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Abstract

Sherali and Adams (1990), Lovász and Schrijver (1991) and, recently, Lasserre (2001) have
constructed hierarchies of successive linear or semidefinite relaxations of a 0 − 1 polytope P ⊆ Rn

converging to P in n steps. Lasserre’s approach uses results about representations of positive
polynomials as sums of squares and the dual theory of moments. We present the three methods
in a common elementary framework and show that the Lasserre construction provides the tightest
relaxations of P . As an application this gives a direct simple proof for the convergence of the
Lasserre’s hierarchy. We describe applications to the stable set polytope and to the cut polytope.

Keywords: 0 − 1 polytope, linear relaxation, semidefinite relaxation, lift-and-project, stable set
polytope, cut polytope.

1 Introduction

Given a set F ⊆ {0, 1}n, we are interested in finding the linear inequality description for the polytope
P := conv(F ). A first (easy) step is to find a linear programming formulation for P ; that is, to find a
linear system Ax ≤ b for which the polytope

K := {x ∈ R
n | Ax ≤ b}

satisfies K ∩ {0, 1}n = F .

If all vertices of K are integral then K = conv(F ) and we are done. Otherwise we have to find
‘cutting planes’ permitting to strengthen the relaxation K and to cut off its fractional vertices. Such
cutting planes can be found by exploiting the combinatorial structure of the problem at hand. Exten-
sive research has been done for finding (partial) linear descriptions for many polyhedra arising from
specific combinatorial optimization problems. Next to that, research has also focused on developing
general purpose methods applying to arbitrary 0−1 problems or, more generally, integer programming
problems.

One of the first such methods, which applies more generally to integral polyhedra, is the method of
Gomory for generating cuts tightening the linear relaxation K. Given a linear inequality

∑
i aixi ≤ α

valid for K where all the coefficients ai are integers, the inequality
∑

i aixi ≤ ⌊α⌋ (known as a
Gomory-Chvátal cut) is still valid for conv(F ) but may eliminate some part of K. If we apply this
transformation to any inequality

∑
i aixi ≤ α which can be obtained by taking linear combinations of

the inequalities defining K with suitable nonnegative multipliers ensuring that the ai’s are integral,
then we obtain a polytope K ′ satisfying

conv(F ) ⊆ K ′ ⊆ K.
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Set K(1) := K ′ and define recursively K(t+1) := (K(t))′. Chvátal (1973) proved that K(t) = conv(F )
for some t; the smallest t for which this is true is the Chvátal rank of the polytope K. The Chvátal
rank may be very large as it depends in general not only on the dimension n but also on the coefficients
of the inequalities involved. However, when K is assumed to be contained in the cube [0, 1]n then
its Chvátal rank is bounded by O(n2 log n) (Eisenbrand and Schulz 1999). Even if we can optimize
a linear objective function over K in polynomial time optimizing a linear objective function over the
first Chvátal closure K ′ is a co-NP-hard problem in general (Eisenbrand 1999).

Another popular method is to try to represent P as the projection of another polytope Q lying
in a higher (but preferably still polynomial) dimensional space. The idea behind being that the
projection of a polytope Q may have more facets than Q itself. Hence it could be that even if P has
an exponential number of facets, such Q exists having only a polynomial number of facets and lying
in a space whose dimension is polynomial in the original dimension of P (such Q is sometimes called
a compact representation of P ). If this is the case then we have a proof that any linear optimization
problem over P can be solved in polynomial time.

Several methods have been developed for constructing projection representations for general 0− 1
polyhedra; in particular, by Sherali and Adams (1990), by Lovász and Schrijver (1991), by Balas, Ceria
and Cornuéjols (1993) and, recently, by Lasserre (2000,2001). A common feature of these methods is
the construction of a hierarchy K ⊇ K1 ⊇ K2 ⊇ . . . ⊇ P of relaxations of P which finds the exact
convex hull in n steps; that is, Kn = P . These relaxations are linear or semidefinite (in the case
of Lovász-Schrijver and Lasserre). Moreover, under some assumptions over K, one can optimize in
polynomial time a linear objective over an iterate Kt for any fixed t.

The following inclusions are known among these various hierarchies: the Sherali-Adams iterate
is contained in the Lovász-Schrijver iterate which in turn is contained in the Balas-Ceria-Cornuéjols
iterate. The latter inclusion is an easy verification and the former was mentioned in (Lovász and
Schrijver 1991) as an application of somewhat complicated algebraic manipulations; we present in
Section 4 a simple direct proof for this inclusion.

The construction of Lasserre is motivated by results about representations of nonnegative poly-
nomials as sums of squares and the dual theory of moments, and his proof that the 0 − 1 polytope
P is found after n steps relies on a nontrivial result of Curto and Fialkow (2000) about truncated
moment sequences. The relaxations in Lasserre’s hierarchy are defined in terms of moment matrices,
which are matrices indexed by subsets of the set V = {1, . . . , n} and having the property that their
(I, J)-entry depends only on the union I ∪ J . In fact, the Sherali-Adams relaxations can also be
formulated within this framework of moment matrices. The fact of formulating both Lasserre and
Sherali-Adams constructions in a common setting permits a better understanding of how they relate;
both constructions apply in fact to the case when K is a semi-algebraic set contained in the cube
[0, 1]n. Moreover, the same argument can be used for showing that the 0−1 polytope P is found after
n steps in both constructions. This argument concerns an elementary property of the zeta matrix
of the lattice P(V ), presented in Section 3.1. We show in Section 4 that the Lasserre hierarchy is a
common refinement of the Sherali-Adams and Lovász-Schrijver hierarchies. We give in Section 5 two
examples showing that n steps are sometimes needed for finding P when using the Sherali-Adams con-
struction and we illustrate in Section 6 how the various methods apply to the stable set polytope and
to the cut polytope of a graph. Section 7 contains some background information about the moment
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problem and the representation of positive polynomials as sums of squares, useful for understanding
Lasserre’s approach. In particular, we show that our presentation of Lasserre’s method in Section 3 (in
terms of moment matrices indexed by the semigroup P(V )) is equivalent to the original presentation
of Lasserre (in terms of moment matrices indexed by the semigroup Z

n
+).

2 The Lovász-Schrijver hierarchy

Let K be a convex body contained in the cube [0, 1]n and let

P := conv(K ∩ {0, 1}n)

be the 0 − 1 polytope to be described. For convenience, define

K̃ := {λ
(

1
x

)
| x ∈ K, λ ≥ 0}, (1)

the homogenization of K; K̃ is a cone in R
n+1 (the additional coordinate is indexed by 0) and K =

{x ∈ R
n |
(

1
x

)
∈ K̃}. Let M(K) denote the set of symmetric matrices Y = (yij)

n
i,j=0 satisfying

yj,j = y0,j for j = 1, . . . , n, (2)

Y ej , Y (e0 − ej) ∈ K̃ for j = 1, . . . , n (3)

and set

N(K) := {x ∈ R
n |
(

1
x

)
= Y e0 for some Y ∈ M(K)},

where e0, e1, . . . , en denote the standard unit vectors in R
n+1. Then,

P ⊆ N(K) ⊆ K.

The inclusion P ⊆ N(K) follows from the fact that, for x ∈ K ∩ {0, 1}n, the matrix Y :=
(

1
x

)(
1
x

)T

belongs to M(K) and the inclusion N(K) ⊆ K follows from property (3). Define iteratively N1(K) :=
N(K) and, for t ≥ 2, N t(K) := N(N t−1(K)). Then,

P ⊆ Nn(K) ⊆ . . . ⊆ N t+1(K) ⊆ N t(K) ⊆ . . . ⊆ N(K) ⊆ K.

Lovász and Schrijver (1991) show that Nn(K) = P . (Their proof assumes that K is a polytope but
remains valid for any convex body K.)

Stronger relaxations are obtained by adding positive semidefiniteness. Set

M+(K) := {Y ∈ M(K) | Y � 0} and N+(K) = {x ∈ R
n |
(

1
x

)
= Y e0 for some Y ∈ M+(K)}.

Then,

P ⊆ N+(K) ⊆ K.
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The inclusion P ⊆ N+(K) follows from the fact that, for x ∈ K ∩{0, 1}n, the matrix Y :=
(

1
x

)(
1
x

)T
is

positive semidefinite and thus belongs to M+(K). Define iteratively N1
+(K) := N+(K) and N t

+(K) :=
N+(N t−1

+ (K)) for t ≥ 2. Then,

P ⊆ N t
+(K) ⊆ N t(K) for t ≥ 1.

Lovász and Schrijver (1991) introduce in fact two relaxations N(K, Q) ⊇ N(K, K) of K (where
Q = [0, 1]n). The set N(K) considered here coincides with N(K, Q); similarly, N+(K) = N+(K, Q).

3 The Sherali-Adams and Lasserre hierarchies

The Sherali-Adams and Lasserre constructions apply to semi-algebraic sets contained in the cube
[0, 1]n. Let

K := {x ∈ [0, 1]n | gℓ(x) ≥ 0 for ℓ = 1, . . . , m} (4)

where g1, . . . , gm are polynomials in x1, . . . , xn and let P := conv(K∩{0, 1}n) be the 0−1 polytope to
be described. As x2

i = xi (i = 1, . . . , n) for any x ∈ {0, 1}n, we can assume that each variable occurs
in every polynomial gℓ with a degree ≤ 1 and thus gℓ(x) can be written as

∑

I⊆V

gℓ(I)
∏

i∈I

xi.

Then the same symbol gℓ is used for denoting the vector in R
P(V ) with components gℓ(I) (I ⊆ V ).

We first present the two constructions in the common setting of moment matrices. For this, we need
some definitions.

Given V := {1, . . . , n}, P(V ) denotes the collection of all subsets of V and, for 1 ≤ t ≤ n, Pt(V )
denotes the collection of subsets of cardinality ≤ t. The components of a vector y ∈ R

P(V ) are denoted
as yI or y(I); we also set y0 = y∅, yi = y{i} and yij = y{i,j}. Given y ∈ R

P(V ), an integer 1 ≤ t ≤ n,
and a subset U ⊆ V , define the matrices

Mt(y) := (y(I ∪ J))|I|,|J |≤t, MU (y) := (y(I ∪ J))I,J⊆U . (5)

Thus, MV (y) = Mn(y). The matrix MV (y) is known as the moment matrix of y. Moment matrices
come up in the classic moment theory as well as the following product, often called shift operator in
the literature (cf., e.g., Fuglede (1983)). For x, y ∈ R

P(V ), define the vector x ∗ y ∈ R
P(V ) by

x ∗ y := MV (y)x; that is, x ∗ y(I) =
∑

K⊆V

xKyI∪K for I ⊆ V. (6)

One can easily verify the following commutation rule which will be used later in Section 4:

x ∗ (y ∗ z) = y ∗ (x ∗ z) for x, y, z ∈ R
P(V ). (7)

More detailed information about moment theory will be given in Section 7.2. Examples of moment
matrices arise from 0 − 1 vectors in the following way. If x ∈ {0, 1}V and y := (

∏

i∈I

xi)I⊆V , then
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yyT = MV (y) is therefore a moment matrix. More generally, we have the following observation, which
underlies the Sherali-Adams and Lasserre constructions.

Lemma 1. Given x ∈ K ∩{0, 1}n, the vector y ∈ R
P(V ) with entries y(I) :=

∏
i∈I xi (I ⊆ V ) satisfies

MV (y) � 0, MV (gℓ ∗ y) � 0 for ℓ = 1, . . . , m. (8)

Proof. Indeed, MV (y) = yyT and MV (gℓ ∗ y) = gℓ(x) yyT , since y(I ∪ J) = y(I) · y(J) for all
I, J ⊆ V .

One can relax the condition (8) and require positive semidefiniteness of certain principal subma-
trices of the moment matrices MV (y) and MV (gℓ ∗ y). Namely, Lasserre requires that

Mt+1(y) � 0, Mt−vℓ+1(gℓ ∗ y) � 0 for ℓ = 1, . . . , m (9)

(for an integer t ≥ vℓ−1, where vℓ := ⌈wℓ

2 ⌉, wℓ being the degree of gℓ) while Sherali and Adams require
that

MW (y) � 0 for W ⊆ V with |W | = min(t + w, n)
MU (gℓ ∗ y) � 0 for U ⊆ V with |U | = t and ℓ = 1, . . . , m

(10)

(for an integer t = 1, . . . , n, where w := maxℓ wℓ). The corresponding relaxations of P are obtained
by projecting the variable y onto the subspace R

n indexed by the singletons in P(V ). Sherali and
Adams and Lasserre show that P is found after n steps in the two constructions. These two results
are a direct consequence of Corollary 3 below (together with (12)) asserting that the cone in R

P(V )

consisting of the vectors y satisfying (8) is generated by 0 − 1 vectors.

The Sherali-Adams relaxations turn out to be linear relaxations since the condition (10) can be
reformulated as a linear system in y (cf. Lemma 2 below). We present in Section 3.2 the original
definition of the Sherali-Adams relaxations given in (Sherali and Adams 1990) and its equivalence
with the above definition.

3.1 Preliminary results

Let Z denote the square 0 − 1 matrix indexed by P(V ) with entry ZI,J = 1 if and only if I ⊆ J . Its
inverse Z−1 has entries

Z−1
I,J = (−1)|J\I| if I ⊆ J, Z−1

I,J = 0 otherwise. (11)

The matrix Z is known as the zeta matrix of the lattice P(V ) and its inverse Z−1 as the Möbius matrix
of P(V ) (cf. Wilf 1968). Let ζJ denote the J-th column of Z; it has entries ζJ(I) =

∏
i∈I xi (I ⊆ V ),

setting x := χJ . Given a subset J ⊆ P(V ), let

CJ := {
∑

J∈J

λJζJ | λJ ≥ 0 for J ∈ J } (12)
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denote the cone generated by the columns of Z indexed by J . Hence, CJ is a simplicial cone in R
P(V )

and
CJ = {y ∈ R

P(V ) | Z−1y ≥ 0, (Z−1y)J = 0 ∀J 6∈ J }. (13)

Lemma 2 and Corollary 3 below show how to reformulate membership in the cone CJ in terms
of positive semidefiniteness of certain moment matrices. This will be the key tool for proving the
convergence in n steps of the Sherali-Adams and Lasserre hierarchies. Lemma 2 is based on ideas
from Section 3.a in (Lovász and Schrijver 1991).

Lemma 2. Let g, y ∈ R
P(V ). Then,

(i) MV (g ∗ y) � 0 ⇐⇒ (Z−1y)H · gT ζH ≥ 0 for all H ⊆ V .

(ii) MV (y) � 0 ⇐⇒ Z−1y ≥ 0 ⇐⇒
∑

H⊇I

(−1)|H\I|y(H) ≥ 0 for all I ⊆ V .

Proof. (i) Let u ∈ R
P(V ) with entries uH := (Z−1y)H ·gT ζH (H ⊆ V ), and let Du denote the diagonal

matrix indexed by P(V ) with diagonal entries uH (H ⊆ V ). We show that ZDuZT = MV (g ∗ y). For
this note that, for H ⊆ V ,

uH = (Z−1y)H · gT ζH =


∑

R⊇H

(−1)|R\H|yR


 ·


 ∑

K⊆H

gK


 =

∑

K⊆H⊆R

(−1)|R\H|yRgK .

Therefore, given I, J ⊆ V , the (I, J)-th entry of ZDuZT is equal to

∑

H

ZIHZJHuH =
∑

H⊇I∪J

uH =
∑

K,R

yRgK


 ∑

I∪J∪K⊆H⊆R

(−1)|R\H|


 =

∑

K

gKyI∪J∪K = g ∗ y(I ∪ J)

and thus to MV (g ∗ y)IJ , using the fact that
∑

I∪J∪K⊆H⊆R(−1)|R\H| = 1 if R = I ∪ J ∪ K and 0
otherwise. Assertion (i) now follows from the fact that u ≥ 0 is equivalent to Du � 0.

The first equivalence in (ii) follows directly from (i) applied to g with all zero components except
g∅ = 1 and the second equivalence follows from the description of Z−1 in (11).

Let gℓ(x) (ℓ = 1, . . . , m) be polynomials in which every variable occurs with degree ≤ 1 and set

J := {J ⊆ V | gT
ℓ ζJ ≥ 0 for all ℓ = 1, . . . , m} = {J ⊆ V | gℓ(χ

J) ≥ 0 for all ℓ = 1, . . . , m}. (14)

In the case J = P(V ), the next result is given in (Lovász and Schrijver 1991) and (Sherali and Adams
1990).

Corollary 3. CJ = {y ∈ R
P(V ) | MV (y) � 0 and MV (gℓ ∗ y) � 0 for all ℓ = 1, . . . , m} .

Proof. Let y ∈ R
P(V ). By (13), y ∈ CJ if and only if Z−1y ≥ 0 and (Z−1y)J = 0 for J 6∈ J . Using

(14), this is equivalent to Z−1y ≥ 0 and (Z−1y)J ·g
T
ℓ ζJ ≥ 0 for all ℓ = 1, . . . , m and J ⊆ V . Therefore,
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using Lemma 2, y ∈ CJ if and only if MV (y) � 0 and MV (gℓ ∗ y) � 0 for ℓ = 1, . . . , m.

Example 4. We illustrate Lemma 2 and Corollary 3 on a small example. For V = {1, 2}, consider
the cone CJ where J is the set of 0 − 1 solutions of the inequality g(x) := x1 + x2 − 1 ≥ 0. Then,

Z =




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


 , Z−1 =




1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1


 ,

MV (y) =




y0 y1 y2 y12

y1 y1 y12 y12

y2 y12 y2 y12

y12 y12 y12 y12


 , MV (g ∗ y) =




−y0 + y1 + y2 y12 y12 y12

y12 y12 y12 y12

y12 y12 y12 y12

y12 y12 y12 y12




since g ∗ y has all its entries equal to y12 except its ∅-entry equal to −y0 + y1 + y2. Therefore,

MV (y) � 0 ⇐⇒ y0 − y1 − y2 + y12 ≥ 0, y1 − y12 ≥ 0, y2 − y12 ≥ 0, y12 ≥ 0,

MV (g ∗ y) � 0 ⇐⇒ −y0 + y1 + y2 − y12 ≥ 0, y12 ≥ 0.

Hence the cone CJ is described by the linear system:

y0 − y1 − y2 + y12 = 0
y1 − y12 ≥ 0
y2 − y12 ≥ 0

y12 ≥ 0

and its projection on the subspace R
2 indexed by variables y1 and y2 (obtained by eliminating variable

y12 and setting y0 = 1) is the polytope defined by

y1 + y2 ≥ 1, 1 ≥ y1, 1 ≥ y2.

We conclude with a result showing how positive semidefiniteness of the moment matrices of g ∗ y,
when g(x) is one of the polynomials xi, 1− xi (i = 1, . . . , n), can be reformulated in terms of positive
semidefiniteness of the moment matrix of y. This result tells us how to handle the bound inequalities
0 ≤ xi ≤ 1 and will be used in Section 4 for the proof of Theorem 14.

Lemma 5. Let y ∈ R
P(V ) and 1 ≤ t ≤ n an integer. If Mt(y) � 0 then, for all i = 1, . . . , n,

Mt−1(ei ∗ y), Mt−1((e∅ − ei) ∗ y) � 0.

Proof. Set P1 := {I ⊆ V | |I| ≤ t − 2, i 6∈ I}, P2 := {I ⊆ V | |I| = t − 1, i 6∈ I}, and
P ′

j := {I ∪ {i} | I ∈ Pj} for j = 1, 2 and let Y denote the principal submatrix of Mt(y) indexed by
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the set P1∪P2∪P ′
1∪P ′

2. Then, Y =




P1 P2 P ′
1

P ′
2

P1 A E C F

P2 ET B F T D

P ′
1

C F C F

P ′
2

F T D F T D


. Moreover, Mt−1(y) =

( P1 P2 P ′
1

P1 A E C

P2 ET B F T

P ′
1

C F C

)
,

Mt−1(ei ∗ y) =

( P1 P2 P ′
1

P1 C F C

P2 F T D F T

P ′
1

C F C

)
, and Mt−1((e0 − ei) ∗ y) =

( P1 P2 P ′
1

P1 A − C E − F 0
P2 ET − F T B − D 0
P ′

1
0 0 0

)
.

Therefore, we have that (xT yT zT )Mt−1(ei ∗ y)

(
x

y

z

)
= ((x + z)T yT )

(
C F
F T D

)(
x + z

y

)
≥ 0 and

(xT yT zT )Mt−1((e∅ − ei) ∗ y)

(
x

y

z

)
= (xT yT − xT − yT )Y




x

y

−x

−y


 ≥ 0 for all x, y, z, since the matrices

(
C F

F T D

)
and Y are positive semidefinite. This shows that Mt−1(ei ∗ y), Mt−1((e∅ − ei) ∗ y) � 0.

3.2 The Sherali-Adams hierarchy

Let K be a semi-algebraic set as in (4), where the gℓ’s are polynomials in which every variable occurs
with degree at most 1 and let P = conv(K ∩ {0, 1}n) be the polytope to be described. Let J be as in
relation (14). Let wℓ denote the degree of the polynomial gℓ and set

vℓ :=

⌈
wℓ

2

⌉
, w := maxwℓ, v := max vℓ. (15)

When there is no constraint gℓ(x) ≥ 0 in the definition of K, K is the cube [0, 1]n and we set
v = w := 0. We now introduce the Sherali-Adams relaxations as linear relaxations and then observe
that they can be reformulated as the semidefinite programs (10). Let t ∈ {1, . . . , n}. Multiply each
inequality gℓ(x) ≥ 0 (ℓ = 1, . . . , m) by each product

f(I, J) :=
∏

i∈I

xi ·
∏

j∈J

(1 − xj) (16)

where I, J are disjoint subsets of V = {1, . . . , n} such that |I ∪ J | = t. In this way, we obtain a set
of inequalities that are still valid for P . Add to this set all the inequalities f(I, J) ≥ 0 where I, J are
disjoint subsets with |I ∪ J | = min(t + w, n). Replace each square x2

i by xi and linearize the product∏
i∈I xi by a new variable yI for I ⊆ V (thus setting yi = xi for i ∈ V ). This defines a set Rt(K) in

the space R
Pt+w(V ). As ∏

i∈I

xi ·
∏

j∈J

(1 − xj) =
∑

I⊆H⊆I∪J

(−1)|H\I|
∏

h∈H

xh

the quantity obtained by linearizing gℓ(x)
∏

i∈I

xi ·
∏

j∈J

(1 − xj) reads

(
∑

K⊆V

gℓ(K)
∏

k∈K

xk) · (
∑

I⊆H⊆I∪J

(−1)|H\I|
∏

h∈H

xh) =
∑

I⊆H⊆I∪J

(−1)|H\I|gℓ ∗ y(H).
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Therefore, Rt(K) consists of the vectors y ∈ R
Pt+w(V ) satisfying the inequalities:

∑

I⊆H⊆U

(−1)|H\I|gℓ ∗ y(H) ≥ 0 for all ℓ = 1, . . . , m and all I ⊆ U ⊆ V with |U | = t, (17)

∑

I⊆H⊆W

(−1)|H\I|y(H) ≥ 0 for all I ⊆ W ⊆ V with |W | = min(t + w, n). (18)

Using Lemma 2, the set Rt(K) can be reformulated as

Rt(K) = {y ∈ R
Pt+w(V ) | MU (gℓ ∗ y) � 0 for all U ⊆ V with |U | = t and ℓ = 1, . . . , m

MW (y) � 0 for all W ⊆ V with |W | = min(t + w, n)}.
(19)

In view of Corollary 3 we find that
Rn(K) = CJ .

Let St(K) denote the projection of Rt(K)∩{y | y∅ = 1} on the subspace R
n indexed by the singletons.

By the above, we deduce that

P = Sn(K) ⊆ . . . ⊆ St+1(K) ⊆ St(K) ⊆ . . . ⊆ S1(K).

In general, the set S1(K) is not contained in K; this is due to the fact that S1(K) is convex while K
need not be convex. (As a nonconvex example, consider K = {x ∈ [0, 1]2 | x1+x2−x1x2 ≥ 1} which is
the union of two intervals, K = {x ∈ [0, 1]2 | x1 = 1 or x2 = 1}, while P = {x ∈ [0, 1]2 | x1 +x2 ≥ 1}.)
In the linear case, i.e., when all polynomials gℓ have degree 1, then K is convex and S1(K) ⊆ K.

Remark 6. Note that the inequalities (17) (resp., (18)) remain valid for Rt(K) for any U with
|U | ≤ t (resp., any W with |W | ≤ min(t + w, n)). This follows from the fact that equality f(I, J) =
f(I ∪ {k}, J) + f(I, J ∪ {k}) holds for any element k ∈ V \ I ∪ J and any disjoint I, J ⊆ V .

Another observation is that the conditions: f(I, J) ≥ 0 for all disjoint I, J ⊆ V with |I ∪ J | =
min(t + w, n) yield (after linearization and replacing squares x2

i by xi) the same solution set as the
conditions: f(I, J) · f(R, S) ≥ 0 for all disjoint I, J ⊆ V with |I ∪ J | = t and all disjoint R, S ⊆ V
with |R∪S| = w. Hence we have the following result (compare with Lemma 5), to be used later in the
proof of Theorem 12.

Lemma 7. Given y ∈ R
P(V ) and an integer 1 ≤ t ≤ n, the following assertions are equivalent.

(i) MU (ei ∗ y), MU ((e∅ − ei) ∗ y) � 0 for all U ⊆ V with |U | = t and all i = 1, . . . , n

(ii) MW (y) � 0 for all W ⊆ V with |W | = min(n, t + 1).

Remark 8. Matrix reformulation. Let K denote the linearization of K consisting of the vectors
y ∈ R

Pw(V ) satisfying the linear system:

gT
ℓ y ≥ 0 for ℓ = 1, . . . , m,

∑

R⊆H⊆S

(−1)|H\R|yH ≥ 0 for all R ⊆ S ⊆ V with |S| = w.
(20)
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Given y ∈ R
Pt+w(V ), consider the matrix Y whose rows and columns are indexed, respectively, by

Pw(V ) and Pt(V ) and with entries Y (K, H) := y(K ∪H) for K ∈ Pw(V ) and H ∈ Pt(V ). Denote by
eH (H ∈ Pt(V )) the elementary unit vectors in R

Pt(V ); then Y eH is the column of Y indexed by H.
Then,

y ∈ Rt(K) ⇐⇒ Y


 ∑

I⊆H⊆U

(−1)|H\I|eH


 ∈ K for all I ⊆ U ⊆ V with |U | = t. (21)

In particular, in the case t = 1, y ∈ R1(K) ⇐⇒ Y ej , Y (e∅ − ej) ∈ K for all j ∈ V . Note the analogy
with the relation (3) defining the matrix set M(K) in the Lovász-Schrijver procedure.

In the linear case w = 1, the second set of inequalities in (20) reads: 0 ≤ y ≤ y0 (i ∈ V ) and
thus the cone K coincides with the set K̃ introduced in (1). Therefore, we find the well known fact
that S1(K) = N(K); that is, the first steps in the Sherali-Adams and Lovász-Schrijver procedures
coincide. The next steps are however distinct (although there is an inclusion relationship; see Corol-
lary 13). A main difference between the two methods is that the Lovász-Schrijver procedure constructs
the successive relaxations recursively by applying t successive lift-and-project steps, each taking place
in a space of dimension O(n2), whereas the Sherali-Adams procedure carries out only one direct lifting
step, occurring in a space of dimension O(nt+1). Moreover, the projection step is not mandatory in
the Sherali-Adams procedure, as approximate solutions for optimization problems on P can be obtained
by optimizing directly over the set Rt(K).

Remark 9. The original construction of Sherali and Adams (known as the reformulation-linearization
technique or RLT) applies more generally to 0−1 mixed integer polynomial programs which are linear
in the continuous variables (Sherali and Adams 1994). However, it is not clear whether the presen-
tation given here in terms of moment matrices extends to the mixed integer case. Strengthenings of
the basic RLT method have been proposed for general polynomial programming problems involving, in
particular, taking products of other inequalities than the bound-factors xi ≥ 0 and 1 − xi ≥ 0 (see
Sherali and Tuncbilek (1992,1997), Sherali, Adams and Driscoll (1998), Sherali and Adams (1999)).
We will come back to it in Section 7.3.

3.3 The Lasserre hierarchy

For t ≥ v − 1, with v defined as in (15), set

Pt(K) := {y ∈ R
P2t+2(V ) | Mt+1(y) � 0, Mt+1−vℓ

(gℓ ∗ y) � 0 for ℓ = 1, . . . , m} (22)

and define Qt(K) as the projection of Pt(K) ∩ {y | y∅ = 1} on the subspace R
n indexed by the

singletons. Therefore,
P ⊆ Qn+v−1(K) ⊆ . . . ⊆ Qv(K) ⊆ Qv−1(K).

Lasserre (2001b) shows that
P = Qn+v−1(K).

This result follows, in fact, as a direct consequence of Corollary 3, since Pn+v−1(K) = CJ . The
following inclusion relationship holds between the Lasserre hierarchy and the Sherali-Adams hierarchy.

10



Proposition 10. For any t = 1, . . . , n, Qt+w−1(K) ⊆ St(K).

Proof. Let y ∈ Pt+w−1(K); that is, y ∈ R
P2t+2w(V ) satisfies Mt+w(y) � 0 and Mt+w−vℓ

(gℓ ∗ y) � 0
for ℓ = 1, . . . , m. We verify that the restriction of y to R

Pt+w(V ) belongs to Rt(K). Indeed, given
U, W ⊆ V with |U | = t and |W | = min(t + w, n), MW (y) � 0 since it is a principal submatrix of
Mt+w(y) and MU (gℓ ∗ y) � 0 since it is a principal submatrix of Mt+w−vℓ

(gℓ ∗ y).

Remark 11. One could weaken the definition of the set Rt(K) by replacing the condition |W | =
min(t + w, n) by |W | = min(t + 1, n) (in (18) and (19)); denote by R′

t(K) the set obtained in this way
and by S′

t(K) the projection on R
n of R′

t(K)∩{y | y∅ = 1}. Thus Rt(K) ⊆ R′
t(K) and St(K) ⊆ S′

t(K).
Equality R′

n(K) = CJ still holds, yielding S′
n(K) = P . Hence the weaker hierarchy S′

t(K) also
converges to P in n steps. In the linear case w = 1, the two definitions coincide: St(K) = S′

t(K).
One can verify the inclusion

Qt+v−1(K) ⊆ S′
t(K)

(for w ≥ 1) which implies again the convergence result: P = Qn+v−1(K) for the Lasserre hierarchy.

The construction of Lasserre is originally presented in terms of moment matrices indexed by integer
sequences (rather than subsets of V ) and the proof of convergence uses results about moment sequences
and the representation of positive polynomials as sums of squares. We review Lasserre’s approach in
Section 7 and show that it is equivalent to the above presentation.

4 Comparing the Lasserre, Sherali-Adams and Lovász-Schrijver Re-

laxations

We assume in this section that K is a polytope; that is, K is defined by (4) where all the polynomials
gℓ have degree 1 (thus v = w = 1, or v = w = 0 if K = [0, 1]n). As recalled earlier (in Remark
8), the first steps of the Sherali-Adams and Lovász-Schrijver hierarchies are then identical; that is,
S1(K) = N(K). It follows from results in (Lovász and Schrijver 1991) that St(K) ⊆ N t(K); that is,
the Sherali-Adams hierarchy refines the Lovász-Schrijver hierarchy. This inclusion also follows from
Theorem 12 below which shows a stronger result and has a simple direct proof (while the proof in
(Lovász and Schrijver 1991) is more involved).

Theorem 12. If K is a polytope, then St(K) ⊆ N(St−1(K)) for all t = 1, . . . , n (setting S0(K) := K).

Proof. Let t ≥ 2 and let (y1, . . . , yn)T ∈ St(K); that is, (y1, . . . , yn)T is the projection of some
y ∈ Rt(K) with y∅ = 1. We show that the matrix Y := M1(y) = (yI∪J)|I|,|J |≤1 belongs to M(St−1(K));

that is, Y ek, Y (e∅ − ek) belong to ˜St−1(K), the homogenization of St−1(K), for all k = 1, . . . , n. As
Y ek (resp., Y (e∅−ek)) is the projection on R

P1(V ) of the vector ek ∗y (resp., (e∅−ek)∗y), it suffices to
show that ek ∗y and (e∅−ek)∗y belong to Rt−1(K). In other words, we have to show that MW (ek ∗y),
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MW ((e∅ − ek) ∗ y), MU (gℓ ∗ (ek ∗ y)), MU (gℓ ∗ [(e∅ − ek) ∗ y]) � 0 for all ℓ = 1, . . . , m, U, W ⊆ V with
|U | = t−1, |W | = t. This follows directly from the assumption that y ∈ Rt(y) together with Lemma 7
and the commutation rule (7). (We have assumed here that w = 1 but the proof is analogous for
w = 0.)

Corollary 13. St(K) ⊆ N t(K) for all t = 1, . . . , n.

Proof. Directly from Theorem 12 using induction on t.

Proposition 10 and Corollary 13 imply that

Qt(K) ⊆ St(K) ⊆ N t(K)

for t = 1, . . . , n. In fact, one can show that the Lasserre hierarchy also refines the Lovász-Schrijver
hierarchy obtained using the N+ operator.

Observe that M(K) can be alternatively viewed as the set of matrices Y := M1(y) where y ∈ R
P2(V )

for which Y ek, Y (e0 − ek) ∈ K̃, i.e., gT
ℓ Y ek, gT

ℓ Y (e∅ − ek) ≥ 0 for all ℓ = 1, . . . , m and k = 1, . . . , n.
As gT

ℓ Y e0 = gℓ ∗ y(∅), gT
ℓ Y ek = gℓ ∗ y(k), the latter holds if and only if the principal submatrix of

M1(gℓ∗y) indexed by ∅ and {k} is positive semidefinite. In comparison, membership in Q0(K) requires
only that gℓ ∗ y(∅) ≥ 0 for all ℓ, while membership in Q1(K) requires that M1(gℓ ∗ y) � 0 for all ℓ.
Therefore, we have the following inclusions:

Q1(K) ⊆ N+(K) ⊆ Q0(K). (23)

Theorem 14. If K is a polytope, then Qt(K) ⊆ N+(Qt−1(K)) for all t = 1, . . . , n.

Proof. Let (y1, . . . , yn)T ∈ Qt(K); that is, (y1, . . . , yn)T is the projection of some y ∈ Pt(K) with

y∅ = 1. Set Y := M1(y). We show that Y ek, Y (e∅ − ek) ∈
˜Qt−1(K), the homogenization of Qt−1(K),

for k = 1, . . . , n. As Y ek (resp., Y (e∅−ek)) is the projection on R
P1(V ) of ek ∗y (resp., (e∅−ek)∗y), it

suffices to show that ek ∗ y and (e∅ − ek) ∗ y belong to Pt−1(K). In other words, we have to show that
Mt(ek ∗ y), Mt((e∅− ek)∗ y), Mt−1(gℓ ∗ (ek ∗ y)), Mt−1(gℓ ∗ [(e∅− ek)∗ y]) � 0 for all ℓ = 1, . . . , m. This
follows directly from the assumption that y ∈ Pt(K) together with Lemma 5 and the commutation
rule (7).

Corollary 15. If K is a polytope, then Qt(K) ⊆ N t
+(K) for all t = 1, . . . , n.

Proof. Directly from Theorem 14 and (23) using induction on t.

An algorithmic comparison. Summarizing, we have:

Qt(K) ⊆ St(K) ∩ N t
+(K)

12



for any t = 1, . . . , n. Therefore, the Lasserre set Qt(K) provides the sharpest relaxation of P . From an
algorithmic point of view, it is however less well behaved than the Sherali-Adams and Lovász-Schrijver
relaxations.

Given a convex body B ⊆ R
n, the separation problem for B is the problem of determining whether

a given vector y ∈ R
n belongs to B and, if not, of finding a hyperplane separating y from B; the weak

separation problem is the analogue problem where one allows for numerical errors. An important
consequence of the ellipsoid method is that, if one can solve the weak separation problem for B in
polynomial time, then one can optimize any linear objective function over B in polynomial time
(with an arbitrary precision) and vice versa (assuming some technical information about B like the
knowledge of a ball contained in B and of a ball containing B); see (Grötschel, Lovász and Schrijver
1988) for details.

If one can solve the weak separation problem for K in polynomial time, then the same holds for
M(K) and M+(K) and thus for the projections N(K) and N+(K). Therefore, one can optimize a
linear objective function in polynomial time over the relaxations N t(K), N t

+(K), St(K) for any fixed
t; this is observed in (Lovász and Schrijver 1991) for the LS sets and the same argument works for the
SA sets in view of the matrix reformulation (21) of the SA method. The assumption made over K is
trivially satisfied if m is polynomial in n but it may sometimes be satisfied even if m is exponential
in n. On the other hand, in order to claim that one can optimize over Qt(K) in polynomial time,
one needs to assume that m is polynomial in n, since the system defining Qt(K) involves m LMI’s
associated to the inequalities of the linear system defining K.

Note that one can optimize over the Sherali-Adams and Lasserre sets without carrying out ex-
plicitely the projection step, whereas the Lovász-Schrijver relaxations intrinsically need a sequence of
successive projections.

5 The rank of the Sherali-Adams Procedure

We present here two examples of a polytope K ⊆ [0, 1]n for which n iterations of the Sherali-Adams
procedure are needed for finding the integer polytope P = conv(K ∩ {0, 1}n).

Example 16. Let

K := {x ∈ [0, 1]n |
∑

r∈R

(1 − xr) +
∑

r∈V \R

xr ≥
1

2
for all R ⊆ {1, . . . , n}}; (24)

then P = ∅. We show in Proposition 17 below that Sn−1(K) 6= ∅, which implies that P 6= Sn−1(K).
The polytope K has been used earlier to show that n iterations are needed for the following procedures:
taking Chvátal cuts (Chvátal, Cook and Hartman 1989), the N+ operator (Goemans and Tunçel 2001),
the N+ operator combined with taking Chvátal cuts (Cook and Dash 2001), and the N+ operator
combined with taking Gomory mixed integer cuts (equivalent to disjunctive cuts) (Cornuéjols and Li
2001). The following (easy to verify) identities will be used in the proof:

∑

K⊆A

(−1)|K|

2|K|
=

1

2|A|
,

∑

K⊆A

|K|
(−1)|K|

2|K|
= −

|A|

2|A|
(25)
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for any set A. (For the second one, use the fact that k
(n
k

)
= n

(n−1
k−1

)
.)

Proposition 17. Let y ∈ R
P(V ) with entries yI := 1

2|I|
(I ⊆ V ). Then, y ∈ Rn−1(K) where K is

defined by (24).

Proof. Let vR ∈ R
P(V ) be the vector of coefficients of an inequality defining K, with all components

zero except vR(∅) = −1
2 + |R|, vR(r) = −1 if r ∈ R, vR(r) = 1 if r ∈ V \ R, where R is a given subset

of V . Then, for H ⊆ V ,

vR ∗ y(H) = (|R| − 1
2)y(H) −

∑
r∈R y(H ∪ {r}) +

∑
r∈V \R y(H ∪ {r})

= 1
2|H| (|R| − 1

2 + |H \ R| − |R ∩ H|) + 1
2|H|+1 (|V \ (H ∪ R)| − |R \ H|)

= 1
2|H|+1 (n − 1 + |H| − 2|R ∩ H|).

Given a subset U ⊆ V with |U | = n − 1 and I ⊆ U , we have:

ϕ :=
∑

I⊆H⊆U

(−1)|H\I|(vR ∗ y)(H) =
n − 1

2|I|+1

∑

K⊆U\I

(−1)|K|

2|K|

+ 1
2|I|+1

∑

K⊆U\I

(−1)|K|

2|K|
(|I| + |K|) −

1

2|I|+1

∑

K⊆U\I

(−1)|K|

2|K|
(|R ∩ I| + |R ∩ K|).

Using (25), one can verify that the second term in the above expression of ϕ is equal to 1
2n (2|I|−n+1)

while the third term is equal to 1
2n−1 (2|R ∩ I| − |R ∩ U |). Therefore,

ϕ =
1

2n−1
(|I| + |R ∩ U | − 2|R ∩ I|) ≥ 0

since I ⊆ U . By Lemma 2 (ii), this shows that MU (vR ∗ y) � 0.
Finally, MV (y) � 0, since

∑
I⊆H(−1)|H\I|yH = 1

2n ≥ 0.

Example 18. Consider the polytope

K := {x ∈ [0, 1]n |
n∑

i=1

xi ≥
1

2
}, (26)

then P = {x ∈ [0, 1]n |
∑n

i=1 xi ≥ 1}. This example was considered by Cook and Dash (2001) as an
example where the Lovász-Schrijver rank is n. The next result shows that the Sherali-Adams rank is
also equal to n.

Proposition 19. Let y ∈ P(V ) with zero entries except y∅ := 1 and yi := 1
n+1 (i ∈ V ). Then,

y ∈ Rn−1(K) where K is defined by (26). Therefore, P ⊂ Sn−1(K).
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Proof. One can easily verify (using Lemma 2 (ii)) that MV (y) � 0 and MU (g ∗ y) � 0 for U ⊆ V
with |U | = n − 1, where g(x) is the polynomial −1

2 +
∑n

i=1 xi.

It would be interesting to determine the Lasserre rank of the polytope K in the above two examples.
In the second example, when K is defined by (26), we verified that the Lasserre rank is equal to n
when n = 2; indeed, the minimum value of x1 + x2 for x ∈ Q1(K) is equal to 25

26 < 1. It is not clear
how to construct a point x ∈ Qn−1(K) with

∑
i xi < 1 for general n ≥ 2.

On the other hand, when K is given by (24), we verified that the Lasserre rank of K is equal to
1 when n = 2. Again it would be interesting to determine the exact rank for higher values of n (we
believe that n − 1 is the correct value).

6 Two Applications

We describe here how the constructions of Lasserre, Lovász-Schrijver, and Sherali-Adams apply to two
concrete examples, namely, to the stable set polytope and to the cut polytope of a graph. They are
the two most extensively studied examples with respect to this class of methods; the original paper by
Lovász and Schrijver (1991) studies the stable set problem while the paper by Laurent (2001) studies
the case of max-cut. Moreover, these two examples have been the objects of milestone results in the
field of semidefinite optimization.

Indeed, the idea of constructing semidefinite relaxations for a combinatorial problem goes back
to the seminal work of Lovász (1979) who introduced the semidefinite bound ϑ(G) for the stability
number of a graph G, obtained by optimizing over the semidefinite relaxation TH(G) (see (27) of
the stable set polytope ST(G) of G. An important result is that TH(G) = ST(G) precisely when G
is a perfect graph, in which case one can solve the maximum stable set problem in polynomial time
(with an arbitrary precision) using semidefinite programming; this is still the only polynomial time
algorithm known up to today (cf Grötschel, Lovász and Schrijver 1988).

This idea of approximating combinatorial problems using semidefinite relaxations was used later
again successfully by Goemans and Williamson (1995) who, using a basic semidefinite relaxation of
the cut polytope (defined later in (35)), could prove a good approximation algorithm for the max-
cut problem. Since then, semidefinite relaxations have been widely used (in conjonction with clever
rounding schemes) for constructing good approximation algorithms for a large number of combinatorial
problems. It is therefore of interest to construct new stronger semidefinite relaxations for the stable set
polytope and for the cut polytope, as they could potentially be used for designing better approximation
algorithms.

6.1 Application to the stable set polytope

Given a graph G = (V = {1, . . . , n}, E), let ST(G) denote the stable set polytope of G, let

FR(G) := {x ∈ R
n
+ | xi + xj ≤ 1 ∀ij ∈ E}
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be its basic linear relaxation defined by nonnegativity and the edge inequalities, and let

TH(G) := {x ∈ R
n |

(
1
x

)
= Y e0 for some positive semidefinite matrix Y = (Yij)

n
i,j=0

satisfying Yii = Y0i (i ∈ V ), Yij = 0 (ij ∈ E)}
(27)

be the basic semidefinite relaxation of ST(G). Let us compare how the various methods apply to the
pair P := ST(G), K := FR(G).

Define the N -rank (resp., N+-rank) of FR(G) as the smallest integer t for which N t(FR(G)) =
ST(G) (resp., N t

+(FR(G)) = ST(G)); define similarly the SA-rank and the Lasserre rank of FR(G).
The relaxations N(FR(G)) and N+(FR(G)) are studied in detail in (Lovász and Schrijver 1991).

In particular, the following results are shown there. The polytope N(FR(G)) is defined by the non-

negativity and edge constraints together with the odd hole inequalities:
∑

i∈V (C) xi ≤
|C|−1

2 for C odd
hole in G. If G has n nodes and stability number α(G), then its N -rank t satisfies:

n

α(G)
− 2 ≤ t ≤ n − α(G) − 1; (28)

the N -rank t of an inequality aT x ≤ β valid for ST(G) (with integer coefficients and distinct from the
nonnegativity constraints) satisfies:

1

β
(
∑

i∈V

ai − 2β) ≤ t ≤
∑

i∈V

ai − 2β. (29)

The lower bounds follow from the fact that

1

t + 2
(1, . . . , 1)T ∈ N t(FR(G)) (30)

for any t ≥ 0. The N+ operator yields a much stronger relaxation, as clique inequalities, odd wheel
and odd antihole inequalities are valid for N+(FR(G)) (while the N -rank of a clique inequality based
on a clique of size k is k − 2). Thus, perfect graphs have N+-rank 1. Moreover,

N+(FR(G)) ⊆ TH(G)

for any graph G and the N+ rank t of G satisfies:

t ≤ α(G). (31)

The Sherali-Adams hierarchy does not seem to yield a significant improvement with respect to
the sequence N t(FR(G)). Indeed, the vector 1

t+2(1, . . . , 1)T ∈ R
n considered in (30) belongs also to

St(FR(G)). (Because the vector y ∈ R
Pt+1(V ) defined by y∅ := 1, yI := 1

t+2 if |I| = 1, and yI := 0 if
|I| ≥ 2 belongs to Rt(FR(G)).) Therefore, the lower bounds from (28) and (29) remain valid for the
SA-rank of FR(G).

On the other hand, the Lasserre hierarchy does improve on the sequence N t
+(FR(G)) as we now see.

We begin with giving a more compact formulation for the relaxation Qt(FR(G)). For an edge ab ∈ E,
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let gab(x) := 1 − xa − xb be the polynomial corresponding to the edge inequality xa + xb ≤ 1. We
show that the positive semidefinite constraint Mt(gab ∗ y) � 0 can be replaced by the linear equation:
yab = 0.

Lemma 20. Let t ≥ 1 and y ∈ R
P2t+2(V ). The following assertions are equivalent.

(i) y ∈ Pt(FR(G))

(ii) Mt+1(y) � 0 and yab = 0 for any edge ab ∈ E.

(iii) Mt+1(y) � 0 and yI = 0 for any I ∈ P2t+2(V ) which is not stable.

Proof. Note first that the condition Mt+1(y) � 0 implies that yI ≥ 0 for all I ∈ Pt+1(V ).
(i) =⇒ (ii) The (a, a)-th entry of Mt(gab ∗ y) is equal to gab ∗ y(a) = −yab and is nonnegative, which
implies that yab = 0.
(ii) =⇒ (iii) Suppose I contains the edge ab. If |I| ≤ t + 1, then the (ab, I)-th entry of Mt+1(y) is
equal to 0 since the (ab, ab)-th entry is 0, which implies that yI = 0. Otherwise, write I = I1 ∪ I2

where I1, I2 ∈ Pt+1(V ) with {a, b} ⊆ I1; by the above the (I1, I1)-th entry of Mt+1(y) is 0 and thus
its (I1, I2)-th entry too is 0, implying yI = 0.
(iii) =⇒ (i) We show that Mt(gab ∗ y) � 0. Set P0 := Pt(V \ {a, b}) and Pc := {I ∪ {c} | I ∈ P0}
for c = a or b. Then, the principal submatrix X of Mt+1(y) indexed by P0 ∪ Pa ∪ Pb has the form:




P0 Pa Pb

P0 C A B
Pa A A 0
Pb B 0 B


. The condition X � 0 implies that C − A − B � 0. (To see it, note that

(−xT xT xT )X

(
−x

x

x

)
= xT (C −A−B)x for all x ∈ R

p, p := |P0|.) The result now follows since, with

respect to the partition of Pt(V ) into P0 and its complement P ′
0, the matrix Mt(gab ∗ y) has the form:

( P0 P ′
0

P0 C − A − B 0
P ′

0 0 0

)
.

In view of Corollary 15 and (31), it follows that Qα(G)(FR(G)) = ST(G). In fact, the Lasserre
hierarchy already finds ST(G) at step α(G) − 1.

Proposition 21. ST(G) = Qα(G)−1(FR(G)) for a graph G with stability number α(G) ≥ 2.

Proof. We show that Qα−1(FR(G)) ⊆ Qn(FR(G)), where α := α(G). Let y ∈ Pα−1(FR(G)); define
z ∈ R

P(V ) by zI := yI if |I| ≤ 2α and zI := 0 otherwise. Thus, zab = 0 for all edges ab ∈ E. By
Lemma 20, it suffices to verify that MV (z) � 0, which holds since, with respect to the partition of

P(V ) into Pα(V ) and its complement, MV (z) has the form

(
Mα(y) 0

0 0

)
.
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Let G be the line graph of Kn with n odd; then, ST(G) is the matching polytope of Kn. Stephen
and Tunçel (1999) show that α(G) = n−1

2 iterations of the N+ operator are needed for finding ST(G).
Therefore, this gives an instance of a graph G for which ST(G) = Qα−1(FR(G)) is strictly contained
in Nα−1

+ (FR(G)).

We conclude with a comparison with the basic semidefinite relaxation TH(G). By the definition
(27), TH(G) can be seen as the projection on R

n of the set of vectors y ∈ R
P2(V ) satisfying y∅ = 1 and

M1(y) � 0, yab = 0 (ab ∈ E).

Therefore, we have the following chain of inclusions:

Q1(FR(G)) ⊆ N+(FR(G)) ⊆ TH(G) ⊆ Q0(FR(G))

and, in view of Lemma 20, the Lasserre relaxations Qt(FR(G)) (t ≥ 1) are natural refinements of the
basic SDP relaxation TH(G).

6.2 Application to the max-cut problem

Given a graph G = (V = {1, . . . , n}, E), the max-cut problem asks for a partition (S, V \S) maximizing
the total cardinality (or weight) of the edges ij cut by the partition (i.e., such that |S ∩ {i, j}| = 1).
Hence it can be formulated as an unconstrained quadratic ±1-problem:

max(xT Ax | x ∈ {±1}n), (32)

where A is a (suitably defined) symmetric matrix, but the treatment below remains valid for A
arbitrary.

Since we are now working with ±1 variables in place of 0 − 1 variables, we should adapt some
of the definitions given earlier in the paper. In particular, given K ⊆ [−1, 1]n, the conditions (2)
and (3) defining the matrix set M(K) in the Lovász-Schrijver procedure read now: yjj = y00 and

Y (e0 ± ej) ∈ K̃ for j = 1, . . . , n. (Indeed, these are the conditions satisfied by matrix Y :=
(

1
x

)(
1
x

)T

for x ∈ K ∩ {±1}n.) When defining the moment matrices in (5), one should consider the semigroup
P(V ) with the symmetric difference as semigroup operation in place of the union. Namely, the (I, J)-
th entry of a moment matrix MV (y) is now y(I∆J) instead of y(I ∪ J). (Indeed, for x ∈ R

n and y :=
(
∏

i∈I xi)I⊆V , the (I, J)-th entry of matrix yyT is equal to y(I∆J) when x is ±1-valued, while equal
to y(I ∪J) when x is 0− 1 valued.) Moreover, the zeta matrix is now defined as Z = ((−1)|I∩J |)I,J⊆V

with inverse Z−1 = 2−nZ.

There are two possible strategies in order to formulate relaxations for the problem (32).

6.2.1 First strategy

The first possible strategy is to formulate (32) as a linear problem

max(〈A, X〉 | X ∈ CUTn)
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over the cut polytope
CUTn := conv(xxT | x ∈ {±1}n)

(which is in fact a
(n
2

)
-dimensional polytope) and to apply the various constructions to some linear

programming formulation of CUTn. As linear programming formulation for CUTn, one can take the
metric polytope METn consisting of the symmetric matrices X with an all ones diagonal and satisfying
the triangle inequalities:

Xij + Xik + Xjk ≥ −1, Xij − Xik − Xjk ≥ −1

for all distinct i, j, k ∈ V .
One can also consider linear relaxations of the cut polytope CUT(G) of an arbitrary graph G.

Given a graph G = (V, E), let CUT(G) and MET(G) denote the projections of CUTn and METn,
respectively, on the subspace R

E indexed by the edge set of G. Then, CUT(G) ⊆ MET(G) with
equality if and only if G has no K5-minor (Barahona and Mahjoub 1986).

When applying the Lovász-Schrijver construction to K := MET(G), one finds the relaxation
N(MET(G)) of CUT(G). Another possibility is to first apply the LS construction to K := MET(Kn)
and then project back on the edge space R

E , thus yielding the relaxation N(G) := πE(N(MET(Kn)))
of CUT(G). Here, πE denotes the projection from the space indexed by the edge set of Kn to the
space indexed by the edge set of G. One has:

N(G) ⊆ N(MET(G))

but it is not known whether equality holds in general.
The following results about the relaxations N(G) and N(MET(G)) are shown in (Laurent 2001).

Equality: N t(MET(G)) = CUT(G) holds if G has t edges whose contraction produces a graph with
no K5-minor. In particular, Nn−α(G)−3(G) = CUT(G); moreover, Nn−α(G)−3(MET(G)) = CUT(G)
if G has a maximum stable set whose complement induces a graph with at most three connected
components. In particular, Nn−4(Kn) = CUT(Kn) for n ≥ 4. The value n − 4 is known to be the
correct value for the N -rank of MET(Kn) when n ≤ 7 and is conjectured to be the correct value for
any n. Although the inclusion N+(MET(G)) ⊆ N(MET(G)) is strict in general (e.g., for G = Kn and
n ≥ 6), no example is known of a graph for which the number of iterations needed for finding CUT(G)
is smaller when using the N+ operator instead of the N operator.

When applying the Sherali-Adams and Lasserre constructions to K = MET(G), one finds the
relaxations St(MET(G)) and Qt(MET(G)) satisfying: Qt(MET(G)) ⊆ St(MET(G)) ∩ N t

+(MET(G)).
The definition of Qt(MET(G)) involves a semidefinite program containing possibly exponentially many
constraints (at least as many as the number of circuits in G). In order to decrease the number
of constraints, one can consider instead the set πE(Qt(MET(Kn))) whose definition involves O(n3)
semidefinite constraints. A much simpler relaxation can be obtained by applying the alternative
strategy described below.

6.2.2 Second strategy

Another possible strategy is to apply the various constructions to the cube K = Cn := [−1, 1]n and
to take projections on the space R

En indexed by the set En of pairs ij of points of V (instead of
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projections on the space R
V indexed by the singletons). Thus we now consider the Sherali-Adams set

Rt(Cn) and the Lasserre set Pt(Cn) and their respective projections Ŝt(Cn) and Q̂t(Cn) on R
En . (The

‘hat’ symbol is meant to remind that the projection is taken over the set of pairs.) We have that

Ŝn(Cn) = Q̂n−1(Cn) = CUT(Kn).

By the definition, the relaxation Ŝt(Cn) consists of the vectors y ∈ R
En whose restriction on a subset

of t points belongs to CUT(Kt). In other words, Ŝt(Cn) is the polytope in R
En determined by all the

valid inequalities for CUT(Kn) on at most t points. For instance, Ŝ2(Cn) = [−1, 1]En while Ŝ3(Cn) is
the metric polytope MET(Kn).

For t ≥ 0, the t-th Lasserre relaxation of the max-cut problem reads:

max(
∑

i,j∈V

aijyij | Mt+1(y) = (y(I∆J))I,J∈Pt+1(V ) � 0, y∅ = 1). (33)

Let M̃t+1(y) denote the principal submatrix of Mt+1(y) whose rows and columns are indexed by the
sets I ∈ Pt+1(V ) whose cardinality has the same parity as t + 1. In fact, the program (33) can be
reformulated as the smaller program:

max(
∑

i,j∈V

aijyij | M̃t+1(y) � 0, y∅ = 1). (34)

Indeed, write Mt+1(y) =

(
A C
CT B

)
, where A is the submatrix of Mt+1(y) indexed by all even sets

and B its submatrix indexed by all odd sets. As the objective function in (33) does not involve any
variable yI with |I| odd, we can assume that C = 0. Moreover, A is a submatrix of B and B = M̃t+1(y)
if t + 1 is odd, while B is a submatrix of A and A = M̃t+1(y) if t + 1 is even. (To see it, use, e.g., the
fact that I∆J = (I∆{1})∆(J∆{1}).) Therefore, the two programs (33) and (34) are equivalent.

Hence we find again the following facts observed by Lasserre (2000). For t = 0, the feasible set of
the program (34) is the basic semidefinite relaxation

{X = (xij)
n
i,j=1 | X � 0, xii = 1 ∀i = 1, . . . , n}. (35)

For t = 1, the feasible set of the program (34) is the set F ′
n consisting of the positive semidefinite

matrices Z indexed by En ∪ {∅} satisfying

Zij,ik = Z∅,jk and Zij,rs = Zir,js = Zis,jr

for all distinct i, j, k, r, s ∈ V . If we remove in the definition of F ′
n the condition Zij,rs = Zir,js = Zis,jr,

we obtain the larger matrix set Fn underlying the relaxation (SDP3) defined by Anjos and Wolkowicz
(2002). Setting

Fn := {x ∈ R
En |

(
1
x

)
= Ze0 for some Z ∈ Fn}

we have:
CUT(Kn) ⊆ Q̂1(Cn) ⊆ Fn ⊆ Q̂0(Cn) ∩ MET(Kn).
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The right most inclusion is shown in (Anjos and Wolkowicz 2002); both left and right most inclusions
are strict for n = 5.

Laurent (2002) compares the relaxations Q̂t(Cn) with the Lovász-Schrijver relaxations. In partic-
ular, she shows that

Q̂t(Cn) ⊆ N t−1
+ (Kn) for t ≥ 1.

Therefore, the set Q̂t(Cn) seems to be the most attractive semidefinite relaxation for the cut polytope,
since it is tightest and has a simple direct description, while the set N t−1

+ (Kn) only has a recursive
description.

We conclude with a few observations. It is shown in (Laurent 2001) that M+(MET(Kn)) ⊆ Fn

and M ′
+(MET(Kn)) ⊆ F ′

n. Here, M+ is the Lovász-Schrijver matrix operator introduced in Section 2
and M ′

+ is a strengthening of M+ considered in (Laurent 2001) (corresponding to the matrix operator
M+(K, K) from (Lovász and Schrijver 1991)). Therefore, N+(MET(Kn)) ⊆ Fn and the operator M ′

+

yields a relaxation N ′
+(MET(Kn)) which is contained in the Lasserre relaxation Q̂1(Cn). The inclusion

N ′
+(MET(Kn)) ⊆ Q̂1(Cn) is strict for n = 5, since N ′

+(MET(K5)) = CUT(K5) ⊂ Q̂1(C5).

7 Lasserre’s Approach Revisited

In this section we revisit the hierarchy of relaxations of Lasserre introduced in Section 3 from the
algebraic point of view of representing nonnegative polynomials as sums of squares and the dual
theory of moments. This approach applies to general (not necessarily 0− 1) polynomial programming
problems. The idea of approximating polynomial programming problems using sums of squares of
polynomials has been used in several other works, in particular, by Shor (1987,1998), Nesterov (2000),
Parrilo (2000), De Klerk and Pasechnik (2001). A key result in this approach is the fact that testing
whether a polynomial can be written as a sum of squares can be reformulated as a semidefinite
programming problem. Based on this (and on the Positivstellensatz in real algebraic geometry), Parrilo
(2000) shows that one can test whether a semi-algebraic set is empty using semidefinite programming.

We introduce the main ideas on the unconstrained problem of minimizing a polynomial function
over R

n; our exposition follows (Lasserre 2001a).

7.1 A gentle introduction

Suppose we want to solve the problem:

p∗ := min g(x) subject to x ∈ R
n, (36)

where g(x) is a polynomial of even degree 2d which can be assumed without loss of generality to satisfy
g(0) = 0. It is easy to see that (36) can be reformulated as

p∗ = min
µ

∫
g(x)dµ(x) (37)

where the minimum is taken over all probability measures µ on R
n. Write the polynomial g(x) as a

sum of monomials: g(x) =
∑

α∈S2d
gαxα, where xα := xα1

1 . . . xαn
n and, for an integer m, Sm denotes

21



the set of sequences α ∈ Z
n
+ with |α| :=

∑n
i=1 αi ≤ m. Then,

∫
g(x)dµ(x) =

∑
α gα

∫
xαdµ(x). A

sequence y = (yα)α∈S2d
is said to be a moment sequence if

yα =

∫
xαdµ(x) (38)

(for all α ∈ S2d) for some nonnegative measure µ on R
n. Then (37) can be rewritten as

p∗ = min
∑

α

gαyα s.t. y is a moment sequence and y0 = 1. (39)

Lower bounds for p∗ can be obtained by relaxing the condition that y be a moment sequence. A
necessary condition for y to be a moment sequence is that its moment matrix

MZ

d (y) := (yα+β)α,β∈Sd
(40)

be positive semidefinite. Indeed, if y is the moment sequence of a nonnegative measure µ, then

fT MZ

d (y)f =
∑

α,β∈Sd

fαfβyα+β =
∑

α,β∈Sd

fαfβ

∫
xα+βdµ(x) =

∫ (∑

α

fαxα

)2

dµ(x) ≥ 0

for all f = (fα)α∈Sd
. Write

MZ

d (y) =
∑

γ∈S2d

yγBγ (41)

where Bγ :=
∑

α,β∈Sd|α+β=γ

Eα,β (where Eα,β denotes the elementary matrix, with all zero entries except

ones at the positions (α, β) and (β, α)). Therefore, one has the following lower bound for p∗:

p∗ ≥ min gT y = min gT y

s.t. MZ

d (y) � 0 s.t. B0 +
∑

γ∈S2d\{0}

Bγyγ � 0

y0 = 1

(42)

One can also proceed in the following dual manner for computing p∗. Rewrite (36) as

p∗ = max λ subject to g(x) − λ ≥ 0 ∀x ∈ R
n. (43)

Lower bounds for p∗ can now be obtained by considering sufficient conditions for the polynomial
g(x) − λ to be nonnegative over R

n. An obvious sufficient condition being that g(x) − λ be a sum of
squares of polynomials. Testing whether a polynomial p(x) is a a sum of squares amounts to deciding
feasibility of a semidefinite program (see, e.g., Nesterov (2000), Parrilo (2000)). Indeed, say p(x) has
degree 2d, and let z := (xα)α∈Sd

be the vector consisting of all monomials of degree ≤ d. Then one
can easily verify that p(x) is a sum of squares if and only if p(x) = zT Xz (identical polynomials) for
some positive semidefinite matrix X. As

zT Xz =
∑

α,β∈Sd

Xα,βxα+β =
∑

γ∈S2d

xγ



∑

α,β∈Sd
α+β=γ

Xα,β


 =

∑

γ∈S2d

xγ〈Bγ , X〉,
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it follows that p(x) is a sum of squares if and only if the following SDP program:

X � 0, 〈Bγ , X〉 = pγ (γ ∈ S2d) (44)

is feasible, where X is of order
(n+d

d

)
and with

(n+2d
2d

)
equations (thus polynomially solvable for fixed

n or d). Based on this we can formulate the following lower bound for p∗:

p∗ ≥ max λ = max −〈B0, X〉
s.t. g(x) − λ is a s.t. 〈Bγ , X〉 = gγ (γ ∈ S2d \ {0}).

sum of squares
(45)

The SDP programs (42) and (45) are, in fact, dual of each other and there is no duality gap if (45) is
feasible.

The lower bound from (45) is equal to p∗ if g(x) − p∗ is a sum of squares; this holds for n = 1
but not in general if n ≥ 2. In general one can estimate p∗ asymptotically by a sequence of SDP’s
analogue to (45) if one assumes that an upper bound R is known a priori on the norm of a global
minimizer x of g(x), in which case (36) is equal to

min g(x) subject to R −
n∑

i=1

x2
i ≥ 0.

Using a result of Putinar (cf. Theorem 22 below), it follows that, for any ǫ > 0, g(x) − p∗ + ǫ can be
decomposed as p(x) + q(x)

(
R −

∑
i x2

i

)
for some polynomials p(x) and q(x) that are sums of squares.

Testing for the existence of such a decomposition can be expressed as a SDP program analogue to
(45). Details are given in Section 7.3 where the general problem of minimizing a polynomial function
over a semi-algebraic set is considered. Section 7.2 contains preliminaries over moment sequences and
polynomials.

7.2 The moment problem and sums of squares of polynomials

7.2.1 The moment problem

Let (S, +) be a commutative semigroup and let S∗ denote the set of nonzero mappings f : S −→ R

that are multiplicative, i.e., satisfy f(α+β) = f(α)f(β) for all α, β ∈ S. Given a sequence y = (yα)α∈S

indexed by S, its moment matrix M(y) is the S ×S matrix whose (α, β)-th entry is yα+β for α, β ∈ S.
When S is the semigroup P(V ) with the union as semigroup operation, we find the moment matrix

MV (y) already introduced earlier in (5). When S is the semigroup (Zn
+, +), we use the notation MZ(y)

for the moment matrix of y ∈ R
Z

n
+ and MZ

t (y) for its principal submatrix indexed by all sequences
α ∈ Z

n
+ with |α| ≤ t, already considered earlier in (40).

Following (Berg, Christensen and Jensen 1979, Berg, Christensen and Ressel 1984), a sequence
y ∈ R

S is said to be positive semidefinite if every finite principal submatrix of its moment matrix
M(y) is positive semidefinite. Given a subset F ⊆ S∗, a sequence y ∈ R

S is called a F -moment
sequence if there exists a positive Radon measure µ on S∗ supported by F such that

yα =

∫

S∗
fαdµ(f) for all α ∈ S. (46)
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Given two sequences x, y ∈ R
S , definition (6) extends as

(x ∗ y)α :=
∑

γ∈S

xγyα+γ for α ∈ S.

The moment problem is the problem of characterizing moment sequences. It has been much studied
in the literature especially for the semigroup S = Z

n
+, in which case S∗ = R

n and the moment condition
(46) reads as relation (38); see (Fuglede 1983, Berg, Christensen and Ressel 1984) for a survey.

Obviously, every F -moment sequence should be positive semidefinite. Much research has been
done for characterizing moment sequences for various closed sets F . For instance, for n = 1 and
F = R, every positive semidefinite sequence is a moment sequence, a result of Hamburger in 1920.
For n = 1 and F = R+, a sequence y = (yi)i≥0 is a F -moment sequence if and only if both y and
e1∗y = (yi+1)i≥0 are positive semidefinite, a result shown by Stieltjes in 1894. For n = 1 and F = [0, 1],
a sequence y = (yi)i≥0 is a F -moment sequence (then called a Hausdorff sequence) if and only if e1 ∗ y
and y − e1 ∗ y are positive semidefinite. When F is a compact semi-algebraic set in R

n of the form

F = {x ∈ R
n | gℓ(x) ≥ 0 for ℓ = 1, . . . , m} (47)

where gℓ are polynomials, Schmüdgen (1991) shows that y is a F -moment sequence if and only if y
and g ∗ y are positive semidefinite for every product g =

∏

ℓ∈L

gℓ for L ⊆ {1, . . . , m}.

7.2.2 Reformulating Corollary 3 as a moment result

In fact, the result from Corollary 3 can also be viewed as a result about moments, if we consider
sequences indexed by the semigroup S := P(V ) with the union as semigroup operation. Then,
S∗ = {ζS | S ∈ P(V )}. Hence, a sequence y ∈ R

P(V ) is a moment sequence if and only if y ∈ CP(V )

which, by Corollary 3, is equivalent to y being a positive definite sequence. (Noting that P(V ) is an
idempotent semigroup, this result also follows from Proposition 4.17 in (Berg, Christensen and Ressel
1984).)

More generally, let F = {x ∈ {0, 1}n | gℓ(x) ≥ 0 ∀l = 1, . . . , m}, where the gℓ’s are polynomials in
which each variable occurs with degree ≤ 1, and let J be defined as in (14). Then, y is a F -moment
sequence (meaning that the measure µ is nonzero only at ζS with χS ∈ F , i.e., S ∈ J ) if and only if
y ∈ CJ . By Corollary 3, this is equivalent to the sequences y and gℓ ∗ y (ℓ = 1, . . . , m) being positive
semidefinite. Therefore, this gives a ‘discrete’ analogue of the above mentioned result of Schmüdgen.

7.2.3 Representations of nonnegative polynomials as sums of squares

Let P+(F ) denote the set of polynomials p(x) =
∑

α pαxα that are nonnegative on F ; that is, p(x) ≥ 0
for all x ∈ F . One of the basic results about moments (Haviland 1935, 1936) is that, given a closed
subset F in R

n, y = (yα)α∈Z
n
+

is a F -moment sequence if and only if yT p ≥ 0 for every polynomial
p = (pα)α∈Z

n
+

in P+(F ).
Since a linear functional f on the set R[x1, . . . , xn] of polynomials is completely determined by

the sequence (f(xα))α∈Z
n
+
, what the above result says is that the set of F -moment sequences can be

identified with the set of linear functionals that are nonnegative on P+(F ).

24



Let Σ2 denote the convex cone generated by all squares of polynomials in R[x1, . . . , xn]. One can
easily verify that a linear functional f on R[x1, . . . , xn] is nonnegative on Σ2 if and only if the sequence
(f(xα))α∈Z

n
+

is positive semidefinite. The obvious inclusion

Σ2 ⊆ P+(F )

corresponds by duality to the fact that every F -moment sequence is positive semidefinite. For n =
1, F = R, it is well known that every nonnegative polynomial on R can be represented as the
sum of squares of two polynomials, which gives again the result of Hamburger. For n ≥ 2, not
every nongegative polynomial can be expressed as a sum of squares of polynomials. This problem of
representing polynomials as sums of squares goes back to Hilbert’s 17th problem; see (Reznick 1998)
for a survey.

Let us reformulate the result of Schmüdgen in terms of polynomials. Let F be as in (47) and let

Σ2(g1, . . . , gm) :=
∑

I⊆{1,...,m}

(
∏

i∈I

gi)Σ
2

denote the set of all polynomials of the form
∑

I⊆{1,...,m}

pI ·
∏

i∈I

gi, where all pI belong to Σ2. One can

easily verify that a linear functional f on R[x1, . . . , xn] is nonnegative on Σ2(g1, . . . , gm) if and only if
the associated sequence y := (f(xα))α is positive semidefinite as well as the sequences (

∏

i∈I

gi)∗y for all

I ⊆ {1, . . . , m}. Therefore, what Schmüdgen shows is that both sets P+(F ) and Σ2(g1, . . . , gm) have
the same sets of nonnegative linear functionals. From this follows that every polynomial p which is
positive on F belongs to Σ2(g1, . . . , gm). Putinar (1993) shows the following stronger result which, as
we will see in the next subsection, plays a central role in the approach of Lasserre for asymptotically
evaluating polynomial programs.

Theorem 22. (Putinar 1993) Let F be a compact semi-algebraic set as in (47). Assume that there
exists a polynomial u ∈ Σ2 + g1Σ

2 + . . . + gmΣ2 for which the set {x ∈ R
n | u(x) ≥ 0} is compact. If

p is a polynomial positive on F , then p ∈ Σ2 + g1Σ
2 + . . . gmΣ2.

7.3 Lasserre’s method for polynomial programs

7.3.1 Successive relaxations for polynomial programs

Let F be a semi-algebraic set as in (47). Assume that the assumptions from Theorem 22 hold; that is,
F is compact and the set {x ∈ R

n | u(x) ≥ 0} is compact for some polynomial u ∈ Σ2+g1Σ
2+. . . gmΣ2.

(This is true, for instance, when the description of F includes a constraint gℓ(x) ≥ 0 for which the set
{x | gℓ(x) ≥ 0} is compact, or when the constraints x2

i − xi = 0 are present in the description of F
(the 0 − 1 case).) Suppose we want to solve the problem

p∗ := min g0(x) subject to x ∈ F (48)
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where g0 is a polynomial of degree w0 which can be assumed to satisfy g0(0) = 0. Let wℓ denote the
degree of gℓ, vℓ :=

⌈wℓ

2

⌉
, v := maxℓ=1,...,m vℓ as in (15).

Lasserre (2001a) constructs successive relaxations for problem (48) that converge asymptotically
to its optimum solution. His construction is based on the following observation. For x ∈ R

n, define
the vector yx ∈ R

Z
n
+ with α-th entry xα for α ∈ Z

n
+. Then, MZ(yx) = yx(yx)T � 0 and MZ(g ∗ yx) =

g(x) · yx(yx)T � 0 if g(x) ≥ 0. This leads to the following semidefinite relaxation of problem (48) for
any t ≥ max(v0 − 1, v − 1):

p∗t := min
∑

α

(g0)αyα

s.t. MZ
t+1(y) � 0

MZ
t−vℓ+1(gℓ ∗ y) � 0 (ℓ = 1, . . . , m)

y0 = 1

(49)

The dual SDP program of (49) reads:

ρ∗t := max −X(0, 0) −
m∑

ℓ=1

gℓ(0)Zℓ(0, 0)

s.t. 〈X, Bγ〉 +
m∑

ℓ=1

〈Zℓ, C
ℓ
γ〉 = (g0)γ (γ 6= 0)

X, Zℓ � 0 (ℓ = 1, . . . , m),

(50)

where MZ
t+1(y) =

∑
γ yγBγ (as in (41), with d = t + 1) and MZ

t−vℓ+1(gℓ ∗ y) =
∑

γ yγCℓ
γ , with Cℓ

γ =∑

α,β∈St−vℓ+1,δ

α+β+δ=γ

(gℓ)δEα,β . We have:

ρ∗t ≤ p∗t ≤ p∗.

For x ∈ F , the sequence yx is obviously an F -moment sequence (of the Dirac measure at x) and
thus the primal program (49) states necessary conditions for y to be a moment sequence. The dual
program (50) is related to representations of positive polynomials on F as the next lemma shows.

Lemma 23. (Lasserre 2001a) The optimum value ρ∗t of (50) is equal to the maximum value of a
scalar ρ for which the polynomial g0(x) − ρ can be decomposed as

g0(x) − ρ = p0(x) +
m∑

ℓ=1

pℓ(x)gℓ(x) (51)

where p0(x) and pℓ(x) are sums of squares with deg(p0) ≤ 2(t + 1) and deg(pℓ) ≤ 2(t + 1 − vℓ).

Proof. Let X, Zℓ be feasible solutions for (50) with objective value ρ. We show that the polynomial
g0(x) − ρ has a decomposition as in (51). For this, write

X =
r0∑

j=1

qjq
T
j , Zℓ =

rℓ∑

j=1

qℓjq
T
ℓj
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for some vectors qj (indexed by α ∈ Z
n
+ with |α| ≤ t + 1) and qℓj (indexed by α ∈ Z

n
+ with |α| ≤

t + 1 − vℓ). Then, the polynomial g0(x) − ρ is equal to

∑

γ 6=0

(g0)γxγ + X(0, 0) +
∑

ℓ

gℓ(0)Zℓ(0, 0) = 〈X,
∑

γ

xγBγ〉 +
∑

ℓ

〈Zℓ,
∑

γ

xγCℓ
γ〉

= 〈X, MZ
t+1(y

x)〉 +
∑

ℓ

〈Zℓ, M
Z

t−vℓ+1(gℓ ∗ yx)〉 =
r0∑

j=1

(qj(x))2 +
∑

ℓ

gℓ(x) ·




rℓ∑

j=1

(qℓj(x))2


 ,

using the facts that 〈X, MZ
t+1(y

x)〉 =
∑

j qT
j MZ(yx)qj =

∑
j

∑
α,β qj(α)qj(β)xα+β =

∑
j(qj(x))2 and

〈Zℓ, M
Z
t−vℓ+1(gℓ ∗ yx)〉 =

∑
j gℓ(x)(qℓj(x))2. Therefore, g0(x) − ρ has a decomposition (51) where

p0(x) :=
∑

j(qj(x))2 has degree ≤ 2(t + 1) and pℓ(x) :=
∑

j(qℓj(x))2 has degree ≤ 2(t + 1 − vℓ).
The above arguments can be reversed to construct from a decomposition of g0(x) − ρ as in (51)

with the degree requirements a feasible solution X, Zℓ to (50) with objective value ρ.

One can show the asymptotic convergence of the programs (49) and (50) to the optimum value p∗

of (48). Indeed, for any ǫ > 0, the polynomial g0(x) − p∗ + ǫ is positive on the set F . Therefore, by
Theorem 22, the polynomial g0(x)− p∗ + ǫ has a decomposition (51) where p0, pℓ are sums of squares
with deg(p0) ≤ 2(t + 1) and deg(pℓ) ≤ 2(t + 1 − vℓ) for some integer t. By Lemma 23, this implies
that ρ∗t ≥ p∗ − ǫ.

Therefore, for any ǫ > 0, there exists t for which p∗ − ǫ ≤ ρ∗t ≤ p∗t ≤ p∗. This shows that
limt−→∞ p∗t = p∗ and

p∗ = ρ∗t for some t ⇐⇒ g0(x) − p∗ ∈ Σ2 +
m∑

ℓ=1

gℓΣ
2.

Moreover,
conv(F ) =

⋂

t≥v−1

Qt(F )

where Qt(F ) is defined as the projection of the feasible set of the program (49) intersected with the
hyperplane y0 = 1, on the subspace R

n indexed by the sequences α ∈ Z
n
+ with |α| = 1.

7.3.2 Relation with the previously defined Lasserre relaxations for 0 − 1 programs

Consider now the case when F is the set of 0 − 1 solutions of a polynomial system; that is,

F = {x ∈ R
n | gℓ(x) ≥ 0 (ℓ = 1, . . . , m), hi(x) = 0 (i = 1, . . . , n)} (52)

setting hi(x) := xi − x2
i for i = 1, . . . , n. Then, one can assume without loss of generality that

each gℓ has degree at most 1 in every variable and the assumptions from Theorem 22 hold (with
u(x) :=

∑n
i=1 hi(x)). Using a result of Curto and Fialkow (2000) about rank extensions of moment

matrices, Lasserre (2001b) shows finite convergence of the successive relaxations Qt(F ) to conv(F );
namely,

Qn+v−1(F ) = conv(F ). (53)
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This can also be seen in the following direct way. For this, consider the relaxation

K := {x ∈ [0, 1]n | gℓ(x) ≥ 0 (ℓ = 1, . . . , m)} (54)

of F . As we see in Proposition 24 below, the relaxation Qt(F ) coincides with the relaxation Qt(K)
introduced earlier in Section 3.3. Proposition 24 shows in fact the following results: Our presentation
in Section 3.3 of the Lasserre relaxations in terms of moment matrices indexed by subsets is equivalent
to the original definition of Lasserre (in terms of moment matrices indexed by integer sequences); as
an application, this gives an elementary proof for the convergence result from relation (53).

Proposition 24. Let F and K be defined by (52), (54) respectively. Then, Qt(F ) = Qt(K) for any
t ≥ v − 1 and Qt(F ) = Qn+v−1(F ) for any t ≥ n + v − 1.

Proof. For α ∈ Z
n
+, define α ∈ {0, 1}n by αi := 1 if and only if αi ≥ 2. Then, the condition

MZ
t (hi ∗ y) = 0 means that

yα = yα (55)

for any α with |α| ≤ 2t. From this follows that the α-th column of the moment matrix MZ(y) is
identical to its α-th column; similarly for the matrices MZ(gℓ ∗ y). A first consequence is that, for
t ≥ n,

MZ

t (y) � 0 ⇐⇒ MZ

n (y) � 0, and MZ

t (gℓ ∗ y) � 0 ⇐⇒ MZ

n (gℓ ∗ y) � 0.

This shows equality Qt(F ) = Qn+v−1(F ) for t ≥ n + v − 1. Define z ∈ R
P(V ) with I-th entry zI := yα

where α := χI , for I ⊆ V . As a consequence of (55), Mt(z) is a principal submatrix of MZ
t (y) and

Mt(z) � 0 ⇐⇒ MZ

t (y) � 0;

similarly, Mt(gℓ ∗ z) � 0 ⇐⇒ MZ
t (gℓ ∗ y) � 0. This shows equality Qt(K) = Qt(F ) for t ≥ v − 1.

7.3.3 A dual comparison of the Lasserre and Sherali-Adams approaches

Consider again problem (48) where F is a semi-algebraic set as in (47). Lasserre (2002) investigates how
his method for constructing successive semidefinite approximations of (48) relates to the reformulation-
linearization technique of Sherali-Adams for constructing linear approximations of (48), from the dual
point of view of representing nonnegative polynomials as sums of squares. His work is in some sense
complementary to ours, since the present paper aims at comparing the two methods from the primal
point of view of giving necessary conditions for moment sequences (our paper is, however, restricted
to the case of 0− 1 polynomial programming). Let us briefly mention some of the results of (Lasserre
2002).

The reformulation-linearization technique of Sherali and Adams (1990,1994) was extended to gen-
eral polynomial programs as (48) (see, e.g., (Sherali and Tuncbilek 1992,1997)). The basic idea for
constructing successive linear approximations is to consider the LP relaxation obtained from the lin-
earization of all possible products (g1(x))β1 . . . (gm(x))βm ≥ 0 of the constraints defining F , for β ∈ Z

m
+
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with |β| ≤ t, for given integer t. Denote by σ∗
t the minimum value of

∑
α(g0)αyα subject to y belonging

to the above LP relaxation. Therefore, σ∗
t ≤ p∗. Using LP-duality, it is not hard to see that σ∗

t is
equal to the maximum value of a scalar ρ for which the polynomial g0(x) − ρ can be decomposed as

g0(x) − ρ =
∑

β∈Z
m
+

, |β|≤t

λβ(g1(x))β1 . . . (gm(x))βm (56)

for some nonnegative scalars λβ. Comparing with Lemma 23, we see that the SDP and LP approaches
(in fact, their dual formulations) aim at representing the polynomial g0(x) − ρ in the following two
different ways: either as a sum of the gℓ’s weighted by sums of squares (as in (51), in the SDP case),

or as a sum of products gβ1

1 . . . gβm
m weighted by nonnegative scalars (as in (56), in the LP case). For

the primal formulations, this corresponds to considering different necessary conditions for moment
sequences; namely, requiring that Mt+1(y) and Mt+1−vℓ

(gℓ ∗ y) be positive semidefinite (in the SDP
case), or requiring some of the Hausdorff moment conditions (in the LP case) (see (Lasserre 2002) for
details).

By Putinar’s result (Theorem 22), a representation of g0(x)− p∗ + ǫ as a sum of the gℓ’s weighted
by sums of squares always exists for any ǫ > 0. This permits to show asymptotic convergence of the
SDP bounds ρ∗t to p∗. On the other hand, a representation of g0(x) − p∗ + ǫ as a sum of products

gβ1

1 . . . gβm
m weighted by nonnegative scalars is guaranteed to exist only in the linear case, i.e., when F

is a polytope (this is a result of Handelman (1988)), in which case there is also asymptotic convergence
of the linear bounds σ∗

t to p∗.

7.3.4 The quadratic case

Finally, let us consider here the special case when F is a semi-algebraic set defined by a set of quadratic
constraints; that is, each gℓ is of the form gℓ(x) = xT Qℓx + 2qT

ℓ x + γℓ (Qℓ symmetric n × n matrix,

qℓ ∈ R
n, γℓ ∈ R). For ℓ = 1, . . . , m, set Pℓ :=

(
γℓ qT

ℓ

qℓ Qℓ

)
. Then, gℓ(x) = 〈Pℓ,

(
1 xT

x xxT

)
〉. Therefore,

the following set F̂ is a natural semidefinite relaxation of F :

F̂ := {x ∈ R
n |
(

1
x

)
= Y e0 for some Y � 0 with 〈Pℓ, Y 〉 ≥ 0 for ℓ = 1, . . . , m} (57)

(considered, e.g., in (Fujie and Kojima 1997)). In fact, the set F̂ coincides with the first Lasserre
relaxation Q0(F ).

Proposition 25. Q0(F ) = F̂ .

Proof. By definition, x ∈ R
n belongs to Q0(F ) if there exists y = (yα)|α|≤2 satisfying y0 = 1, yei

= xi

(i = 1, . . . , n) (e1, . . . , en denoting the standard unit vectors in R
n), MZ

1 (y) � 0 and gℓ ∗ y(0) ≥ 0
(ℓ = 1, . . . , m). The equality Q0(F ) = F̂ follows from the following fact: Given a symmetric matrix
Y = (Yij)

n
i,j=0, define y = (yα)|α|≤2 by y0 := Y00, yei

:= Y0i, yei+ej
:= Yij (i, j = 1, . . . , n); then,

M1(y) = Y and gℓ ∗ y(0) = 〈Pℓ, Y 〉.
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