
SIAM J. COMPUT. © 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 5, pp. 1485-1501

RANDOMNESS IS HARD*

HARRY BUHRMANt AND LEEN TORENVLIET+

Abstract. We study the set of incompressible strings for various resource bounded versions
of Kolmogorov complexity. The resource bounded versions of Kolmogorov complexity we study
are polynomial time CD complexity defined by Sipser, the nondeterministic variant CND due to
Buhrman and Fortnow, and the polynomial space bounded Kolmogorov complexity CS introduced
by Hartmanis. For all of these measures we define the set of random strings RfD, Rf ND, and Rf8

as the set of strings x such that CDt(x), CND 1(x), and CS 8 (x) is greater than or equal to the length
of x for s and t polynomials. We show the following:

RCD
• MA~ NP t , where MA is the class of Merlin-Arthur games defined by Babai.
• AM~ NPRfND, where AM is the class of Arthur-Merlin games.
• PSPACE ~ NPcRfs.

In the last item cRf8 is the set of pairs (x, y) so that x is random given y. These results
show that the set of random strings for various resource bounds is hard for complexity classes under
nondeterministic reductions.

This paper contrasts the earlier work of Buhrman and Mayordomo where they show that for
polynomial time deterministic reductions the set of exponential time Kolmogorov random strings is
not complete for EXP.

Key words. complexity classes, CD complexity, CND complexity, interactive proofs, Kol
mogorov complexity, Merlin-Arthur, Arthur-Merlin, randomness, relativization

AMS subject classifications. 03015, 68Q10, 68Q15, 68Ql 7, 68Q19

PII. 80097539799360148

1. Introduction. The holy grail of complexity theory is the separation of com
plexity classes like P, NP, and PSPACE. It is well known that all of these classes
possess complete sets and that it is thus sufficient for a separation to show that a
complete set of one class is not contained in the other. Therefore lots of effort was
put into the study of complete sets. (See [11].)

Kolmogorov [19], however, suggested focusing attention on sets which are not
complete. His intuition was that complete sets possess a lot of "structure" that
hinders a possible lower bound proof. He suggested to look at the set of time bounded
Kolmogorov random strings. In this paper we will continue this line of research and
study variants of this set.

Kolmogorov complexity measures the "amount" of regularity in a string. Infor
mally the Kolmogorov complexity of a string x, denoted as C(x), is the size of the
smallest program that prints x and then stops. For any string x, C(x) is less than or
equal to the length of x (up to some additive constant). Those strings for which it
holds that C (x) is greater than or equal to the length of x are called incompressible
or random. A simple counting argument shows that random strings exist.

*Received by the editors August 17, 1999; accepted for publication (in revised form) February 8,
2000; published electronically November 8, 2000.

http://www.siam.org/journals/sicomp/30-5/36014.html
tcwr, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands (buhrman@cwi.nl). The work

of this author was partially supported by the Dutch foundation for scientific research (NWO) by
SION project 612-34-002, the European Union through NeuroCOLT ESPRIT Working Group 8556,
HC&M grant ERB4050PL93-0516, and the EU fifth framework program QAIP, IST-1999-11234.

+Department of Computer Science, University of Amsterdam, 24 Plantage Muidergracht, 1018
TV Amsterdam, The Netherlands (leen@wins.uva.nl).

1485

1486 HARRY BUHRMAN AND LEEN TORENVLIET

In the sixties, when the theory of Kolmogorov complexity was developed, Mar
tin [23] showed that the coRE set of Kolmogorov random strings is complete with
respect to (resource unbounded) Turing reductions. Kummer [18] has shown that
this can be strengthened to show that this set is also truth-table complete.

The resource bounded version of the set of random strings was first studied by
Ko [17]. The polynomial time bounded Kolmogorov complexity GP (x) for p a polyno
mial is the smallest program that prints x in p(lxl) steps [14]. Ko showed that there
exists an oracle such that the set of random strings with respect to this time bounded
Kolmogorov complexity is complete for coNP under strong nondeterministic polyno
mial time reductions. He also constructed an oracle where this set is not complete for
coNP under deterministic polynomial time Turing reductions.

Buhrman and Mayordorno [10] considered the exponential time Kolmogorov ran
dom strings. The exponential time Kolrnogorov complexity ct(x) is the smallest

program that prints x in t(lxl) steps for functions t(n) = 2nk. They showed that the
set oft(n) random strings is not deterministic polynomial time Turing hard for EXP.
They showed that the class of sets that reduce to this set ha..'> p measure 0 and hence
that this set is not even weakly hard for EXP.

The results in this paper contrast those from Buhrman and Mayordomo. We
show that the set of random strings is hard for various complexity classes under
nondeterministic polynomial time reductions.

We consider three well-studied measures of Kolmogorov complexity that lie in
between GP(x) and Gt(x) for p a polynomial and t(n) = 2nk. We consider the
distinguishing complexity as introduced by Sipser [25]. The distinguishing complexity,
GDt(x), is the size of the smallest program that runs in time t(n) and accepts x and
nothing else. We show that the set of random strings RfD = {x I CDt(x) 2:: lxl} for
t a fixed polynomial is hard for MA under nondeterministic reductions. MA is the
class of Merlin-Arthur games introduced by Babai [l]. As an immediate consequence
we obtain that BPP and NPBPP are in NPRfD.

Next we shift our attention to nondeterministic distinguishing complexity [6],
CNDt(x), which is defined as the size of the smallest nondeterministic algorithm that
runs in time t(n) and accepts only x. We define RfND = {x : CNDt(x) 2:: lxl}
for t a fixed polynomial. We show that AM i;; NPRfND, where AM is the class of
Arthur-Merlin games [1]. It follows that the complement of the graph isomorphism
problem, GI, is in NPRfND and that if for some polynomial t, RfND E NP n coNP,
then GI E NP n coNP.

The s(n) space bounded Kolmogorov complexity CSs(xly) is defined as the size
of the smallest program that prints x, given y, and uses at most s(lxl + IYI) tape
cells [14]. Likewise we define cR,?8 = {(x,y): CS5 (xly) ~ lxl} for s(n) a polynomial.
We show that PSPACE i;; NPcR;'s.

For the first two results we use the oblivious sampler construction of Zucker
man [29], a lemma [6] that measures the size of sets in terms of GD complexity, and
we prove a lemma that shows that the first bits of a random string are in a sense
more random than the whole string. For the last result we make use of the interactive
protocol [22, 24] for quantified boolean formulas (QBFs).

To show optimality of our results for relativizing techniques, we construct an or
acle world where our first result cannot be improved to deterministic reductions. We
show that there is an oracle such that BPP g; pRfD for any polynomial t. The con
struction of the oracle is an extension of the techniques developed by Beige!, Buhrman,
and Fortnow [4].

RANDOMNESS IS HARD 1487

2. Definitions and notations. We assume the reader is familiar with standard
notions in complexity theory as can be found, e.g., in [2]. Strings are elements of E*,
where E = {O, l}. For a strings and integers n,m:::; JsJ we use the notation s[n .. m]
for the string consisting of the nth through mth bit of s. We use ,\ for the empty
string. We also need the notion of an oblivious sampler from [29].

DEFINITION 2.1. A universal (r, d, m, E, 1)-oblivious sampler is a deterministic
algorithm which on input a uniformly random r-bit string outputs a sequence of points
z1 1 ••• ,zd E {O,l}m such that for any collection ofdfunctions fi, ... ,fd: {O,l}m r+

[O, l] it is the case that

(where Efi = 2-m 2=zE{O,l}= fi(z)).
In our application of this definition, we will always use a single function f.
Fix a universal Turing machine U and a nondeterministic universal machine UN.

All our results are independent of the particular choice of universal machine. For
the definition of Kolmogorov complexity we need the fact that the universal machine
can, on input p, y, halt and output a string x. For the definition of distinguishing
complexity below we need the fact that the universal machine on input p, x, y can
either accept or reject. We also need resource bounded versions of this property.

We define the Kolmogorov complexity function C(xJy) (see [20]) by C(xly) =
min { IPI : U (p, y) = x}. We define unconditional Kolmogorov complexity by C (x) =
C(xl,\). Hartmanis [14] defined a time bounded version of Kolmogorov complexity,
but resource bounded versions of Kolmogorov complexity date back as far as [3]. (See
also [20].) Sipser [25] defined the distinguishing complexity CD1.

We will need the following versions of resource bounded Kolmogorov complexity
and distinguishing complexity.

{
(1)

• CS8 (xly) = min IPI : (2)

(See [14].)

• CDt(xly) = min IPI : m {
(1)

(See [25].)

-· CNDt(xly) = min IPI : m {
(1)

(See [6].)

U(p,y)=x; }
U (p, y) uses at most .
s(lxl + IYl) tape cells

U(p, x, y) accepts;
(Vz f. x)U(p,z,y) rejects;
(Vz E E*)U(p, z, y) runs in at most
t(lul + IYI) steps

UN(P, x, y) accepts;
(Vz f. x)UN(P, z, y) rejects;

}

(Vz E E*)UN(P, z, y) runs in at most
t(lzl + lyl) steps

}
For 0 < E :::; 1 we define the following sets of strings of "maximal" GDP and CNDP

complexity.
• Rf f = {x: CD 1(x),\) ~ E)x)}.
• RffW = {x: CNDt(xJ>-) ~ E)xl}.

Note that for E = 1 these sets are the sets mentioned in the introduction. In this
case we will omit the E and use RfD and Rf ND. We also define the set of strings of

1488 HARRY BUHRMAN AND LEEN TORENVLIET

maximal space bounded complexity.

The c in the notation is to emphasize that randomness is conditional. Also, cR.f 8

technically is a set of pairs rather than a set of strings. The unconditional space
bounded random strings would be

R.f8 = {x: (x, ,\) E cR.78 }.

We have no theorems concerning this set.
The C complexity of a string is always upperbounded by its length plus some

constant depending only on the choice of the universal machine. The CD and CND
complexities of a string are always upperbounded by the C complexity of that string
plus some constant depending again only on the particular choice of universal machine.
All quantifiers used in this paper are polynomially bounded. Often the particular
polynomial is not important for what follows, or it is clear from the context and is
omitted. Sometimes we need explicit bounds. Then the particular bound is given as
a superscript to the quantifier. For example, we use ::imy to denote "there exists a y
with lul ::; m," or 1;f=nx to denote "for all x of length n."

The classes MA and AM are defined as follows.
DEFINITION 2.2. L E MA iff there e1:ists a lxlc time bounded mach·ine M such

that
l. x EL =? 3yPr[M(x, y, r) = l] > 2/3;
2. x tj. L =? \fyPr[M(x, y, r) = 1] < 1/3,

where r is chosen ·uniformly at random in {O, l}lxl".

L E AI\1 iff there exists a lxlc time bounded machine lv1 s·uch that

l. x EL =? Pr[:JyM(x,y,r) = l] > 2/3;
2. x tj. L ==? Pr[3yM(x, y, r) = l] < 1/3,

where r is chosen uniformly at random in {O, 1} lxl".

It is known that NP U BPP s:;: MA s:;: AM~ PSPACE [l].
Let #M(x) represent the number of accepting computations of a nondeterministic

Turing machine M on input x. A language L is in EBP if there exists a polynomial
time bounded nondeterministic Turing machine M such that for all x:

• x EL==? #M(x) is odd;
• x f!-_ L ==? #M(x) is even.

Let g be any function. We say that advice function f is g-bounded if for all n it
holds that lf(n)I ::; g(n). In this paper we will be interested only in functions g that
are polynomial.

The notation S¥' is used for strong nondeterministic Tv.ring reductions, which
are defined by A ::;~n B iff A E NP 8 U CoNP8 .

3. Distinguishing complexity for derandomization. In this section we prove
hardness ofRfD and Rf ND for AM and MA games, respectively, under NP-reductions.

THEOREM 3.1. For any t with t(n) E w(nlogn), MA s:;: NPRfD.

THEOREM 3.2. For any t with t(n) E w(n), AM s:;: NPRjwD.
The proof of both theorems is roughly as follows. First guess a string of high

CDpoly complexity, respectively, CNDpoly complexity. Next, we use the nondetermin
istic reductions once more to play the role of Merlin and use the random string to
derandomize Arthur. Note that this is not as straightforward as it might look. The

RANDOMNESS IS HARD 1489

randomness used by Arthur in interactive protocols is used for hiding and cannot in
general be substituted by computational randomness.

The idea of using strings of high CD complexity and Zuckerman's sampler deran
domization stems from [7, section 8], which is the full version of [6]. Though they do
not explicitly define the set RfD, they use the same approach to derandomize BPP
computations there.

The proof needs a string of high GDP, respectively, CNDP complexity for p some
polynomial. We first show that we can nondeterministically extract such a string from
a longer string with high CDt complexity (respectively, CNDt complexity) for any
fixed t with t(n) E w(nlogn).

LEMMA 3. 3. Let f be such that 1 (n) < n, and let t, t', and T be such that

T(n) = (t'(f(n)) + n- f(n)), limn,_, 00 T(n)/(;{(n) = 0. Then for all sufficiently large

s with CDt(s) > lsl, it holds that CD 11 (s[Lf(lsl)]) 2 f(lsl) - 2log ll(lsl)I - 0(1).
Proof Suppose for a contradiction that for any constant do and infinitely many

s with CDt(s) 2 lsl, it holds that CDt' (s[Lf(lsl)]) < l(lsl) - 2log l!(lsl)I - do.
Then for any such s there exists a program Ps that runs in t'(f(lsl)) and recognizes
only s[l..f(ls/)] where IPsl < f(/sl) - 2log 11(1.sl)I - do. The following program then
recognizes 8 and no other string.

Input y.

Check that the first f(l.sl) bits of y equal s[l..l(isi)], using Ps· (Assume
11(1.sl)I is stored in the program for a cost of log ll(lsl)I bits.)
Check that the last lsl - 1(1.sl) bits of y equal s[f(lsl) +Lisi]. (These bits
are also stored in the program.)

This program runs in time T(lsl) = t'(f(lsl)) + lsl - f(lsl). Therefore it takes at most
t(lsl) steps on U for all sufficiently large s [16]. We lose the logn factor here because
our algorithm must run on a fixed machine and the simulation is deterministic.

The program's length is IPsl + lsl - 1 (lsl) +log lf(lsl)\ +d1 < f (lsl)-2 log If (lsl) I
da + lsl - l(lsl) +log lf(lsl)I + d1 1 which is less than lsl for almost all s. Hence
CDt(s) < lsl, which contradicts the a..ssurnption. 0

COROLLARY 3.4. For every polynomial nc, t E w(n log n) and sufficiently large

strings with CDt(s) 2 lsl, if m = lsl~ and s' = s[l..m], then CD710 (s') 2 ls'I -
2 log ls'I - 0(1).

Proof Take t'(n) = nc, f(n) = n~ and apply Lemma 3.3. 0
Lemma 3.3 and Corollary 3.4 have the following nondeterministic analogon.
LEMMA 3.5. For every polynomial nc, t E w(n) and sufficiently large str·ing s with

CNDt(s) 2 lsl, ilm = lsl~ ands' = s[l..m], then CND71"(s') 2 ls'l-2logls'l-0(1).
Proof The same proof applies, with a lemma similar to Lemma 3.3. However, in

the nondeterministic case the simulation costs only linear time [5]. 0
Before we can proceed with the proof of the theorems, we altm need some earlier

results. We first need the following theorem from Zuckerman.
THEOREM 3.6 (see [29]). There is a constant c such that for '"Y = 1(m) 1 E = E(m),

and a = a(m) with m - 1/ 2 log* m :::; a :::; 1 /2 and E 2 exp(-o:210g' mm), there exists a
·universal (r, d, m, E, '"Y)-oblivious sampler which runs in polynomial time and uses only
r = (1 + o:)(m + log1-1) random bits and outputs d = ((m + log1-1)/EY°' sample
points, where c°' = c(log 0:-1) / o:.

We also need the following lemma by Buhrman and Fortnow.
LEMMA 3.7 (see [6]). Let A be a set in P. For each string x E A=n it holds that

CDP(x) :::; 2 log(llA=71 \I) + O(logn) for some polynomial p.

1490 HARRY BUHRMAN AND LEEN TORENVLIET

As noted in [6], an analogous lemma holds for CNDP and NP.
LEMMA 3.8 (see [6]). Let A be a set in NP. For each string x E A=n it holds

that CNDP(x)::; 2log(llA=nll) + O(logn) for some polynomial p.
From these results we can prove the theorems. If we want to prove, for Theo

rem 3.1, that an NP machine oracle with oracle RfD can recognize a set A in MA,
then the positive side of the proof is easy: If x is in A, then there exists a machine M
and a stringy such that a 2/3 fraction of the strings r of length lxlc makes M(x, y, r)
accept. So an NP machine can certainly guess one such pair x, y as a "proof" for
x EA. The negative side is harder. We will show that if x ~A and we substitute for
r a string of high enough CD complexity (CND complexity for Theorem 3.2), then
no y can make M(x,y,r) accept.

To grasp the intuition behind the proof let us look at the much simplified example
of a BPP machine M having a 1/3 error probability on input x and a string r of
maximal unbounded Kolmogorov complexity. There are 2lxlc possible computations
on input x, where lxlc is the runtime of M. Suppose that M must accept x. Then at
most a 1/3 fraction, i.e., at most 2lxlc /3 of these computations reject x. Each rejecting
computation consists of a deterministic part described by M and x and a set of lxlc
coin flips. Identify such a set of coin flips with a binary string and we have that each
rejecting computation uniquely identifies a string of length lxlc· Call this set B. We
would like to show by contradiction that a random string cannot be a member of this
set, and hence that any random string, used as a sequence of coin flips, leads to a
correct result. Any string in B is described by M, x, and an index in B, which has
length log llBll ::; \xlc - log 3. So far there are no grounds for a contradiction since a
description consisting of these elements can have length greater than \xlc· However,
we can amplify the computation of M on input x by repetition and taking majority.
Suppose we repeat the computation lx\2 times. This will increase the number of
incorrect computations to (at most) (~)lxl 2 /2 2lxlc+ 2 • An index in this set has length

lxlc+2 - (\x\ 2 /2)lod. However, Ix!+ lxlc+2 - (lx\ 2 /2)1og~ cannot describe a random

string of length \xlc+2 , which is the length of such a computation.
Unfortunately, in our case the situation is a bit more complicated. The factor

2 in Lemma 3. 7 renders standard amplifaction of randomized computation useless.
Fortunately, Theorem 3.6 allows for a different type of amplification using much less
random bits, so that the same type of argument can be used. We will now proceed
to show how to fit the amplification given by Theorem 3.6 to our situation.

LEMMA 3.9.
1. Let L be a language in MA. For any constant k and any constant O < a s; ~,

there exists a deterministic polynomial time bounded machine M such that
(a) x EL =} 3myPr[M(x, y, r) = 1] = 1;
(b) x~L =} 'V'myPr[M(x,y,r)=1]<2-km,

where m = lxlc and r is chosen uniformly at random in {O, l}(l+Q)(l+k)m.
2. Let L be a language in AM. For any constant k and any constant 0 < a s; ~,

there exists a deterministic polynomial time bounded machine M such that ~
(a) x EL =} Pr[3yM(x,y,r) = 1] = 1;
(b) x ~ L =} Pr[3yM(x,y,r) = 1] < 2-km,

where m = \xlc and r is chosen uniformly at random in {O, 1 }(l+Q)(l+k)m.
Proof
1. Fiirer et al. showed that the fraction 2/3 (see Definition 2.2) can be replaced by

1 in [13]. Now let ML be the deterministic polynomial time machine corresponding to
L in Definition 2.2, adapted so that it can accept with probability 1 if x E L. Assume

RANDOMNESS IS HARD 1491

ML runs in time nc (where n = Ix!). This means that for Nh the 3y and Vy in the
definition can be assumed to be 3nc y and vn" y, respectively. Also, the random string
may be assumed to be drawn uniformly at random from {O, l}n".

To obtain the value 2-km in the second item, we use Theorem 3.6 with 'Y = 2-km,
and€= 1/6. For given x and y let ixy be the FP function that on input z computes
ML(x, y, z). If !YI = lzl = nc = m, then ixy : {O, l}m r--+ [O, l]. We use the oblivious
sampler to get a good estimate for Eixy· That is, we feed a random string of length
(l+a)(l+k)m in the oblivious sampler and it returns d = ((l+k)m/E)c,, sample points

z1, ... , Zdon which we compute~ I:~=l ixy(zi). Mis the machine that computes this
sum on input x, y, and r and accepts iff its value is greater than 1/2.

If x EL, there is a y such that Pr[ML(x, y, r) = l] = 1. This means~ I:~=l fxy(zi)
= 1 no matter which sample points are returned by the oblivious sampler. If x tJ. L,
then (Vy)[Eixy < 1/3]. With probability 1 - 'Y the sample points returned by the

oblivious sampler are such that I~ I:~=l fxy(zi) - Efxyl 5 €, so ~ I:~=l fxy(zi) > ~
with probability 5 2-km_

2. The proof is analogous to the proof of part 1. We just explain the differences.
For the 1 in the first item of the claim we can again refer to [13]. In this part ML is
the deterministic polynomial time machine corresponding to the AM-language L and
we define the function ix : {O, l}m r--+ [O, 1] as the function that on input z computes
3ncyML(x,y,z) = 1. Now ix is an ppNP computable function. The sample points
z1 , ... , Zd that are returned in this case have the following properties. If :r E L,
then fx(zi) = 1 no matter which string is returned as Zi. That is, for every possible
sample point zi, there is a Yi such that ML(x, Yi, zi) = 1. So for any set of sample
points z1 , ... , Zd that the sampler may return, there exists a y = (Y1, ... , Yd) such
that ML(x, y;, z.;) = 1 '<:/i. If x rf. L, then fx(zi) = 1 for less than half of the sample
points with probability 1 - 'Y· That is,

is less than 2-km. So if we let M (x, y, r) be the deterministic polynomial time machine
that uses r to generate d sample points and then interprets y as (Y1, ... , Yd) and counts
the number of accepts of ML(x, Yi, z;) and accepts if this number is greater than ~d,
we get exactly the desired result. D

In the next lemma we show that a string of high enough CDpoly (CNDpoly) can
be used to derandomize an MA (AM) protocol.

LEMMA 3.10.
1. Let L be a language in MA and 0 < E 5 1. There exists a deterministic

polynomial time bounded machine M, a polynomial q, a > 0, and integers k and c
such that for almost all n and every r with lrl = (1 + a)(l + k)nc and CDq(r) 2'. Eirl,
v=nx[x EL {:::::::} 3yM(x, y, r) = l].

2. Let L be a language in AM and 0 < E 5 1. There exists a determinist'ic
polynomial time bounded machine M a polynomial q, a > 0, and integers k and c
such that for almost alln and everyr with lrl = (l+a)(l+k)nc and CNDq(r) 2'. Eirl,
v=nx[x EL {:::::::} 3yM(x, y, r) = l].

Proof
1. Choose a < ~ and k > ,_62°'. Let M be the deterministic polynomial time

bounded machine corresponding to L, k, and a of Lemma 3.9(1). The polynomial nc
will be the time bound of the machine witnessing L E MA of that same lemma. We

1492 HARRY BUHRMAN AND LEEN TORENVLIET

will determine q later, but assume for now that r is a string of length (1 +a) (I + k)nc
such that CDq(r);::: Elr!, and for ease of notation set m = nc.

Suppose x E L. Then it follows that there exists a y such that for all s of length
(1 + a)(l + k)nc, M(x, y, s) = 1. So in particular it holds that M(x, y, r) = 1.

Suppose x fj. L. We have to show that (\fy)[M(x, y, r) = OJ. Suppose that this is
not true and let y0 be such that M(x, Yo, r) = 1. Define

Ax,y0 = {s: M(x,yo,s) = 1}.

It follows that Ax,yo E P by essentially a program that simulates M and has x and
y0 hardwired. (Although Ax,yo is finite and therefore trivially in P it is crucial here
that the size of the polynomial program is roughly IM!+ lxl + IYol-) Because of the
amplification of the MA protocol we have that

'I A II < 2(l+a)(l+k)m-km. x,yo -

Since r E Ax,yo it follows by Lemma 3. 7 that there is a polynomial p such that

CDP(r)::; 2[(1 + o:)(l + k)m - km]+ lxl
+ !Yol + O(logm)

::; 2o:m + 2akm + 5m.

On the other hand, we chose r such that

CDq(r);::: clrl
= (1 + a)(I + k)mE

> 2am + 2o:km + 5m,

which gives a contradiction for q ;::: p.
2. Choose o: < ~ and k > €_520 • Let M be the deterministic polynomial time

bounded machine corresponding to L, o:, and k of Lemma 3.9(2). Again, nc will
be the time bound of the machine now witnessing L E AM, m = nc, and q will be
determined later. Assume for now that r is a string of length (1 + o:)(l + k)nc such
that CNDq(r) ;::: E!r!. Suppose x E L. Then it follows that for alls there exists a
y such that M(x,y,s) = 1. So in particular there is a Yr such that M(x,yr,r) = 1.
Suppose x tf. L. We have to show that \fyM(x, y, r) = 0. Suppose that this is not
true. Define Ax= {s: 3yM(x,y,s) = 1}. Then Ax E NP by a program that has
x hardwired, guesses a y, and simulates M. Because of the amplification of the AM
protocol we have that l!Ax II ::; 2(l+a)(Hk)m-km. Since r E Ax it follows by Lemma 3.8
that there exists a polynomial p such that

CNDP(r) S 2[(1 + a)(l + k)m -km]+ Ix!+ O(logm)

S 2am + 2akm + 4m.

On the other hand, we chose r such that

CNDq (r) 2: cir!
= (1 + a)(l + k)mE

> 2am + 2akm + 4m,

which gives a contradiction whenever q ~ p. D

RANDOMNESS lS HARD 1493

The following corollary shows that a string of high enough CDpoly complexity can

be used to derandomize a BPP machine (see also [7, Theorem 8.2]).

COROLLARY 3 .11. Let A be a set in BPP. For any E > 0 there exists a polynomial

time Turing machine Mand a polynomial q such that if CDq(r) ;::: Elrl with lrl = q(n),
then for all x of length n it holds that :r EA -<:==} M(:r, r) = 1.

Proof of Theorem 3.1. Let A be a langtrnge in MA. Let q, M, and q'(n) =

(1 + o:)(l + k)q(n) be as in Lemma 3.10(1). The noncleterministic reduction behaves
as follows on input x of length n. First guess an s of size q(q' (n)) and check that
s E RfD. Set r = s[l..q' (n)] and accept iff there exists a y such that M(:r, y, r) = 1.

By Corollary 3.4 it follows that CDq (r) ;::: !rl/2 and the correctness of the reductions
follows directly from Lemma 3.10(1) with E = 1/2. D

Proof of Theorem 3.2. This follows directly from Lemma 3.10(2). The NP-
algorithm is analogous to the one above. D

COROLLARY :3.12. FortEw(nlogn)

1. BPP and NPBPP are included in NPR}"j);
2. GI E NPRfND.

It follows that if RfND E NP n coNP, then the graph isomorphism (Gl) problem
is in NP n coNP.

4. Limitations. In the previous section we showed that the set Rf D is hard for
MA under NP reductions. One might wonder whether RfD is also hard for l\IA under
a stronger reduction like the deterministic polynomial time Turing reduction. In this
section we show that, if true, this will need a nonrelativizing proof. We will derive
the following theorem.

THEOREM 4.1. There is a relativized world where for every polynom.ial t and

0 < E:::; 1, BPP <t. pR(,";'_

The proof of this theorem is given in Lemma 4.2, which says that the statement
4 A NPA 4

of Theorem 4.1 is true in any world where P' = tt!P and EXP t;;;; NP' /poly,

and in Theorem 4.3, which precisely shows the existence of such a world.

LEMMA 4.2, For any oracle A and 0 < E :::; 1 it hold8 that if EXPNPA C

NPA /poly and EDPA = pA, then BPPA <t. pRi:~A.
Proof. Suppose for a contradict.ion that the lemma is not true. If EXPNP c;;;

NP /poly, then EXP t;;;; NP /poly, so EXP <;;: PH [27]. Furthermore, if EXPNP <;;;

NP /poly, then certainly EXPNP t;;;; EXP /poly. It then follows from [9] that EXPNP =
EXP, so EXPNP t;;;; PH.

If EBP = P, then unique-SAT (see [8] for a definition) is in P. Then NP = R
by [26] and so NP t;;;; BPP which implies PH t;;;; BPP by [28].

Finally, the fact that unique-SAT is in P is equivalent to the following: for all x
and y, CP01Y(xly) ::::; CDpoly (:rly) +0(1), as shown in [12]. We can use the proof of [12]

to show that unique-SAT in P also implies that Rf:f E coNP for a particular universal
machine. (Note that we need only contradict the assumption for one particular type
of universal machine.) This then .Jn its turn implies by assumption that BPP and
hence EXPNP are in pNP. This, however, contradicts the hierarchy theorem for

relativized Turing machines [15]. As all parts of this proof relativize, we get the result

for any oracle. There's one caveat here. Though Rf:f A clearly has a meaningful
RcLJA

interpretation, to talk about P '·' one must of course allow P to have access to the
oracle. It is not clear that P can ask any question if the machine can only ask a

C'VA

question about the random strings. Therefore, one might argue that pR1,, EllA should

1494 HARRY BUHRMAN AND LEEN TORENVLIET

actually be in the statement of the lemma. This does not affect the proof.
Our universal machine, say, Us, is the following. On input p, x, y, Us uses the

Cook-Levin reduction to produce a formula f on jxj variables with the property that
x satisfies f iff p accepts x. Then Us uses the self-reducibility off and the assumed
polynomial time algorithm for unique-SAT to make acceptance of x unique. That is,
first if the number of variables is not equal jyj, it rejects. Then, using the well-known
substitute and reduce algorithm for SAT, it verifies for i = 1, ... , jxj and assignments
Xj = Vj successively obtained from the algorithm that the algorithm for unique-SAT
precisely accepts f (v1 ... Vi) or rejects if this algorithm accepts both f (v1 ... Vi) and
f(v1 ... (1 - Vi)). Using this universal machine every program accepts at most one
string and therefore Rff E coNP via an obvious predicate. As argued above, this
gives us our contradicti~n. D

Now we proceed to construct the oracle.
NPA A A THEOREM 4.3. There exists an oracle A such that EXP CNP /poly/\ EBP

=PA.
Proof The proof parallels the construction from Beige!, Buhrman, and Fort-

now [4], who construct an oracle such that pA = EBPA and NEXPA NPA. We will
use a similar setup.

Let MA be a nondeterministic linear time Turing machine such that the language
LA defined by

w ELA{::} #MA(w) mod 2 = 1

is EBPA complete for every A.
For every oracle A, let KA be the linear time computable complete set for NPA.

Let NKA be a deterministic machine that runs in time 2n and for every A accepts
a language HA that is complete for EXPNPA. We will construct A such that there
exists a n2 bounded advice function f such that for all w

{::} (0, w, 1lwl2
) EA (Condition 0),

{::} 3v lvl = jwj 2 and
(1,f(jwj),w,v) EA (Condition 1).

Condition 0 will guarantee that P = EBP, and Condition 1 will guarantee that
EXPNP C NP /poly.

We use the term 0-strings for the strings of the form (G, w, 1lwl 2
) and 1-strings

for the strings of the form (1, z, w, v) with jzj = lvl = jwj2 . All other strings we
immediately put in A.

First we give some intuition for the proof. M is a linear time Turing machine.
Therefore setting the 1-strings forces the setting of the G-strings. Condition 0 will be
automatically fulfilled by just describing how we set the 1-strings because they force
the G-strings as defined by Condition G.

Fulfilling Condition 1 requires a bit more care since NKA (x) can query exponen
tially long and double exponentially many 0- and ~~strings. We consider each I-string
(1, z, w, v) as a 0-1 valued variable Y(z,w,v) whose value determines whether (1, z, w, v)
is in A. The construction of A will force a 1-1 correspondence between the compu
tation of NKA(x) and a low-degree polynomial over variables with values in GF[2].
To encode the computation properly we use the fact that the OR function has high
degree.

We will assign a polynomial Pz over GF[2] to all of the G-strings and 1-strings z.
We ensure that for all z

RANDOMNESS IS HARD 1495

1. ifpz = 1, then z is in A;
2. if Pz = 0, then z is not in A.

First for each 1-string z = (1, z, w, v) we let Pz be the single variable polynomial
Y(z,w,v)·

We assign polynomials to the G-strings recursively. Note that MA(x) can only
query 0-strings with lwl :$ JiX[. Consider an accepting computation path 7r of M(x)
(assuming the oracle queries are guessed correctly). Let Qn,1, •.• , Qn,m be the queries
on this path and b11",l, ... , bn,m be the query answers with bn,i = 1 if the query was
guessed in A, and bn,i = 0 otherwise. Note that m :$ n = lxl.

Let P be the set of accepting computation paths of M(x). We then define the
polynomial Pz for z = (O,x, ilxl2

) as follows:

(1) Pz = L II (pq,.,i + bn,i + 1).
nE'P 1$i:5m

Remember that we are working over GF[2] so addition is parity.
Setting the variables Y(z,w,v) (and thus the 1-strings) forces the values of Pz for the

0-strings. We have set things up properly so the following lemma is straightforward.
LEMMA 4.4. For each G-string z = (G, x, ilxl 2

) we have Pz = #MA(x) mod 2 an.d
Condition 0 can be satisfied. The polynomial Pz has degree at most lxl2 .

Proof The proof is simple by induction on lxl. D
The construction will be done in stages. At stage n we will code all the strings of

length n of HA into A setting some of the I-strings and automatically the G-strings
and thus fulfilling both Conditions G and 1 for this stage.

We will need to know the degree of the multivariate multilinear polynomials
representing the OR and the AND function.

LEMMA 4.5. The representation of the function OR(ui, ... , um) and the function
AND(u1 , ... , um) as multivariate multilinear polynomials over GF[2] requires degree
exactly m.

Proof Every function over GF[2] has a unique representation as a multivariate
multilinear polynomial.

Note that AND is just the product and by using DeMorgan's laws we can write
OR as

OR(u1, .. ., Um) = 1 + II (1 + Ui)· D
1$i:5m

The construction of the oracle now treats all strings of length n in lexicographic
order. First, in a forcing phase in which the oracle is set so that all computations
of NKA remain fixed for future extensions of the oracle, and then in a coding phase
in which first an advice string is picked and then the computations just forced are
coded in the oracle in such a way that they can be retrieved by an NP machine with
this advice string. Great care has of course to be taken so that the two phases don't
disturb each other and do not disturb earlier stages of the construction.

We first describe the forcing phase. Without loss of generality, we will assume
that machine N queries only strings of the form q E KA. Note that since N runs in
time 2n it may query exponentially long strings to KA.

Let x1 be the first string oflength n. When we examine the computation of N(x1)

we encounter the first query Q1 to KA. We will try to extend the oracle A to A' ;;;:> A
such that q1 E KA'. If such an extension does not exist we may assume that q1 will

1496 HARRY BUHRMAN AND LEEN TORENVLIET

never be in KA no matter how we extend A in the future. We must, however, take
care that we will not disturb previous queries that were forced to be in KA. To this
end we will build a set S containing all the previously encountered queries that were
forced to be in KA. We will only extend A such that \:/q ES it holds that q E KA'.
We will call such an extension an S-consistent extension of A.

Returning to the computation of N(x1) and q1 we ask whether there is an S
consistent extension of A such that q1 E KA'. If such an extension exists, we will
choose the S-consistent extension of A which adds a minimal number of strings to A
and puts q1 in S. Next we continue the computation of NKA (xi) with q1 answered
yes, and otherwise we continue with qi answered no. The next lemma shows that a
minimal extension of A will never add more than 23n strings to A.

LEMMA 4.6. Let S be as above and q be any query to KA and suppose we are in
stage n. If there exists an S-consistent extension of A such that q E. KA', then there
exists one that adds at most 23n strings to A.

Proof Let Mx be a machine that accepts KA when given oracle A and consider
the computation of machine M~(q). Let 01, ... , 01 be the smallest set of strings such
that adding them to A is an S-consistent extension of A such that M{ (q) accepts.
(A' = AU {o1, ... ,oz}.) Consider the leftmost accepting path of M~' (q) and let
q~, ... , q2n be the queries (both 0- and I-queries) on that path. Moreover let bi be 1
iff q; E A'. Define for q the following polynomial:

(2) Pq = II (Pq; + bi + 1).
1$i~2n

After adding the strings o1 , ... , 01 to A we have that Pq = l. Moreover by
Lemma 4.4 the degree of each Pqi is at most 22n and hence the degree of Pq is at
most 23n. Now consider what happens when we take out any number of the strings
o1, ... , oz of A' resulting in A". Since this was a minimal extension of A it follows that
Mf' (q) rejects and that Pq = 0. So Pq computes the AND on the l strings o1 , .•. , oz.
Since by Lemma 4.5 the degree of the unique multivariate multilinear polynomial that
computes the AND over l variables over GF[2] is l, it follows that l ::::; 23n. D

After we have dealt with all the queries encountered on NKA (x 1) we continue
this process with the other strings of length n in lexicographic order. Note that since
we only extend A S-consistently we will never disturb any computation of NKA on
lexicographic smaller strings. This follows since the queries that are forced to be
yes will remain yes, and the queries that could not be forced with an S-consistent
extension will never be forced by any S' -consistent extension of A for S C S'. After
we have finished this process we have to code all the computations of N on the strings
of length n. It is easy to see that [[Sii ::::; 22n and that at this point by Lemma 4.6 at
most 25n strings have been added to A at this stage. Closing the f arcing phase we
can now pick an advice string and proceed to the coding phase. A standard counting
argument shows that there is a string z of length n2 such that no strings of the form
(1, z, w, v) have been added to A. This string z will be the advice for strings of
length n.

Now we have to show that we can code every string x of length n correctly in A
to fulfill Condition 1. We will do this in lexicographic order. Suppose we have coded
all strings Xj (for j < i) correctly and that we want to code Xi. There are two cases.

Case l. NKA (xi) = 0. In this case we put all the strings (1, z, Xi, w) in A
and thus set all these variables to 0. Since this does not change the oracle it is an
S-consistent extension.

RANDOMNESS IS HARD 1497

Case 2. NKA (xi) = 1. We properly extend AS-consistently adding only strings
of the form (1, z, Xi, w) to A. The following lemma shows that this can always be
done. A proper extension of A is one that adds one or more strings to A.

LEMMA 4.7. Let llSll ~ 22n be as above. Suppose that NKA(xi) = 1. There exists
a proper S-consistent extension of A adding only strings of the form (1, z, xi, w) with
lwl =n2.

Proof Suppose that no such proper S-consistent extension of A exists. Consider
the following polynomial:

(3) QXi = 1 - IT (Pq),
qES

where Pq is defined as in Lemma 4.6, equation (2). Initially Qx; = 0 and the degree
of Qx; :$ 25n. Since every extension of A with strings of the form {l, z, Xi, w) is not
S-consistent it follows that Qx; computes the OR of the variables Y(z,x;,w)' Since

2
there are 2n many of those variables we have by Lemma 4.5 a contradiction with the
degree of Qx;. Hence there exists a proper S-consistent extension of A adding only
strings of the form (1, z, Xi, w), and Xi is properly coded into A. D

Stage n ends after coding all the strings of length n.
This completes the proof of Theorem 4.3. D
Theorem 4.3 together with the proof of Lemma 4.2 also gives the following corol

lary.
COROLLARY 4.8. There exists a relativized world where EXPNP is in BPP and

EBP = P.
Our oracle also extends the oracle of Ko [17] to CDpoly complexity as follows.

COROLLARY 4.9. There exists an oracle such that Rff for any t E w(nlog(n))
and E > 0 is complete for NP under strong nondetermi~istic reductions and pNP

:f. E~.
Proof The relativized world constructed in the proof of Theorem 4.3 is a world

where coNP <::;; BPP and CP01Y(xiy) = CDP01Y(xiy) + 0(1). Hence it follows that

Rf f E NP. Moreover Corollary 3.12 relativizes so by item 1 we have that BPP <::;;

NPRf~. 0
As a by-product our oracle shows the following.
COROLLARY 4.10. 3A unique-SAT A E pA and pNPA :f. E~·A.
This corollary indicates that the current proof that shows that if unique-SAT

E P, then PH = E~ cannot be improved to yield a collapse to pNP using relativizing
techniques.

5. PSPACE and cR;s. In this section we further study the connection be
tween cR_:s and interactive proofs. So far we have established that strings that have
sufficiently high CNDpoly complexity can be used to derandomize an IP protocol that
has two rounds in such a way that the role of both the prover and the verifier can
be played by an NP oracle machine. Here we will see that this is also true for IP
itself provided that the random strings have high enough space bounded Kolmogorov
complexity. The set of QBFs is defined as the closure of the set of boolean variables
Xi and their negations Xi under the operations/\, V, V'xi, and 3xi· A QBF in which
all the variables are quantified is called closed. Other QBFs are called open. We need
the following definitions and theorems from [24].

1498 HARRY BUHRMAN AND LEEN TORENVLIET

DEFINITION 5.1 (see [24]). A QBF B is called simple if in the given syntactic

t t•on every occurrence of each variable is separated from its point of quanrepresen a • . . .)
t :;;; t · , b•i at most one universal quantifier (and arbitrarily many other symbols . 1;,ca .wr. I•

For technical reasons we also assume that (simple) QBFs can contain negated
variables, but 110 other negations. This is no loss of generality since negations can be
pushed all the way down to variables.

DEFINITION 5.2 (see [24]). The arithmetization of a (simple} QBF B is an
arithmetic expression obtained from B by replacing every positive occurrence of Xi by
vciriable z;, every negated occurrence of X; by (1 - Zi), every /\ by x, every V by +,
every Vx; by Tiz;E{O,l}' and every 3xi by 2=z;E{0,1}·

It follows that the arithmetization of a (simple) QBF in closed form has an in
teger value, whereas the arithmetization of an open QBF is equivalent to a (possibly
multiv-ariate) function.

DEFINITION 5.3 (see [24]). The functional form of a simple closed QBF is the
urii1•ariate function that is obtained by removing from the arithmetization of B ei
ther " { } or TI . E{O l} where i is the least index of a variable for which this is L...z,E 0.1 z, ,
possible.

Notation. Let B be a (simple) QBF with quantifiers Qi, ... , Qk. For i ::::; k we
Jet *i = + if Qi = 3 and *i = x if Qi = V. Let B be a QBF. Let B' b~ the
boolean formula obtained from B by removing all its quantifiers. We denote by B the
arithmetization of B'. It is well known that the language of all true QBFs is complete
for PSPACE. The restriction of true QBFs to simple QBFs remains complete.

THEOREM 5.4 (see [24]). The language of all closed simple true QBFs is complete
for ?SPACE (under polynomial time many-one reductions).

It is straightforward that the arithmetization of a QBF takes on a positive value
iff the QBF is true. This fact also holds relative a not-too-large prime.

THEOREM 5.5 (see [24]). A simple closed QBF B is true iff there exists a prime
number P of size polynomial in IBI such that the value of the arithmetization of B is
positive modulo P. Moreover if B is false, then the value of the arithmetization of B
is 0 modulo any such prime.

THEOREM 5.6 (see [24)). The functional form of every simple QBF can be rep
resented by a univariate polynomial of degree at most 3.

THEOREM 5. 7 (see [24]). For every simple QBF there exists an interactive pro
tocol with prover P and polynomial time bounded verifier V such that

1. when B is true and P is honest, V always accepts the proof;
2. when B is false, V accepts the proof with negligible probability.

The proof of Theorem 5.7 essentially uses Theorem 5.6 to translate a simple QBF
to a polynomial in the following way. First, the arithmetization of a simple QBF B in
closed form is an integer value V which is positive iff B is true. Then B's functional
form F (recall that this is arithmetization of the QBF that is obtained from B by
deleting the first quantifier) is a univariate polynomial p1 of degree at most 3 which
has the property that P1 (0) *1 p1 (1) = V. Substituting any value r 1 in p1 gives a new
integer value Vi, which is of course the same value that we get when we substitute r 1 in
F. However, F(r1) can again be converted to a (low-degree) polynomial by deleting its
first L o~ TI sign, and the above game can be repeated. Thus, we obtain a sequence of
polynomials. From the first polynomial in this sequence V can be computed. The last
polynomial Pn has the property that Pn (ri, ... , r n) = f3 (r 1, ... , r n). Two more things
are needed: First, if any other sequence of polynomials q1 , ... , qn has the property
that q1 (0) *1 q1 (1) =/:. V, Q;+1 (O)*i+l qi+l (1) = qi (ri), and Qn (rn) = B(r1, .. ., rn),

RANDOMNESS IS HARD 1499

then there has to be some i where qi(ri) = Pi(ri), yet qi -=!= Pi· That is, ri is an
intersection point of Pi and qi· Second, all calculations can be done modulo some
prime number of polynomial size (Theorem 5.5). We summarize this in the following
observation, which is actually a skeleton of the proof of Theorem 5.7.

OBSERVATION 5.8 (see [24, 22]). Let B be a closed simple QBF wherein the
quantifiers are Q1, ... Qn if read from left to right in its syntactic representation. Let
A be its arithmetization, and let V be the value of A. There exist a prime number P
of size polynomial in IBI such that for any sequence r 1 , ... , Tn of numbers taken from
[l..P] there is a sequence of polynomials of degree at most 3 and size polynomial ·in
I BI such that

l. Pi(0)*1P1(l) = V and V > 0 iff Bis true;
2. Pi+l (0) *i+i Pi+i(l) = Pi(ri);
3. Pn(rn) = B(r1, ... ,rn);
4. for any sequence of univariate polynomials q1 , ..• , qn such that

(a) P1(0)*1P1(l)-=!= qi(0)*1 q1(l) and
(b) qi+l(O)*i+1qH1(l) = qi(ri) and
(c) qn(rn) = B(r1, .. ., rn),

there is a minimal i such that Pi -=!= qi, yet Pi (r;) = qi (ri). That is, ri is an
intersection point of Pi and qi.

Where all (in) equalities hold modulo P and hold modulo any prime of polynomial size
·if B is false. Moreover, Pi can be computed in space (IBI + IPl)2 from B, P, and
ri, ... ,ri-1·

From this reformulation of Theorem 5.7 we obtain that for any sequence of uni
variate polynomials q1, ... , qn and sequence of values r 1 , •.• , r n that satisfy items 2
and 3 in Observation 5.8 it holds that either qi(O) *i q1 (1) is the true value of the
arithmetization of B, or there is some polynomial qi in this sequence such that ri
is an intersection point of Pi and qi (where Pi is as in Observation 5.8). As Pi can
be computed in quadratic space from B, P, and ri, ... , ri-l it follows that in the
latter case ri cannot have high space bounded Kolmogorov complexity relative to B,
P, qi, ... ,qi, r 1 , .. . ,ri-i· Hence, if ri does have high space bounded Kolmogorov
complexity, then ri is not an intersection point, so the first case must hold (i.e., the
value computed from qi is the true value of the arithmetization of B). The following
lemma makes this precise.

LEMMA 5.9. Assume the following for B, P, n, qi, ... , qn, ri, ... , rn, and Yi, ... , Yn·
l. B is a simple false closed QBF on n variables.
2. P is a prime number;:: 21 8 1 of s'ize polynomial ·in IBI.
3. qi ... qn is a sequence of polynomials of degree 3 with coefficients in [LP].
4. ri, ... , r n are numbers in [l..P].
5. Y1 = B#P#q1# ... #qn and Yi+l = Yi#ri.

n2
6. CS (ri I Yi) 2: IPI.
7. (Vi 2: 2)[qi-1(ri-i) = qi(O)*i qi(l) mod P].
8. B(r1,. .. , rn) = qn(rn) mod P.

Then q1 (0)*1 q1(1) = 0 mod P.
Proof. Take all calculations modulo P. Suppose qi (0) *1 q1 (1)-=!= 0. It follows from

Observation 5.8 that there exists a sequence Pi, ... ,Pn satisfying items 1 through 3
of that lemma. Furthermore since B is false p1 (0) *i p1 (1) = 0 modulo any prime, so
Pi (0) * i P1 (1) -=!= qi (0) * i qi (1). It follows that there must be a minimal i such that
Pi -=!=qi and r; is an intersection point of Pi and q;. However, Pi can be computed in
space (IBI + IPl)2 from B, P, and r1, ... , ri-1· As both Pi and qi have degree at most

1500 HARRY BUHRMAN AND LEEN TORENVLIET

2
3, it follows that csn (r; I Yi) is bounded by a constant-a contradiction. 0

This suffices for the main theorem of this section. Let s be any polynomial.
THEOREM 5.10. PSPACE ~ NPcR~s.
Proof We prove the lemma for s(n) = n2 , but the proof can by padding be

extended to any polynomial. There exists an NP oracle machine that accepts the
language of all simple closed true QBFs as follows. On input B first check that B
is simple. Guess a prime number P ;::: 2\BI of size polynomial in IBI, a sequence of
polynomials P1, ... ,pn of degree at most 3 and with coefficients in [l..P]. Finally
guess a sequence of numbers r 1 , ... , rn all of size IPI. Check that

1. P1(0)-*1P1(l) > 0 and
2. Pi+1(0)-*H1Pi+i(l) =pi(ri) and
3. Pn(rn) = B(r'i, ... , Tn) and

2
4. finally that (Vi~ n)[csn (r;IYi) ~ IPI].

If Bis true, Lemma 5.8 guarantees that these items can be guessed such that all
tests are passed. If Bis false and no other test fails, then Lemma 5.9 guarantees that
P1(0)*1P1(l) = 0, so the first check must fail. 0

By the fact that PSPACE is closed under complement and the fact that cR78 is
also in PSPACE Theorem 5.10 gives that cR78 is complete for PSPACE under strong
nondeterministic reductions)21].

COROLLARY 5.11. cR7 is completeforPSPACE under strong nondeterministic
reductions.

Buhrman and Mayordomo [10] showed that for t(n) = 2n k, the set Rf = { x :
ct(x) 2: lxl} is not hard for EXP under deterministic Turing reductions. In The
orem 5.10 we made use of the relativized Kolmogorov complexity (i.e., CS5 (xly)).
Using exactly the same proof as in [10] one can prove that the set cRf = { (x, y) :
ct(xly) ;::: lxl} is not hard for EXP under Turing reductions. On the other hand the
proof of Theorem 5.10 also works for this set: PSPACE ~ NPcRf. We suspect that
it is possible to extend this to show that EXP ~ NPcRf. So far, we have been unable
to prove this.

Acknowledgments. We thank Paul Vitanyi for interesting discussions and pro
viding the title of this paper. We also thank two anonymous referees, who helped
with a number of technical issues that cleared up much of the proofs and who pointed
us to more correct references. One of the referees also pointed out Corollary 4.8.

REFERENCES

[1 J L. BABA!, Trading group theory for randomness, in Proceedings of the 17th ACM Symposium
on Theory of Computing, Providence, RI, 1985, pp. 421-429.

[2] J. BALCAZAR, J. DIAZ, AND J. GABARRO, Structural Complexity I, Springer-Verlag, Berlin,
1988.

[3] J.M. BARZDIN, Complexity of programs to determine whether natural numbers not greater than
n belong to a recursively enumerable set, Dok!. Akad. Nauk SSSR, 9 (1968), pp. 1251-1254.

[4] R. BEIGEL, H. BUHRMAN, AND L. FOR.TNOW, NP might not be as easy as detecting unique
solutions, in Proceedings of the 30th ACM Symposium on Theory of Computing, Dallas,
TX, ACM, New York, 1998, pp. 203-208.

[5] R. BOOK, S. GREIBACH, AND B. WEGBREIT, Time- and tape-bound Turing acceptors and afi's,
J. Comput. System Sci., 4 (1970), pp. 606-621.

[6] H. BUHRMAN AND L. FORTNOW, Resource bounded Kolmogorov complexity revisited, in Pro
ceedings of the 14th Annual Symposium on Theoretical Computer Science, Lecture Notes
in Comput. Sci. 1200, Springer-Verlag, Berlin, 1997, pp. 105-116.

[7] H. BUHRMAN AND L. FORTNOW, Resource Bounded Kolmogorov Complexity Revisited, manu
script, available from http:/ /www.neci.nj.nec.com/homepages/fortnow /.

RANDOMNESS IS HARD 1501

[8] H. BUHRMAN, L. FORTNOW, AND L. TORENVLIET, Six hypothe1Ses in search of a theorem. in
Proceedings of the 12th Annual IEEE Conference on Computational Complexity. Ulm,
Germany, 1997, pp. 2-12.

[9] H. BUHRMAN AND S. HOMER, Superpolynomial circ·uits, almost spar·se oracles and the e.rpo
nential hierarchy, in Proceedings of the 12th Conference on the Foundations of Softwar<"
Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci. (\52. R. Shya
masundar, ed., Springer-Verlag, Berlin, 1992, pp. 116-· 127.

[10] H. BUHRMAN AND E. MAYORDOMO, An excursion to the kolmogorov random strings. in Pro
ceedings of the lOth Annual Conference on Structure in Complexity Theory. l\!inneapolis.
MN, 1995, IEEE Computer Society Press, Los Alamitos, CA, pp. 197-205.

[11] H. BUHRMAN AND L. TORENVLIET, Complete sets and structure in subrecursive classes, in
Lecture Notes Logic 12, Springer-Verlag, Berlin, 1998, pp. 45-78.

[12] L. FORTNOW AND M. KUMMER, Resource-bounded instance complexity, Theoret. Comput.
Sci. A, 161 (1996), pp. 123-140.

[13] M. FURER, 0. GoLDREICH, Y. MANSOUR, 1\1. SIPSER, AND S. ZACHOS. On completeness and
soundness in interactive proof systems, in Randomness and Computation. Advances in
Computing Research 5, S. Micali, ed., JAI Press, Greenwich. CT, 1989. pp. 429 ... 442.

[14] J. HARTMANIS, Generalized Kolmogorov complexity and the stmcture of feasible computations.
in Proceedings of the 24th IEEE Symposium on Foundations of Computer Science. Tucson.
AZ, 1983, pp. 439--445.

[15] J. HARTMANIS AND R. STEARNS, On the computational complexity of algorithms, Trans. Arner.
Math. Soc., 117 (1965), pp. 285-306.

[16] F. HEN NIE AND R. STEARNS, Two tape simulat'ion of multi tape Turing machines. J. AC!\!, 13
(1966), pp. 533-546.

[17] K .-I Ko, On the complexity of learning m'inimum i'ime-bounded turing machines. S!Al\1 J.
Comput., 20 (1991), pp. 962-986.

[18] 1\1. KUMMER, On the complexity of random strings (extended abstract}, in Proceedings of the
13th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Comput. Sci. 1046, Springer-Verlag, Berlin, 1996, pp. 25-36.

[19] L. LEVIN, personal communication, 1994.
[20] M. LI AND P. VITA.NY!, An Introduction to Kolmogorov Comple:i:ity and Its Applications, 2nd

ed., Grad. Texts Comput. Sci., Springer-Verlag. Berlin, 1997.
[21] T. LONG, Strong nondeterministic polynomial-fone reducibilities. Theoret. Comput. Sci., 21

(1982), pp. 1-25.
[22] C. LUND, L. FORTNOW, H. KARLOFF, AND N. N18AN, Algebraic methods for interactive proof

systems, J. ACM, 39 (1992), pp. 859-868.
[23] D. MARTIN, Completeness, the recursion theorem and effectively simple sets, Proc. Amer. Math.

Soc., 17 (1966), pp. 838-842.
[24] A. SHAMIR, IP= ?SPACE, J. ACM, 4 (1992), pp. 869-877.
[25] M. SIPSER, A complexity theoretic approach to randomness, in Proceedings of the 15th AC11

Symposium on Theory of Computing, Boston, MA. 1983, pp. 330 .. 335.
[26] L. VALIANT AND V. VAZIRANI, NP is as easy as detecting unique solutions, Theoret. Comput.

Sci., 47 (1986), pp. 85-93.
[27] C. K. YAP, Some consequences of non-uniform conditions on uniform classes, Theoret. Com-

put. Sci., 26 (1983), pp. 287-300. . . , , , ...
[28] S. ZACHOS, Probabilistic quantifiers and games, J. Comput. System Sci., 36 (1988), pp. 433-451.
[29] D. ZUCKERMAN, Randomness-optimal sampling, extractors, and constr:ictwe l.eader e~ection,

in Proceedings of the 28th ACM Symposium on Theory of Computmg. Pl11ladelph1a, PA.

1996, pp. 286-295.

