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PACKING ODD CIRCUITS∗

MICHELE CONFORTI† AND BERT GERARDS‡

Abstract. We determine the structure of a class of graphs that do not contain the complete
graph on five vertices as a “signed minor.” The result says that each graph in this class can be
decomposed into elementary building blocks in which maximum packings by odd circuits can be
found by flow or matching techniques. This allows us to actually find a largest collection of pairwise
edge disjoint odd circuits in polynomial time (for general graphs this is NP-hard). Furthermore it
provides an algorithm to test membership of our class of graphs.
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1. Introduction. The odd circuit packing problem, finding in a graph a largest
collection of pairwise edge disjoint odd circuits, is NP-hard. In this paper we will
present a class of graphs in which this problem can be solved in polynomial time. We
prove that each graph in this class can be decomposed into planar graphs, graphs with
a vertex meeting all odd circuits, and graphs containing at most six vertices. In such
building blocks a maximum packing by odd circuits can be found by flow or matching
techniques. Given a graph G in our class, our decomposition theorem allows us to
combine such packings for the building blocks of G to a maximum packing by odd
circuits in G. With some extra work our decomposition theorem gives an algorithm
to test membership of our class.

We present everything in terms of signed graphs. The results can be stated and
proved in terms of ordinary graphs without any loss of generality, but in those terms
the proofs require extra maneuvering that can be avoided when speaking the language
of signed graphs. A signed graph is a pair (G,Σ) consisting of an undirected graph G
and a collection Σ of its edges. A collection F of edges in G is called odd in (G,Σ) if
|F ∩ Σ| is odd; otherwise, F is called even. In particular, we speak of odd and even
edges, paths, and circuits. We call (G,Σ) Eulerian if G is Eulerian, so if each vertex
has even degree.

Theorem 1. The odd circuit packing problem is polynomially solvable for Eule-
rian signed graphs with no K̃5-, K

1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor.

We explain the notions used in this result. A minor of (G,Σ) is the result of
a series of the following three operations: deletion of an edge or an isolated vertex,
contraction of an even edge, and resigning. Resigning (on U ⊆ V (G)) means replacing
Σ by the symmetric difference Σ�δG(U) of Σ with the cut δG(U) := {uv ∈ E(G)|u ∈
U, v �∈ U}. Clearly, the collection Ω(G,Σ) of odd circuits in (G,Σ) is invariant under
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Fig. 1. Bold edges are odd; thin edges are even.

Fig. 2. Bold edges are odd; thin edges are even.

resigning. Two signed graphs are isomorphic if they are related through resigning and
graph-isomorphism. We say that (G,Σ) has a (H,Θ)-minor or contains (H,Θ) if it
has a minor isomorphic to (H,Θ).

The definition of the four signed graphs “excluded” in Theorem 1 can be under-
stood from the following (see Figure 1). If G is a graph, then G̃ := (G,E(G)), so K̃5

consists of the complete graph on five vertices with all edges odd. Ki
3,3 := (K3,3,M),

where M is a matching of size i. Finally, K1,1
3,3 and K1,2

3,3 are the two extensions of

K1
3,3 given in Figure 1.

In addition to Theorem 1 we prove that the signed graph property described there
can be recognized in polynomial time.

Theorem 2. There exists a polynomial time algorithm that decides whether or
not a given signed graph has a K̃5-, K

1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor.

As we shall see in sections 3 and 5 both Theorems 1 and 2 are a consequence of
the following decomposition theorem. It is the main result of this paper.

Theorem 3. Let (G,Σ) be a 3-connected signed graph with no improper 3-vertex
cutset and no K2

3,3-minor.

(i) If (G,Σ) has no K1
3,3-minor and no K̃5-minor, then |V (G)| = 5 or G is planar

or (G,Σ) is isomorphic to one of the signed graphs in Figure 2 or (G,Σ) has
a blockvertex.

(ii) If (G,Σ) has a K1
3,3 minor, but no K1,1

3,3 or K1,2
3,3 minor, then (G,Σ) has a

blockvertex.
Here are the notions used in this result: A blockvertex of (G,Σ) is a vertex that is

contained in every odd circuit. We call (G,Σ) 3-connected if any two vertices in G are
connected by two internally vertex disjoint paths; this allows parallel edges. (G,Σ) has
an improper 3-vertex cutset means that it contains signed graphs (G1,Σ1) and (G2,Σ2)
such that E(G1) and E(G2) are nonempty and partition E(G), |V (G1)∩ V (G2)| = 3
and (G2,Σ2) has no odd circuits and at least four edges. The proof of (i) is in section 6,
and the proof of (ii) is in sections 7–11.

We obtain not only an algorithm for the odd circuit packing problem but also a
min-max relation.
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Theorem 4. Let (G,Σ) be a signed graph with no K̃5-, K1,1
3,3 -, K1,2

3,3 -, or K2
3,3-

minor. If G is Eulerian, then the maximum number of pairwise edge disjoint odd
circuits in (G,Σ) is equal to the minimum number of edges needed to cover all odd
circuits in (G,Σ).

This result has been generalized extensively by Geelen and Guenin [2], who proved

the min-max relation for all Eulerian signed graphs with no K̃5-minor. This was stated
as a conjecture in an earlier version of the present article. Geelen and Guenin do not
use decompostions, and their methods do not seem to provide a polynomial time algo-
rithm for finding maximum odd circuits packings. However, it does follow from their
result and in fact also from the earlier characterization of “weakly bipartite graphs”
by Guenin [5] that by linear programming techniques one can find in polynomial time
a smallest collection of edges that cover all odd circuits in a signed graph with no
K̃5-minor. Note that in K̃5 itself, which is Eulerian, the min-max relation in Theo-
rem 4 does not hold, so the Geelen–Guenin theorem is in a certain sense as strong as
possible.

The min-max relation stated in Theorem 4 may fail to be true if we drop the
condition that the graph is Eulerian; K̃4 is an example. Actually it follows from a
general result of Seymour [10] that the min-max relation does hold for signed graphs

with no K̃4-minor, even if they are not Eulerian.
Theorem 3 also has consequences for the chromatic number of the graphs involved.

In combination with the 4-color theorem it can be used to prove that if G̃ has none of
the forbidden minors of Theorem 1, then G is 4-colorable. (It has been conjectured

by one of the authors that G is 4-colorable if G̃ has no K̃5-minor, see Jensen and
Toft [8]. Recently Guenin [6] announced a proof of this conjecture.)

Theorem 3 can be regarded as a first step towards a constructive characterization
of graphs with no K̃5-minor, a small step though; there are quite a few other infinite
families of “highly connected” graphs with no K̃5-minor known that are not covered
by Theorem 3 (see Gerards [4]). The exclusion of K2

3,3, K1,1
3,3 , and K1,2

3,3 is quite
restrictive. For each Σ ⊆ E(K3,3), the signed graph (K3,3,Σ) is isomorphic to exactly

one of K0
3,3, K

1
3,3, and K2

3,3. For instance, K̃3,3 is isomorphic to K0
3,3 and K3

3,3 to K2
3,3.

So up to isomorphism K2
3,3 is the only signed K3,3 with a K̃4 minor. K1,1

3,3 and K1,2
3,3

are the smallest 3-connected signed graphs that contain both K1
3,3 and K̃4 as minors.

2. Odd circuits in signed graphs. We mention some elementary facts on
signed graphs that are good to keep in mind while reading this paper. Note that they
are all known and not just for odd circuits in graphs but for general binary clutters,
which are just collections of odd circuits in signed binary matroids.

A signed graph (G,Σ) is bipartite if Σ = δG(U) for some U ⊆ V (G). So clearly,
(G,Σ) is bipartite if and only if it is isomorphic to (G, ∅). Hence, if (G,Σ) is bipartite it
has no odd circuits. Actually the converse is also true. To see this, we may assume that
G is connected and that we have resigned (G,Σ) such that Σ is as small as possible.
That means that Σ does not contain a nonempty cut δG(U) (otherwise resigning on
U replaces Σ by Σ\ δG(U), which then is smaller). Therefore the even edges in (G,Σ)
form a connected spanning subgraph of G. Now, if (G,Σ) is nonbipartite there is an
odd edge uv in Σ and, as u and v are connected by a path with all edges even, that
edge is in an odd circuit. So a signed graph is bipartite if and only if it has no odd
circuit.

A subset S of E(G) is a signature of (G,Σ) if (G,S) has exactly the same odd
circuits as (G,Σ). Clearly, S is a signature if and only if all circuits are even in
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(G,S � Σ). In other words, the signatures are exactly the sets Σ � δG(U) for some
U ⊆ V (G). Each signature meets all odd circuits. Conversely, if F ⊆ E(G) meets all
odd circuits it contains a signature. Indeed, let H be obtained from G by deleting
all edges in F . Then (H,Σ \ F ) has no odd circuits and so is bipartite. Thus there
exists a set U ⊆ V (H) = V (G) with Σ \ F = δH(U). In other words Σ� δG(U) ⊆ F ,
so F contains a signature, as claimed. In other words the signatures are exactly the
inclusionwise minimal edge sets that meet all odd circuits, and the smallest signatures
are exactly the the sets attaining the minimum in Theorem 4.

3. Packing odd circuits—algorithm and min-max relation. We actually
consider a “capacitated version” of packing odd circuits, because it is slightly more

convenient to work with. If G is a graph and w ∈ Z
E(G)
+ , then a w-packing is a

collection of subsets of E(G), repetition allowed, such that each edge e is in at most
w(e) members of the collection. So the maximum size of a w-packing of odd circuits
in (G,Σ) is equal to

νw(G,Σ) := max

⎧⎨
⎩

∑
C∈Ω(G,Σ)

λC

∣∣∣∣∣∣λ ∈ Z
Ω(G,Σ)
+

and
∑

C∈Ω(G,Σ),C�e

λC ≤ w(e) for each e ∈ E

⎫⎬
⎭ .

Clearly, νw(G,Σ) is bounded from above by

τw(G,Σ) := min{w(S) |S is a signature of (G,Σ)},

where w(S) is short for
∑

e∈S w(e).

We call a function w ∈ Z
E(G)
+ Eulerian if w(δG(v)) is even for each vertex v ∈

V (G). Theorem 4 is equivalent with the following result:

If (G,Σ) is a signed graph with no K̃5-, K
1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor,

then νw(G,Σ) = τw(G,Σ) for each Eulerian w ∈ Z
E(G)
+ .

(1)

Indeed, as the excluded minor condition is invariant under addition of even edges
parallel to even edges and of odd edges parallel to odd edges and under deleting
edges, (1) follows from Theorem 4, which in turn is the special case of (1) when w is
the all-one function.

Now we show that Theorem 3 implies (1) hence also Theorem 4. We first con-
sider the basic building blocks of our decomposition. For these there exist standard
constructions, by Barahona and Seymour, to reduce the odd circuit packing problem
to flow problems and odd cut packing problems.

If (G,Σ) has a blockvertex then νw(G,Σ) = τw(G,Σ) for each w ∈ Z
E(G)
+ .

Moreover then we can find a maximum w-packing of odd circuits
in polynomial time.

(2)

To see this let s be a blockvertex. As the signed graph obtained by deleting s from
(G,Σ) is bipartite, we may resign such that Σ ⊆ δG(s). Now construct a new graph
H by adding a new vertex t and replacing each odd edge us of G with an edge ut
in H. Then there is a one-to-one correspondence between odd circuits in (G,Σ) and
st-paths in H. Thus (2) follows from network flow theory.
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Next we discuss how to deal with the signed graphs in Figure 2 and with signed
graphs (K5,Σ) that are not isomorphic to K̃5. In either of these cases (G,Σ) contains
a blocking pair. This is a pair of vertices such that each odd circuit contains at least
one of these two vertices. So we can then apply the following fact:

If (G,Σ) has a blocking pair, then νw(G,Σ) = τw(G,Σ) for each

Eulerian w ∈ Z
E(G)
+ . Moreover then we can find

a maximum w-packing of odd circuits in polynomial time.

(3)

To see this we use the same approach, due to Barahona, as in the blockvertex case.
Let {s1, s2} be a blocking pair. By resigning we may assume that each odd edge is
incident with at least one of s1 and s2. Now construct a new graph H by adding new
vertices t1 and t2 and by replacing each odd edge us1 of G with u �= s2 with an edge
ut1 in H; by replacing each odd edge us2 of G with u �= s1 with an edge ut2 in H; and
by replacing an odd edge between s1 and s2 (if such edge exists) with an edge t1s2

in H. Then there is a one-to-one correspondence between the odd circuits in (G,Σ)
and the s1t1-paths and s2t2-paths in H. Thus we translate the maximum w-packing
of odd circuits problem into the integer 2-commodity flow problem. Note that the
latter problem does not really change if we would add an edge s1t1 with w(s1t1) = 1
or an edge s2t2 with w(s2t2) = 1 or both. Hence we may assume that w is Eulerian
on H. Thus (3) follows from the integer 2-commodity flow theorem of Rothschild and
Whinston [9].

If G is planar, then νw(G,Σ) = τw(G,Σ) for each Eulerian w ∈ Z
E(G)
+ .

Moreover then we can find a maximum w-packing of odd circuits
in polynomial time.

(4)

We use a construction by Seymour [12], and for ease of exposition we restrict ourselves
to the case that w is the all-one function, so G is Eulerian. Hence the planar dual G∗

of some embedding of G in the plane is bipartite in the ordinary graph sense. Let Σ∗

be the edges of G∗ corresponding to the edges in Σ. Let T denote the set of vertices
of G∗ that meet an even number of edges in Σ∗. We call a collection F of odd edges
in G∗ a T -join if and only if every vertex in T meets an odd number of edges in F
and every vertex outside T meets an even number of edges in F . A cut δG∗(U) in
G∗ is a T -cut if |T ∩ U | is odd. By the relation between circuits in a plane graph
and cuts in its plane dual, we see that there is a one-to-one correspondence between
T -joins in G∗ and signatures in (G,Σ) and between inclusionwise minimal T -cuts in
G∗ and odd circuits in (G,Σ). Hence the min-max relation in (4) follows from a min-
max relation by Seymour [12] that says that in any ordinary (not signed) bipartite
graph the minimum size of a T -join is equal to the maximum size of a collection
of pairwise disjoint T -cuts. See Barahona [1] for a polynomial algorithm for finding
such a maximum collection of disjoint T -cuts; it also allows general Eulerian functions
w ∈ Z

E(G), other than the all-one function. Thus (4) follows.
The following two results, Lemmas 5 and 6, say that all signed graphs that do

not satisfy the min-max relation in (1) and are minor-minimal in this respect are
3-connected and have no improper 3-vertex cutsets.

Lemma 5. If (G,Σ) does not satisfy νw(G,Σ) = τw(G,Σ) for each Eulerian

w ∈ Z
E(G)
+ and is minor-minimal in this respect, then (G,Σ) is 3-connected and has

no parallel edges.
Proof. Let (G,Σ) be a counterexample. We clearly may assume G to be 2-

connected, so there exist two vertices u1 and u2 in G and two connected graphs G1



278 MICHELE CONFORTI AND BERT GERARDS

and G2 with V (G1) ∩ V (G2) = {u1, u2} such that E(G1) and E(G2) both have at
least two elements and partition E(G). For i = 1, 2, we define Σi := Σ ∩ E(Gi). Let

w ∈ Z
E(G)
+ be Eulerian with τw(G,Σ) > νw(G,Σ).

For each signed graph (H,Θ) containing u1 and u2 and for i = 0, 1, we define

τw(H,Θ)i := min{w(Θ � δH(U)) | |U ∩ {u1, u2}| = i}.(5)

Then,

τw(H,Θ) = min{τw(H,Θ)0, τw(H,Θ)1},(6)

and

τw(G,Σ)i = τw(G1,Σ1)i + τw(G2,Σ2)i for i = 0, 1.(7)

Also note that if U ⊆ V (H) with u1 ∈ U and u2 �∈ U , then

τw(H,Θ)i = τw(H,Θ � δH(U))1−i for i = 0, 1.(8)

So by resigning (G,Σ) if necessary we may assume that

τw(G1,Σ1)1 ≥ τw(G1,Σ1)0.(9)

Let ω := τw(G1,Σ1)1 − τw(G1,Σ1)0. If ω = 0, let Ĝ2 := G2; if ω > 0, let Ĝ2 be
obtained from G2 by adding a new even edge e2 between u1 and u2 with weight
w(e2) := ω.

τw(Ĝ2,Σ2) = τw(G,Σ) − τw(G1,Σ1)0.(10)

To see this, note that it follows from (7) that τw(Ĝ2,Σ2)0 = τw(G2,Σ2)0 = τw(G,Σ)0−
τw(G1,Σ1)0 and τw(Ĝ2,Σ2)1 = τw(G2,Σ2)1 + ω = τw(G2,Σ2)1 + τw(G1,Σ1)1 −
τw(G1,Σ1)0 = τw(G,Σ)1 − τw(G1,Σ1)0. By (6), this implies (10).

(Ĝ2,Σ2) is a proper minor of (G,Σ).(11)

Suppose this is not true. Then G1 has no even u1u2-path, and ω > 0. We first prove
that (G1,Σ1) is bipartite. Let C be a circuit in G1. As G is 2-connected there exist
two disjoint paths from V (C) to {u1, u2}. As the union of these paths and C does
not contain an even u1u2-path, C has to be even. So (G1,Σ1) is bipartite indeed.
Hence Σ1 = δG1(U) for some U ⊆ V (G1). We may assume u1 ∈ U . Then, as there
is no even u1u2-path, u2 �∈ U . Hence as w(Σ1 � δG1(U)) = w(∅) = 0, we have that
τw(G1,Σ1)1 = 0. So ω = 0, which is a contradiction. This proves (11).

w(δ
Ĝ2

(v)) is even for each v ∈ V (Ĝ2).(12)

Indeed, as w(δG(v)) is even for each v ∈ V (G), (12) holds for all v �∈ {u1, u2}. So, as
there is an even number of vertices v with w(δ

Ĝ2
(v)) odd, we may restrict ourselves

to proving that w(δ
Ĝ2

(u1)) is even. Let U1 ⊆ V (G1) with U1 ∩ {u1, u2} = {u1} such

that w(Σ1 � δG1(U1)) = τw(G1,Σ1)1, and let U0 ⊆ V (G1) with U0 ∩ {u1, u2} = ∅
such that w(Σ1 � δG1

(U0)) = τw(G1,Σ1)0. Then we get the following (“≡” denotes
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equivalence modulo 2):

w(δ
Ĝ2

(u1)) = w(δG2(u1)) + w(e2)

= w(δG2(u1)) + τw(G1,Σ1)1 − τw(G1,Σ1)0
= w(δG2

(u1)) + w(Σ1 � δG1
(U1)) − w(Σ1 � δG1

(U0))
≡ w(δG2(u1)) + w(Σ1) + w(δG1(U1)) + w(Σ1) + w(δG1(U0))
≡ w(δG2(u1)) + w(δG1(U1) � δG1(U0))
≡ w(δG2(u1)) + w(δG1(U1 � U0))
= w(δG(U1 � U0)) ≡ 0.

So (12) follows.
By (11) and (12) there exists a w-packing C2 = {C2

1 , . . . , C
2

τw(Ĝ2,Σ2)
} of odd

circuits in (Ĝ2,Σ2). For each e ∈ E(Ĝ2) let c(e) denote the number of members of
C2 that use edge e; abbreviate γ := w(e2). Assume that C2

1 , . . . , C
2
γ are the members

of C2 containing e2. The function w − c is Eulerian on Ĝ2, and as C2 is a maximum
w-packing of odd circuits, the set of edges e ∈ E(Ĝ2) with w(e)−c(e) > 0 contains no
odd circuits. Hence, by Euler’s theorem on Euler tours and since (w− c)(e2) = ω−γ,

there exists a (w − c)-packing D = {D2
1, . . . , D

2
ω−γ} of even circuits in (Ĝ2,Σ2) that

all contain e2.

We may assume that γ = 0 or ω − γ = 0.(13)

If both are positive, then C2
1 contains e2 and D2

1 exists; by definition D2
1 also contains

e2. The set C2
1 � D2

1 contains an odd circuit, C say. As C2
1 � D2

1 does not contain
e2, neither does C. Replacing in C2 the odd circuit C2

1 with C yields a w-packing of
the same size as C2 that has only c(e2) − 1 members using e2. This proves (13).

If ω = 0, let Ĝ1 := G1. If γ = ω > 0, let Ĝ1 be obtained from G1 by adding an
odd edge e1 between u1 and u2 with w(e1) := ω. If ω > 0 = γ, let Ĝ1 be obtained
from G1 by adding an even edge f1 between u1 and u2 with w(f1) := ω. If e1 is

included in Ĝ1, we define Σ̂1 := Σ1 ∪ {e1}; otherwise, Σ̂1 := Σ1.

(Ĝ1, Σ̂1) is a proper minor of (G,Σ).(14)

If e1 exists in (Ĝ1, Σ̂1), then γ > 0, so there exists an odd circuit using e2 in (G2,Σ2),
for instance, C2

1 . So in that case there is an odd u1u2-path in (G2,Σ2). If f1 exists

in (Ĝ1, Σ̂1), then ω − γ > 0, so there exists an even circuit using e2 in (G2,Σ2), for
instance, D2

1. Hence, in that case there is an even u1u2-path in (G2,Σ2). This proves
(14).

w(δ
Ĝ1

(v)) is even for each v ∈ V (Ĝ1).(15)

This is obvious as the weight of the added edge is w(e2) and as w is Eulerian on G

and on Ĝ2.
By (14) and (15) there exists a w-packing C1 = {C1

1 , . . . , C
1

τw(Ĝ1,Σ̂1)
} of odd

circuits in (Ĝ1, Σ̂1).

τw(Ĝ1, Σ̂1) = τw(G1,Σ1)0 + γ = τw(Ĝ1, Σ̂1)0.(16)

Note that γ = ω = w(e1) if e1 exists and γ = 0 if e1 does not exist. Hence,

τw(Ĝ1, Σ̂1)0 = τw(G1,Σ1)0 + γ. Similarly, ω − γ = ω = w(f1) if f1 exists, and
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ω − γ = 0 if f1 does not exist. Hence, by the definition of ω we get τw(Ĝ1, Σ̂1)1 =
τw(G1,Σ1)1 + ω − γ = τw(G1,Σ1)0 + 2ω − γ ≥ τw(G1,Σ1)0 + γ. By (6), this proves
(16).

As τw(Ĝ1, Σ̂1) = τw(Ĝ1, Σ̂1)0 there exists a minimum weight signature containing
e1 as soon as e1 exists, that is as soon as γ > 0. Hence, by “complementary slackness”
there are exactly γ odd circuits in C1 that contain e1. Assume that C1

1 , . . . , C
1
γ contain

e1 and that C1
γ+1, . . . , C

1
γ+k are the members of C1 containing f1. Note that k ≤ ω−γ.

Now let C be the collection of the following odd circuits:

(C1
i \ {e1}) ∪ (C2

i \ {e2}) for i = 1, . . . , γ,
(C1

i \ {f1}) ∪ (D2
i−γ \ {e2}) for i = γ + 1, . . . , γ + k,

C1
i for i = γ + k + 1, . . . , τw(Ĝ1, Σ̂1),

C2
i for i = γ + 1, . . . , τw(Ĝ2,Σ2).

Clearly, C is a w-packing in G. Its size is τw(Ĝ1, Σ̂1)+τw(Ĝ2,Σ2)−γ. By (10) and (16)
this is equal to τw(G,Σ). Hence, νw(G,Σ) ≥ τw(G,Σ), contrary to our assumption.
This proves the lemma.

Lemma 6. If (G,Σ) does not satisfy νw(G,Σ) = τw(G,Σ) for each Eulerian

w ∈ Z
E(G)
+ and is minor-minimal in this respect, then (G,Σ) has no improper 3-

vertex cutset.
Proof. Let (G,Σ) be a counterexample; by Lemma 5 it is 3-connected. Then

(G,Σ) contains a signed graph (G1,Σ1) and a bipartite signed graph (G2,Σ2) such
that E(G1) and E(G2) partition E(G), V (G1)∩V (G2) = {u1, u2, u3}, and |E(G2)| ≥
4. By resigning, we may assume that Σ2 = ∅. Let w ∈ Z

E(G)
+ be Eulerian with

τw(G,Σ) > νw(G,Σ).
For each signed graph (H,Θ) containing {u1, u2, u3}, we define

τw(H,Θ)0 := min{w(Θ � δH(U)) |U ∩ {u1, u2, u3} = ∅},(17)

and, for each i = 1, 2, 3,

τw(H,Θ)i := min{w(Θ � δH(U)) |U ∩ {u1, u2, u3} = {ui}}.(18)

Then,

τw(H,Θ) = min{τw(H,Θ)0, τw(H,Θ)1, τw(H,Θ)2, τw(H,Θ)3}.(19)

Moreover, we define

ω1 := 1
2 [τw(G2, ∅)2 + τw(G2, ∅)3 − τw(G2, ∅)1],

ω2 := 1
2 [τw(G2, ∅)1 + τw(G2, ∅)3 − τw(G2, ∅)2],

ω3 := 1
2 [τw(G2, ∅)1 + τw(G2, ∅)2 − τw(G2, ∅)3].

(20)

Then,

ω1, ω2, and ω3 are nonnegative.(21)

To prove that, for ω1, choose for i = 2, 3 a set Ui ⊆ V (G2) with Ui∩{u1, u2, u3} = {ui}
and w(δG2(Ui)) = τw(G2, ∅)i. Then, as (V (G2) \ (U2 ∪ U3)) ∩ {u1, u2, u3} = {u1}, we
get that τw(G2, ∅)1 ≤ w(δG2(V (G2) \ (U2 ∪ U3))) = w(δG2(U2 ∪ U3)) ≤ w(δG2(U2)) +
w(δG2

(U3)) = τw(G2, ∅)2 + τw(G2, ∅)3. So indeed, ω1 ≥ 0 and (21) follows.
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Moreover,

ω1, ω2, and ω3 are integers.(22)

To see that note that the fact that w(δG2(v)) is even for each v ∈ V (G2)\{u1, u2, u3}
has the following two consequences: w(δG2

(u1)) + w(δG2(u2)) + w(δG2
(u3)) is even

and, for i = 1, 2, 3, w(δG2(Ui))−w(δG2(ui)) is even if Ui∩{u1, u2, u3} = {ui}. Hence,
by the definition of τw(G2, ∅)i, the number τw(G2, ∅)1 + τw(G2, ∅)2 + τw(G2, ∅)3 is
even. So (22) follows.

We define both Ĝ1 and Ĝ2 by adding to G1 and to G2 the edges e1 := u2u3, e2 :=
u1u3, and e3 := u1u2. Moreover, we define w(ei) = ωi for i = 1, 2, 3. Similar
calculations as in the proof of Lemma 5 show that

w(δ
Ĝj

(v)) is even for each v ∈ V (Ĝj) and j = 1, 2.(23)

Next we define Σ̂2 := {e1, e2, e3}. Straightforward calculations show that

τw(Ĝ1,Σ1)i = τw(G,Σ)i and τw(Ĝ2, Σ̂2)i = τw(G2,Σ2)i + ωi = ω1 + ω2 + ω3(24)

for each i = 0, 1, 2, 3 and thus that

τw(Ĝ1,Σ1) = τw(G,Σ) and τw(Ĝ2, Σ̂2) = ω1 + ω2 + ω3.(25)

From the facts that |E(G2)| ≥ 4 and that G is 3-connected, it easily follows that

(Ĝ1,Σ1) is a proper minor of (G,Σ). Hence, νw(Ĝ1,Σ1) = τw(Ĝ1,Σ1). So by (25),

there exists a w-packing C1 in (Ĝ1,Σ1) consisting of τw(G,Σ) odd circuits.

As {u1, u2} is a blocking pair of (Ĝ2, Σ̂2), it follows from (3) and (23) that

νw(Ĝ2, Σ̂2) = τw(Ĝ2, Σ̂2). Thus by (25) there exists a w-packing C2 in (Ĝ2, Σ̂2)
consisting of ω1 + ω2 + ω3 odd circuits.

As {e1, e2, e3} is a minimum weight signature of (Ĝ2, Σ̂2), there are by comple-
mentary slackness for each i exactly ωi members of C2 that intersect {e1, e2, e3} in
exactly ei. So there exists a w-packing P1 ∪ P2 ∪ P3 in (G2,Σ2) such that each
Pi is a collection of ωi even paths connecting the ends of ei. Using the paths in
Pi to replace occurrences of ei in the members of C1, we can turn C1 into a w-
packing consisting of τw(G,Σ) odd circuits in (G,Σ), contradicting our assumption
that τw(G,Σ) > νw(G,Σ). This proves the lemma.

Proof of Theorem 4 (from Theorem 3). We prove (1), which implies Theorem 4.
From Lemmas 5 and 6 and from (2) and (4), we see that we may assume that |V (G)| =
5 or that (G,Σ) is one of the signed graphs in Figure 2. In the latter case (G,Σ) has a
blocking pair; thus, (3) applies. So we may assume |V (G)| = 5. By Lemma 5 we may
assume that G has no parallel edges. This means that G is isomorphic to a subgraph
of K5. As (G,Σ) is not isomorphic to K̃5, (G,Σ) has a blocking pair. So again (3)
applies. This proves Theorem 4.

Proof of Theorem 1 (from Theorem 3). Clearly, if (G,Σ) has a blockvertex or
a blocking pair or if G is planar, we can find a maximum w-packing of odd circuits
by (2), (3), and (4). So it remains to explain how we can algorithmically deal with
2-separations and improper 3-separations.

First consider an improper 3-separation (G1,Σ1), (G2,Σ2) of (G,Σ) as in the proof
of Lemma 6. We follow that proof. So we assume that Σ2 = ∅. Finding ω1, ω2, ω3

amounts to calculating τw(G2,Σ2)i for i = 1, 2, 3, which is just the minimum weight
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of a cut in G2 separating ui from {u1, u2, u3} \ {ui}, so that can be solved by flow

techniques. As {u1, u2} is a blocking pair in (Ĝ2, Σ̂2) finding a maximum w-packing of

odd circuits in (Ĝ2, Σ̂2) can be done by solving an integer 2-commodity flow problem.
As explained in the proof of Lemma 6 the solution of that gives a collection of paths in
G2 that can be used to transform a maximum w-packing of odd circuits in (Ĝ1,Σ1) to
a maximum w-packing of odd circuits in (G,Σ). As all this can be done in polynomial
time, we have a polynomial time reduction from the odd circuit packing problem in
(G,Σ) to the odd circuit packing problem in (Ĝ1,Σ1), which is a proper minor of
(G,Σ).

So there exists a polynomial time algorithm for the odd circuit packing problem
in 3-connected signed graphs with no K̃5-, K1,1

3,3 -, K1,2
3,3 -, or K2

3,3-minor. Next we
consider the case that the signed graph is not 3-connected. Here there are certain
issues involved that need extra care. Consider a 2-separation (G1,Σ1), (G2,Σ2) of
(G,Σ) as in the proof of Lemma 5. If we can find such separation with (G1,Σ1) and
(G2,Σ2) both bipartite, then u1 is a blockvertex of (G,Σ), and we can solve the odd
circuit packing problem by flow techniques. So we assume that no such 2-separations
exist. Therefore as of now we assume that we selected (G1,Σ1) and (G2,Σ2) such that
(G2,Σ2) is nonbipartite and under that condition E(G1) is inclusionwise minimal.

Let (G1
1,Σ

1
1) be obtained from (G1,Σ1) by adding an odd edge e1 connecting

u1 and u2, and let (G0
1,Σ

0
1) be obtained from (G1,Σ1) by adding an even edge f1

connecting u1 and u2. Then as (G2,Σ2) is nonbipartite both (G1
1,Σ

1
1) and (G0

1,Σ
0
1)

are proper minors of (G,Σ). Moreover, by minimality of E(G1) these graphs are
3-connected so we do have a polynomial time algorithm for solving any odd circuit
packing problem in (G1

1,Σ
1
1) or (G0

1,Σ
0
1). This is important since as we will see we

need to solve three such problems in these signed graphs.
For both i = 0 and i = 1, we can find τw(G1,Σ1)i in polynomial time as it amounts

to finding a minimum weight signature in (Gi
1,Σ

i
1) where the extra edge between u1

and u2 gets a very high weight. Thus we can calculate ω in polynomial time. Now
solve the odd circuit packing problem in the signed graph (Ĝ2,Σ2) constructed in the
proof of Lemma 5. We do this recursively, so we may use 2-separations again. We also
find the collection of even circuits D2 (which is just a flow problem) and adjust the
solution such that γ is either 0 or ω, as in (13). Now we solve the odd circuit packing

problem on (Ĝ1, Σ̂1). Since Ĝ1 is 3-connected, we can do this without recursively

using 2-separations. Now we combine the optimal packing of odd circuits in (Ĝ1, Σ̂1)

with the optimal packing of odd circuits in (Ĝ2,Σ2) and with the collection D2 of
even circuits to a solution for the odd circuit packing problem in (G,Σ).

This recursive method using 2-separations calls itself only in (Ĝ2,Σ2) and for just
a single function w. Hence, it runs in polynomial time.

4. Subdivisions, homeomorphs, and minors; links and bridges. If P is a
path containing vertices u and v, then Puv denotes the uv-subpath of P .

Subdividing an edge uv of (G,Σ) is replacing it with a uv-path P that is internally
vertex disjoint with G and replacing Σ with (Σ \ {uv})∪ΣP , where ΣP is any subset
of E(P ) with the same parity as Σ∩{uv}. A (G,Σ)-subdivision is the result of a series
of subdivisions of edges in (G,Σ). If G is just a graph, so with no signing, subdividing
an edge and G-subdivision are defined similarly.

A (G,Σ)-homeomorph is a signed graph that is isomorphic to a (G,Σ)-subdivi-
sion. Clearly, if a signed graph has a (G,Σ)-homeomorph it has a (G,Σ)-minor. If
G has maximum degree 3, the converse is true as well. In particular, for i = 0, 1, 2,
(G,Σ) has a Ki

3,3-minor if and only if it has a Ki
3,3-homeomorph.
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Let G be a graph; a leg of G is a path such that all of its internal vertices have
degree 2 in G and its ends have degree at least 3. Let H be a subgraph of G, and let
u and v be two of its vertices. A uv-link of H, or just link of H, is a uv-path that
intersects H exactly in {u, v}.

If G is a graph and X is a set of vertices, then G−X is the graph obtained from
G by deleting the vertices in X and the edges incident to them; if X is a set of edges
(or a subgraph with edges), then G−X is obtained by deleting only the edges in X.

A subgraph B of G is called a bridge of H if either B consists of a single edge
not in E(H) that has both ends in V (H) or B consists of a component of G− V (H)
together with the edges from this component to H and their ends in H.

5. Recognizing if a graph has a K̃5-, K1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor. We

describe how to decide in polynomial time if a graph has a K̃5-, K
1,1
3,3 -, K1,2

3,3 -, or K2
3,3-

minor or not. The algorithm is based on the decomposition in Theorem 3. The idea is
standard: we can check in polynomial time if G is planar or if (G,Σ) has a blockvertex
or is one of the signed graphs in Figure 2, so we need only recursive procedures for the
cases that (G,Σ) is not 3-connected or has improper 3-vertex cutsets. In case (G,Σ) is
not 3-connected such a procedure is straightforward, but dealing with decompositions
along improper 3-vertex cutsets needs some extra care. So we describe that in detail.

Assume (G,Σ) is 3-connected and contains an improper 3-vertex cutset {u1, u2, u3}.
So, after resigning if necessary, we may assume that G contains graphs G1 and G2

with Σ ∩ E(G2) = ∅ such that E(G1) and E(G2) partition E(G), V (G1) ∩ V (G2) =
{u1, u2, u3}, and |E(G2)| ≥ 4. Let G+ be defined by adding to G1 a new vertex u+

and three new even edges u+u1, u
+u2, and u+u3. Then (G+,Σ) is a minor of (G,Σ).

So if it has a K̃5-, K
1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor, then so does (G,Σ). Also if (G,Σ)

has a K̃5-, K
1,2
3,3 -, or K2

3,3-minor, (G+,Σ) will have such a minor. But, as K1,1
3,3 has

improper 3-vertex cutsets, (G,Σ) may have a K1,1
3,3 -minor whereas (G+,Σ) does not.

Fortunately, it can be checked in polynomial time if this happens, as we will explain
now. Let G− be obtained from G2 by by adding a new vertex u− and three new edges
u−u1, u

−u2, and u−u3. The following observation is straightforward.

(G,Σ) has a K1,1
3,3 -minor if and only if one of the following holds:(26)

(i) G− has a K3,3-subdivision in which u− has degree 3 and (G+,Σ) has a K̃4-
homeomorph in which u+ has degree 3 and at least one of u1, u2, and u3 has
degree 2.

(ii) G− has a K3,3-subdivision in which u− has degree 3 and at least one of

u1, u2, and u3 has degree 2 and (G+,Σ) has a K̃4-homeomorph in which u+

has degree 3.
(iii) (G+,Σ) has a K1,1

3,3 -minor.
So when we encounter an improper 3-separation, we first check if (26i) or (26ii) applies.
If so we decide that our signed graph has a K1,1

3,3 -minor. If not we just replace (G,Σ)

with (G+,Σ) and search for the existence of a K̃5-, K1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor in

(G+,Σ) recursively. To check if (26i) or (26ii) applies we use the following two results:

If v is a degree 3 vertex in a simple 3-connected graph H,
then v is a degree 3 vertex in some K3,3-subdivision in H if and only if
H is nonplanar (Seymour [11]).

(27)
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If v is a degree vertex in a simple 3-connected signed graph (H,Θ),

then v is a degree 3 vertex in some K̃4-homeomorph in (H,Θ)

if and only if (H,Θ) has a K̃4-homeomorph.

(28)

We will prove (28) below; (27) is immediate from (11.2) in Seymour [11]. By (27), we
can check the condition on G− in (26i) by checking if G− is nonplanar. For checking
the condition on G− in (26ii), we construct for each i = 1, 2, 3 and each neighbor of
x �= u− of ui the graph G−

i,x by deleting from G− all edges incident with ui except

u−ui and uix. If G−
i,x is nonplanar for some i and some x, the condition on G− in

(26ii) is satisfied; otherwise, it is not.
By (28), we can check the condition on (G+,Σ) in (26ii) by checking if (G+,Σ)

contains a K̃4-homeomorph. This can be done in polynomial time by an algorithm
by Gerards, Lovász, Schrijver, Seymour, Shih, and Truemper based on decompos-
ing signed graphs with no K̃4-homeomorph (see Gerards [3]; actually the algorithm
amounts to applying Truemper’s algorithm [13] for recognizing if a binary clutter has
a Q6-minor to the clutter of odd circuits in (G+,Σ)). Finally to check if (G+,Σ)
satisfies the condition in (26i), we construct for each i = 1, 2, 3 and each neighbor
of x �= u+ of ui the graph G+

i,x by deleting from G+ all edges incident with ui ex-

cept u−ui and uix. If G−
i,x contains a K̃4-homeomorph for some i and some x, the

condition on G− in (26ii) is satisfied; otherwise, it is not.

So to see that we can decide in polynomial time if a signed graph has a K̃5-,
K1,1

3,3 -, K1,2
3,3 -, or K2

3,3-minor, it remains only to prove (28).
Proof of (28). Suppose it is false; let (H,Θ) be a minimal counterexample.

Each K̃4-homeomorph K satisfies V (K) ⊇ V (H) \ {u}.(29)

Suppose it is not true; let K be a K̃4-homeomorph and x be a vertex not in V (K)∪{u}.
As H is 3-connected, x has a neighbor y such that {x, y} �⊆ {u, u1, u2, u3}. Then H\xy
contains K. So if H\xy is a subdivision of a simple 3-connected graph H ′, it follows, as

(H,Θ) is a minimal counterexample, that H ′ contains a K̃4-homeomorph containing
u. As H itself does not contain such a homeomorph, this is impossible. So H \ xy is
not a subdivision of a simple 3-connected graph. Then, as |V (H)| ≥ |V (K)∪{x}| ≥ 5,
(11.1) in Seymour [11] says that H/xy is 3-connected. H/xy may have parallel edges
though. Let H ′′ be a subgraph of H/xy consisting of one edge from each parallel class
of H/xy. We may choose H ′′ such that it contains K. Note that u has also degree 3 in

H ′′. Hence, as (H,Θ) is a minimal counterexample, H ′′ contains a K̃4-homeomorph

containing u. But then also H contains such a K̃4-homeomorph; this contradiction
proves (29).

(H,Θ) contains a K̃4-homeomorph K̄ with V (K̄) = V (H).(30)

Indeed, let K be a K̃4-homeomorph in H. If u �∈ V (K), then, by (29), u has all
three neighbors on K. From this it is straightforward to check that the union of K
and the three edges incident with u contains a K̃4-homeomorph K̄ using u. By (29),
V (K̄) = V (H). So (30) follows.

Take K̄ as in (30). Then as u does not have degree 3 in K, we may assume that
uu1 and uu2 are edges of the same leg, say, P , of K̄. By (28), u3 lies on K̄. If u3 does

not lie on P , then it is straightforward to find in K ∪ {uu3} a K̃4-homeomorph in
which u has degree 3. So u3 lies on P as well, see Figure 3 (left). As indicated there,
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Fig. 3. The word “odd” indicates that the corresponding face is bounded by an odd circuit.
Dashed edges may have length zero.

the circuit Pu3u ∪{uu3} is odd as otherwise (K̄ −Pu3u)∪{uu3} is a K̃4-homeomorph
that misses u2, contradicting (29). As H is 3-connected, Pu1u3 − u1 − u3 contains a
vertex v that is adjacent to a vertex w ∈ V (K̄) \ V (Pu1u3). As u had degree 3 in H,
v �= u.

First consider the case that w lies on P . Then the circuit Pvw ∪ {vw} is odd

as otherwise (K̄ − Pvw) ∪ {vw} is a K̃4-homeomorph that misses either u1 or u3,
contradicting (29). So K̄ ∪ {uu3, vw} contains a subgraph as indicated in the middle
picture in Figure 3, where u is one of the two black vertices. That subgraph is a
K̃4-homeomorph, and u is a degree 3 vertex of it. This contradicts our assumption
that no such homeomorph exists. So we may assume that w is not on P .

Then upto symmetry w lies on a leg of K̄ that has the black vertex as an end, as
indicated in Figure 3 (right). From the fact that K̄ is a K̃4-homeomorph, it is again

a straightforward case check that K̄ ∪{uu3, vw} contains a K̃4-homeomorph in which
u has degree 3. This concludes the proof of (28).

6. Nonbipartite subdivisions of K3,3: Proof of Theorem 3(i). We now
prove Theorem 3(i). We denote the six degree-3 vertices of a K3,3-subdivision K by
rK1 , rK2 , rK3 , rK4 , rK5 , and rK6 , where the numbering is such that there is a leg between
rKi and rKj if and only if i = 1, 3, 5 and j = 2, 4, 6. We denote such a leg by PK

ij .
Proof of Theorem 3(i). Suppose the theorem is false. Let (G,Σ) be a minor-

minimal counterexample. As G is 3-connected, has no parallel edges, and is not planar
and not isomorphic to K5, it follows from Kuratowski’s theorem and a well-known
and easy result of Hall [7] that G contains a K3,3-subdivision. No K3,3-subdivision in
G contains odd circuits, as otherwise there would be a K1

3,3- or a K2
3,3-homeomorph.

Let K be any K3,3-subdivision. By resigning, we may assume that all edges in K
are even.

Each odd link of K has both ends in {rK1 , rK3 , rK5 } or both ends in {rK2 , rK4 , rK6 }.(31)

Suppose there is a link P contradicting (31). Then K ∪P contains a K3,3-subdivision
using P as part of one of its legs. As P is odd and all edges in K are even, this is a
K1

3,3-subdivision; this contradiction proves (31).

Each odd link of K is an edge.(32)

Suppose this is not true; let P be a link of K contradicting (32). By (31), we may
assume that the ends of P are rK1 and rK3 . As P is not an edge and G is 3-connected,
there exists a link Q of K ∪ P with one end in V (P ) \ {rK1 , rK3 } and one end, say, r
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in V (K) \ {rK1 , rK3 }. Clearly, P ∪ Q contains an odd link of K with end r. So, by
(31), r has to be rK5 . Now (K ∪P ∪Q)−PK

21 −PK
23 −PK

25 is a K1
3,3-homeomorph; this

contradiction proves (32).
G has at least seven vertices, as otherwise Theorem 3(i) is easily verified. It is

straightforward to derive from that and the fact that G is 3-connected that (G,Σ)
has a K3,3-subdivision with at least seven vertices. Fix such a K3,3-subdivision, and
call it K. Let F be the edges of G that form the odd links of K. So each edge in F
has both ends in {rK1 , rK3 , rK5 } or both ends in {rK2 , rK4 , rK6 }. For each edge uv of F ,
there are three internally vertex disjoint uv paths in K. Hence, G−F is 3-connected.
Moreover, G− F has no odd circuits because if it had, then by the 3-connectivity of
G−F there would exist an odd link of K that is not an edge of F , contradicting (32).
So we may resign (G,Σ) such that the edges in F are odd and the edges in G−F are
even.

If i = 1, 3, 5 and j = 2, 4, 6 and if rKi and rKj are both ends of some edge
in F , then PK

ij consists of a single edge.
(33)

Suppose this is false. Then, as G − F − rKi − rKj is connected, K has an even link

Q with one end in PK
ij − rKi − rKj and one end not in PK

ij . Then Q is contained in a
K3,3-subdivision in K ∪Q. This K3,3-subdivision has an odd link contradicting (32).
So (33) follows.

We may assume that rK1 rK3 and rK2 rK4 are in F and that rK1 rK5 , rK2 rK6
and rK4 rK6 are not in F .

(34)

If no edge in F has its end in {rK1 , rK3 , rK5 }, then {rK2 , rK4 , rK6 } is an improper 3-vertex
cutset. Hence, by symmetry, we may assume that rK1 rK3 and rK2 rK4 are in F . As K
has at least seven vertices, it follows from (33) that at least one of rK1 , rK2 , . . . , rK6 is
not an end of an edge in F . So, again by symmetry, we may assume that rK2 rK6 and
rK4 rK6 are not in F . Now if both rK1 rK5 and rK3 rK5 are in F , then rK1 rK3 , rK1 rK5 , rK3 rK5 ,

rK2 rK4 , and K contains a K̃5-homeomorph. Thus (34) follows.

F = {rK1 rK3 , rK2 rK4 }.(35)

If not, then by (34), F = {rK1 rK3 , rK3 rK5 , rK2 rK4 }. Now as F has at least seven vertices
it follows from (33) that PK

61 ∪ PK
63 ∪ PK

65 has at least four edges. Since {rK1 , rK3 , rK5 }
is not an improper 3-vertex cutset this means that (G,Σ) has the signed graph in
Figure 4 as a minor (possibly with rK2 and rK4 interchanged). That signed graph has
a K1

3,3-subdivision, so (35) follows.

r5
K

1r
K r3

K

r6
Kr4

K
2r
K

Fig. 4. Bold edges are odd; thin edges are even.
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By (33) and (35), each of PK
12 , PK

14 , PK
32 , and PK

34 is a single edge. Hence, by sym-
metry, we may assume that PK

61 ∪PK
63 ∪PK

65 has at least four edges. Since {rK1 , rK3 , rK5 }
is not an improper 3-vertex cutset, that means that K has an st-link Q1 with s on
(PK

52 ∪PK
54)− rK5 and t on (PK

61 ∪PK
63 ∪PK

65)− rK1 − rK3 − rK5 . Choose K and Q1 such
that t is as close as possible to PK

61 ∪ PK
63 in PK

61 ∪ PK
63 ∪ PK

65 . We may assume that s
lies on PK

54 .

t lies on PK
65 .(36)

If not, K ∪Q1 contains a K3,3-subdivision that has an odd link contradicting (31).
So we have a situation as depicted in Figure 5 (left). Since {rK2 , rK4 , t} is not an

improper 3-vertex cutset, K ∪ Q1 has an xy-link Q2 with x on (PK
52 ∪ PK

54 ∪ Q1 ∪
(PK

56)rK5 t)− rK2 − rK4 − t and y on (PK
61 ∪PK

63 ∪ (PK
65)rK6 t)− t. As K and Q1 are chosen

such that t is as close as possible to PK
61∪PK

63 the end x of Q2 has to lie on (PK
56)rK5 t−t.

If y lies on PK
63 − rK6 (see Figure 5 (middle)) then (K ∪Q1 ∪Q2) − rK2 rK3 − rK1 rK4 −

(PK
63)rK6 y − (PK

52)rK5 s is a K2
3,3-subdivision. Hence, y does not lie on PK

63 − rK6 and,

by symmetry, also does not lie on PK
61 − rK6 . So y lies on (PK

65)rK6 t − t (see Figure 5

(right)). Now replacing K with (K ∪Q2) − (PK
65)xy and Q1 with Q1 ∪ (PK

65)ty yields
a contradiction against the fact that K and Q1 are chosen such that t is as close as
possible to PK

61 ∪ PK
63 . This proves Theorem 3(i).

7. K1
3,3-subdivisions and K1

3,3-extensions. As of now, if K is a K1
3,3-subdi-

vision in (G,Σ), we will assume that the unique odd leg is PK
12 . In that case, we can

always resign (G,Σ) such that the only odd edge in K is the edge in PK
12 with end

rK1 ; unless stated otherwise, we will assume that if we call a K1
3,3-subdivision K, it

has such a canonical signing. Under these assumptions we define TK
1 := PK

14 ∪ PK
16 ,

TK
2 := PK

23 ∪PK
25 , cage(K):= PK

34 ∪PK
36 ∪PK

45 ∪PK
56 , and core(K) := V (cage(K)) \

{rK3 , rK4 , rK5 , rK6 } (see Figure 6).
Clearly, these labelings of vertices and legs of a K1

3,3-subdivision and the indicated
canonical signing are not unique. For instance if we interchange index 1 with index 2,
interchange index pair {4, 6} with index pair {3, 5}, and resign (G,Σ) on the internal
vertices of PF

12, we obtain another labeling and canonical signing as indicated above.
When we use this symmetry, we refer to it as left-right symmetry. Simpler symmetries
are 35-symmetry, that is interchanging index 3 with index 5, and 46-symmetry.

Our strategy in proving Theorem 3(ii) is to start with a K1
3,3-subdivision in (G,Σ).

Such a K1
3,3-subdivision has blockvertices and improper 3-vertex cutsets. So, assuming
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Fig. 6. A K1
3,3-subdivision F .

(G,Σ) does not have these features, more structure should be available. We try to
grasp that structure by studying the links of the K1

3,3-subdivision. Ideally such a
link, or a combination of a few of them, provides a contradiction by establishing one
of the forbidden minors in Theorem 3(ii). There are other links, however, that do
not provide any extra structure other then some extra K1

3,3-subdivisions, for instance,
even links with no end on the unique odd leg of the K1

3,3-subdivision. To avoid chasing
such useless links, we include many of them in our initial structure; that is, we start
with a “K1

3,3-extension” rather than with just a K1
3,3-subdivision.

Consider a signed graph F consisting of
- six special vertices, rF1 , rF2 , rF3 , rF4 , rF5 , and rF6 ,
- five internally vertex disjoint paths, PF

12, P
F
14, P

F
16, P

F
23, and PF

25, where PF
ij is

an rFi r
F
j -path whose edges are all even, except for the edge of PF

12 adjacent

to rF1 which is odd,
- a 2-connected subgraph cage(F ) with even edges only that shares with these

paths exactly the vertices rF3 , rF4 , rF5 , and rF6 .
We define TF

1 := PF
14 ∪ PF

16, TF
2 := PF

23 ∪ PF
25, and core(F ) := V (cage(F )) \

{rF3 , rF4 , rF5 , rF6 }.
The set of K1

3,3-subdivisions K in F with PK
12 = PF

12 and cage(K) ⊆ cage(F )
is denoted by K(F ). Note that for each K1

3,3-subdivision K in K(F ) we can choose

the numbering such that: rK1 = rF1 , rK2 = rF2 , PK
14 ⊇ PF

14, P
K
16 ⊇ PF

16, P
K
23 ⊇ PF

23, and
PK

25 ⊇ PF
25.

For u ∈ V (F ) we define the following
- If u �∈ core(F ), then Ku(F ) := K(F ).
- If u ∈ core(F ), then Ku(F ) consists of those K1

3,3-subdivisions K ∈ K(F )
with u ∈ core(K).

We call F a K1
3,3-extension if K(F ) �= ∅ and for each u ∈ core(F ) there exists a

K1
3,3-subdivision K in F with u ∈ core(K) and (after resigning) PK

12 = PF
12 (see

Figure 7).
Note that each K1

3,3-subdivision is a K1
3,3-extension. A K1

3,3-extension F is called

extreme in (G,Σ) if, even after resigning, there is no K1
3,3-extension F ′ with PF ′

12 �⊆ PF
12

or with PF ′

12 = PF
12 and cage(F ′) �⊇ cage(F ).

8. Links of K1
3,3-extensions. As of now we call signed graphs with no K2

3,3-,

K1,1
3,3 -, or K1,2

3,3 -minor clean. In this section we characterize the type of links an extreme

K1
3,3-extension in a clean signed graph can have (see Figure 8).
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3,3-extension F with all possible links (upto symmetry, numbers indicate types,

thin lines are even links, bold lines are odd links, and dotted lines have either parity).

Lemma 7. Let F be an extreme K1
3,3-extension in a clean signed graph, and let

P be a link of F . Then P is exactly one of the following types:
Type 1. Both ends of P lie on PF

12.
Type 2. Both ends of P lie on PF

ij , where (i, j) is (1, 4), (1, 6), (2, 3), or (2, 5).

Type 3. P connects rFi with a vertex in core(F ), where i = 1 or i = 2.
Type 4. P connects rFi with a vertex in TF

3−i − rF3−i, where i = 1 or i = 2.
Type 5. P connects a vertex of PF

12 − rF1 − rF2 with a vertex on TF
i − rFi , where

i = 1 or i = 2.
Type 6. P connects the two components of TF

i − rFi , where i = 1 or i = 2.
Moreover, a link P of Type 5 is even when i = 1 and odd when i = 2; all links of Type
6 are even.

We denote the collection of type t links of F by LF
t . If t = 2, 5, 6, LF

t,i denotes the

collection of links in LF
t with an end in TF

i . If t = 1, 3, 4, LF
t,i denotes the collection of

links in LF
t with rFi as an end. So if t �= 1, LF

t,1 and LF
t,2 partition LF

t . The set of even

links in LF
t is denoted by EF

t , and the set of odd links is denoted by OF
t . Similarly,

we define EF
t,i and OF

t,i.
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It is the statement of Lemma 7 that the collection of links of an extreme K1
3,3-ex-

tension F in a clean signed graph is equal to

LF
1 ∪ LF

2 ∪ LF
3 ∪ LF

4 ∪ EF
5,1 ∪ OF

5,2 ∪ EF
6 .

Mind that EF
5,1 corresponds to OF

5,2 under left-right symmetry, and OF
5,1 corresponds

to EF
5,2.
Proof of Lemma 7. Suppose the theorem is false; let F and P form a counterex-

ample. Note that as (G,Σ) has no K1,1
3,3 -minor, OF

6 = ∅. So

P �∈ LF
1 ∪ LF

2 ∪ LF
3 ∪ LF

4 ∪ EF
5,1 ∪ OF

5,2∪LF
6 .(37)

We first prove

P has no end on PF
12.(38)

If not, then as P �∈ LF
1 ∪LF

2 ∪LF
3 ∪LF

4 , one end of P , say, u, lies on PF
12−rF1 −rF2 and

the other end, say, v, does not lie on PF
12. With u and v in those positions we may

assume, by left-right symmetry, that P is even. So as P �∈ EF
5,1, v does not lie on TF

1 .

Let K ∈ Kv(F ). Then v is not on TK
1 . By 35-symmetry and 46-symmetry we may

assume that v lies on PF
43∪PF

32−rF4 −rF2 . If v lies on PF
43, let S := PF

32; if v lies on PF
32,

let S be the vrF2 -subpath of PF
32. Then K ′ = (K ∪ P ) − S is a K1

3,3-extension with

PK′

12 strictly contained in PF
12; this contradicts that F is extreme. So (38) follows.

Both ends of P lie in the core of F .(39)

Suppose this is not true; then by symmetry we may assume that P has an end u in
PF

14 − rF1 . Then by (37) and (38) the other end, say, v of P lies on TF
2 − rF2 or in

the core of F . Let K ∈ Kv(F ). Then by 35-symmetry, we may assume that v lies on
(PK

43 ∪ PK
63 ∪ PK

32)− rK2 − rK4 − rK6 . If v lies on PK
43 , let S be the rK4 v-subpath of PK

43 ;
otherwise, S := PK

43 . If v lies on PK
23 , let R be the rK3 v-subpath of PK

23 ; otherwise,
R := {v}. Let Q be the urF4 -subpath of PF

14. Then K ′ := (K ∪P )−S is a K3,3-subdi-
vision with odd leg PF

12. Moreover, the leg of K ′ containing P shares no end with PF
12.

Hence, as (G,Σ) has no K2
3,3-minor, that leg is even. So K ′ is a K1

3,3-subdivision.
The vertices of (P ∪Q∪R)−u− v lie in core(K ′). Hence, F ∪P is a K1

3,3-extension
that has a larger core than F has, a contradiction. So (39) follows.

Let u and v be the two ends of P . Let K ∈ Ku(F ). As cage(F )−u is connected,
it contains a path from v to K. Let P ′ be the union of this path with P , then P ′

is a leg of K with one end in core(K) and the other end not in PK
12 . Hence, as

(G,Σ) has no K2
3,3-minor, P ′ is even. So P ′ is contained in the cage of a (unique)

K1
3,3-subdivision in K ∪ P . Hence, F ∪ P is a K1

3,3-extension with a larger core than
F , a contradiction.

9. Pairs of links of K1
3,3-extensions. We study the occurrence of pairs of

links of K1
3,3-extensions of different types, but first we give an easy fact.

Lemma 8. Let a, b1, b2 be vertices in a 3-connected signed graph. Each nonbi-
partite bridge of a, b1, b2 contains an odd ab1-path disjoint from b2 or an odd ab2-path
disjoint from b1.

Proof. Let C be an odd circuit in the bridge. As the graph is 3-connected, there
exist three vertex disjoint paths from C to {a, b1, b2}. So the bridge contains an odd
path P with ends in {a, b1, b2}. Assume P is not as claimed. Then it is a b1b2-path.
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As {b1, b2} is not a 2-vertex cutset, there exists a path Q from a to P that is disjoint
from {b1, b2}. Clearly P ∪Q contains an odd ab1-path or an odd ab2-path; it obviously
misses one of b1 and b2.

If F is an K1
3,3-extension, then ΛF

i := OF
2,i ∪ OF

3,i ∪ OF
4,i ∪ LF

5,i for i = 1, 2.

Lemma 9. Let F be an extreme K1
3,3-extension in a 3-connected clean signed graph

with no blockvertex and no improper 3-vertex cutset. If ΛF
1 and ΛF

2 are nonempty,
then either ΛF

1 = OF
2,1 ∪ LF

5,1 and ΛF
2 = OF

4,2 or ΛF
1 = OF

4,1 and ΛF
2 = OF

2,2 ∪ LF
5,2.

Proof. First we prove some easy facts. In items (40)–(45), K is a K1
3,3-subdivision

in a clean signed graph.

If Q1 ∈ OK
2,1 and Q2 ∈ OK

2,2, then they intersect.(40)

Indeed, if Q1 and Q2 did not intersect, then the unique K3,3-subdivision in K∪Q1∪Q2

that contains both Q1 and Q2 would be a K2
3,3-subdivision.

If Q1 ∈ OK
2,1 and Q2 ∈ OK

3,2 ∪ LK
5,2, then they intersect.(41)

By contracting edges in the cage of F and along PF
12, we can turn K into a K1

3,3-

subdivision K ′ so that Q2 ∈ OK′

2,2. As Q1 is also in OK′

2,1 it follows from (40) that Q1

and Q2 intersect after these contractions. As these intersections cannot lie on K ′, the
paths also intersected before the contractions were carried out. So (41) holds indeed.

If Q1 ∈ OK
4,1 and Q2 ∈ OK

4,2, then they intersect.(42)

If not, K ∪Q1 ∪Q2 contains a K1,2
3,3 -minor.

If Q1 ∈ OK
3,1 and Q2 ∈ OK

4,2, then they intersect.(43)

If not, we can contract edges in the cage of K such that Q1 and Q2 stay disjoint and
K turns into a K1

3,3-subdivision K ′ with Q1 ∈ OK′

4,1 and Q2 ∈ OK′

4,2, contradicting
(42).

By a similar contraction argument we derive the following from (41):

If Q1 ∈ OK
3,1 and Q2 ∈ LK

5,2, then they intersect.(44)

Note that (41), (43), and (44) have “left-right symmetrical” versions obtained by
swapping the second subscripts 1 and 2. We will not list all such versions but just
refer to them by mentioning left-right symmetry.

If Q1 ∈ OK
3,1 and Q2 ∈ OK

3,2, then they intersect outside K.(45)

If Q1 and Q2 do not intersect at all, it is possible to contract edges in the cage of
K such that K turns into a K1

3,3-subdivision K ′ with Q1 ∈ OK′

2,1 ∪ OK′

4,1 and Q2 still

in OK′

3,2. If Q1 ∈ OK′

2,1 this contradicts (41); if Q1 ∈ OK′

4,1 this contradicts (43), by
left-right symmetry. If Q1 and Q2 meet only in the cage of K, so at their ends, we
can contract edges in cage(K) such that we obtain the signed graph in Figure 9(a) as
a minor. As is illustrated in that figure, that signed graph has a K1,1

3,3 -homeomorph,
a contradiction. So (45) follows indeed.

Now let F be an extreme K1
3,3-extension in a clean signed graph (G,Σ) with no

blockvertex and no improper 3-vertex cutset.

At least one of OF
2,1 ∪ OF

3,1 and OF
2,2 ∪ LF

5,2 is empty.(46)
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(a) (b)

Fig. 9. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertex and delete the “crossed” edge.

Suppose this is false; let P1 ∈ OF
2,1 ∪ OF

3,1 and P2 ∈ OF
2,2 ∪ LF

5,2. If P1 ∈ OF
3,1, let u

be its end in the core of F ; otherwise, let u be any vertex of F . Choose K ∈ Ku(F ).
Then P1 ∈ OK

2,1 ∪ OK
3,1 and P2 ∈ OK

2,2 ∪ LK
5,2. Hence, it follows from (40), (41), (44),

and left-right symmetry that P1 and P2 intersect. Clearly this intersection lies outside
F . Hence, P1 ∪ P2 contains a link of F that has one end in (TF

1 ∪ core(F )) − rF1 and
one end in TF

2 − rF2 . As this contradicts Lemma 7, (46) follows.

At least one of OF
3,1 ∪ OF

4,1 and OF
4,2 is empty.(47)

Suppose this is false; let P1 ∈ OF
3,1 ∪ OF

4,1 and P2 ∈ OF
4,2. If P1 ∈ OF

3,1, let u be its
end in the core of K; otherwise, let u be any vertex of F . Choose K ∈ Ku(F ). Then
P1 ∈ OK

3,1 ∪OK
4,1 and P2 ∈ OK

4,2. Hence, it follows from (42) and (43) that P1 and P2

intersect. Clearly this intersection lies outside F . Hence, P1 ∪P2 contains a link of F
that has one end in TF

1 − rF1 and one end in (TF
2 ∪ core(F ))− rF2 . As this contradicts

Lemma 7, (47) follows.
Now assume that the lemma is false and that F is a counterexample. Hence, ΛF

1

and ΛF
2 are both nonempty.

OF
2 is empty.(48)

Suppose this is false; assume OF
2,1 �= ∅. Then by (46) and left-right symmetry ΛF

2 =

OF
4,2. So OF

4,2 �= ∅. Hence, (47) implies that ΛF
1 = OF

2,1 ∪ LF
5,1. This contradicts that

F is a counterexample, so (48) follows.
We consider two cases.
Case 1. OF

3 is empty.

LF
5,1 and LF

5,2 are not empty.(49)

If LF
5,1 = ∅, then, by (48) and as OF

3 is empty, ΛF
1 = OF

4,1 and ΛF
2 = OF

4,2 ∪ LF
5,2.

Hence, as F falsifies the lemma, both OF
4,1 and OF

4,2 are nonempty, contradicting (47).

OF
4 is empty.(50)

Suppose this is false; assume Q ∈ OF
4,1. Let P1 ∈ LF

5,1 and P2 ∈ LF
5,2. By Lemma 7, Q

and P1 are vertex disjoint and P1 and P2 are internally vertex disjoint. Let P ′
2 be the

link of F ∪Q that is contained in P2 and has one end on PK
12 . Let P ′′

2 be the link of F
in LF

5,2 contained in P ′
2 ∪Q. By symmetry, we may assume that P1 has an end on PF

14
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(b)(a)

Fig. 10. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertices, delete the “crossed” edge, and contract the “directed” edge.

and that P ′′
2 has an end on PF

23. Note that, by Lemma 7, P1 ∈ EF
5,1 and P ′′

2 ∈ OF
5,2.

If Q has an end in PF
25, then by construction of P ′′

2 links Q and P ′′
2 are disjoint. In

that case, K ∪Q∪P1 ∪P ′′
2 contains the signed graph in Figure 10(a) as a minor, and

as illustrated in Figure 10 that signed graph has a K1,2
3,3 -minor. So Q has an end in

PF
23. If Q and P ′′

2 share edges, resign (if necessary) to make them even, and contract
them. Now it it easy to see that K ∪Q ∪ P ′′

2 has the signed graph in Figure 9(a) as
a minor, hence also a K1,1

3,3 -minor. That contradicts the cleaness of (G,Σ), so (50)
follows indeed.

There exists a vertex v ∈ PF
12 such that each path in LF

5

has v as one of its ends.
(51)

By (49), it suffices to prove that if P1 ∈ LF
5,1 has end p1 on PF

12 and P2 ∈ LF
5,2 has

end p2 on PF
12, then p1 = p2. Suppose this is not the case. Choose K ∈ K(F ). By

Lemma 7, P1 and P2 are vertex disjoint. If p1 lies between rK1 and p2 along PK
12 , then

the unique K3,3-subdivision in K ∪ P1 ∪ P2 that contains PK
12 , P1, and P2 is a K2

3,3-

subdivision. So p1 lies between p2 and rK2 along PK
12 . Then K∪P1∪P2 is a subdivision

of the signed graph in Figure 11(a). Hence, as illustrated in Figure 11(b), it contains
a K1

3,3-extension F ′ with PF ′

12 = (PF
12)p1p2 . That contradicts the extremeness of F , so

(51) follows.
As G is 3-connected, {rF1 , rF2 } is not a 2-vertex cutset of G− v. Hence, it follows

from (51) that PF
12 consists of only two edges: rF1 v and vrF2 . Fix P1 ∈ EF

5,1 and

P2 ∈ OF
5,2. Resign on the internal vertices of P1 and P2 so that all edges on P1 and

on P2 − v are even. As (G,Σ) has no blockvertex, (G,Σ)− v contains an odd circuit.
Hence, as G − v is 2-connected, (F ∪ P1 ∪ P2) − v has an odd link Q contained in
G− v. By Lemma 7, (48), (50), and (51), and as OF

3 is empty, Q is disjoint with P1

and P2, and Q ∈ OF
1 . So the ends of Q are rF1 and rF2 . Consider the K1

3,3-subdivision

(F − PF
12) ∪Q; it is extreme in F ∪ P1 ∪ P2 ∪Q. The union of P1 and P2 is a link of

that K1
3,3-subdivision that contradicts Lemma 7. So Case 1 cannot apply.

Case 2. OF
3 is not empty.

If OF
3,1 is not empty, then by (46) and (47), ΛF

2 = OF
3,2, so OF

3,2 is nonempty as

well. Hence, by left-right symmetry it follows from OF
3 �= ∅ that OF

3,1 = ΛF
1 �= ∅ and

OF
3,2 = ΛF

2 �= ∅.

Each link in OF
3,1 intersects each link in OF

3,2 outside F .(52)
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Fig. 11. Bold edges are odd paths; thin edges are even paths; and dashed edges may have length
zero. To obtain (b) from (a), resign on the black vertex and delete the “crossed” edges. The numbers

i = 1, . . . , 6 indicate the vertices rF
′

i .

Suppose this is false, and let P1 ∈ OF
3,1 and P2 ∈ OF

3,2 be disjoint outside F . Let p1

be the end of P1 in the core of F , and let p2 be the end of P2 in the core of F . Let
K ∈ Kp1

(F ). If p2 �= p1, let P be a path in the cage of F that misses p1 and connects
p2 to cage(K) (as cage(F ) is 2-connected, such P exists); if p2 = p1, let P consist
only of p2. Then P2 ∪ P ∈ OK

3,2 ∪ OK
4,2 and P1 ∈ OK

3,1. Moreover, these paths are
disjoint. This contradicts (43) and (45). So (52) follows.

All links in OF
3 have the same end in the core of F ; we call that end p.(53)

If not, then as OF
3,1 and OF

3,2 are nonempty, there would be a link in OF
3,1 and a link,

in OF
3,2 that have different ends in the core of F . By (52) the union of two such links

would contain a link of F that contradicts Lemma 7. So (53) follows.
Let B be the bridge of {rF1 , rF2 , p} that contains cage(F ).

PF
12 and all links in OF

3 lie outside B.(54)

That PF
12 lies outside B follows as LF

5 = ∅. Suppose B contains a link P in OF
3 .

Then as B − rF1 − rF2 − p is connected, it contains a path Q from P − rF1 − rF2 − p to
F − rF1 − rF2 − p. Now P ∪Q contains a link of F with one end outside {rF1 , rF2 , p}.
This contradicts Lemma 7. So (54) follows.

So {rF1 , rF2 , p} is a 3-vertex cutset separating the core of F from the links in OF
3 .

As this is not an improper 3-vertex cutset, bridge B contains an odd circuit. Hence,
by Lemma 8, B contains an odd path that connects p to one of rF1 and rF2 and that
does not contain the other vertex in {rF1 , rF2 }. Clearly such a path contains an odd
link of F with at most one end in {rF1 , rF2 }. As ΛF

1 ∪ΛF
2 = OF

3 , this contradicts (54).
So the lemma follows.

Lemma 10. Let K be a K1
3,3-subdivision in a clean signed graph, let Q1 be an

st-link in OK
2,1 with s ∈ PK

14 and t ∈ (PK
14)srF4 , and let Q2 be an rK2 p-link of K ∪ Q1

with p ∈ (Q1 ∪ (PK
14)rK4 s) − s. Then the unique rK2 rK4 -path P ′ in (Q1 ∪Q2 ∪ PF

14) − s
is even.

Proof. Suppose P ′ is odd. If necessary resign on p such that P ′ − Q2 is even,
and contract P ′ −Q2, (PK

14)rK4 t and (PF
14)rF1 s. This yields a subdivision of the signed

graph in Figure 9(a). As illustrated in Figure 9, that signed graph has a K1,1
3,3 -minor,

a contradiction.
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(a) (b)

Fig. 12. Bold edges are odd paths; thin edges are even paths. To obtain (b) from (a), delete
the “crossed” edges.

Lemma 11. Let F be an extreme K1
3,3-extension in a clean signed graph. Then

LF
5,1 = ∅ or EF

3,1 ∪ EF
4,1 = ∅.

Proof. Suppose this is not true. Then we may assume that there exists a p1p2-link
P ∈ LF

5,1 and an rF1 q-link Q ∈ EF
3,1 ∪ EF

4,1 with p2 ∈ PF
14 and that q ∈ core(F ) ∪ TF

2 .

Choose K ∈ Kq(F ). By 35-symmetry we may assume that q ∈ PK
45 ∪ PK

65 ∪ PK
52 . Let

R be the intersection of PK
65 with the rK6 q-subpath of PK

45 ∪ PK
65 ∪ PK

52 . By Lemma 7,
P is even and disjoint with Q. Now deleting R and (PF

14)rF1 p2
from K ∪ P ∪ Q

yields a K1
3,3-subdivision F ′ with PF ′

12 = (PF
12)rF1 p1

. As PF ′

12 is properly contained in

PF
12, this contradicts the extremeness of F . (See Figure 12 for the special case that

q = rK5 .)
The results so far say that certain combinations of links cannot occur; here is a

lemma that says that certain links force other ones.
Lemma 12. Let F be an extreme K1

3,3-extension in a 3-connected clean signed

graph with no blockvertex and no improper 3-vertex cutset. If OF
2,1 ∪ LF

5,1 �= ∅, then

LF
3,1 ∪ LF

4,1 �= ∅.
Proof. Let F be a counterexample. As OF

2,1 ∪ LF
5,1 �= ∅, it follows from Lemma 9

that LF
5,2 = ∅. So, as also LF

3,1 ∪ LF
4,1 = ∅, it follows from Lemma 7 that rF1 does not

lie in the bridge B of {rF2 , rF4 , rF6 } that contains cage(F )∪TF
2 . As {rF2 , rF4 , rF6 } is no

improper 3-vertex cutset, B contains an odd circuit. Hence, by Lemma 8, B contains
an odd path that has both ends in {rF2 , rF4 , rF6 } and that is disjoint from the third
vertex in {rF2 , rF4 , rF6 }. Such a path contains an odd link of F . By Lemma 7, that
odd link is in OF

2,2 ∪ OF
3,2. As that contradicts Lemma 9, the lemma follows.

Lemma 13. Let F be an extreme K1
3,3-extension in a 3-connected clean signed

graph that has no blockvertex and no improper 3-vertex cutset. If Q ∈ OF
2,1 with ends

on PF
1j with j = 4, 6 and P ∈ OF

4,2, then P intersects Q ∪ PF
1j.

Proof. Let P and Q be as indicated. Assume P and Q∪PF
1j do not intersect. By

Lemma 9, OF
3,1∪OF

4,1 = ∅, and thus, by Lemma 12, EF
3,1∪EF

4,1 �= ∅. Let R ∈ EF
3,1∪EF

4,1.
Then, by Lemma 7, R is internally vertex disjoint with P and Q. Hence, we have the
signed graph in Figure 13(a) as a minor. As indicated in Figure 13 that signed graph
has a K1,2

3,3 -minor, a contradiction.

10. Handles. A handle of a K1
3,3-extension F is a link in OF

2 with no end in

{rF1 , rF2 }. The following lemma says that in a counterexample to Theorem 3(ii) each
extreme K1

3,3-extension has a handle.
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(a) (b)

Fig. 13. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertex and delete the “crossed” edge.

Lemma 14. Each extreme K1
3,3-extension F in a 3-connected clean signed graph

(G,Σ) with no blockvertex and no improper 3-vertex cutset has a handle.
Proof. Let (G,Σ) and F form a counterexample; thus, F has no handle. Let

B := TF
1 ∪ cage(F ) ∪ TF

2 .

(G,Σ) − rF1 − rF2 contains an odd circuit, say, C.(55)

Suppose this is not true; then we may assume, by resigning, that all edges not incident
with rF1 or rF2 are even. It is easy to see that this resigning can be done such that all
edges in B are even. In other words Σ ⊆ (δG(rF1 ) ∪ δG(rF2 )) −B.

As (G,Σ) has no blockvertex, there exists an odd circuit disjoint from rF2 . As
G − rF1 − rF2 is connected, F has a link Q1 that closes with F − rF2 an odd circuit.
Moreover, as (55) is false, all such odd circuits go through rF1 . So, as Σ ⊆ (δG(rF1 ) ∪
δG(rF2 ))−B, we have that Q1 ∈ LF

1,1 ∪OF
2,1 ∪OF

3,1 ∪OF
4,1 ∪LF

5,1. By symmetry F also

has a link Q2 ∈ LF
1,2 ∪OF

2,2 ∪OF
3,2 ∪OF

4,2 ∪LF
5,2 that closes with F − rF1 an odd circuit.

First assume that PF
12 consists of a single edge. Then, Q1, Q2 �∈ LF

1 ∪ LF
5 , so by

Lemma 9 and by symmetry, we may assume that Q1 ∈ OF
2,1 and Q2 ∈ OF

4,2. We also

may assume that Q1 has its ends on PF
14. By Lemma 13, Q2 intersects Q1∩PF

14. From
this and as Σ ⊆ (δG(rF1 ) ∪ δG(rF2 )) − B, one easily deduces a contradiction against
Lemma 10.

So we may assume that PF
12 does not consist of a single edge. As G is 3-connected,

LF
5 �= ∅. So we may as well assume that Q1 ∈ LF

5,1. By Lemmas 12 and 11 there exists

a link Q ∈ LF
3,1 ∪ LF

4,1. Hence, LF
5,1 and LF

3,1 ∪ LF
4,1 are nonempty, so by Lemma 9,

ΛF
2 = ∅. This implies that Q2 ∈ LF

1,2. By Lemma 7, Q is vertex disjoint with Q1, and

as LF
5,2 ⊆ ΛF

2 = ∅, Q is also disjoint with Q2. Contract all edges in PF
12 ∪ Q1 ∪ Q2

that are not incident with {rF1 , rF2 } and not incident with a vertex on PF
14; they are

all even. The resulting signed graph has the signed graph in Figure 14(a) as a minor.
As illustrated in Figure 14, that signed graph has a K2

3,3-minor. This contradiction
proves (55).

We may assume that ΛF
2 = OF

4,2. Indeed, by Lemma 9 and 12-symmetry we may

assume that ΛF
2 = ∅ or ΛF

2 = OF
4,2. As by definition, OF

4,2 is contained in ΛF
2 , which

means the sets are equal.

If B has an odd rF2 p-link with p �= rF1 , then PF
12 is a single edge.(56)

Assume that PF
12 is not an edge. Then, as G is 3-connected, LF

5 �= ∅. So as ΛF
2 = OF

4,2,

we have that LF
5,2 = ∅, so LF

5,1 �= ∅. Hence, by Lemma 12, there exists a link
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(b)(a)

Fig. 14. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertex, delete the “crossed” edges, and contract the “directed” edge.

(a)
(b)

Fig. 15. Bold edges are odd; thin edges are even; and both in (a) and in (b) exactly one of the
dashed edges is odd. To obtain (b) from (a), delete the “crossed” edges and contract the “directed”
edge.

R ∈ LF
3,1 ∪ LF

4,1. By Lemma 11, R ∈ OF
3,1 ∪ OF

4,1. Hence, by Lemma 9, OF
4,2 = ∅, so

ΛF
2 = ∅.

Let P be an odd rF2 p-link of B with p �= rF1 . As ΛF
2 = ∅, path P intersects P12.

So P contains a link in LF
5 ; as this collection is equal to LF

5,1 we get that p ∈ TF
1 . Let

Q be the shortest path on P12 from rF1 to P . As LF
5,2 = ∅ and as P intersects P12, the

subgraphs R and P ∪Q share no other vertex than rF1 . Hence, (G,Σ) has a minor as
in Figure 15(a), which has a K2

3,3-minor. This contradiction proves (56).

There exists a vertex p �∈ {rF1 , rF2 } such that each path
in G− rF1 − rF2 from B to C contains p.

(57)

If not, then in G − rF1 − rF2 there exist two vertex disjoint paths from C to B. So
B has an odd link J contained in G− rF1 − rF2 . As F has no handle, it follows from
Lemma 7 that J is not a link of F , so J intersects P12. But this implies that P12 is
not an edge and that its union with J contains an odd rF2 p-link with p �= rF1 . As this
contradicts (56), (57) follows.

Let B be the union of the bridges of {rF1 , rF2 , p} that contain edges of B. Assume
p is chosen such that B is as small as possible. Note that B is 2-connected and that
B − rF1 − rF2 is connected. Let P1, P2, and P3 be three vertex disjoint paths from C
to {rF1 , rF2 , p}. Take a path P ′ from p to B − rF1 − rF2 with no internal vertices in B;
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let u be its end vertex in B.

P12 is a single edge.(58)

This follows from (56), as C ∪P1∪P2∪P3∪P ′ contains an odd rF2 p-link with p �= rF1 .
So each link of B, except P12, is a link of F .
C ∪ P1 ∪ P2 ∪ P3 ∪ P ′ contains an odd rF1 u-link of F and an odd rF2 u-link of F .

So as ΛF
2 = OF

4,2, we have that u ∈ TF
1 and thus that OF

2,1 and OF
4,2 are not empty.

Hence, we have by Lemma 9 and (58) that ΛF
1 = OF

2,1 and ΛF
2 = OF

4,2.

B contains a link P in OF
2,1 ∪ OF

4,2.(59)

As {rF1 , rF2 , p} is not an improper 3-vertex cutset, B contains as odd circuit. From
this and as B is 2-connected, it follows that B contains an odd rF1 rF2 -path, say, Q.
As B − rF1 − rF2 is connected, it contains a path R that connects Q − rF1 − rF2 with
B − rF1 − rF2 . The union of R and Q contains an odd link P of F that has at most
one end in {rF1 , rF2 }. By (58), P ∈ ΛF

1 ∪ ΛF
2 = OF

2,1 ∪ OF
4,2. So (59) follows.

Let q be the end of P not in {rF1 , rF2 }. By 46-symmetry, we may assume that
q ∈ PF

14 − rF1 . Take the subpath Q of P ′ from p to q ∈ P ∪ TF
1 . Then as Q can

be extended to an rF1 p-link as well as an rF2 p-link of F ∪ P of either parity, it is
straightforward to argue from Lemma 13 that q ∈ (Q∪PF

14)−rF1 and from Lemma 10
that q ∈ PF

16 − rF1 . This is absurd.

11. Proof of Theorem 3(ii). We finally prove Theorem 3(ii). Assume that
(G,Σ) is a 3-connected clean signed graph with no blockvertex and no improper 3-
vertex cutset. Let F be an extreme K1

3,3-extension in (G,Σ). By Lemma 14 and by

12-symmetry, we may assume that F has a handle in OF
2,1.

Let F be the set of all K1
3,3-extensions F ′ with PF ′

12 = PF
12, T

F ′

2 = TF
2 , cage(F ′) =

cage(F ), and {rF ′

4 , rF
′

6 } = {rF4 , rF6 }; obviously each F ′ ∈ F is extreme.

Each F ′ ∈ F has a handle in OF ′

2,1.(60)

If not, then by Lemma 14 some F ′ ∈ F has a handle P in OF ′

2,2. As OF
2,1 �= ∅,

it follows from Lemma 9 that OF
2,2 = ∅. Hence, P �∈ OF

2,2. Therefore this handle

intersects TF
1 − rF1 , and thus it contains a link of F that contradicts Lemma 7. So

(60) follows.
Hence, Lemma 9 implies

ΛF ′

2 = OF ′

4,2 for each F ′ ∈ F .(61)

The tip of a link in OF
2,1, so in particular of a handle, is the end that lies farthest from

rF1 on TF
1 .

Let P be a handle of F with tip s on PF
14, and let L ∈ LF

2,1 with ends x
in (PF

14)rF1 s − rF1 − s and y in (PF
14)srF4 − s. Then there exists a

K1
3,3-extension F ′ in F with PF ′

16 = PF
16 and (PF ′

14 )yrF4 = (PF
14)yrF4

that has a handle with tip y.

(62)

In proving this we clearly may assume that L consists of a path that is internally
disjoint with P and possibly a part of P . If L is odd, then it is a handle of F with
tip y. Hence, we may assume that L is even. We may also assume that the only odd
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Fig. 16. Bold edges are odd; thin edges are even; and dashed edges may have length zero.

edge on P ∪ L is the edge of P incident with s. Figure 16 depicts the three possible
arrangements of P and L along PF

14. Let F ′ be the K1
3,3-extension obtained from F

by replacing (PF
14)xy with L. One easily checks in Figure 16 that F ′ satisfies all claims

in (62).
A single border of F is any pair (rF1 , s) where s is the tip of a handle. A pair

(r, s) is a linked border of F if s is the tip of a handle and there exists an rr′-link in
LF

6,1 with r′ ∈ (TF
1 )rF1 s − s; any such rr′-link is a join for the linked border (r, s). A

pair (r, s) is a double border of F if r and s are both tips of a handle, one lying in PF
14

and the other in PF
16, and there exists a link in LF

6,1 with both ends in (TF
1 )rs − r− s;

any such link is a join for the double border (r, s). A border of F is a single, linked,
or double border of F . Note that if (r, s) is a border, then one among r and s lies
on PF

14 and the other on PF
16. Moreover, s �= rF1 and r = rF1 exactly when (r, s) is a

single border. Note that by Lemma 7, joins for borders are even.
If (r, s) is a border, let B[r, s] = F − (TF

1 )rs, and let L[r, s] be the collection of
links of F with one end in B[r, s]−rF1 −r−s and the other end in (TF

1 )rs−rF1 −r−s.

If (rF1 , s) is a single border of F with L[rF1 , s] �⊆ LF
2,1 ∪ LF

6,1,
then L[rF1 , s] ∩ OF

4,2 �= ∅ and ΛF
1 = OF

2,1.
(63)

To prove this, let Q be a handle with end s, and let P ∈ L[rF1 , s]\ (LF
2,1∪LF

6,1). Then,

by Lemma 7, P has an end on PF
12 − rF1 . Let P ′ be the shortest subpath of P from

PF
12 to Q ∪ TF

1 . Clearly, by changing P if necessary, we may assume that P consists
of P ′ and possibly a subpath of Q. If P was even, (G,Σ) would have the signed
graph in Figure 17(a) as a minor. As illustrated in Figure 17 that signed graph has
a K1,1

3,3 -minor. So P is odd. As by Lemma 7, OF
5,1 = ∅, this means that P ∈ OF

4,2.

So L[rF1 , s] ∩ OF
4,2 �= ∅ indeed. Moreover, as OF

4,2 �= ∅, it follows from Lemma 9 that

ΛF
1 = OF

2,1 ∪ LF
5,1. In other words, OF

3,1 ∪ OF
4,1 = ∅. So, as OF

2,1 �= ∅ it follows from

Lemma 12 that EF
3,1 ∪EF

4,1 �= ∅. Hence, by Lemma 11, LF
5,1 is empty. Thus ΛF

1 = OF
2,1

indeed, and (63) follows.
The value for F of a border (r, s) is defined as the number of edges in B[r, s].

Choose F ∈ F and a border (r, s) for F such that

the value for F of (r, s) is as small as possible.(64)

By 46-symmetry assume that s lies on PF
14 and that r lies on PF

16. Then we have the
following:

L[r, s] ∩ LF
2,1 = ∅.(65)

Suppose this is not true; let L ∈ L[r, s] ∩ LF
2,1. Let x be the end of L in (TF

1 )rs,

and let y be the other end of L. If x and y lie on PF
14, then by (62) there exists a
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(a) (b)

Fig. 17. Bold edges are odd; thin edges are even. To obtain (b) from (a), delete the “crossed”
edge and contract the “directed” edge.

K1
3,3-extension F ′ such that (r, y) is a border of F ′. The value for F ′ of (r, y) is clearly

smaller than the value for F of (r, s). By (64) this is impossible, so x and y lie on
PF

16. In fact, by 46-symmetry and symmetry between r and s, this also means that
(r, s) is not a double border. Hence, as s ∈ PF

14, (r, s) is a linked border. Let P be a
join for (r, s).

If L intersected P , it would do so internally and (y, s) would be a linked border
for F (with a join in L ∪ P ). As the value of (y, s) is smaller than that of (r, s), it
follows from (64) that this is impossible, so L and P are disjoint.

If L was odd, it would be a handle and (y, s) would be a double border, again
contradicting (64). So L is even. Let F ′ be the K1

3,3-extension obtained from F by

replacing (PF
16)xy with L. Clearly, F ′ ∈ F . Now (y, s) is a linked border of F ′. The

value for F ′ of (y, s) is clearly smaller than the value for F of (r, s). By (64) this is
impossible, so (65) follows.

L[r, s] ∩ LF
6,1 = ∅.(66)

Suppose this is not true; let L ∈ L[r, s]∩LF
6,1. Let y be the end of L in B[r, s]. If y lies

on PF
16, then (y, s) would be a linked border of F that has a smaller value than (r, s),

contradicting (64) (L would be a join for that border). So, y ∈ PF
14. By 46-symmetry

and symmetry between r and s, this also implies that (r, s) is not a double border.
Now, as L ∈ LF

6,1, (r, s) is a linked border; let R be a join for (r, s), and let Q be a
handle with tip s. By (65), L and R are internally vertex disjoint, and by construction
they do not share any end. By Lemma 7, L and R are both even. Moreover, both
these paths are internally disjoint with Q; otherwise, we would have a link in OF

6,1.
Now, let K ∈ K(F ), and let K ′ be the K1

3,3-subdivision obtained from K by replacing

PK
45 and PK

63 with L and R. Then K ′ is extreme in K ′ ∪Q. As Q is a link of K ′ that
violates Lemma 7 with respect to K ′, (66) follows.

(r, s) is a linked or double border of F .(67)

Suppose this is not true; then (r, s) is a single border and r = rF1 . As G is 3-connected,
{rF1 , s} is not a 2-vertex cutset, so L[rF1 , s] �= ∅. By (65), (66), and (63), there exists an
L ∈ L[rF1 , s] ∩ OF

4,2, and ΛF
1 = OF

2,1. In particular, OF
3,1 ∪ OF

4,1 = ∅, so by Lemma 12,

EF
3,1 ∪ EF

4,1 �= ∅. As also LF
5,1 = ∅, it follows from (61) that LF

5 = ∅. So PF
12 is a

single edge. From this, (65), and (66), it follows that the bridge, say, B, of {rF1 , s, rF2 }
containing cage(F ) is distinct from the bridge, say, A, of {rF1 , s, rF2 } containing
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(a) (b)

Fig. 18. Bold edges are odd; thin edges are even; and both in (a) and in (b) exactly one of the
dashed edges is odd. To obtain (b) from (a), delete the “crossed” edge and contract the “directed”
edge.

(TF
12)rF1 s. Hence, as (G,Σ) has no improper 3-vertex cutset, B is not bipartite. By

Lemma 8, B contains an odd path P from s to one of rF1 and rF2 that misses the other
vertex in {rF1 , rF2 }. As PF

12 is a single edge, PF
12 is not contained in B. Therefore P

contains a link Q ∈ OF
2,1 ∪ OF

4,2.
Let R be a handle with tip s. Then R lies in A. As Q ∈ B, links R and Q are

internally disjoint. This means that if Q ∈ OF
4,2, then, by Lemma 13, Q has an end

in PF
14. However, then links Q and R contradict Lemma 10. So Q ∈ OF

2,1.
As L lies in A and Q lies in B, these links are internally vertex disjoint. Since L

has an end in PF
14, it follows from Lemma 13 that Q has its ends in PF

14. As Q lies in
B its tip, say, y, lies in (PF

14)srF4 − s. Hence, by (64), Q is not a handle. So the other

end of Q is rF1 . But then Q and L violate Lemma 10. This proves (67).

B[r, s] has an odd rs-link T with the following three properties:
T intersects (PF

14)rF1 s internally; rF1 does not lie on T ; and if (r, s) is a

linked border, then T intersects PF
16 only in r.

(68)

Indeed such a path is contained in the union of a handle with tip s, a join for (r, s)
and TF

1 .

No odd rF2 w-link of B[r, s] ∪ T with w ∈ (TF
2 ∪ core(F )) − rF2 contains rF1 .(69)

Assume this is false; let P be an odd rF2 w-link of B[r, s]∪T with w ∈ (TF
2 ∪core(F ))−

rF2 that contains rF1 . Let Y be the subpath of PF
14 from P to T . Note that by (68)

Y has neither rF4 nor rF6 as one of its ends. By resigning on the vertices of Y , if
necessary, we see that (G,Σ) has the signed graph in Figure 18(a) as a minor. As
illustrated in Figure 18, that signed graph has K2

3,3 as a minor. This contradiction
proves (69).

EF
3,1 ∪ EF

4,1 = ∅.(70)

Suppose this is false; let P ∈ EF
3,1 ∪ EF

4,1. Paths P and T are disjoint as otherwise F

has a link that violates Lemma 7. This means that PF
12 ∪ P contradicts (69), so (70)

follows.
Hence, as OF

2,1 �= ∅, it follows from Lemma 12 that OF
3,1 ∪ OF

4,1 �= ∅. Hence, by

Lemma 9, ΛF
2 = ∅.

L[r, s] = ∅.(71)
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Suppose this is false; let L ∈ L[r, s]. By (65), (66), and Lemma 7, L has an end, say,
y, on PF

12 − rF1 . Let x be the other end of L. By the properties of T listed in (68) we
may assume that if L meets T , then x ∈ PF

14 (if not, we can replace L with another
path in T ∪ L that does end in PF

14). In any case, L ∈ L[rF1 , t] for t = s or t = r. As
OF

3,1 ∪OF
4,1 �= ∅, it follows from (63) that t is not the tip of a handle. So L ∈ L[rF1 , r]

and (r, s) is a linked border and, as x �∈ PF
14, the paths T and L are vertex disjoint.

Moreover, as OF
4,2 and OF

5,1 are both empty, L is even. Hence, the concatenation of

(PF
12)rF2 y, L, (PF

16)xrF1 , and any link in OF
3,1 ∪ OF

4,1 violates (69). So (71) follows.

As {r, rF1 , s} is not an improper 3-vertex cutset, there exists a link Q of F that
closes with B[r, s] an odd circuit. As EF

3,1 ∪EF
4,1 = ΛF

2 = OF
5,1 = ∅, link Q ∈ LF

2,1 ∪LF
1 .

By (64), Q cannot be in OF
2,1. If Q ∈ LF

1 , then as Q closes with B an odd circuit,

L∪PF
12 contains an even rF2 rF1 -path, which together with any link in OF

3,1∪OF
4,1 forms

a link violating (69). So Q ∈ EF
2,1. As Q closes with B[r, s] an odd circuit, rF1 is an

end of Q. Let q be the other end of Q. Let u be the vertex among r and s that is
farthest from q along TF

1 . Let F ∗ be the K1
3,3-extension in F obtained from F by

replacing (TF
1 )rF1 q with Q. Vertex u is not the tip of a handle of F , as otherwise (q, u)

is a linked border of F ∗ that has a smaller value than (r, s) has. So u is r, border
(r, s) is linked, and q lies on PF

14. By (71), Q and T are disjoint. Hence, by the last
property of T listed in (68), T ∪ (PF

14)sq ∈ OF∗

6,1. This contradicts Lemma 7, which
completes the proof of Theorem 3(ii).
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