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ON GLOBAL ERROR ESTIMATION AND CONTROL FOR
INITIAL VALUE PROBLEMS∗
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Abstract. This paper addresses global error estimation and control for initial value problems for
ordinary differential equations. The focus lies on a comparison between a novel approach based on
the adjoint method combined with a small sample statistical initialization and the classical approach
based on the first variational equation. Control is achieved through tolerance proportionality. Both
approaches are found to work well and to enable estimation and control in a reliable manner.
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1. Introduction. Suppose one is given in R
m the initial value problem for the

system of ODEs

(1.1) w′ = F (t, w) , w(0) = w0 , 0 < t ≤ T ,

and a sequence of approximations wn to its exact solution values w(tn) computed by
a numerical integration method at a certain time grid

(1.2) 0 = t0 < t1 < · · · < tn < · · · < tN−1 < tN = T .

Hereby the major research concerns are efficiency—how to get the wn at minimal
CPU costs (if m � 1)—and reliability—how large are the global errors

(1.3) εn = w(tn) − wn , n = 0 , . . . , N .

In the past, numerical ODE research has focused on the efficiency question. The
reliability question has received much less attention in spite of the by now twenty
years old survey paper [23]. Existing popular codes focus on efficiency by adaptively
optimizing time grids (1.2) in accordance with local error control. Such a control
makes sense if solutions exhibit sharp changes at local intervals much smaller than
the total interval [0, T ] and are smooth elsewhere. However, local errors (errors made
within a single integration step) may substantially differ from the global ones (1.3).
This largely depends on the conditioning (stability) of the system (1.1) at hand (sen-
sitivity to growth in time of perturbations of w0 and F (t, w)). If a system is well-
conditioned, a well-designed local error control [20, 21] will work out reliably. But
if the conditioning is bad, even the best-designed local error control should not be
trusted.

For global error control it is necessary to take into account the conditioning of
system (1.1), similar to the matrix condition number in numerical linear algebra.
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Herewith it is desirable to avoid strict a priori error bounds as these can be overly
pessimistic, e.g., when fortunate cancellation effects occur. Taking into account the
conditioning of system (1.1) is best done during actual computation. This requires
at least two full integrations over [0, T ], in both the classical (forward-forward) and
the adjoint (forward-backward) approaches. In recent years the adjoint approach has
gained popularity for a posteriori error estimation purposes [2, 6, 13, 17], in particular
for PDEs where it is used for goal-oriented adaptive control, that is, control of relevant
physical quantities [1, 5, 7].

Our interest in this paper lies in estimation and control of the global errors (1.3),
i.e., for the ODE initial value problem (1.1). Specifically, regarding estimation we will
compare a novel approach based on the adjoint method combined with a small sam-
ple statistical initialization proposed by Cao and Petzold [2] to the classical approach
based on the first variational equation. For both, global control is achieved by ex-
ploiting the property of tolerance proportionality derived from local control [20]. As a
typical integration method we will use the existing Runge–Kutta–Rosenbrock method
ROS3P [16]. Both approaches are found to work well and to enable estimation and
control in a reliable manner.

2. The classical (forward-forward) approach.

2.1. The perturbed system. In the spirit of backward error analysis and fol-
lowing an approach proposed in [26] (see also [23, 24]), let us suppose that there exists
a nearby solution v(t) ≈ w(t), that is the exact solution of a perturbed system

(2.1) v′ = F (t, v) + r(t) , v(0) = v0 , 0 < t ≤ T ,

with perturbation v0 −w0 at t = 0 and perturbation r(t) for 0 < t ≤ T . Assuming F
to be continuously differentiable, so that the mean-value theorem for vector functions
is applicable, the error function

(2.2) e(t) = v(t) − w(t) , 0 ≤ t ≤ T ,

then satisfies

(2.3) e′ = A(t)e + r(t) , e(0) = v0 − w0 , 0 < t ≤ T ,

where

(2.4) A(t) =

∫ 1

0

F ′(t, v(t) + (s− 1)e(t)
)
ds =

∫ 1

0

F ′(t, w(t) + se(t)
)
ds .

Here F ′ denotes the Jacobian matrix with respect to the dependent variable. As we
speak of perturbations we tacitly assume that e(0) is significantly smaller than w0

and likewise that r(t) is significantly smaller than F (t, v(t)). The error function e(t)
can be expressed as

(2.5) e(t) = Φ−1(t)Φ(0) e(0) + Φ−1(t)

∫ t

0

Φ(s)r(s) ds ,

where the m ×m fundamental matrix solution Φ(t) solves Φ′(t) = −Φ(t)A(t). Note
that Φ(t) = Φ(0)exp(−At) for constant A, where Φ(0) is an arbitrary nonsingular
matrix. Apparently, the product Φ−1(t)Φ(s), 0 ≤ s ≤ t, governs growth or decay of
e(t) in time and thus determines the conditioning of (1.1).
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Remark 2.1. For practical purposes the fundamental matrix solution concept is
clearly of little use. An a priori bound which sometimes can be used in practice is
based on the logarithmic matrix norm. Let μ(A(t)) denote the logarithmic matrix
norm of A(t), and suppose μ(A(t)) ≤ ω, with ω a constant valid for all t ∈ [0, T ].
Then, with ‖ · ‖ denoting the associated vector norm in R

m, there holds [3, 12]

(2.6) ‖e(t)‖ ≤ eωt‖e(0)‖ +

∫ t

0

eω(t−s)‖r(s)‖ds , 0 ≤ t ≤ T .

This a priori bound is useful for strictly negative ω. Let for simplicity e(0) = 0, and
suppose that ‖r(t)‖ is uniformly bounded by a small number δr. Then

(2.7) ‖e(t)‖ ≤ 1

ω

(
eωt − 1

)
δr ,

uniformly bounding e(t) in norm by δr/|ω| for infinite time if ω < 0. Due to the
negative logarithmic norm this is an instance of a well-conditioned ODE system (1.1).
On the other hand, with a positive logarithmic norm the bound predicts exponential
growth in time. Then we speak of an ill-conditioned ODE system, provided the bound
is realistic or even sharp. However, any result of this sort depends on the chosen
vector norm since μ(A(t)) depends on the norm. More precisely, it can happen that
μ(A(t)) � 0, even if in a global sense the problem is well-conditioned; see, e.g., [3]
and Example I.2.5 in [12]. Also, for hard problems from practice, finding estimates of
ω may be very cumbersome.

For properly using the perturbed system in the classical (forward-forward) ap-
proach for pth order consistent one-step integration methods, it is helpful to associate
(2.3) with the well-known first variational equation for the global error εn of such
a one-step method. For this purpose we adopt for the one-step method the general
Henrici notation [9]

(2.8) wn+1 = wn + τnΨ(tn, wn; τn) , τn = tn+1 − tn ,

and introduce its local error

(2.9) δn = w(tn+1) − w(tn) − τnΨ(tn, w(tn); τn) .

Assuming now a constant step size τ (for simplicity only), pth order consistency, and
a sufficiently smooth solution, the local error defined at (t, w(t))

(2.10) δ(t) = w(t + τ) − w(t) − τΨ(t, w(t); τ)

possesses an expansion of the form δ(t) = τρ(t) + O(τp+2). Hence in this notation
the principal error function ρ(t) = O(τp). Next, let G(t) = F ′(t, w(t)). With this
local expansion at hand the global error εn is then known to possess an expansion
εn = η(tn) + O(τp+1), where η(t) is the solution of the first variational equation

(2.11) η′ = G(t)η + ρ(t) , η(0) = 0 , 0 < t ≤ T .

We refer to [9, section 3.3] and [8, section II.8] for further details. One can now
connect (2.3) to (2.11). To that end put e(0) = 0 (this bears no restriction) and
approximate A(t) = G(t) + O(e(t)) by G(t), so that (2.3) is replaced by

(2.12) e′ = G(t)e + r(t) , e(0) = 0 , 0 < t ≤ T .
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Apparently, by implementing a proper choice of the defect r(t), solving (2.3) or likewise
(2.12) will in leading order amount to solving the first variational equation (2.11) for
the true global error. We will illustrate this next.

Remark 2.2. In spite of the fact that the asymptotic theory behind (2.11) is clas-
sical in the sense that F is assumed Lipschitz without taking into account stiffness
(τ‖F ′(w)‖ � 1), we will use it successfully for stiff problems in section 4. For success
it is important that the stiffness does not enter the defect computation. We prevent
this by filtering; see (2.23). Equally important is validity of the asymptotics, that
is, the local error is well approximated by its leading term. For smooth, sufficiently
differentiable solutions this always holds for linear multistep methods. For Runge–
Kutta-type methods applied to semidiscrete PDEs, this generally holds with periodic
boundary conditions. With prescribed boundary conditions, such as Dirichlet condi-
tions, it also holds for Runge–Kutta methods, except that temporal error coefficients
can get large on fine grids due to order reduction. In such cases smaller step sizes
are needed to catch the leading local error term with sufficient accuracy. As is well
known, this may also be needed with stiff problems not originating from PDEs.

2.2. Interpolation and defect computation. We define the nearby solution
v(t) by piecewise cubic Hermite interpolation of the given approximation sequence.
Hence at every subinterval [tn, tn+1], n = 0, 1, . . . , N − 1, we form

(2.13) P (t) = wn + (t− tn)An + (t− tn)2 Bn + (t− tn)3 Cn , tn ≤ t ≤ tn+1 ,

and choose the coefficients such that P (tn) = wn, P (tn+1) = wn+1 and P ′(tn) = Fn,
P ′(tn+1) = Fn+1, where Fn = F (tn, wn) and Fn+1 = F (tn+1, wn+1). This gives

(2.14)

An = Fn ,

Bn =
(
3wn+1 − 3wn − τFn+1 − 2τFn

)
/τ2 ,

Cn =
(
2wn − 2wn+1 + τFn + τFn+1

)
/τ3 .

Were one to interpolate (smooth) exact solution values w(t), w′(t) at t = tn and
t = tn+1, then

(2.15) A = w(1) , B = 1
2w

(2) − 1
24τ

2w(4) +O(τ3) , C = 1
6w

(3) + 1
12τw

(4) +O(τ2) ,

where the expressions are evaluated at t = tn. Writing t = tn + sτ, 0 ≤ s ≤ 1, yields

(2.16)
P (t) = w(t) + 1

24

(
2s3 − s2 − s4

)
τ4w(4)(tn) + O(τ5) ,

P ′(t) = w′(t) + 1
24

(
6s2 − 2s− 4s3

)
τ3w(4)(tn) + O(τ4) ,

so that at every subinterval [tn, tn+1] the defect function d(t) = P ′(t) − F (t, P (t))
satisfies

(2.17) d(t) = P ′(t) − w′(t) + F
(
t, w(t)

)
− F

(
t, P (t)

)
=

{
O(τ3) , s �= 1

2 ,

O(τ4) , s = 1
2 .

Here we have assumed that F is Lipschitz and have used that 6s2 − 2s− 4s3 = 0 for
s = 1

2 .
In actual application the interpolation is based on numerical approximations of

order p. By assuming exact local solution values at t = tn and corresponding local
Taylor expansions of wn+1, Fn+1, it then follows in the same way as above that d(t) =
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O(τ q), where q = min(p, 3), and with the special value s = 1
2 we have q = min(p, 4).

Hence the cubic Hermite polynomial can be used up to consistency order p = 3, and
when using only s = 1

2 even up to order p = 4. In the remainder we will employ the
defect d(t) halfway to the step intervals, that is,

(2.18)

d(tn+1/2) =
3wn+1 − 3wn

2τ
− Fn + Fn+1

4
− F

(
tn+1/2,

wn + wn+1

2
+

τ

8

(
Fn − Fn+1

))
.

Now let wn = w(tn), and consider local expansions

(2.19) wn+1 = w + τw′ +

p∑
k=2

τk

k!
w(k) +

τp+1

(p + 1)!
Cp+1 + O(τp+2) ,

with the right-hand side evaluated at w = w(tn) and an empty sum for p = 1. Hence
the ρ-term in the local error expansion at t = tn then reads

(2.20) ρn =
τp

(p + 1)!

(
w(p+1)(tn) − Cp+1

)
,

and inserting the expansion for wn+1 into d(tn+1/2) will reveal

(2.21) d(tn+1/2) = − 3
2 ρn + O(τp+1) , 1 ≤ p ≤ 3 .

The cubic Hermite defect halfway to the step interval thus can be used to retrieve in
leading order the local error of any one-step method of order 1 ≤ p ≤ 3.

Finally we connect (2.12) and (2.11) by putting r(tn+1/2) = 2
3 d(tn+1/2) in the

stepwise frozen version of (2.12), i.e.,

(2.22) e′ = F ′(tn, wn)e + r(tn+1/2) , tn < t ≤ tn+1 , n = 0, . . . , N − 1 ,

which will be integrated for the global error estimation. In this manner we actually
work in leading order with the stepwise frozen version of the first variational equation
(2.11) for the true global error (both G(t) and ρ(t) are frozen at t = tn) multiplied
by −1, i.e., e = −η in first-order approximation. Within the more general setting
of continuous Runge–Kutta methods, this use of defects and relations like (2.21)
was discussed earlier; see, e.g., [4, 10, 11, 21, 22]. Trivially, multiplying r(tn+1/2)
by a certain constant multiplies the solution by the same constant (if e(0) = 0).
This simple property forms the basis for tolerance proportionality, which we shall
use for attempting control over the global errors (in both the classical and the novel
approaches).

2.3. The example integration formulas. As the example integrator for the
comparison between the adjoint and the classical approaches, we have used an A-
stable scheme, viz., the third-order Runge–Kutta–Rosenbrock scheme ROS3P [16].
To save space we refer to [15, 16] for details.

The implemented step size strategy by which the time grid (1.2) is generated with
ROS3P is standard, except that, different from [16], the defect r(tn+1/2) is used. So
for local control we work with

(2.23) Est = (I − γτnA)−1r(tn+1/2) , A = F ′(tn, wn) ,

where γ is a ROS3P coefficient. The common filter (I−γτnA)−1 serves to damp spu-
rious stiff components which would otherwise be amplified through the F -evaluations
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within r(tn+1/2).
1 Note that, while the local error is O(τ4

n), this estimate is O(τ3
n) by

which we asymptotically have tolerance proportionality [20].
Let Dn = ‖Est‖, with ‖ · ‖ the L2-norm.2 The step is accepted if Dn ≤ Toln,

where Toln = TolA + TolR ‖wn‖, with TolA and TolR given tolerances. Otherwise
the step is rejected and redone. In both cases the new step size is determined by
the standard rule τnew = min(1.5,max(2/3, 0.9 r))τn, where r = (Toln/Dn)1/3. After
each step size change we adjust τnew to τn+1 = (T − tn)/�(1 + (T − tn)/τnew)	 so as
to guarantee to reach the end point T with a step of averaged normal length. The
initial step size τ0 is prescribed and is adjusted similarly.

Simultaneously, (2.22) is integrated by means of the implicit midpoint rule

(2.24) en+1 = en + τnA
(en+1 + en

2

)
+ τnr(tn+1/2) , A = F ′(tn, wn) ,

implemented in the equivalent form

(2.25)
ẽn+1 = 2en + 1

2τnAẽn+1 + τnr(tn+1/2) ,

en+1 = ẽn+1 − en .

The main additional costs for (2.25) come from an extra decomposition since γ �= 1
2

(assuming a direct solve). Due to freezing G(t) and ρ(t) at t = tn as discussed above,
the second-order midpoint rule (2.24) is a first-order method when interpreted for
solving the first variational equation (2.11). As a result, the associated local error
takes the form C(tn)τ2

n + h.o.t., where the leading error constant C(tn) = O(τ3
max)

as it is proportional to η(t), which itself is O(τ3
max). Consequently, the global error

approximations en satisfy en = −εn + O(τ4
max).

2.4. The control rule. Suppose ROS3P and (2.25) have delivered a numerical
solution wN and a global error estimate eN at time tN = T . We then verify whether

(2.26) ‖eN‖ ≤ Ccontrol TolN , T olN = TolA + TolR ‖wN‖ ,

where Ccontrol ≈ 1, typically > 1. If (2.26) holds, the true global error is considered
small enough relative to the chosen tolerance, and wN is accepted. Otherwise, the
computation with ROS3P and (2.25) is redone over [0, T ] with the same (small) τ0
and the adjusted tolerances

(2.27) TolA = TolA × fac , TolR = TolR × fac , fac = TolN/‖eN‖ .

The primary aim of global error estimation is to provide an additional check on
accuracy. Especially when the problem at hand is ill-conditioned (unstable), this is
useful since local control will not detect instability so that εN might be substantially
larger than the imposed tolerance. The second (control) computation with ROS3P
(and (2.25) for an additional check) serves to reduce εN to the imposed tolerance
level. If all is going well, with (2.26) we thus count on the quality of the global error
estimation and with (2.27) on tolerance proportionality, thus expecting that reducing
the local error estimates with the factor fac will reduce εN by fac [20].

1The defect contains a new F -evaluation, which in turn contains F (tn, wn) and F (tn+1, wn+1),
indicating that two filter steps would be needed. Our practical experience is that one filter step is
sufficient, although we know of at least one hypothetical problem (the Kaps problem given at page
215 of [3]) for which two filter steps are appropriate.

2By L2-norm we mean the weighted inner product norm, i.e., ‖v‖2 = vT v/m, v ∈ R
m. This

norm will also be used for the adjoint approach.
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Remark 2.3. It is possible to avoid (2.27) by storing the whole step size sequence
(1.2) from the first run over [0, T ] and to carry out the second computation on a new
step size sequence obtained by dividing all intervals [tn, tn+1] into 
1/fac1/3� equal
subintervals. We then count only on the quality of (2.26) and even would have the
possibility to also use global Richardson extrapolation for global error estimation for
an additional check. However, we then also give up local control. This renders no
problem if all is going well, but it might result in numerical instability which otherwise
would have been detected by local control.

3. The adjoint (forward-backward) approach. Like for the classical ap-
proach the analysis of the adjoint approach starts from the perturbed system derived
in section 2.1.

3.1. Error representation for scalar-derived functions. The error repre-
sentation formula (2.5) reveals that an approximation of Φ−1(t) Φ(s), 0 ≤ s ≤ t,
would be desirable to estimate the sensitivity of (1.1) with respect to perturbations
v0 −w0 and r(t). Instead of computing these matrix products, which is in general far
too expensive or even unattainable, we first derive error estimates for a scalar-derived
function. The analysis is based on the adjoint method, which has been used success-
fully to obtain goal-oriented a posteriori error estimation for an adaptive error control
for PDEs (see [1, 5, 7]) and ODEs (see [2, 6, 13, 17]).

Let M(w(t)) be the scalar quantity of interest. Then one has for the error in M

(3.1) �M(t) := M
(
v(t)) −M(w(t)

)
= M(t) e(t),

with row vector

(3.2) M(t) =

∫ 1

0

M ′(v(t) + (s− 1)e(t)
)
ds =

∫ 1

0

M ′(w(t) + se(t)
)
ds .

Hence, using (2.5),

(3.3) �M(t) = M(t)Φ−1(t)Φ(0)e(0) + M(t)Φ−1(t)

∫ t

0

Φ(s)r(s) ds .

Solving backward in time the adjoint equation

(3.4) φ′(s) = −AT (s)φ(s), φ(t) = M
T
(t), 0 ≤ s < t,

and taking into account that Φ−T (s) is the fundamental matrix of this equation if
(and only if) Φ(t) is the fundamental matrix of (2.3) defined in (2.5), one gets

(3.5) φT (s) = M(t)Φ−1(t)Φ(s) .

Thus

(3.6) �M(t) = φT (0)e(0) +

∫ t

0

φT (s)r(s) ds, 0 ≤ t ≤ T.

Formula (3.6) serves as the fundamental relation to derive a strategy for global error
estimation. The adjoint solution value φT (0) measures sensitivity of M(w(t)) with
respect to e(0). Likewise, the integral term measures sensitivity with respect to the
defects.
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Remark 3.1. In principle one may consider quantities M(w(t)) = ξTi w(t), i =
1, . . . ,m, where ξi is the ith unit vector in R

m. Then �M(t) = ξTi e(t) = e(i)(t), the

ith component of the error vector e(t). Thus M
T
(t) = ξi. Denoting by ψi the solution

of (3.4) with ξi as the initial value, one gets from (3.6)

(3.7) ξTi e(t) = e(i)(t) = ψT
i (0)e(0) +

∫ t

0

ψT
i (s)r(s) ds .

In this way all components of the error vector e(t) could be computed at the price of
solving the adjoint equation m times. However, if m � 1, one would have to solve
a tremendous number of adjoint systems, making this method impractical. The best
choice would be M(w(t)) = eT (t)w(t)/(m‖e(t)‖) [2]. Then �M(t) = ‖e(t)‖ directly
from (3.1), but one does not have e(t). The choice of appropriate initial conditions
for the adjoint system is the main challenge for the adjoint approach [2, 7].

Remark 3.2. To set up the adjoint equation (3.4) we have to replace AT (s) by
a suitable approximation in the neighborhood of v(s). Thus the adjoint equation
depends on the solution of the original ODE. A first possibility is to store the forward
solution for every time step to determine the adjoint equation. Alternatively, the
solution is stored at only a few selected times 0 = T0 < T1 < · · · < TK = T . As the
adjoint equation solver marches backwards in time from Tk to Tk−1, one recomputes
the solution over that time interval using the previously stored solution Tk−1 as the
initial value. This approach reduces the storage requirements at the price of a second
forward solution. The need to make the forward equation available to the adjoint
equation is a drawback of the adjoint approach. Solution storage is of course not
needed for linear systems (1.1) of type w′ = A(t)w + g(t). On the other hand, in all
cases all defects must be stored. Another drawback of the adjoint approach is that
it is defined for single output times t at which estimation is wanted. In other words,
if estimation is wanted at multiple times t, the adjoint solution must be computed
separately for each value of t.

3.2. Global error estimation. We have implemented global error estimation
applying ROS3P to solve (1.1) as described in section 2.3 and using (3.6) and the small
sample statistical method proposed by Cao and Petzold for backward differentiation
formua (BDF) methods [2] (see also [14] for more details). The main idea is to replace
the vectors ξi in (3.7) by a small number of orthonormal vectors z1, z2, . . . , zk, which
are selected uniformly and randomly from the unit sphere Sm−1 in m dimensions.
Instead of computing accurate error estimates of global errors, we try to approximate
them with a high probability.

Let ηi(t) = |zTi e(t)|. Then an estimate for ‖e(t)‖ is given by

(3.8) ‖e(t)‖ ≈ gk(t) =
Ek

Em

√
1

m

(
η2
1(t) + η2

2(t) + · · · + η2
k(t)

)
,

where E1 = 1, E2 = 2/π, and for n > 2

(3.9) En =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 · 3 · 5 · · · (n− 2)

2 · 4 · 6 · · · (n− 1)
for n odd,

2

π
· 2 · 4 · 6 · · · (n− 2)

1 · 3 · 5 · · · (n− 1)
for n even.

En can be estimated by
√

2/(π(n−1/2)). The “≈” in (3.8) has to be understood in
the sense of probability. More precisely, the expected value of the random variable
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gk(t) is given by E(gk(t)) = ‖e(t)‖ (see [14], Theorem 3.1). For k = m the vectors
z1, . . . , zk form an orthonormal basis in R

m, and hence from the definition in (3.8) we
get for k = m directly the identity gm(t) = ‖e(t)‖.

The important question now is, what is the probability that the estimator gk(t)
provides upper and lower bounds for ‖e(t)‖? Let c > 1 be a given factor. Then one
has for two and three random vectors [14]

P

(
g2(t)

c
≤ ‖e(t)‖ ≤ c g2(t)

)
≈ 1 − π

4c2
,(3.10)

P

(
g3(t)

c
≤ ‖e(t)‖ ≤ c g3(t)

)
≈ 1 − 32

3π2 c3
.(3.11)

To achieve 99% probability of accuracy, for example, one can use k = 2 for c = 10 and
k = 3 for c = 5. In [2] it is pointed out that in practice usually at most two or three
random vectors are sufficient, although without giving numerical evidence because in
their numerical experiments k = m. Hence the small sample statistical method was
not tested in [2].

Remark 3.3. To generate vectors uniformly and randomly on Sm−1 one can use
the following procedure: Let λ(1), . . . , λ(m) be normally distributed independent ran-
dom variables with mean zero and variance one. Then the vector λ/‖λ‖ is uniformly
and randomly distributed over Sm−1 where λ = (λ(1), . . . , λ(m))T [25].

The small sample statistical method described above thus will be used to esti-
mate ‖e(T )‖. We first select random vectors ẑ1, . . . , ẑk from Sm−1 and construct an
orthonormal basis z1, . . . , zk for their span by using a Gram–Schmidt procedure or a
QR decomposition. Then we solve the corresponding adjoint equations

(3.12) φ′
i(s) = −AT (s)φi(s) , φi(T ) = zi ,

for φi, i = 1, . . . , k. From (3.1) and (3.6) with �M(T ) = zTi e(T ) we have for each φi

the identity

(3.13) zTi e(T ) = φT
i (0)e(0) +

∫ T

0

φT
i (s)r(s) ds.

In the following we assume e(0) = 0. Using (3.8) and recalling ηi(T ) = |zTi e(T )| we
get

(3.14) gk(T ) =
Ek

Em

⎛
⎝ 1

m

k∑
i=1

(∫ T

0

φT
i (s)r(s) ds

)2
⎞
⎠

1/2

.

The integral terms must be approximated (recall that with k = m and an exact
computation of these integrals we have ‖e(T )‖ = gm(T )). We integrate (3.12) using
the second-order implicit midpoint rule on the same grid as selected to solve (1.1) by
means of ROS3P, but now backward in time starting from zi,

(3.15)
φ̃i,n = 2φi,n+1 +

τn
2

AT φ̃i,n , AT =

(
F ′

(
tn+1/2,

wn + wn+1

2

))T

,

φi,n = φ̃i,n − φi,n+1 , n = N − 1, . . . , 0.

Note that for larger problems one cannot store all Jacobians A from the forward inte-
gration, so one has to recompute them. The practical need for recomputing Jacobians
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is another drawback of the adjoint approach. Further note that, like in the forward
approach, AT is an accurate approximation to the integrated Jacobian A(t) defined
in (2.4) as long as the global error e(t) is sufficiently small. The adjoint problems are
not coupled and hence can be solved in parallel. Also recomputing Jacobians for use
in the backward in time midpoint rule is needed only once, that is, once for all adjoint
problems.

To approximate the integrals in (3.14) we use the 1-point, second-order Gaussian
formula for each integration interval to obtain

(3.16) gk(T ) ≈ Ek

Em

⎛
⎝ 1

m

k∑
i=1

(
N−1∑
n=0

τn
φT
i,n + φT

i,n+1

2
r(tn+1/2)

)2
⎞
⎠

1/2

,

where the residual r(tn+1/2) is computed in exactly the same way as within the clas-

sical approach described in sections 2.2 and 2.3; i.e., we take r(tn+1/2) = 2
3d(tn+1/2).

3.3. The control rule. The possible need for a second forward computation
with ROS3P is decided on the same control rule as in the classical approach, which
we described in section 2.4. Hence also for the adjoint approach we rely on tolerance
proportionality for the global error control. If a second forward computation is de-
cided, then for an additional error check we apply (3.15) once again for the already
chosen random vectors zi taken as initial values, similar to the additional error check
in the classical approach.

Remark 3.4. The conditioning of system (1.1) with respect to small perturbations
r(t) can be estimated using (3.14). There holds

(3.17) ‖e(T )‖ ≈ |gk(T )| ≤ KT · max
0≤s≤T

‖r(s)‖,

with the condition number

(3.18) KT = KT (φ1, . . . , φk) =
Ek

√
m

Em

⎛
⎝ k∑

i=1

(∫ T

0

‖φi(s)‖ ds
)2

⎞
⎠

1/2

.

If KT is small, a well-designed defect-based local error control will work out well. But
if KT is large, one could end up with a global error much larger than the imposed local
tolerance. As proposed in [5] for parabolic problems, and discussed in [2] for BDF
methods, one could tighten the local tolerance for the second ROS3P run within (2.27)
through fac = 1/KT . However, when taking norms in (3.17), favorable effects of
error cancellation and nearly zero defect values are completely ignored, and therefore
the new local tolerance can be extremely pessimistic. Indeed, this is observed for the
example system of section 4.4. Its condition number computed from (3.18) with k = 2,
while using the 1-point, second-order Gaussian formula, is huge, being about 1020. On
the other hand, the integral terms in (3.14) are of moderate size due to cancellation
and many zero entries in the defect function r(s). So for the example system of
section 4.4, the use of the condition number KT for global error control is impossible.
In fact, KT is of the same size as the a priori condition number Kμ2

= (eωT − 1)/ω,
based on the logarithmic matrix norm μ2, given in (2.7). Inserting the accurate bound
ω = 100, which in this case is just the largest eigenvalue of the Jacobian matrix due
to symmetry [12], yields Kμ2

≈ 5.2 × 1019.
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4. Numerical illustrations. Numerical results are given for (i) a 2-dimensional
unstable nonstiff example problem from [2], (ii) the 3-dimensional stable stiff Robert-
son chemical kinetics problem [8], (iii) a 100-dimensional unstable semidiscrete
diffusion-reaction problem (an often used test problem from combustion theory [12]),
and (iv) a 400-dimensional unstable semidiscrete diffusion-reaction problem (from pat-
tern formation and often called the bistable Allen–Cahn problem). For the semidis-
crete problems spatial errors are left out of consideration; i.e., we compare to a highly
accurate ODE reference solution.

All four problems are solved with TolA = TolR = Tol for the four tolerance values
Tol = 10−l, l = 3, 4, 5, 6, using one and the same initial step size τ0 = 10−5. If after
the first attempt (2.26) is violated with Ccontrol = 1, a second attempt is carried out
with the same τ0 and the automatically adjusted new value for Tol through (2.27).
Needless to say, Ccontrol = 1 is too stringent. We use it here only for the sake of
illustrating the good performance of the global control rule (2.27). It will be clear
from the tables of results whether a second attempt was necessary.

The tables of results contain the following quantities TolN = Tol (1+‖wN‖) from
(2.26): for the classical approach the ratio ‖εN‖/‖eN‖ of the true global error and
the estimated global error, for the adjoint approach the ratio ‖εN‖/gk(T ) of the true
global error and the estimated global error defined by (3.16), and for both approaches
the ratio ‖εN‖/TolN . The first and second ratios serve to illustrate the quality of
the estimation, while the third does this for the control. In addition, the numbers of
accepted and rejected ROS3P steps are given.

Finally, for the small sample statistical initialization used in the adjoint method,
k = m orthonormal random vectors were used for the two small-sized problems,
whereas for the other two much larger problems we used only two random vectors. So
only for the two larger problems was the small sample statistical initialization tested,
and for the two small-sized problems the classical and adjoint approach should give
identical results, except for minor implementation differences. Also observe that the
randomness of the initialization will lead to differences in the results when computa-
tions are repeated, although minor ones.

4.1. A low-dimensional nonstiff ODE system. The first test problem is the
2-dimensional unstable linear system [2]

(4.1) w′ =

(
1

2(1+t) −2t

2t 1
2(1+t)

)
w, w(0) =

(
1

0

)
, 0 < t ≤ T = 10 ,

with increasing oscillatory solution w1(t) = cos(t2)
√

1 + t, w2(t) = sin(t2)
√

1 + t.
Table 4.1 shows the results for the classical approach. Since k = m = 2, the adjoint
approach results are identical except for negligible implementation differences. The
quality of the global error estimates is very high, and the second runs based on
tolerance proportionality yield perfect control for all tolerances.

4.2. A low-dimensional stiff ODE system. Our second test problem is the
well-known Robertson problem from the stiff ODE field [8]
(4.2)

w
′

1 = −4.0 × 10−2 w1 + 104 w2w3 ,

w
′

2 = 4.0 × 10−2 w1 − 104 w2w3 − 3.0 × 107 w2
2 ,

w
′

3 = 3.0 × 107 w2
2 ,

w1(0) = 1 ,

w2(0) = 0 ,

w3(0) = 0 , 0 < t ≤ T = 1 .
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Table 4.1

Low-dimensional nonstiff ODE system: classical approach.

Tol TolN ‖εN‖/TolN ‖εN‖/‖eN‖ Accept Reject

10−3 3.32 × 10−3 8.16 1.02 1031 4
1.25 × 10−4 3.34 × 10−3 1.03 1.01 2044 0

10−4 3.34 × 10−4 8.23 1.01 2201 0
1.22 × 10−5 3.34 × 10−4 1.00 1.00 4415 0

10−5 3.34 × 10−5 8.20 1.00 4719 0
1.22 × 10−6 3.35 × 10−5 1.00 1.00 9419 0

10−6 3.35 × 10−6 8.19 1.00 10146 0
1.22 × 10−7 3.35 × 10−6 1.00 1.00 20426 0

Table 4.2

A low-dimensional stiff ODE system: adjoint approach.

Tol TolN ‖εN‖/TolN ‖εN‖/g3(T ) Accept Reject

10−3 1.56 × 10−3 7.39 × 10−5 1.05 29 0

10−4 1.56 × 10−4 1.05 × 10−3 0.94 31 0

10−5 1.56 × 10−5 8.68 × 10−3 1.01 40 1

10−6 1.56 × 10−6 7.64 × 10−2 1.02 62 2

This stiff problem is highly stable, resulting in global errors much smaller than im-
posed local tolerances (the effect of the small initial τ0 = 10−5 is less strong). So
global error control is redundant here, and no control runs were carried out. The
global error estimation appears to work very well for this stiff problem. Table 4.2
shows results of the adjoint approach. Since k = m = 3, the results of the classical
approach again are identical, except for negligible implementation differences. These
exist only for the column for the values of ‖εN‖/g3(T ). The corresponding values
‖εN‖/‖eN‖ for the classical approach are (1.07, 1.02, 1.03, 1.04)T .

4.3. High-dimensional stiff ODE system I. Our third ODE test system is
derived from spatially discretizing the well-known 1D combustion example problem
(see, e.g., [12, p. 434] for the 2D version)

(4.3) ut = uxx + 1
4 (2 − u) e20(1−1/u) , 0 < x < 1 , 0 < t ≤ T = 0.28 ,

subjected to the initial condition u(x, 0) = 1, the zero Neumann boundary condition
ux = 0 at x = 0, and the Dirichlet boundary condition u = 1 at x = 1. The spatial
discretization is done by second-order central differencing on a uniform hybrid grid
(because of the Neumann condition) with mesh width 1/100.5, resulting in a 100-
dimensional ODE system w′ = F (w). We have chosen this system because it requires
variable step sizes and it is unstable. The instability emanates from the reaction term
whose derivative ranges between approximately +1000 and −5500; see [12] for details.
Furthermore, the 100-dimensional ODE system poses a challenging test for the small
sample statistical method using k = 2 only.

For the classical approach Table 4.3 reveals an excellent estimation of the global
error and likewise a high quality of the control for all tolerances. Observe that for
Tol = 10−6 the second control run is redundant. Regarding the adjoint approach we
emphasize the high quality of the small sample statistical method. From inequality
(3.10) one would expect the ratios ‖εN‖/g2(T ) to lie asymptotically between 0.1 and
10.0 with 99% probability. Table 4.4, however, shows ratio values ranging between
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Table 4.3

High-dimensional stiff ODE system I: classical approach.

Tol TolN ‖εN‖/TolN ‖εN‖/‖eN‖ Accept Reject

10−3 2.83 × 10−3 2.56 1.25 529 33
4.91 × 10−4 2.84 × 10−3 1.03 1.20 680 32

10−4 2.84 × 10−4 2.64 1.13 1183 18
4.30 × 10−5 2.84 × 10−4 1.11 1.09 1586 11

10−5 2.84 × 10−5 2.09 1.05 2622 5
5.02 × 10−6 2.84 × 10−5 0.85 1.03 3318 3

10−6 2.84 × 10−6 0.91 1.00 5736 3

Table 4.4

High-dimensional stiff ODE system I: adjoint approach.

Tol TolN ‖εN‖/TolN ‖εN‖/g2(T ) Accept Reject

10−3 2.83 × 10−3 2.56 1.35 529 33
5.26 × 10−4 2.84 × 10−3 1.06 1.38 664 32

10−4 2.84 × 10−4 2.64 0.92 1183 18
3.47 × 10−5 2.84 × 10−4 0.84 0.92 1708 8

10−5 2.84 × 10−5 2.09 0.76 2622 5
3.66 × 10−6 2.84 × 10−5 0.57 0.76 3695 4

10−6 2.84 × 10−6 0.91 0.72 5736 3
7.93 × 10−7 2.84 × 10−6 0.65 0.72 6204 3

0.72 and 1.38. Taking k larger with this large dimension m is no option. For example,
doubling k to 4 does not lead to a notable improvement yet increases the costs for
the global error estimation. Noting the small deviations from 1.0 of all listed ratios,
especially after the control run, both approaches perform excellently with respect to
estimation and control.

4.4. High-dimensional stiff ODE system II. Similar to the third, the fourth
test problem was chosen because it is unstable, again challenging global error control.
It is derived from spatially discretizing the following version of the bistable Allen–
Cahn equation:

(4.4) ut = 10−2 uxx + 100u (1 − u2) , 0 < x < 2.5 , 0 < t ≤ T = 0.5 ,

with the initial function and Dirichlet boundary values taken from the exact wave
front solution u(x, t) = (1 + eλ (x−α t))−1, λ = 50

√
2, α = 1.5

√
2. Uniform second-

order central discretization in space yields our ODE test system, now with m = 400
components. The instability emanates from the unstable stationary state u = 0.
Further, since m = 400 and k = 2, this problem also poses an even more challenging
test for the small sample statistical method.

Table 4.5 reveals again a high quality of the global error estimation for the classical
approach and the control process also works very well. The ratios for ‖εN‖/TolN lie
between 0.71 and 0.93 after the control run. Observe that for Tol = 10−5, 10−6

the control runs are redundant. In actual practice, taking the control parameter
Ccontrol > 1 in (2.26), this would also hold for the other tolerances. For the adjoint
approach, the ratios ‖εN‖/g2(T ) given in Table 4.6 range from 0.53 to 2.56, which
is by a factor of 4 better than one would expect from inequality (3.10). The adjoint
approach does not require a second run for Tol = 10−4, 10−6, and for the other cases
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Table 4.5

High-dimensional stiff ODE system II: classical approach.

Tol TolN ‖εN‖/TolN ‖εN‖/‖eN‖ Accept Reject

10−3 1.65 × 10−3 1.29 0.77 373 0
6.01 × 10−4 1.65 × 10−3 0.71 0.83 446 0

10−4 1.65 × 10−4 0.95 0.93 833 0
9.84 × 10−5 1.65 × 10−4 0.93 0.93 838 0

10−5 1.65 × 10−5 0.82 0.97 1835 0

10−6 1.65 × 10−6 0.76 0.98 3998 0

Table 4.6

High-dimensional stiff ODE system II: adjoint approach.

Tol TolN ‖εN‖/TolN ‖εN‖/g2(T ) Accept Reject

10−3 1.65 × 10−3 1.29 0.53 373 0
4.09 × 10−4 1.65 × 10−3 0.45 0.57 510 0

10−4 1.65 × 10−4 0.95 1.40 833 0

10−5 1.65 × 10−5 0.82 0.78 1835 0
9.45 × 10−6 1.65 × 10−5 0.78 0.78 1870 0

10−6 1.65 × 10−6 0.76 2.56 3998 0

the control is also very efficient (only a factor 0.45 to 0.78 off the imposed tolerance
after the control run).

5. Summary and main conclusions. Inspired by [2] and related earlier lit-
erature, e.g., [1, 5, 6, 7, 13], we have discussed and compared classical global error
estimation based on the first variational equation to a recent more novel approach
based on the adjoint equation. The common starting point for both approaches is
the perturbed equation with the residual or defect function defined by piecewise, cu-
bic Hermite interpolation. As a base integrator for the comparison we have chosen
the third-order, A-stable Runge–Kutta–Rosenbrock method ROS3P. We have also
implemented global error control, for which we have used the property of tolerance
proportionality for both the classical and the adjoint approaches.

On the basis of the four example problems, ranging from nonstiff to stiff, the
computational effort of each of the two approaches, and the insight from the analysis,
we have come to three main conclusions. (i) The classical approach is remarkably
reliable, with respect to both estimation and control. Although well known in the
numerical ODE literature, it seems that the virtue of this approach has been insuffi-
ciently brought forward, since as yet this form of global error estimation and control
is far less popular than the commonly used local techniques. (ii) Most notable for the
adjoint approach is the excellent performance of the small sample statistical method
which forms the heart of the method. We have applied it successfully using only
k = 2 random vectors for dimensions m = 100, 400 (in [2] it was not tested since there
k = m ≤ 2). With k = 2 the computational costs are only marginally higher than
those of the classical approach. Were we to omit the second control run, then our
Matlab runs in the adjoint case would be on average only about 15% more costly in
CPU time. Omitting the second control run can make a difference, because in the
adjoint case the second control run can be significantly more expensive than in the
classical case due to the need of reevaluating many Jacobian matrices. (iii) The main
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disadvantage of the adjoint approach is the need either to store the whole approxi-
mation sequence (wn; 0 ≤ 1 ≤ N) or to store part of it and to carry out a second
forward computation. When using Jacobians, as is the case for ROS3P, storage be-
comes truly a handicap with large problems calling for Jacobian reevaluations and
hence additional CPU costs.

Something we haven’t discussed in this paper is that the adjoint approach can give
precious sensitivity information which can be used to advantage for a different step
size adaptation (see, e.g., [17]). Such information is not available within the classical
approach. Our step size adaptation is standard and based on local error control. Other
approaches based on a posteriori information and the adjoint approach do exist and
are claimed to give better results for global error control; see [17, 18, 19].
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