of Sobolev spaces by spaces of
spliine functions that gives the Finite Element Method its broad theoretical support [3,5,24,28].



Quadrature rules.

In practice, the energy functional E (v) cannot be evaluated exactly, hence some quadrature
rule has to be applied, e.g. the extended trapezoidal rule if £ (v) is minimized over 3 space of
piecewise linear functions. If proper quadrature rules are used. the order of convergence 1S
preserved [A-C,11,24,26,28]. In some cases, application of numerical quadrature can even lead to
systems of equations that are substantially sparser than if £(v) would be evaluated exactly. In
paper [D] of this thesis, e.g., a matrix with 11 diagonals instead of 27 diagonals 1s constructed in
this way.

2.3. One-dimensional pro

One-dimensional Finite Element Methods, although not the most important ones, have some
convergence properties that appeal to many numerical analysts. In the early 1970s, it was detected
that the error function and sometimes also some of its derivatives were essentially smaller at the
mesh-points than elsewhere [1,8,10,11] on the domain. This phenomenon was called superconver-
gence. Pioneers were Douglas, Dupont, DeBoor and Swartz. Later. superconvergence was also
found at other points on the interiors of the segments [B,C,4,30]. In papers [B,C] it is proved that

this kind of superconvergence occurs at the zeros of special Jacobi polynomials shifted to the seg-
ments.

2.4. Time-dependent problems.

A special class of problems that are solved by the Finite Element Method are the rransient
problems, such as heat conduction and diffusion problems. The essence of the Finite Element
Method is here that the temperature or mass density is represented by

N
Ulx,t) = Xci(t)pi(x). (5)

i=1
One important method of solving a transient problem is the continuous time Galerkin method or
Faedo-Galerkin method [9,24,28,29]. The partial differential equation 1s discretized in its space
variables and the resulting ordinary differential equation 1is integrated by some adaptive time-
integrator [20]. Application of this method generally leads to implicit initial value problems of the

form

G%?—-—FAcmb,t%O;c(O)mcg; (6)

N
where ¢(0) is selected such that Zc,— (O)p;(x) is a proper approximation of w(x,0). In
i=1

[A,C,9,24,28,29] , it is proved that U(x,0) can be defined such that
| [4@) = U] | 12g) < CUadh**, 1 = 0;

where k is the degree of the Finite Element space. A frequent choice of ¢;(0) is the interpolate of
« and 1ts derivatives at the nodal points. In [A,C] of this thesis, it is proved that for parabolic
equations with one space variable, interpolation at Jacobi points is a good initial approximation of
u(x,0).

In (6), the mass matrix G and the stiffnes matrix A are both banded and usually of the same
structure. However, there exist some versions of the Faedo-Galerkin method [A,26] where G is
diagonal, which makes (6) purely explicit.

In the case of one space variable, the phenomenon of superconvergence also occurs,provided
that U(x,0) is defined properly [A,C,12]. This superconvergence, however, is not uniform in time
as paper [C] shows with a simple counter-example. '
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MIENTE BAKKER?®

Abstract. We consider the Galerkin method to solve a parabolic initial boundary value problem in one
space variable, using piecewise polynomial functions and give an alternative proof of superconvergence. Then
by means of Lobatto quadrature, we obtain purely explicit vector initial value problems without loss in the
order of accuracy, global or pointwise.

1. Introduction. We consider the linear initial boundary value problem

ou o ou |
(1.1) xel0, 1]=1; te[0,0)=J;

u(t,0)=ulr, 1)=0; u(0, x)= uolx),

where the functions p(x), g(x) and uo(x) are supposed to be sufficiently smooth, which
will be specified later, and where ug(0) = uo(1) =0.

In § 2 we introduce some notations we need throughout this paper and give a
summary of the theory on the continuous time Galerkin method (also called Faedo-
Galerkin method) using continuous piecewise polynomials.

Douglas, Dupont and Wheeler [8], [9], [11] have proved superconvergence at the
knots for this type of problem. In § 3 we obtain a similar, albeit nonuniform, resultin an
alternative way; for doing this we use Laplace transform as Cerrutti and Parter [ 4] have
done for collocation methods. -

In § 4, we use Lobatto quadrature formulas; this yields purely explicit vector initial
value problems with sparse Jacobian, where very easily computable initial data are to be
provided in order to preserve accuracy. Finally, in § 5, we give a simple numerical
example.

Throughout this paper C, C,, C,, - - - will denote positive constants not necessarily
the same.

2. The continuous time Galerkin method.
2.1. Notations. For any interval E < I, we introduce the Sobolev space H™ (E),
m =0, by

(2.1) H™(E)={v|D've L*(E),j=0,- -, m},

where D’ denotes d'/dx’. H™(E) has the usual Sobolev inner product and norm

m ' *
(M, U)H'"(E)m E (D’u, D'v).rﬁ(m;
j=0

(2.2a) 1
”u”H”‘(E} = [(u, U)H"‘(E)] /2,
where
(2.2b) (@ B) e = | a)BGdr, o BeLYE).
E

* Received by the editors August 22, 1978, and in revised form April 16, 1979,
t Mathematisch Centrum, Amsterdam, The Netherlands.
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In the sequel, we use (u, v) instead of (u, v) 2 and ||u|,. instead of |ju||g™ ).
The subspace Ho(I) of H'(I) is defined by

(2.3) Ho(I)={vlve H'(I); v(0) = v(1)=0}.

Next we define the bilinear functional B: Ho(I) X H (I ) - C associated with the opera-
tor L, L defined by (1.1), as follows:

(2.4) B(u,v)=(pDu, Dv)+(qu,v);  u,veHy).

We assume that p(x) and gq(x) are such that B is strongly coercive, i.e., there is a C such
that

(2.5) B(u, u)zCllulli,  weH).
A sufficient condition is p(x)Z po>0, q(x) = go > —pom> (see [3]).

2.2. Galerkin’smethod.Letu:J > Hy(I)NH *(I) be the solution of (1.1). Then, as
1s well known (see e.g. [18], [19]), u can be approximated bya U:J =S, where S is
some suitable finite-dimensional subspace of H(F). This U is given by the equation

26) (UG, V)+BWUw), V)=0, VeS 120, U®)=Uses,

where Up is some suitable approximation to u,.

For § we select the following subspace. Let A: 0 =xo<x; <- - - < XN-1<xny =1Dbe
a uniform partition of I, i.e. x; =jh=jN"',j=0,---, N. By I; we denote the segment
[x;-1, x;]. We define the space M (A) (r a constant positive integer) by

(2.7) Mo (A)={V|VeHI); VeP.(I;),j=1,---,N}

where for any interval E < IP/(E) denotes the space of polynomials of degree d =1
restricted to E.

We also define the partition norm with respect to A and H™(A) by

?

_ N 1/2
(2.82) lolha=| & ol
j=
(2.8b) H"(A)={vlve H"(I}),j=1, -+, N}.
LEMMA 1. Let Uge M; (A) be an approximation to Uuog satisfying
(2.9) leo =~ Ubllo = O(h" *||ug|l,+1)

and let U:J - Mg (8) satisfy (2.6) for all t with U, as initial function. Then the error
function e(t) = u(t)— U(t) has the L> bqund

(2.10) fle(llo=e""[le(0)lo+ CR"* [le(EWlvs1 + € **"Ilyoll, . 1 +f e T u (1)1 d7),
0

where A, is the smallest (positive) eigenvalue of the operator L.
Proof. For the proof see [16]. O

3. Superconvergence at the knots. As in the case of the two-point boundary value
problems (see [7], [10]), the order of convergence at the knots is much higher than the
global order of convergence, namely O(h*") vs. O(h"*). Douglas et al. ([8], [9], [11])
gave proofs for several continuous time Galerkin methods. In this section, we intend to

give a proof based on the use of the Laplace transform combined with the supercon-
vergence results on two-point boundary value problems (see also [4]).
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Foranyv:J - V, V aset of functions defined on I, we define the Laplace transform
Lo =10(s)e V by

(o

(3.1) ﬁ(s,x)mJ‘ e vt x)dt, seC, xel

0

According to the semi-group theory on stationary differential operators (see e.g. [12]),

we can apply £ to problem (1.1) to obtain for @ (s) = $Lu the two-point boundary value
problem

Li(s)+si(s)=u,, xel:
“(s,0)=1d(s, 1)=0.

We recall that the definition (2.2) of inner product also extends to complex-valued
functions, and therewith the definitions of B(u, v)and (i, v) g~ We write (3.2a) in its
Galerkin form to obtain

(3.2a)

(3.2b) B(d(s), v)+s(i(s), v)=(ug, v), ve Hol).
The solution of (3.2b) can be approximated in M, (A) by the solution UV (s) of
(3.3) B(U(s), V)+s(U(s), V)=(uo, V), VeMjA).

At the other hand, the solution U(t) € M{ (A) of (2.6) has the Laplace transform Ul(s)
which is the solution of the boundary value problem

(3.3a) B(Uy(s), V)+s(U\(s), V)=(U,, V), VeA
Vo (4) is defined by
(3-4) (HO“‘“ Us, V) = (J, VEMB (A),

15 (4).

One easily verifies that if U,e

then U,(s)=U (s), which is illustrated in diagram 1 (see next page). Also, one easily
verifies that U, satisfies (2.9), since it minimizes |lug— Vl|o over M} (A).
It is known that (see e.g. [16], [18)])

o0
M(t,X)m Z d, e“A"t¢n(x);

re ==}

Q0

(s, x)= 3 an(s+A.) '¢.(x):

e ]

anm(u1¢n): n=1,2,---;
(3.5) ?

M
U(f, x)m Z An em“\"r@n(x);

n ==}

) M
Us,x)= ¥ A (s+A,)"'®,(x);

n =]

Aﬂm(Ulh®n)a nmlgzg"',Mmerlq

where A; = A, =- - - are the (positive) eigenvalues of L with orthonormal eigenfunctibns
@1, ¢2, - and where A SA,=-:-=Au are the eigenvalues of the eigenvalue
problem

(3.6) B(®,, V)=A (., V), VeMyd), n=1---.M
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Laplace R
u(t,x) ———————p u(s, x)

continuos

ume Galerkin Cialerkin

U (¢, x ) Laplace 0 (S, x)

DIAGRAM 1.

with orthonormal eigenfunctions ®,, ®,, - - - . Note that A; > A, since

| B(V,V)_ . _ B(vv)
3.7 A, = f e > A
( ) 1 VGISE)(A) (V, V) ve Hy() (U, U)

m,\_l_

Hence, the error function é(s, x) = (s, x)— U(s, x) is meromorphic in the complex
plane with the set {—A,}n=1 U{—A.}n=1 as only poles.
From Laplace theory (see e.g. [6]), we know that the inverse F ' of £ is given by

(3.8) o(t, x) =L 'b(s, x)= ---l-- j e*d(s, x) ds,

‘ 2 r
where I'={s|s = o +ir, —00< T <+00,} is a contour in the convergence half-plane of
{(s). For 9(s) = €(s), the convergence half-planeis given by Re s > —A ;. One intuitively
feels now that one can use local convergence results for (s, x) to establish similar
results for e(¢, x) by applying (3.8). There are, however, two obstacles:

(a) The convergence of (3.8) is not absolute;

(b) The standard convergence results for two-point boundary problems do not
automatically apply to (3.2), since the problem becomes singularly perturbed
as |s| - co.

What we have to do is the following:

(1) Replace (3.8) by an absolute convergent integral with another integration
path;

(2) Prove that on the new integration path the convergence results for two-point
boundary problems hold. |

For I" we take the imaginary axis (o = 0). We now define the contours 'y, I'5, I'3, ['4
and I's by (see Fig. 1)

[ ={sls=+ir;-R=r=R};
={sls=a+iR;—R=a =0}
(3.9) ={s|s=a(-1+i);0=a=R};
[s={s|s=—a(l+i); 0= a =R};
[s={sls=a—iR;~-R=a =0}

where R is an arbitrary positive number. Since é€(s) has no poles outside the negative

real axis, we can apply the main theorem of Cauchy on complex analysis to obtain the
important relation , |

(3.10) é(s, x)e" ds =0, xel tel,

J’P,PQP:,P,

where by P, P, - - - P, we mean the polygonal line starting in P, connecting P, with P-,
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R et LT

L s

Fia. |

Py =[5, If we apply (3.2b) for v = u(s),

B(a(s), d(s})+ (IR —a)(id(s), 4(s)) = (u(s), ug).

e take the squared moduli of both sides, we get

B(i(s), () —al@(s), a(sNP + R(E(s), d(s)

= |(d(s), o)l

It is easily seen from (3.12) that

(3.13) RI(d(s), a(s)| = (als), uoll;

hence

=2 gy + R,

Hﬁ (s m«u <R ﬁuuﬂ?iu

and

12 ()} = CBis), d(s) = Cllé(s)oluollo = CR ™ uulls:

(3.14) , g .
1@ (s = CR ™Y *luallo:

s, ) sl s CR ™ Hluyllo.
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The next-to-last inequality 15 obtained by applving Poincaré's inequality. In a similar
way one proves that

hence

o T o - N L ¥ . y
(3.16) eis, v h s OR o+ 1 Ulo), on s,

After this, we obtain

“ PPy
R
-

“ileolio + HUollo) J’ e " da

U

A

A ; ' é -
éis,xyedsis|
% oy
C

1
3
. 3

R

il

il

é(s, x)| |e”] |ds]

;1 3
e dmdise
et rekea

A

CR t l m 4 ﬁ'}Hﬁﬁ}B + ” U @-glm ),

:

i

which imphies that

(3.17) lim éls, x1eds=0, >0

Rowo J oy

In a similar way one proves that

é(s, x1e’ds =0, t >0,

s0 we have proved that

e(t, x)=— lim |
2mi R=x Jppp,

i ad : | o | . drexi |
== | [él~a—al,x)e “+é(—a+taix)e e ™ da,
3§

éls, x)e* ds
(3.18)

which is an absolutely convergent integral, since é(s, x) is bounded in «. We now have to
obtain local error bounds for é(s, x) on the lines {s|s = —a (1 £ {), a = 0} only, if we want
to derive local error bounds for e(¢, x).

We return to problems (3.2) and (3.4), but now only for s = —a(1=i). For
simplicity, we confine ourselves to s = —a(1+1), since for s = —a (1 — i) the results are
obtained in a similar way. Also, we will sometimes omit the argument s.

LEMMA 2. Let s = —a (1 +i). Then, for sufficiently small h, we have

(3.19) s =Ca+haa), ™", 1=0, 1.

Proof. For s =0, (3.19) is standard (see e.g. [16]). For s # 0, we apply the same
tricks as we did to prove (3.13). We see from (3.2b) and (3.3) that

(3.20) B(é(s), V)+s(é(s), V)=0, VeMi(A)

Next, we introduce the elliptic projection U(s) of #i(s) defined by

(3.21) Blii(s) - Uas), V=0,  VeM(A)

We know (see e.g. [16]) that

(3.22) ()~ OxsM = Ch™ il Moars 1=0, 1.

If we set 8(s)= U(s)~ Us(s) and subtract (3.21) and (3.20), we obtain after putting
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V = 5(5')

(3.23) B(5,8)+s(5,8)=s(~ U, 8).

If we fill in s = —a (1 +/) and square the moduli of both sides of (3.23). we obtain
(3.24) B(8,8)— (8, §) +a?(8, 8))* =2a%|(d - Us, §)2

From (3.24), we easily get

o?8ls = 22813l — Tallf;  18lo =20l - Dallo= Cllit])y o 1h "™,

(3.25) T e
léllo =l8llo +112 — Uallo= Ch"™ "|a2fl 1.

In a similar way we prove
21B(8, 8)> =20 78l3lld — DLl = a2 Ch**|ja|2. ,
hence
18l = CVa B i (541
léM: =18+l (s) — Tals)y = CQA+Va h)h|dy] .1,

which proves the lemma. [ i
We now introduce the Green’s function G(s;x,-Ye Ho(J)NH™(0, x)M
H i""']l(x,. 1) associated to problem (3.2) defined by

(3.26)

(3.27) B(v, G(s;x, ) +s(v, G(s; x,- N=0v(x), veHN), xel
Forj=1,---,N—1, we define é;(s)eHé(I)ﬂH’+1(A) by

(3.28) Gi(s; £)=G(s;x, £),  £€(0, x;) U (x;, 1),
Application of (3.27) for x = x; and v = é(s) gives
é(s, x;) = B(é(s), G;(s))+s(é(s), G,(s))
=B(é(s), Gi(s) = V) +s(é(s), Gi(s) - V), VeM5A),
the last equality given by (3.20). We now take a V such that

Iléj(&')“ V”; = Chr+IMIIIG;(S)|Ir+1,A, | = 0, 1, R SN
(3.30) _ .
| Vilra=ClGill,+1 4.
It 1s now cl'ear that, if s = - (1 +1),
é(s, x))| = [B(8(s), Gi(s) = V)| +Is| [(&(s), Gi(s)— V)]
(3.31) = Clé NG, (s) = Vi + 2alléOINEG (s) = Vi

= Ch” (1 +hVa+R2a)l[d@ ()], |G, (s)]1.a.

Superconvergence seems to be within grasp, but we need yet explicit dependence on 7
From (3.2a), we find that

B(d, d)+s(d, )= (uy, 4);
(Lid, Liy+ sB (i, i) = B(uy, 11):
B(La, La)+s(La, Lid)=(Lu,. Li1).

(3.29)
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LERT

from which we easily obta

»

Concerning ég (x, 5, a direct computation shows that

ofy

" . . ; vy " ' L gyg EL% '
(3.33) WG llym=Ca' ™ M, m =0,

if o 1s large enough.

ﬁB«;E’&@;ﬁ Efpﬁf& w; };f % (‘I= A {Mjr v e N? o E ) > i}w

Formula (3.34) is less good than earlier results by Douglas and Dupont [8], because
the superconvergence is not uniform on J, but only valid on any internal [, o©) with
7> 0. However, we will use (3.34) in the next section to establish superconvergence
uniformly on J for another and more practicable variant of the continuous time
Galerkin method. . |
For the moment, we have proved:
THEOREM 1. Let w:J~>H"""(I)NHINI) be the solution of (1.1}, with uye
H " "IV HWI) and let U J = M o (A) be the solution of (2.6), with U, defined by (3.4).
Then the error function e(t, x) has the global bound (2. 10) for t 2 0 and the locai bound
(3.34) for any t > 0. (]
Remark. One can improve (3.33) by taking the contour {s|s = ~a — u + ia, a = 0}
as new integration path, where u is a positive number between 0 and A i. In that case,
one obtains the error bound |

b Quadrature rules. In practice, one is forced to evaluate B (U, V) by some
quadrature rule (e.g. Newton—Cotes, see [17]). In this section we ad vocate the use of
Lobatto quadrature rule because it has the following advantages:
(1) there is no loss in the order of accuracy, neither global nor pointwise:
(2) a purely explicit initial value problem can be obtained by selecting a proper
basis of M (4), with preservation of sparseness.

4.1.

L.obatto quadrature. [t is known (cf. e.g. [5]) that if fe H* (I), the in tegral
1

J flo) do

()

can be approximated by the (r + 1)-point Lobatto quadrature

4.1) QUf1= X wifton),
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where o,=0, o, =1 and o, - - -, o,-; are distinct points mside /. The weights w, are
positive. Examples are the trapezium rule (r=1) and Simpson’s rule (r=2). The
approximation (4.1) is exact when fe P,,_,(J), otherwise the error 1s of O(D*fo),
£e (0, 1)), or of O(|D*fllo). Next, we define (a, 8)» by

.
(@, B)n= T (a, B

}

(4.3) (@, B)¥ =h ,i wa(&)B&),  j=1,-,N:

=0
&1t = Xj-1+ hon; j=1,---, N; [=0,---,r.

Note that &, 0= & Now (o, B)xn =(a,B) if aB € P, _1(I;),j=1, -, N; otherwise if
aﬁ = Hzr(Ij),

N
(4.4) (@, B)x —(a, B)| = O(h™) L lleBlira,.

Inequality (4.4) can be proved by direct application of the lemma of Bramble and
Hilbert [1, p. 114].
LEMMA 3. Forany U € My (A),

(4.5) U, =[(U, U)]"?

is a norm equivalent to ||U]|)o.
Next, we define the bilinear functional B, : M, (A) X M (A)— C by

(4.6) B, (U, V)= (pU’, V'), +(qU, V)4, U, VeMq(h).

LEMMA 4. For sufficiently small h, the following inequalities hold:

(4.7) AU a= Ch™M[U|lma,  0=m

=l=r;
(4.8) 1B (U, V)=B(U, V)| =Ch"""|UllLall Vlim.a;
(4.9) (U, V), —(U, V)| = Ch' ™| Ul | Viim.a;

(f. V)= (f, V)= Ch7 || fllzr.all Viim.a;

U VeMa(A), 0=l m=r

(4.10)

Proof. Let us represent D™ U(x), x € I; by
(4.11) D"U(x) = }E: a,L¥(x),
where L (x) are the orthonormal Legendre polynomials shifted to I;. Then
— 1/2
-”DMU“L’uj)m [t;:a?] / :
D'U(x) is then represented by
D'U(x)= ri: aD' ""L¥(x) = :;: alP¥, (x)h' ™",

where P (x) are the Jacobi polynomials PUmm7™ (x) shifted to the interval 7, We see
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that
r—m
ID'UIZ =k T laPri-mll
= {—
r'=m
th(!nM) Z aiak(P?:-l+ms P*--I-t-m)Lz(I,-)
ik =l—m |
2 o g FA—
sh*™™ Y aiak| T |(PE PE) o)
ik=[—m ik =0

26-m) v 2w 2
=Ch*"™™ ¥ ai T |P¥liza,
YR =0

re—{

s CH "MD" U T IPFIEsa,

o |

It remains to be proved that } [ —¢ | PF lliz( 1) does not depend on h. This is, however clear
since for any i, P} is represented by

P¥(x)= T cul*(x),

n =0

where C;, are constants not depending on A, hence

i
"P?:”%—Z(Ij)m Z Ciznt

n == ()

which proves that
hI"DiU“L*u,) = Ch™|D™U||L2qy;
h'\D'Uloa=Ch™|\D™U lo.a.-

After this, the further proof of (4.7) is trivial and will be omitted. Concerning the
inequalities (4.8)-(4.10), Hemker [13] proved that

Bn(U, V)=B(U, V)|=Ch*||U|j,all Viirall Pllzr.s +lqll2ra);
(U, VIn=(U, V)= Ch|UlralVllas  I1(fy VIk=(F, V)= CRY ||f 4l Vil..as

after which the inequalities are easily proved by applying (4.7). O

COROLLARY 1. If h is sufficiently small, then B, is strongly coercive on M5 (A) X
Mg (A).
Proof. From (4.8), we know that

|B(U, U)- B, (U, U)|= C||U|?K?,
hence
B, (U, U)=(C,— ChH| U} =z C||UIP,

if A is sufficiently small. U
After'these technical lemmas, we arrive at:

THEOREM 2. Let p,qe H*'(A), let ue HY)NH"*(I)NH*(A) and let Y, e
M (A) be an approximation to u,, defined by

(4- 1 2) ( Y(h V)h = (ufh V)h: V € M{} (A)*
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Then the solution Y:[0,¢)—> M (A) of
(4.13) = Bp(Y, Vi+(Y, V), =0, t =0, VeMiA); Y(0)= Y,
has the following error bounds

lu = Yib=lle)lo+ Ch™ ull.svVe,  t20;

(u = YY), x;)| = C,(r)hz'lluollz,_a, /=1, N—1, =0,

where |le()|lo is bounded according to Lemma 1.

NOie that (412) 1mphes Yn(f,;f) —= uo(fj';), j == 1, R N; 1-—"'--0, AL ¢

Proof. Let U, Z:J - M (A) be the solutions of (2.6) with initial functions Uy and
Yy, defined by (3.4) and (4.12) respectively and let n and £ be defined by

e(r,x)=U(t,x)-Y(1, x);
(L, x)=2{x)—-Y(t x): xel tel

(4.14)

We note that u — Z satisfies the conditions of Lemma 1.

If we subtract (4.13) from (2.6) and substitute V = n(z, x) we get after application
of Lemma 4

o |
(5 n) +Bun. )= BulZ. m) = B(Z, 1) +(Ze 1)~ (Zor )

(4.15) J4

= Ch™ il Zl.a + 11 2] -4}
Let I[lu e My (A) be a projection of u defined by
(u—-Tlu, V)=0, VeM;A).
Then from Ciarlet and Raviart, we know that
lu —Tula=CR"™ ullyer, 1=0,---,r
Hence
1Zl,.s =112 — Tl s +llte = Taal,.a + [l
= Ch™ " Z - Mully + Chllufl, vy + ],
= Chljullrey +llull, = Cllull 1.
In a similar way, we prove that 1
|Z:llr.a = Clleli 1 = Cllulf,+ 3

hence after applying Corollary 1, we get
d 2 r+
(4.16) EMIZ‘FQHnﬂzéCz“??“xllullnsh g

After application of Gronwall’s inequality, we get

IV

9
rv3s { ()a

d, | .
g}'lnlﬁé Ch* ™ *|u]

(4.17)
ln(())lh = 0, [ = ().
This differential inequality has the solution

(4.18)  Inlk= Gl

i1
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which implies that
(4.19) lw—Ylo=lletllo+ Ch™ 'Vellull, .,

from which one easily proves the first part of (4.14). In order to prove superconvergence
at the knots, we prove that

le(r, x)|=C()h*, j=1,--- ,N~-1.
| rransform Y'(s, x) of Y (¢, x). Itis plain that ¥ (s)

Bi(Y(s), V)+s(¥Y(s), V)=(Yo, V)i, VeM,(A).
asily proves that (see Fig. 1)

(4.22) e, x) = 5%-;: Lim J‘W]£ : £(s, x) e” ds,

where £(s, x) = p{s, x)~U(s, x). To that end, it suffices to show that
(4.23) |lY(~a%iR)SCR™Y?, -R=as0,
if & is sufficiently small. If we apply (4.21) for s = —a £ iR, we get

Bi(Y, Y)—a(Y, Y)uxiR(Y, ¥)i = (Yo, V)

One immediately sees that
(4.24) [YRsSR7(Yo, Yul;  Bu(¥, V)=a(¥, )+|(Yo. Y )l
and hence after application of Lemma 3,
IPlo=CRY[Yolos  Bu(¥, ¥)=Cla + RIRH Yol2.
After application of Lemma 4 and Poincaré’s inequality, we get
¥ (s, )} = C|| Yl = CR™V) Yo,

which proves (4.23).

From now on, we are only interested in the behavior of #(s, x) on the lines

{sls = —a(1£i), « 2 0}. I we subtract (4.21) from (3.3), put V = & and apply (3.4) and
(4.12), we get

Bi(£, &) —a(1£)[(£, )n+(U, &) —(U, £))= (uo, &)s — (uo, &)+ B(U, &) - B, (U, 2).
One easily verifies that, if A is sufficiently small, .
(4.25) IB(£, £)—a(1£i)(é, €4l Z3V2 BL(é, 8) = C|J3)P.

Furthermore, application of Lemma 4 proves that

.i(“n, E)n—(Ug, € )l =C 'ﬂuaﬂzmﬂf "'lh Mll;
(4.26) 1B(U, §)- B\,(U, &)|= C| O, alél, ™
(O, 8)— (U, é)| = ClO| Al
, after application of (3.32),

so we easily get

I€lh = C+a)h"™ 'O ),.a+lluolhy »)

SC(1+a)h” H(Cia®" Y + Dllugllas a.

(4.27)
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For the estimation of £(s, x;), we again use the Green’s function:

|é(s, x))| =|B(&, G))+s(¢, G)

=|B(€, G~ V)| +|s(e, G,— V)| +|B(&, V) +s(8, V)
= ClENNG; = Vi +IsHEINIG, = Vilo+ (1o, V) = (0, V)]

(4.28)

+|Bu(Y, V)= B(Y, V) +|s(Y, V)i —s(Y, V)
= ClEG, = Vil +aV2léilG; — Vil + Clluollarall VI,.ah

+CIY lhall VIah® + V2| Pl VILah®,  VeMb(A).
If we take V such that (3.30) holds, then
(4.29) ”é; -V = Chr”éi”r-ﬂ.&; |V ],a= C”¢f“f+1.ﬁ~
Furthermore

| Ylla=lléll.a+110],a
= Ch™" Y&l + Cllé,
=GR (1 +a)(C2a R + 1)+ Cra " P Yuoll2r.a

= Cila™"™V + CR2a " R D Yugllaa.

(4.30)

So we finally have
(4.31) 1€ (s, x)| = Fj(a)h* |uollzra
where Fj(a) is of at most polynomial growth in a. From this, we easily derive
(u = Yz, x;)|=le(t, x;)| + e, x;)]

= Q(f)hzr““o“zr.m =1L, N—-1; r>0.

Again, C;(t) may tend to infinity as r - 0. However, since
(u— YO, x;)| =0, j=1,--- , N-—1,

the error bound can be extended to the closed interval J. Hence, we have
(4.32) (= Y1, xp)| = Ci(t)h™ |luolzr.a

where C; is bounded on J, C;(0) = 0 and where C;is of O(tr™"), as ¢ - co. This completes
the proof. [

Remark. By exactly the same methods, but now applied to the contour
{s|s = —u £ ai}, this result can be improved to

[(u = Y)(t, x)| = Ci(r; w) e R ||uollara.
provided that

p< mnf ———=A%
Ve M(A) lVlh

where |[AT — A,| is known to be of O(h*").

4.2. Preservation of sparseness; purely explicit initial value problems. Another
well-known feature of the continuous time Galerkin method is that it results in a vector
initial value problem of sparse structure.

13



14

PARABOLIC EQUATIONS IN A SINGLE SPACE VARIABLE 175

We define the points zg, 21, * -, Z,~v by
Zj = Xj, j=0,-+-,N,;
Zirwt = Eja1.ls j=0,---,N—-1;, I=1,---,r—1.
Then one can define a basis {¢;}/~; for M{(A) by
(4.34) di(z;) = i, 1=, j=M.
If one represents Y (¢, x) by

(4.33)

M :
Y(t, x)= 3 ai(t)di(x),

| ]
then a satisfies the initial value problem:

d
K12~}~3+K33m0, t=0;

a;(0) = uo(z;), t=0, i=1,---, M

K= (¢ di)n);

K> = (B (i, &;))-

As is easily checked, the M X M matrix K, is (2r+ 1)-diagonal of the structure

(4.35)

rxpr

\--h— mmmmmm
(4.36) 3 St '

However, what is more important,
(4.37) (i, ¢f)h = 3i;|¢i|;2u

which means that K|, is a diagonal matrix. One sees that by use of Lobatto quadrature

the matrix ((¢;, ¢,)) has been lumped (physicists’ term) to a diagonal matrix. So while for
the solution of (2.6) one would have to integrate the implicit differential equation

b
(4.38) K, _‘,,i_____ + K4sb=0,
dt
where K3 and K, are both of the structure (4.36), problem (4.35) is of purely explicit
form, which is another advantage of Lobatto quadrature.
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5. Numerical example. In order to illustrate the superconvergence at the knots
when Lobatto quadrature is applied, we integrated the following simple problem

5‘;2 5;"5+(x1()+180x8“x)ew, t=0:

=0, x=0,1: u mx-—xm, r == (),
The exact solution is (x —x'?) e ~'. I was partitioned into N segments of equal length for
N =4, 8, 16 respectively. For r =1, 2, 3 this problem was integrated from O to 1 by an
adaptive Runge-Kutta method. Below, we list the errors in the points 0.25, 0.50 and
0.75forr=1,2,3and N =4, 8, 16. One easily verifies that the errors decrease by about
27% when N is doubled, which confirms the superconvergence at the knots.

r=1
x ™ 4 8 | 16
0.25 3.90(~2) 1.11(~2) 2.87(-3)
0.50 7.65(—2) 2.17(=-2) 5.61(—3)
0.75 Q.96(-2) 2.80(-2) 7.20(-3)
r=2
N 4 8 16
"—'———--ﬂ—»—-w—l——-—-—-—————————-—_-h[———-——-—-—__ - --——-# O —
0.25 1.87(—=3) 1.25(~4) | 7.97(—-6)
0.50 3.61(—3) 2.40(—4) | 1.53(—5)
0.75 4.25(~3) 2.80(—4) I 1.77(—5)
r=3
N 4 8 16
e R 7 A8t Al At Pt oSSR OSSR ERESPtr eetre e e
0.25 1.15(-5) 1.83(-7) 2.78(—9)
0.50 2.04(~5) 3.23(—7) 4.91(—9)
0.75 2.01(~5) 3.17(—=7) ; 4.79(—9)
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Miente Bakker
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Summary. As is known [4], the C° Galerkin solution of a two-point
boundary problem using piecewise polynomial functions. has O (h**) conver-
gence at the knots, where k is the degree of the finite element space. Also, i1t
can be proved [5] that at specific interior points, the Gauss-Legendre
points the gradient has O(h**!) convergence, instead of O(h*). In this note,
it 18 proved that on any segment there are k—1 interior points where the

Galerkin solution is of O(h**2), one order better than the global order of
convergence. These points are the Lobatto points.

Subject Classifications: AMS (M OS) 65N 30;: CR: 5.17.

1. Introduction

We consider the two-point boundary problem

Lu= ~(pUou) +4()u=F1,  xe[0, 1= 1

We suppose that p, ¢ and f are such that (1) has a unique and sufficiently
smooth solution.

Let, for a constant integer N, 4: U=x,<x,<...<xy=1 be a partition of I
with

h=N~"1; x,=jh; i=[x; 4. x;]

and let for a constant integer k=2 and for any interval Ec I, B(E) be the class
of polynomials of degree at most k restricted to E.
We define for m=0 and s> 1

0029-599X/82/0038/0447/$01.40
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v
BT 2

RALT ;

LRI O

where DV denotes &/ dx'. If E =1, we write (x #) instead of (x ff),.,, and ]

Ly

e MX (1), (3}

-+ R 15 defined by

o

Biu, vy=(pu., ) +{qu. vy, u. ve H fa.é I, { <)

o

B 1s strongly coercive. Le. there exists a € >0 such that

ST o Y o
e, reH (). (5)

Lemma 1. Let ue Hit)vH** ' (1) be the solution of (1} and let Ue MX(A) he the
selution of (3). Then the error function e(x)=u{x)— U(x) has the bounds
el s Ol Mf“i'g L1 =01,
el s Ch~* g, . J=1.....N—1; (6)
Hﬁi: . %0 ‘f% iwﬁ . % MM& + 1

Proof. See [6]. [4] and [7]. [

In the next § we prove that the local order of convergence improves
shightly at specific points interior to 1, if u satisfies stricter smoothness require-
ments on the interior of 1,

1dy ﬂg (\? 80

ivergence at Lobatto Points
On the segment [ — 1. + 1], we define the Lobatto points a,,.....a, by
{g

(1~a?) i Bla)=0. 1=0,... k (7)

where Kia) ts the k-th degree Legendre polynomial. Associated to this poly-
nomial 1s the quadrature formula (see [ 1, formula 25.4.321)
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+ | k (k+1) k222 T (k—1)17]*
[ floydo=3 w flo)— o= 0 f2h(g) ge(~1, +1)
-1 z{:() (25 +1)[(2k) ] : “ ' .u
5 (8)
[=0,....k.

W', == .- — e
C k(k+1)[R(o)]?
From (7) and (8)., we define

, / .
S =X, .,"1+2I(1—i-cr,); l=0,....k; j=1,....N;
. h & . . o
(. =5 3 woal€y) B % BeWHe(I);  j=1,...N; 9)
£ 120

N
(o, b))y, = z (o, B)}e-
=1

We return to problems (1) and (3). It is known that

B(e,V)=0, VeM(4). (10)
For any I;, we define
M) = {V|VeM(4). supp (V)=1,}. (11)

We temporarily drop the subscript j from the numbers &,;. We define a natural
basis {¢;}¥" for M§(I,) by

¢i(S)=0,. 1=siIsk-1. (12)

where 0, 1s the Kronecker symbol. If we elaborate (10) for V=¢,, i=1, ...,k
— 1, we get

(e. Lgp)=[p(x)e(x) pj(x)]3x, i=1....k—1. (13)
Approximation of (e, L¢;) by Lobatto quadrature yields
k- 1
Z, w, L (&) e(¢))
1= 1
=2h" " [p(x) e(x) ¢;(x)] Eﬁ —wq e(So) L&) (14)
—w, e(£,) L(E,) + Ch¥*D*(eLp)(Eel). i=1. ... k—1.

This 1s a linear system for e(¢,),....e(&,_,). We have to prove the non-
singularity of (w,L¢;(&,)) and to compute the order of the solution. We know
that

hB(¢p,,. p)=h (Lo, )

k— 1

=h? 3 w,Lo(£,) pu(E,) + Ch?*+ 2D (L, (&) ¢,(8)). Ee

Vs |

=h?w, L () + Ch?*+2D?*(L, (&) p,(&)), E€l,.

19
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Hence we have

hB(9;. ) —h* w L () < Ch?. (15)

This means that M, =(h*w,L¢,(£)) is nearly equal to a symmetric positive
definite matrix whose entries and positive eigenvalues are of O(1) and con-

sequently has an inverse with the same properties. If we represent (hB(¢,, ¢,))
by M,, we find that

Ml mM2+h2M3mM2(I+h2M;1M3).

where all M, have entries of O(1). Since the spectral radius of the perturbation
matrix is of O(h?), it is evident by power series expansion that

M '=M;'+h*M,,

where the entries of M, are of O(1). This proves that M ;! has entries of O(1)
and so we have that (w, L¢;(&))~ ' has entries of O(h?).

We turn to the second part of our problem. The first three terms of the
right hand side of (14) are of O(h**~?|lu|, _,). For the last term, we prove that

| D*(e Lpl Logr,y S Clelwerery | Ll oo . (16)
From [3], it can be proved that

C‘hk+'1"-'l” “k.w,. | lék;

Dl =y i (17)
Furthermore,
ILdillwak.. < Ch™¥, (18)
hence we summarily have
[k - 1 -
.z; wiLgi(&) e(E)| = CH[ully B2+ [l a1,
i=1,...,k—1. i (19)

This was the last step in the proof of

Theorem 1. Let ueH (I)n H*+ (I}~ ﬂ W=k=(1,) be the solution of (1) and let

UeM{(4) be the solution of (3). Then the error function has the local error
bound.

Ie(&jl)l < Ch*+ 2[.|.|u“k+ R 24 Ilullwzk.w(]j)]*

=1,....N; I=1,... k—=1. [ (20)
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3. Lobatto Quadrature

Usually, B( . ) and ( , ) are to be evaluated by numerical quadrature. We will

show that Lobatto quadrature leaves the order of convergence at the Lobatto
points invariant.

We define
N
Bu(o B)=(po’, By +(qo Blys o Be [} WHH=AT)) 1)
i 2
where ( , ), i1s defined by (9).
Lemma 2. Let YeM¥(A4) be the solution of
B (Y.V)=(/V),, VeMy4) (22)

N
and let ueHy(I)n H** (1) [} W?=(I,) be the solution of (1). Then the error

J =1
function n=u—Y has the bounds

NS Ch*| fllan. 45 J=1,...,N—1,

if h is small enough, with

N 3
lha=] % 1Ty 23)

Proof. See [4]. [

We now consider &(x)= U(x)— Y(x), where U 1s the solution of (3). From (3)
and (22), we obtain for every I,

B(e. V) SI(f, V)= (f, V)l +1B(Y. V) = B(Y, V)
< Ch** WV g LIS Dz H U Y g 30 VEMEU )

If we take for V any of the basis functions ¢, of Mﬁ(lj), as defined by (12), we
have

B(e, )| S CH T S lgswry + 1 Y g, e 0= Lo k= 1. 25
Since
k-1
z w e(&) L (E)=2h" 'B(e, ¢))
[ = 1
— Wy &(S o) Loi(co) — W S(Ek') L‘bi(ik) (26)

~ZIp(x) e(x) ()1 + CH* D*(eL) (Sel )

and

_ (27)
<Ch % ”EHL‘”(U)é Ch=** | S 2k, 4

21
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we have
k— 1

>, wiel€) LoD < CRLI S oy + 1Y 1]

=}

(28)

+Coh™ 2 flla s+ Ca P s

The nonsingularity of (w,L¢,(£)) has already been proved, its inverse is of
O(h?), hence we have

(EN S C LR 200 fll oy + 1Y g )1+ Co B2 f ] o (29)
Since (see [3]).

” Y“ Hk([_,-)...g.... ||’7”H"‘(Ij)+ |lu”!f’<(1’j)§ Ch “u“k—!- 1 + ”u“H“Uﬂ
= Cllullis o,

we can prove by combination of (20), (29) and (30)

N
Theorem 2. Let ue Ho()nH** Y(I)n [} W2k = (] )

J
J=1

be the solution of (1) and let Y € MX(A) be the solution of (22). Then the error
Junction n has the bounds

In(éu)léclhk+2[|lf”””‘(1j)+“u”k+1]+C2 hk+3|‘f”3k“4;
j=1,....N; I=1,... k—1. [

4. Conclusions

We have found a weaker form of superconvergence at other points than the
knots. The findings of this paper stress the important part that Lobatto points
play in the C° Galerkin method for two-point boundary problems. This is

especially true for k=2, since in that case the error is of O(h*) at all Lobatto
points.

The results of this paper can be easily applied to the case of two-point

initial boundary problems (see [2]) and probably to other cases, such as
nonlinear boundary problems.
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MIENTE BAKKERT

Abstract. For parabolic eguations in one space varnable with a strongly coercive self-adjoint 2mth
arder @pmm afm@mma* a kth degree Faedo-(ralerkin method 1s developed which has local convergence of
order 2(k + 1 - m) at the knots for the first m ~ 1 spatial derivatives and, if k &2 2m, convergence of aﬁmw
K+ 4 at %»Ws:ma mwﬁm‘* nodal points, These nodal points are the zeros of the Jacobt polynomial P, ™ (o)
(i &+ 1~ 2m) shalted to the segments of the parttion. All these convergence properties are pmww@d

if suitable quadrature rules are used.

1. Introduction. We consider the 2mth order initial boundary problem

o
mﬁf“ x4+ Lult, x)=0,

V=1,
ot

ul, x)= uolx).

We suppose that py, -+, P
teJ,

1.1. Notation. For any interval E < ] we define the Sobolev spaces
H U E), f‘“"*@ mxd Ehmr norms by

and u, are such that wu(z) is sufficiently smooth for every

W'(E) and

ID've LY(E), j=0,--+, 1},
D've LYE),j=0,-+ 1,

lollwie = max |1

UE L™E W

o
- £ (D', Doy]

where D’ d@nnms d'fdx’ or ¢/ax" and the complex-valued inner product (-, - )g is

(1.3)

For convenience, since we use them frequently, we make the following replacements:
(1.4) laells = lleell i, (a, B) = (a, B).
Furthermore, we define Hg (I) and the bilinear functional B: Hy (I) X HN (I} C by

Hi (D={v|lee H™"(I); Dv(x)=0,1=0,-- -, m~1},

m

B(u, v)=(Lu, v)=(u, Lo) = ¥ (pD’

a0

u, D'v), u, ve Hg (1)

S Ll ok sl U T B T A

* Received by the editors April 22, 1980, and in revised form April 10, 1981,
t Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
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We assume that po, - -, P @re such that B s strongly coercive; 1e., that there exist

L] ®

.3
positive constants C; and C, depending on p,, -+ -, P Oniv, such that

t1.6)

Note that this implies that P x>0, x & [,
In the sequel, C, C;, C;, ete. will be positive generwe constants, not necessarily
the same,

1 . 2,’ Req w G 1 Y én mieinog
‘o 7 c T o1
the partition & = {x,},.o of I by

(1.7) x; = =14 hj, =0, N,
jg‘ Sl E,ﬁfﬁ ~1s X .E* j S E; O, N,

—1 be a constant integer. Then we define the finite element space

iT € I I }; vﬁt & P & { E § }a ﬁm = ia T Y iw %’ﬁ

where for any / 20 P(E) denotes the class of polynomia most | defined
on the interval E.

In the sequel, we will use the following

Is of degree at

ated to k, m and

constant integers associ

N:

(1.9) r=Kk+1-m, n=k+1-2m, M=rN-m.

In (1.9) n is the number of interior nodal points of $(A) on I; and M is the dimension
of S(A).

In connection with A, we define the partition
with their norms by

rether

follwia = m{nax “U“W”H;'Ba

i . IV

(1.10)

Hgi.&?m{&‘g@ EH%I;};}:M :E., Tt -mN}u

N 142

lollia = [ ) ”f«*i’?f‘u,s]

After these preliminary definitions, we can define a finite element solution of
(1.1). Let U:J = S(A) be the solution of the initial boundary problem

(83U o , .
(“‘“""“, V) +.B{U, V.) = () Ve S{&), _ %0’

ot
(1.11) . 1 ﬁ
U0, x) = Uplx),

where Upe S(A) is an approximation of u, satisfying
(1.12) luo— Ul = CH* 7 lluglle ey, 1=0,-+.m.
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be the solution of 11.1) WM let U7 T -» S{A)
},

g A NINMA E gmﬁf i Hﬁ ey f ;.‘f | ;i* é E I B f‘g } '{ R f I
120, Then etry = u(t)y— U, has the L° error

be the solution of (111 with condition (1.
bovernd

_. oy A B o gouy 4 ] % PR .
(1.13) it =Ch™ 0 x ggw W)l vy+ e

wiere Ay IS the smallest eigenvalue of L.
Proof. See [11]. U

1.3, Sum nary of results in this paper. In § 2 the occurrence of s uperconvergence
at the knots is investigated. It appears that this depends crucially on a proper choice
of 7p. A %urmmmw simple choice of U, is made with the only &addﬁtimnm muﬁmmﬁm
mm withe HY DD H "YW DHN W “"‘“"m teJ. In  that case D'e(z, x W =0,

-1, ;f::M v, N H is of Oh™"), t=>0. Fwﬁhwmmw if n =1, there are on mc:h
i " %p&mm interior points, where e/ M is o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>