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RANDOMNESS IS HARD* 

HARRY BUHRMANt AND LEEN TORENVLIET+ 

Abstract. We study the set of incompressible strings for various resource bounded versions 
of Kolmogorov complexity. The resource bounded versions of Kolmogorov complexity we study 
are polynomial time CD complexity defined by Sipser, the nondeterministic variant CND due to 
Buhrman and Fortnow, and the polynomial space bounded Kolmogorov complexity CS introduced 
by Hartmanis. For all of these measures we define the set of random strings RfD, Rf ND, and Rf8 

as the set of strings x such that CDt(x), CND 1(x), and CS 8 (x) is greater than or equal to the length 
of x for s and t polynomials. We show the following: 

RCD 
• MA~ NP t , where MA is the class of Merlin-Arthur games defined by Babai. 
• AM~ NPRfND, where AM is the class of Arthur-Merlin games. 
• PSPACE ~ NPcRfs. 

In the last item cRf8 is the set of pairs (x, y) so that x is random given y. These results 
show that the set of random strings for various resource bounds is hard for complexity classes under 
nondeterministic reductions. 

This paper contrasts the earlier work of Buhrman and Mayordomo where they show that for 
polynomial time deterministic reductions the set of exponential time Kolmogorov random strings is 
not complete for EXP. 
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1. Introduction. The holy grail of complexity theory is the separation of com­
plexity classes like P, NP, and PSPACE. It is well known that all of these classes 
possess complete sets and that it is thus sufficient for a separation to show that a 
complete set of one class is not contained in the other. Therefore lots of effort was 
put into the study of complete sets. (See [11].) 

Kolmogorov [19], however, suggested focusing attention on sets which are not 
complete. His intuition was that complete sets possess a lot of "structure" that 
hinders a possible lower bound proof. He suggested to look at the set of time bounded 
Kolmogorov random strings. In this paper we will continue this line of research and 
study variants of this set. 

Kolmogorov complexity measures the "amount" of regularity in a string. Infor­
mally the Kolmogorov complexity of a string x, denoted as C(x), is the size of the 
smallest program that prints x and then stops. For any string x, C(x) is less than or 
equal to the length of x (up to some additive constant). Those strings for which it 
holds that C ( x) is greater than or equal to the length of x are called incompressible 
or random. A simple counting argument shows that random strings exist. 
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In the sixties, when the theory of Kolmogorov complexity was developed, Mar­
tin [23] showed that the coRE set of Kolmogorov random strings is complete with 
respect to (resource unbounded) Turing reductions. Kummer [18] has shown that 
this can be strengthened to show that this set is also truth-table complete. 

The resource bounded version of the set of random strings was first studied by 
Ko [17]. The polynomial time bounded Kolmogorov complexity GP ( x) for p a polyno­
mial is the smallest program that prints x in p(lxl) steps [14]. Ko showed that there 
exists an oracle such that the set of random strings with respect to this time bounded 
Kolmogorov complexity is complete for coNP under strong nondeterministic polyno­
mial time reductions. He also constructed an oracle where this set is not complete for 
coNP under deterministic polynomial time Turing reductions. 

Buhrman and Mayordorno [10] considered the exponential time Kolmogorov ran­
dom strings. The exponential time Kolrnogorov complexity ct(x) is the smallest 

program that prints x in t(lxl) steps for functions t(n) = 2nk. They showed that the 
set oft( n) random strings is not deterministic polynomial time Turing hard for EXP. 
They showed that the class of sets that reduce to this set ha..'> p measure 0 and hence 
that this set is not even weakly hard for EXP. 

The results in this paper contrast those from Buhrman and Mayordomo. We 
show that the set of random strings is hard for various complexity classes under 
nondeterministic polynomial time reductions. 

We consider three well-studied measures of Kolmogorov complexity that lie in 
between GP(x) and Gt(x) for p a polynomial and t(n) = 2nk. We consider the 
distinguishing complexity as introduced by Sipser [25]. The distinguishing complexity, 
GDt(x), is the size of the smallest program that runs in time t(n) and accepts x and 
nothing else. We show that the set of random strings RfD = {x I CDt(x) 2:: lxl} for 
t a fixed polynomial is hard for MA under nondeterministic reductions. MA is the 
class of Merlin-Arthur games introduced by Babai [l]. As an immediate consequence 
we obtain that BPP and NPBPP are in NPRfD. 

Next we shift our attention to nondeterministic distinguishing complexity [6], 
CNDt(x), which is defined as the size of the smallest nondeterministic algorithm that 
runs in time t(n) and accepts only x. We define RfND = {x : CNDt(x) 2:: lxl} 
for t a fixed polynomial. We show that AM i;; NPRfND, where AM is the class of 
Arthur-Merlin games [1]. It follows that the complement of the graph isomorphism 
problem, GI, is in NPRfND and that if for some polynomial t, RfND E NP n coNP, 
then GI E NP n coNP. 

The s(n) space bounded Kolmogorov complexity CSs(xly) is defined as the size 
of the smallest program that prints x, given y, and uses at most s(lxl + IYI) tape 
cells [14]. Likewise we define cR,?8 = {(x,y): CS5 (xly) ~ lxl} for s(n) a polynomial. 
We show that PSPACE i;; NPcR;'s. 

For the first two results we use the oblivious sampler construction of Zucker­
man [29], a lemma [6] that measures the size of sets in terms of GD complexity, and 
we prove a lemma that shows that the first bits of a random string are in a sense 
more random than the whole string. For the last result we make use of the interactive 
protocol [22, 24] for quantified boolean formulas ( QBFs). 

To show optimality of our results for relativizing techniques, we construct an or­
acle world where our first result cannot be improved to deterministic reductions. We 
show that there is an oracle such that BPP g; pRfD for any polynomial t. The con­
struction of the oracle is an extension of the techniques developed by Beige!, Buhrman, 
and Fortnow [4]. 
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2. Definitions and notations. We assume the reader is familiar with standard 
notions in complexity theory as can be found, e.g., in [2]. Strings are elements of E*, 
where E = {O, l}. For a strings and integers n,m:::; JsJ we use the notation s[n .. m] 
for the string consisting of the nth through mth bit of s. We use ,\ for the empty 
string. We also need the notion of an oblivious sampler from [29]. 

DEFINITION 2.1. A universal (r, d, m, E, 1)-oblivious sampler is a deterministic 
algorithm which on input a uniformly random r-bit string outputs a sequence of points 
z1 1 ••• ,zd E {O,l}m such that for any collection ofdfunctions fi, ... ,fd: {O,l}m r+ 

[O, l] it is the case that 

(where Efi = 2-m 2=zE{O,l}= fi(z)). 
In our application of this definition, we will always use a single function f. 
Fix a universal Turing machine U and a nondeterministic universal machine UN. 

All our results are independent of the particular choice of universal machine. For 
the definition of Kolmogorov complexity we need the fact that the universal machine 
can, on input p, y, halt and output a string x. For the definition of distinguishing 
complexity below we need the fact that the universal machine on input p, x, y can 
either accept or reject. We also need resource bounded versions of this property. 

We define the Kolmogorov complexity function C(xJy) (see [20]) by C(xly) = 
min { IPI : U (p, y) = x}. We define unconditional Kolmogorov complexity by C ( x) = 
C(xl,\). Hartmanis [14] defined a time bounded version of Kolmogorov complexity, 
but resource bounded versions of Kolmogorov complexity date back as far as [3]. (See 
also [20].) Sipser [25] defined the distinguishing complexity CD1. 

We will need the following versions of resource bounded Kolmogorov complexity 
and distinguishing complexity. 

{ 
(1) 

• CS8 (xly) = min IPI : (2) 

(See [14].) 

• CDt(xly) = min IPI : m { 
(1) 

(See [25].) 

-· CNDt(xly) = min IPI : m { 
(1) 

(See [6].) 

U(p,y)=x; } 
U (p, y) uses at most . 
s(lxl + IYl) tape cells 

U(p, x, y) accepts; 
(Vz f. x)U(p,z,y) rejects; 
(Vz E E*)U(p, z, y) runs in at most 
t(lul + IYI) steps 

UN(P, x, y) accepts; 
(Vz f. x)UN(P, z, y) rejects; 

} 

(Vz E E*)UN(P, z, y) runs in at most 
t(lzl + lyl) steps 

} 
For 0 < E :::; 1 we define the following sets of strings of "maximal" GDP and CNDP 

complexity. 
• Rf f = {x: CD 1(x),\) ~ E)x)}. 
• RffW = {x: CNDt(xJ>-) ~ E)xl}. 

Note that for E = 1 these sets are the sets mentioned in the introduction. In this 
case we will omit the E and use RfD and Rf ND. We also define the set of strings of 
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maximal space bounded complexity. 

The c in the notation is to emphasize that randomness is conditional. Also, cR.f 8 

technically is a set of pairs rather than a set of strings. The unconditional space 
bounded random strings would be 

R.f8 = {x: (x, ,\) E cR.78 }. 

We have no theorems concerning this set. 
The C complexity of a string is always upperbounded by its length plus some 

constant depending only on the choice of the universal machine. The CD and CND 
complexities of a string are always upperbounded by the C complexity of that string 
plus some constant depending again only on the particular choice of universal machine. 
All quantifiers used in this paper are polynomially bounded. Often the particular 
polynomial is not important for what follows, or it is clear from the context and is 
omitted. Sometimes we need explicit bounds. Then the particular bound is given as 
a superscript to the quantifier. For example, we use ::imy to denote "there exists a y 
with lul ::; m," or 1;f=nx to denote "for all x of length n." 

The classes MA and AM are defined as follows. 
DEFINITION 2.2. L E MA iff there e1:ists a lxlc time bounded mach·ine M such 

that 
l. x EL =? 3yPr[M(x, y, r) = l] > 2/3; 
2. x tj. L =? \fyPr[M(x, y, r) = 1] < 1/3, 

where r is chosen ·uniformly at random in {O, l}lxl". 

L E AI\1 iff there exists a lxlc time bounded machine lv1 s·uch that 

l. x EL =? Pr[:JyM(x,y,r) = l] > 2/3; 
2. x tj. L ==? Pr[3yM(x, y, r) = l] < 1/3, 

where r is chosen uniformly at random in {O, 1} lxl". 

It is known that NP U BPP s:;: MA s:;: AM~ PSPACE [l]. 
Let #M(x) represent the number of accepting computations of a nondeterministic 

Turing machine M on input x. A language L is in EBP if there exists a polynomial 
time bounded nondeterministic Turing machine M such that for all x: 

• x EL==? #M(x) is odd; 
• x f!-_ L ==? #M(x) is even. 

Let g be any function. We say that advice function f is g-bounded if for all n it 
holds that lf(n)I ::; g(n). In this paper we will be interested only in functions g that 
are polynomial. 

The notation S¥' is used for strong nondeterministic Tv.ring reductions, which 
are defined by A ::;~n B iff A E NP 8 U CoNP8 . 

3. Distinguishing complexity for derandomization. In this section we prove 
hardness ofRfD and Rf ND for AM and MA games, respectively, under NP-reductions. 

THEOREM 3.1. For any t with t(n) E w(nlogn), MA s:;: NPRfD. 

THEOREM 3.2. For any t with t(n) E w(n), AM s:;: NPRjwD. 
The proof of both theorems is roughly as follows. First guess a string of high 

CDpoly complexity, respectively, CNDpoly complexity. Next, we use the nondetermin­
istic reductions once more to play the role of Merlin and use the random string to 
derandomize Arthur. Note that this is not as straightforward as it might look. The 
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randomness used by Arthur in interactive protocols is used for hiding and cannot in 
general be substituted by computational randomness. 

The idea of using strings of high CD complexity and Zuckerman's sampler deran­
domization stems from [7, section 8], which is the full version of [6]. Though they do 
not explicitly define the set RfD, they use the same approach to derandomize BPP 
computations there. 

The proof needs a string of high GDP, respectively, CNDP complexity for p some 
polynomial. We first show that we can nondeterministically extract such a string from 
a longer string with high CDt complexity (respectively, CNDt complexity) for any 
fixed t with t(n) E w(nlogn). 

LEMMA 3. 3. Let f be such that 1 ( n) < n, and let t, t', and T be such that 

T(n) = (t'(f(n)) + n- f(n)), limn,_, 00 T(n)/(;{(n) = 0. Then for all sufficiently large 

s with CDt(s) > lsl, it holds that CD 11 (s[Lf(lsl)]) 2 f(lsl) - 2log ll(lsl)I - 0(1). 
Proof Suppose for a contradiction that for any constant do and infinitely many 

s with CDt(s) 2 lsl, it holds that CDt' (s[Lf(lsl)]) < l(lsl) - 2log l!(lsl)I - do. 
Then for any such s there exists a program Ps that runs in t'(f(lsl)) and recognizes 
only s[l..f(ls/)] where IPsl < f(/sl) - 2log 11(1.sl)I - do. The following program then 
recognizes 8 and no other string. 

Input y. 

Check that the first f(l.sl) bits of y equal s[l..l(isi)], using Ps· (Assume 
11(1.sl)I is stored in the program for a cost of log ll(lsl)I bits.) 
Check that the last lsl - 1(1.sl) bits of y equal s[f(lsl) +Lisi]. (These bits 
are also stored in the program.) 

This program runs in time T(lsl) = t'(f(lsl)) + lsl - f(lsl). Therefore it takes at most 
t(lsl) steps on U for all sufficiently large s [16]. We lose the logn factor here because 
our algorithm must run on a fixed machine and the simulation is deterministic. 

The program's length is IPsl + lsl - 1 (lsl) +log lf(lsl)\ +d1 < f (lsl)-2 log If (lsl) I­
da + lsl - l(lsl) +log lf(lsl)I + d1 1 which is less than lsl for almost all s. Hence 
CDt(s) < lsl, which contradicts the a..ssurnption. 0 

COROLLARY 3.4. For every polynomial nc, t E w( n log n) and sufficiently large 

strings with CDt(s) 2 lsl, if m = lsl~ and s' = s[l..m], then CD710 (s') 2 ls'I -
2 log ls'I - 0(1). 

Proof Take t'(n) = nc, f(n) = n~ and apply Lemma 3.3. 0 
Lemma 3.3 and Corollary 3.4 have the following nondeterministic analogon. 
LEMMA 3.5. For every polynomial nc, t E w(n) and sufficiently large str·ing s with 

CNDt(s) 2 lsl, ilm = lsl~ ands' = s[l..m], then CND71"(s') 2 ls'l-2logls'l-0(1). 
Proof The same proof applies, with a lemma similar to Lemma 3.3. However, in 

the nondeterministic case the simulation costs only linear time [5]. 0 
Before we can proceed with the proof of the theorems, we altm need some earlier 

results. We first need the following theorem from Zuckerman. 
THEOREM 3.6 (see [29]). There is a constant c such that for '"Y = 1(m) 1 E = E(m), 

and a = a( m) with m - 1/ 2 log* m :::; a :::; 1 /2 and E 2 exp( -o:210g' mm), there exists a 
·universal (r, d, m, E, '"Y )-oblivious sampler which runs in polynomial time and uses only 
r = (1 + o:)(m + log1-1) random bits and outputs d = ((m + log1-1)/EY°' sample 
points, where c°' = c(log 0:-1) / o:. 

We also need the following lemma by Buhrman and Fortnow. 
LEMMA 3.7 (see [6]). Let A be a set in P. For each string x E A=n it holds that 

CDP(x) :::; 2 log(llA=71 \I) + O(logn) for some polynomial p. 
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As noted in [6], an analogous lemma holds for CNDP and NP. 
LEMMA 3.8 (see [6]). Let A be a set in NP. For each string x E A=n it holds 

that CNDP(x)::; 2log(llA=nll) + O(logn) for some polynomial p. 
From these results we can prove the theorems. If we want to prove, for Theo­

rem 3.1, that an NP machine oracle with oracle RfD can recognize a set A in MA, 
then the positive side of the proof is easy: If x is in A, then there exists a machine M 
and a stringy such that a 2/3 fraction of the strings r of length lxlc makes M(x, y, r) 
accept. So an NP machine can certainly guess one such pair x, y as a "proof" for 
x EA. The negative side is harder. We will show that if x ~A and we substitute for 
r a string of high enough CD complexity ( CND complexity for Theorem 3.2), then 
no y can make M(x,y,r) accept. 

To grasp the intuition behind the proof let us look at the much simplified example 
of a BPP machine M having a 1/3 error probability on input x and a string r of 
maximal unbounded Kolmogorov complexity. There are 2lxlc possible computations 
on input x, where lxlc is the runtime of M. Suppose that M must accept x. Then at 
most a 1/3 fraction, i.e., at most 2lxlc /3 of these computations reject x. Each rejecting 
computation consists of a deterministic part described by M and x and a set of lxlc 
coin flips. Identify such a set of coin flips with a binary string and we have that each 
rejecting computation uniquely identifies a string of length lxlc· Call this set B. We 
would like to show by contradiction that a random string cannot be a member of this 
set, and hence that any random string, used as a sequence of coin flips, leads to a 
correct result. Any string in B is described by M, x, and an index in B, which has 
length log llBll ::; \xlc - log 3. So far there are no grounds for a contradiction since a 
description consisting of these elements can have length greater than \xlc· However, 
we can amplify the computation of M on input x by repetition and taking majority. 
Suppose we repeat the computation lx\2 times. This will increase the number of 
incorrect computations to (at most) (~)lxl 2 /2 2lxlc+ 2 • An index in this set has length 

lxlc+2 - (\x\ 2 /2)lod. However, Ix!+ lxlc+2 - (lx\ 2 /2)1og~ cannot describe a random 

string of length \xlc+2 , which is the length of such a computation. 
Unfortunately, in our case the situation is a bit more complicated. The factor 

2 in Lemma 3. 7 renders standard amplifaction of randomized computation useless. 
Fortunately, Theorem 3.6 allows for a different type of amplification using much less 
random bits, so that the same type of argument can be used. We will now proceed 
to show how to fit the amplification given by Theorem 3.6 to our situation. 

LEMMA 3.9. 
1. Let L be a language in MA. For any constant k and any constant O < a s; ~, 

there exists a deterministic polynomial time bounded machine M such that 
(a) x EL =} 3myPr[M(x, y, r) = 1] = 1; 
(b) x~L =} 'V'myPr[M(x,y,r)=1]<2-km, 

where m = lxlc and r is chosen uniformly at random in {O, l}(l+Q)(l+k)m. 
2. Let L be a language in AM. For any constant k and any constant 0 < a s; ~, 

there exists a deterministic polynomial time bounded machine M such that ~ 
(a) x EL =} Pr[3yM(x,y,r) = 1] = 1; 
(b) x ~ L =} Pr[3yM(x,y,r) = 1] < 2-km, 

where m = \xlc and r is chosen uniformly at random in {O, 1 }(l+Q)(l+k)m. 
Proof 
1. Fiirer et al. showed that the fraction 2/3 (see Definition 2.2) can be replaced by 

1 in [13]. Now let ML be the deterministic polynomial time machine corresponding to 
L in Definition 2.2, adapted so that it can accept with probability 1 if x E L. Assume 
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ML runs in time nc (where n = Ix!). This means that for Nh the 3y and Vy in the 
definition can be assumed to be 3nc y and vn" y, respectively. Also, the random string 
may be assumed to be drawn uniformly at random from {O, l}n". 

To obtain the value 2-km in the second item, we use Theorem 3.6 with 'Y = 2-km, 
and€= 1/6. For given x and y let ixy be the FP function that on input z computes 
ML(x, y, z). If !YI = lzl = nc = m, then ixy : {O, l}m r--+ [O, l]. We use the oblivious 
sampler to get a good estimate for Eixy· That is, we feed a random string of length 
(l+a)(l+k)m in the oblivious sampler and it returns d = ((l+k)m/E)c,, sample points 

z1, ... , Zdon which we compute~ I:~=l ixy(zi). Mis the machine that computes this 
sum on input x, y, and r and accepts iff its value is greater than 1/2. 

If x EL, there is a y such that Pr[ML(x, y, r) = l] = 1. This means~ I:~=l fxy(zi) 
= 1 no matter which sample points are returned by the oblivious sampler. If x tJ. L, 
then (Vy)[Eixy < 1/3]. With probability 1 - 'Y the sample points returned by the 

oblivious sampler are such that I~ I:~=l fxy(zi) - Efxyl 5 €, so ~ I:~=l fxy(zi) > ~ 
with probability 5 2-km_ 

2. The proof is analogous to the proof of part 1. We just explain the differences. 
For the 1 in the first item of the claim we can again refer to [13]. In this part ML is 
the deterministic polynomial time machine corresponding to the AM-language L and 
we define the function ix : {O, l}m r--+ [O, 1] as the function that on input z computes 
3ncyML(x,y,z) = 1. Now ix is an ppNP computable function. The sample points 
z1 , ... , Zd that are returned in this case have the following properties. If :r E L, 
then fx(zi) = 1 no matter which string is returned as Zi. That is, for every possible 
sample point zi, there is a Yi such that ML(x, Yi, zi) = 1. So for any set of sample 
points z1 , ... , Zd that the sampler may return, there exists a y = (Y1, ... , Yd) such 
that ML(x, y;, z.;) = 1 '<:/i. If x rf. L, then fx(zi) = 1 for less than half of the sample 
points with probability 1 - 'Y· That is, 

is less than 2-km. So if we let M ( x, y, r) be the deterministic polynomial time machine 
that uses r to generate d sample points and then interprets y as (Y1, ... , Yd) and counts 
the number of accepts of ML(x, Yi, z;) and accepts if this number is greater than ~d, 
we get exactly the desired result. D 

In the next lemma we show that a string of high enough CDpoly ( CNDpoly) can 
be used to derandomize an MA (AM) protocol. 

LEMMA 3.10. 
1. Let L be a language in MA and 0 < E 5 1. There exists a deterministic 

polynomial time bounded machine M, a polynomial q, a > 0, and integers k and c 
such that for almost all n and every r with lrl = (1 + a)(l + k)nc and CDq(r) 2'. Eirl, 
v=nx[x EL {:::::::} 3yM(x, y, r) = l]. 

2. Let L be a language in AM and 0 < E 5 1. There exists a determinist'ic 
polynomial time bounded machine M a polynomial q, a > 0, and integers k and c 
such that for almost alln and everyr with lrl = (l+a)(l+k)nc and CNDq(r) 2'. Eirl, 
v=nx[x EL {:::::::} 3yM(x, y, r) = l]. 

Proof 
1. Choose a < ~ and k > ,_62°'. Let M be the deterministic polynomial time 

bounded machine corresponding to L, k, and a of Lemma 3.9(1). The polynomial nc 
will be the time bound of the machine witnessing L E MA of that same lemma. We 
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will determine q later, but assume for now that r is a string of length ( 1 +a) (I + k )nc 
such that CDq(r);::: Elr!, and for ease of notation set m = nc. 

Suppose x E L. Then it follows that there exists a y such that for all s of length 
(1 + a)(l + k)nc, M(x, y, s) = 1. So in particular it holds that M(x, y, r) = 1. 

Suppose x fj. L. We have to show that (\fy)[M(x, y, r) = OJ. Suppose that this is 
not true and let y0 be such that M(x, Yo, r) = 1. Define 

Ax,y0 = {s: M(x,yo,s) = 1}. 

It follows that Ax,yo E P by essentially a program that simulates M and has x and 
y0 hardwired. (Although Ax,yo is finite and therefore trivially in P it is crucial here 
that the size of the polynomial program is roughly IM!+ lxl + IYol-) Because of the 
amplification of the MA protocol we have that 

'I A II < 2(l+a)(l+k)m-km. x,yo -

Since r E Ax,yo it follows by Lemma 3. 7 that there is a polynomial p such that 

CDP(r)::; 2[(1 + o:)(l + k)m - km]+ lxl 
+ !Yol + O(logm) 

::; 2o:m + 2akm + 5m. 

On the other hand, we chose r such that 

CDq(r);::: clrl 
= (1 + a)(I + k)mE 

> 2am + 2o:km + 5m, 

which gives a contradiction for q ;::: p. 
2. Choose o: < ~ and k > €_520 • Let M be the deterministic polynomial time 

bounded machine corresponding to L, o:, and k of Lemma 3.9(2). Again, nc will 
be the time bound of the machine now witnessing L E AM, m = nc, and q will be 
determined later. Assume for now that r is a string of length (1 + o:)(l + k)nc such 
that CNDq(r) ;::: E!r!. Suppose x E L. Then it follows that for alls there exists a 
y such that M(x,y,s) = 1. So in particular there is a Yr such that M(x,yr,r) = 1. 
Suppose x tf. L. We have to show that \fyM(x, y, r) = 0. Suppose that this is not 
true. Define Ax= {s: 3yM(x,y,s) = 1}. Then Ax E NP by a program that has 
x hardwired, guesses a y, and simulates M. Because of the amplification of the AM 
protocol we have that l!Ax II ::; 2(l+a)(Hk)m-km. Since r E Ax it follows by Lemma 3.8 
that there exists a polynomial p such that 

CNDP(r) S 2[(1 + a)(l + k)m -km]+ Ix!+ O(logm) 

S 2am + 2akm + 4m. 

On the other hand, we chose r such that 

CNDq (r) 2: cir! 
= (1 + a)(l + k)mE 

> 2am + 2akm + 4m, 

which gives a contradiction whenever q ~ p. D 
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The following corollary shows that a string of high enough CDpoly complexity can 

be used to derandomize a BPP machine (see also [7, Theorem 8.2]). 

COROLLARY 3 .11. Let A be a set in BPP. For any E > 0 there exists a polynomial 

time Turing machine Mand a polynomial q such that if CDq(r) ;::: Elrl with lrl = q(n), 
then for all x of length n it holds that :r EA -<:==} M(:r, r) = 1. 

Proof of Theorem 3.1. Let A be a langtrnge in MA. Let q, M, and q'(n) = 

(1 + o:)(l + k)q(n) be as in Lemma 3.10(1). The noncleterministic reduction behaves 
as follows on input x of length n. First guess an s of size q( q' (n)) and check that 
s E RfD. Set r = s[l..q' (n)] and accept iff there exists a y such that M(:r, y, r) = 1. 

By Corollary 3.4 it follows that CDq (r) ;::: !rl/2 and the correctness of the reductions 
follows directly from Lemma 3.10(1) with E = 1/2. D 

Proof of Theorem 3.2. This follows directly from Lemma 3.10(2). The NP-
algorithm is analogous to the one above. D 

COROLLARY :3.12. FortEw(nlogn) 

1. BPP and NPBPP are included in NPR}"j); 
2. GI E NPRfND. 

It follows that if RfND E NP n coNP, then the graph isomorphism (Gl) problem 
is in NP n coNP. 

4. Limitations. In the previous section we showed that the set Rf D is hard for 
MA under NP reductions. One might wonder whether RfD is also hard for l\IA under 
a stronger reduction like the deterministic polynomial time Turing reduction. In this 
section we show that, if true, this will need a nonrelativizing proof. We will derive 
the following theorem. 

THEOREM 4.1. There is a relativized world where for every polynom.ial t and 

0 < E:::; 1, BPP <t. pR(,";'_ 

The proof of this theorem is given in Lemma 4.2, which says that the statement 
4 A NPA 4 

of Theorem 4.1 is true in any world where P' = tt!P and EXP t;;;; NP' /poly, 

and in Theorem 4.3, which precisely shows the existence of such a world. 

LEMMA 4.2, For any oracle A and 0 < E :::; 1 it hold8 that if EXPNPA C 

NPA /poly and EDPA = pA, then BPPA <t. pRi:~A. 
Proof. Suppose for a contradict.ion that the lemma is not true. If EXPNP c;;; 

NP /poly, then EXP t;;;; NP /poly, so EXP <;;: PH [27]. Furthermore, if EXPNP <;;; 

NP /poly, then certainly EXPNP t;;;; EXP /poly. It then follows from [9] that EXPNP = 
EXP, so EXPNP t;;;; PH. 

If EBP = P, then unique-SAT (see [8] for a definition) is in P. Then NP = R 
by [26] and so NP t;;;; BPP which implies PH t;;;; BPP by [28]. 

Finally, the fact that unique-SAT is in P is equivalent to the following: for all x 
and y, CP01Y(xly) ::::; CDpoly (:rly) +0(1), as shown in [12]. We can use the proof of [12] 

to show that unique-SAT in P also implies that Rf:f E coNP for a particular universal 
machine. (Note that we need only contradict the assumption for one particular type 
of universal machine.) This then .Jn its turn implies by assumption that BPP and 
hence EXPNP are in pNP. This, however, contradicts the hierarchy theorem for 

relativized Turing machines [15]. As all parts of this proof relativize, we get the result 

for any oracle. There's one caveat here. Though Rf:f A clearly has a meaningful 
RcLJA 

interpretation, to talk about P '·' one must of course allow P to have access to the 
oracle. It is not clear that P can ask any question if the machine can only ask a 

C'VA 

question about the random strings. Therefore, one might argue that pR1,, EllA should 
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actually be in the statement of the lemma. This does not affect the proof. 
Our universal machine, say, Us, is the following. On input p, x, y, Us uses the 

Cook-Levin reduction to produce a formula f on jxj variables with the property that 
x satisfies f iff p accepts x. Then Us uses the self-reducibility off and the assumed 
polynomial time algorithm for unique-SAT to make acceptance of x unique. That is, 
first if the number of variables is not equal jyj, it rejects. Then, using the well-known 
substitute and reduce algorithm for SAT, it verifies for i = 1, ... , jxj and assignments 
Xj = Vj successively obtained from the algorithm that the algorithm for unique-SAT 
precisely accepts f ( v1 ... Vi) or rejects if this algorithm accepts both f ( v1 ... Vi) and 
f(v1 ... (1 - Vi)). Using this universal machine every program accepts at most one 
string and therefore Rff E coNP via an obvious predicate. As argued above, this 
gives us our contradicti~n. D 

Now we proceed to construct the oracle. 
NPA A A THEOREM 4.3. There exists an oracle A such that EXP CNP /poly/\ EBP 

=PA. 
Proof The proof parallels the construction from Beige!, Buhrman, and Fort-

now [4], who construct an oracle such that pA = EBPA and NEXPA NPA. We will 
use a similar setup. 

Let MA be a nondeterministic linear time Turing machine such that the language 
LA defined by 

w ELA{::} #MA(w) mod 2 = 1 

is EBPA complete for every A. 
For every oracle A, let KA be the linear time computable complete set for NPA. 

Let NKA be a deterministic machine that runs in time 2n and for every A accepts 
a language HA that is complete for EXPNPA. We will construct A such that there 
exists a n2 bounded advice function f such that for all w 

{::} (0, w, 1lwl2
) EA (Condition 0), 

{::} 3v lvl = jwj 2 and 
(1,f(jwj),w,v) EA (Condition 1). 

Condition 0 will guarantee that P = EBP, and Condition 1 will guarantee that 
EXPNP C NP /poly. 

We use the term 0-strings for the strings of the form (G, w, 1lwl 2
) and 1-strings 

for the strings of the form (1, z, w, v) with jzj = lvl = jwj2 . All other strings we 
immediately put in A. 

First we give some intuition for the proof. M is a linear time Turing machine. 
Therefore setting the 1-strings forces the setting of the G-strings. Condition 0 will be 
automatically fulfilled by just describing how we set the 1-strings because they force 
the G-strings as defined by Condition G. 

Fulfilling Condition 1 requires a bit more care since NKA (x) can query exponen­
tially long and double exponentially many 0- and ~~strings. We consider each I-string 
(1, z, w, v) as a 0-1 valued variable Y(z,w,v) whose value determines whether (1, z, w, v) 
is in A. The construction of A will force a 1-1 correspondence between the compu­
tation of NKA(x) and a low-degree polynomial over variables with values in GF[2]. 
To encode the computation properly we use the fact that the OR function has high 
degree. 

We will assign a polynomial Pz over GF[2] to all of the G-strings and 1-strings z. 
We ensure that for all z 
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1. ifpz = 1, then z is in A; 
2. if Pz = 0, then z is not in A. 

First for each 1-string z = (1, z, w, v) we let Pz be the single variable polynomial 
Y(z,w,v)· 

We assign polynomials to the G-strings recursively. Note that MA(x) can only 
query 0-strings with lwl :$ JiX[. Consider an accepting computation path 7r of M(x) 
(assuming the oracle queries are guessed correctly). Let Qn,1, •.• , Qn,m be the queries 
on this path and b11",l, ... , bn,m be the query answers with bn,i = 1 if the query was 
guessed in A, and bn,i = 0 otherwise. Note that m :$ n = lxl. 

Let P be the set of accepting computation paths of M(x). We then define the 
polynomial Pz for z = (O,x, ilxl2

) as follows: 

(1) Pz = L II (pq,.,i + bn,i + 1). 
nE'P 1$i:5m 

Remember that we are working over GF[2] so addition is parity. 
Setting the variables Y(z,w,v) (and thus the 1-strings) forces the values of Pz for the 

0-strings. We have set things up properly so the following lemma is straightforward. 
LEMMA 4.4. For each G-string z = (G, x, ilxl 2

) we have Pz = #MA(x) mod 2 an.d 
Condition 0 can be satisfied. The polynomial Pz has degree at most lxl2 . 

Proof The proof is simple by induction on lxl. D 
The construction will be done in stages. At stage n we will code all the strings of 

length n of HA into A setting some of the I-strings and automatically the G-strings 
and thus fulfilling both Conditions G and 1 for this stage. 

We will need to know the degree of the multivariate multilinear polynomials 
representing the OR and the AND function. 

LEMMA 4.5. The representation of the function OR( ui, ... , um) and the function 
AND(u1 , ... , um) as multivariate multilinear polynomials over GF[2] requires degree 
exactly m. 

Proof Every function over GF[2] has a unique representation as a multivariate 
multilinear polynomial. 

Note that AND is just the product and by using DeMorgan's laws we can write 
OR as 

OR(u1, .. ., Um) = 1 + II (1 + Ui)· D 
1$i:5m 

The construction of the oracle now treats all strings of length n in lexicographic 
order. First, in a forcing phase in which the oracle is set so that all computations 
of NKA remain fixed for future extensions of the oracle, and then in a coding phase 
in which first an advice string is picked and then the computations just forced are 
coded in the oracle in such a way that they can be retrieved by an NP machine with 
this advice string. Great care has of course to be taken so that the two phases don't 
disturb each other and do not disturb earlier stages of the construction. 

We first describe the forcing phase. Without loss of generality, we will assume 
that machine N queries only strings of the form q E KA. Note that since N runs in 
time 2n it may query exponentially long strings to KA. 

Let x1 be the first string oflength n. When we examine the computation of N(x1 ) 

we encounter the first query Q1 to KA. We will try to extend the oracle A to A' ;;;:> A 
such that q1 E KA'. If such an extension does not exist we may assume that q1 will 
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never be in KA no matter how we extend A in the future. We must, however, take 
care that we will not disturb previous queries that were forced to be in KA. To this 
end we will build a set S containing all the previously encountered queries that were 
forced to be in KA. We will only extend A such that \:/q ES it holds that q E KA'. 
We will call such an extension an S-consistent extension of A. 

Returning to the computation of N(x1) and q1 we ask whether there is an S­
consistent extension of A such that q1 E KA'. If such an extension exists, we will 
choose the S-consistent extension of A which adds a minimal number of strings to A 
and puts q1 in S. Next we continue the computation of NKA (xi) with q1 answered 
yes, and otherwise we continue with qi answered no. The next lemma shows that a 
minimal extension of A will never add more than 23n strings to A. 

LEMMA 4.6. Let S be as above and q be any query to KA and suppose we are in 
stage n. If there exists an S-consistent extension of A such that q E. KA', then there 
exists one that adds at most 23n strings to A. 

Proof Let Mx be a machine that accepts KA when given oracle A and consider 
the computation of machine M~(q). Let 01, ... , 01 be the smallest set of strings such 
that adding them to A is an S-consistent extension of A such that M{ (q) accepts. 
(A' = AU {o1, ... ,oz}.) Consider the leftmost accepting path of M~' (q) and let 
q~, ... , q2n be the queries (both 0- and I-queries) on that path. Moreover let bi be 1 
iff q; E A'. Define for q the following polynomial: 

(2) Pq = II (Pq; + bi + 1). 
1$i~2n 

After adding the strings o1 , ... , 01 to A we have that Pq = l. Moreover by 
Lemma 4.4 the degree of each Pqi is at most 22n and hence the degree of Pq is at 
most 23n. Now consider what happens when we take out any number of the strings 
o1, ... , oz of A' resulting in A". Since this was a minimal extension of A it follows that 
Mf' (q) rejects and that Pq = 0. So Pq computes the AND on the l strings o1 , .•. , oz. 
Since by Lemma 4.5 the degree of the unique multivariate multilinear polynomial that 
computes the AND over l variables over GF[2] is l, it follows that l ::::; 23n. D 

After we have dealt with all the queries encountered on NKA (x 1 ) we continue 
this process with the other strings of length n in lexicographic order. Note that since 
we only extend A S-consistently we will never disturb any computation of NKA on 
lexicographic smaller strings. This follows since the queries that are forced to be 
yes will remain yes, and the queries that could not be forced with an S-consistent 
extension will never be forced by any S' -consistent extension of A for S C S'. After 
we have finished this process we have to code all the computations of N on the strings 
of length n. It is easy to see that [[Sii ::::; 22n and that at this point by Lemma 4.6 at 
most 25n strings have been added to A at this stage. Closing the f arcing phase we 
can now pick an advice string and proceed to the coding phase. A standard counting 
argument shows that there is a string z of length n2 such that no strings of the form 
(1, z, w, v) have been added to A. This string z will be the advice for strings of 
length n. 

Now we have to show that we can code every string x of length n correctly in A 
to fulfill Condition 1. We will do this in lexicographic order. Suppose we have coded 
all strings Xj (for j < i) correctly and that we want to code Xi. There are two cases. 

Case l. NKA (xi) = 0. In this case we put all the strings (1, z, Xi, w) in A 
and thus set all these variables to 0. Since this does not change the oracle it is an 
S-consistent extension. 
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Case 2. NKA (xi) = 1. We properly extend AS-consistently adding only strings 
of the form (1, z, Xi, w) to A. The following lemma shows that this can always be 
done. A proper extension of A is one that adds one or more strings to A. 

LEMMA 4.7. Let llSll ~ 22n be as above. Suppose that NKA(xi) = 1. There exists 
a proper S-consistent extension of A adding only strings of the form (1, z, xi, w) with 
lwl =n2. 

Proof Suppose that no such proper S-consistent extension of A exists. Consider 
the following polynomial: 

(3) QXi = 1 - IT (Pq), 
qES 

where Pq is defined as in Lemma 4.6, equation (2). Initially Qx; = 0 and the degree 
of Qx; :$ 25n. Since every extension of A with strings of the form {l, z, Xi, w) is not 
S-consistent it follows that Qx; computes the OR of the variables Y(z,x;,w)' Since 

2 
there are 2n many of those variables we have by Lemma 4.5 a contradiction with the 
degree of Qx;. Hence there exists a proper S-consistent extension of A adding only 
strings of the form (1, z, Xi, w), and Xi is properly coded into A. D 

Stage n ends after coding all the strings of length n. 
This completes the proof of Theorem 4.3. D 
Theorem 4.3 together with the proof of Lemma 4.2 also gives the following corol­

lary. 
COROLLARY 4.8. There exists a relativized world where EXPNP is in BPP and 

EBP = P. 
Our oracle also extends the oracle of Ko [17] to CDpoly complexity as follows. 

COROLLARY 4.9. There exists an oracle such that Rff for any t E w(nlog(n)) 
and E > 0 is complete for NP under strong nondetermi~istic reductions and pNP 

:f. E~. 
Proof The relativized world constructed in the proof of Theorem 4.3 is a world 

where coNP <::;; BPP and CP01Y(xiy) = CDP01Y(xiy) + 0(1). Hence it follows that 

Rf f E NP. Moreover Corollary 3.12 relativizes so by item 1 we have that BPP <::;; 

NPRf~. 0 
As a by-product our oracle shows the following. 
COROLLARY 4.10. 3A unique-SAT A E pA and pNPA :f. E~·A. 
This corollary indicates that the current proof that shows that if unique-SAT 

E P, then PH = E~ cannot be improved to yield a collapse to pNP using relativizing 
techniques. 

5. PSPACE and cR;s. In this section we further study the connection be­
tween cR_:s and interactive proofs. So far we have established that strings that have 
sufficiently high CNDpoly complexity can be used to derandomize an IP protocol that 
has two rounds in such a way that the role of both the prover and the verifier can 
be played by an NP oracle machine. Here we will see that this is also true for IP 
itself provided that the random strings have high enough space bounded Kolmogorov 
complexity. The set of QBFs is defined as the closure of the set of boolean variables 
Xi and their negations Xi under the operations/\, V, V'xi, and 3xi· A QBF in which 
all the variables are quantified is called closed. Other QBFs are called open. We need 
the following definitions and theorems from [24]. 
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DEFINITION 5.1 (see [24]). A QBF B is called simple if in the given syntactic 

t t•on every occurrence of each variable is separated from its point of quan­represen a • . . . ) 
t :;;; t · , b•i at most one universal quantifier (and arbitrarily many other symbols . 1;,ca .wr. I• 

For technical reasons we also assume that (simple) QBFs can contain negated 
variables, but 110 other negations. This is no loss of generality since negations can be 
pushed all the way down to variables. 

DEFINITION 5.2 (see [24]). The arithmetization of a (simple} QBF B is an 
arithmetic expression obtained from B by replacing every positive occurrence of Xi by 
vciriable z;, every negated occurrence of X; by ( 1 - Zi), every /\ by x, every V by +, 
every Vx; by Tiz;E{O,l}' and every 3xi by 2=z;E{0,1}· 

It follows that the arithmetization of a (simple) QBF in closed form has an in­
teger value, whereas the arithmetization of an open QBF is equivalent to a (possibly 
multiv-ariate) function. 

DEFINITION 5.3 (see [24]). The functional form of a simple closed QBF is the 
urii1•ariate function that is obtained by removing from the arithmetization of B ei­
ther " { } or TI . E{O l} where i is the least index of a variable for which this is L...z,E 0.1 z, , 
possible. 

Notation. Let B be a (simple) QBF with quantifiers Qi, ... , Qk. For i ::::; k we 
Jet *i = + if Qi = 3 and *i = x if Qi = V. Let B be a QBF. Let B' b~ the 
boolean formula obtained from B by removing all its quantifiers. We denote by B the 
arithmetization of B'. It is well known that the language of all true QBFs is complete 
for PSPACE. The restriction of true QBFs to simple QBFs remains complete. 

THEOREM 5.4 (see [24]). The language of all closed simple true QBFs is complete 
for ?SPACE (under polynomial time many-one reductions). 

It is straightforward that the arithmetization of a QBF takes on a positive value 
iff the QBF is true. This fact also holds relative a not-too-large prime. 

THEOREM 5.5 (see [24]). A simple closed QBF B is true iff there exists a prime 
number P of size polynomial in IBI such that the value of the arithmetization of B is 
positive modulo P. Moreover if B is false, then the value of the arithmetization of B 
is 0 modulo any such prime. 

THEOREM 5.6 (see [24)). The functional form of every simple QBF can be rep­
resented by a univariate polynomial of degree at most 3. 

THEOREM 5. 7 (see [24]). For every simple QBF there exists an interactive pro­
tocol with prover P and polynomial time bounded verifier V such that 

1. when B is true and P is honest, V always accepts the proof; 
2. when B is false, V accepts the proof with negligible probability. 

The proof of Theorem 5.7 essentially uses Theorem 5.6 to translate a simple QBF 
to a polynomial in the following way. First, the arithmetization of a simple QBF B in 
closed form is an integer value V which is positive iff B is true. Then B's functional 
form F (recall that this is arithmetization of the QBF that is obtained from B by 
deleting the first quantifier) is a univariate polynomial p1 of degree at most 3 which 
has the property that P1 (0) *1 p1 (1) = V. Substituting any value r 1 in p1 gives a new 
integer value Vi, which is of course the same value that we get when we substitute r 1 in 
F. However, F(r1) can again be converted to a (low-degree) polynomial by deleting its 
first L o~ TI sign, and the above game can be repeated. Thus, we obtain a sequence of 
polynomials. From the first polynomial in this sequence V can be computed. The last 
polynomial Pn has the property that Pn (ri, ... , r n) = f3 ( r 1, ... , r n). Two more things 
are needed: First, if any other sequence of polynomials q1 , ... , qn has the property 
that q1 (0) *1 q1 (1) =/:. V, Q;+1 (O)*i+l qi+l (1) = qi (ri), and Qn (rn) = B(r1, .. ., rn), 
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then there has to be some i where qi(ri) = Pi(ri), yet qi -=!= Pi· That is, ri is an 
intersection point of Pi and qi· Second, all calculations can be done modulo some 
prime number of polynomial size (Theorem 5.5). We summarize this in the following 
observation, which is actually a skeleton of the proof of Theorem 5.7. 

OBSERVATION 5.8 (see [24, 22]). Let B be a closed simple QBF wherein the 
quantifiers are Q1, ... Qn if read from left to right in its syntactic representation. Let 
A be its arithmetization, and let V be the value of A. There exist a prime number P 
of size polynomial in IBI such that for any sequence r 1 , ... , Tn of numbers taken from 
[l..P] there is a sequence of polynomials of degree at most 3 and size polynomial ·in 
I BI such that 

l. Pi(0)*1P1(l) = V and V > 0 iff Bis true; 
2. Pi+l (0) *i+i Pi+i(l) = Pi(ri); 
3. Pn(rn) = B(r1, ... ,rn); 
4. for any sequence of univariate polynomials q1 , ..• , qn such that 

(a) P1(0)*1P1(l)-=!= qi(0)*1 q1(l) and 
(b) qi+l(O)*i+1qH1(l) = qi(ri) and 
(c) qn(rn) = B(r1, .. ., rn), 

there is a minimal i such that Pi -=!= qi, yet Pi (r;) = qi ( ri). That is, ri is an 
intersection point of Pi and qi. 

Where all (in) equalities hold modulo P and hold modulo any prime of polynomial size 
·if B is false. Moreover, Pi can be computed in space (IBI + IPl)2 from B, P, and 
ri, ... ,ri-1· 

From this reformulation of Theorem 5.7 we obtain that for any sequence of uni­
variate polynomials q1, ... , qn and sequence of values r 1 , •.• , r n that satisfy items 2 
and 3 in Observation 5.8 it holds that either qi(O) *i q1 (1) is the true value of the 
arithmetization of B, or there is some polynomial qi in this sequence such that ri 
is an intersection point of Pi and qi (where Pi is as in Observation 5.8). As Pi can 
be computed in quadratic space from B, P, and ri, ... , ri-l it follows that in the 
latter case ri cannot have high space bounded Kolmogorov complexity relative to B, 
P, qi, ... ,qi, r 1 , .. . ,ri-i· Hence, if ri does have high space bounded Kolmogorov 
complexity, then ri is not an intersection point, so the first case must hold (i.e., the 
value computed from qi is the true value of the arithmetization of B). The following 
lemma makes this precise. 

LEMMA 5.9. Assume the following for B, P, n, qi, ... , qn, ri, ... , rn, and Yi, ... , Yn· 
l. B is a simple false closed QBF on n variables. 
2. P is a prime number;:: 21 8 1 of s'ize polynomial ·in IBI. 
3. qi ... qn is a sequence of polynomials of degree 3 with coefficients in [LP]. 
4. ri, ... , r n are numbers in [l..P]. 
5. Y1 = B#P#q1# ... #qn and Yi+l = Yi#ri. 

n2 
6. CS (ri I Yi) 2: IPI. 
7. (Vi 2: 2)[qi-1(ri-i) = qi(O)*i qi(l) mod P]. 
8. B(r1,. .. , rn) = qn(rn) mod P. 

Then q1 (0)*1 q1(1) = 0 mod P. 
Proof. Take all calculations modulo P. Suppose qi (0) *1 q1 (1)-=!= 0. It follows from 

Observation 5.8 that there exists a sequence Pi, ... ,Pn satisfying items 1 through 3 
of that lemma. Furthermore since B is false p1 (0) *i p1 (1) = 0 modulo any prime, so 
Pi ( 0) * i P1 ( 1) -=!= qi ( 0) * i qi ( 1). It follows that there must be a minimal i such that 
Pi -=!=qi and r; is an intersection point of Pi and q;. However, Pi can be computed in 
space (IBI + IPl)2 from B, P, and r1, ... , ri-1· As both Pi and qi have degree at most 
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2 
3, it follows that csn (r; I Yi) is bounded by a constant-a contradiction. 0 

This suffices for the main theorem of this section. Let s be any polynomial. 
THEOREM 5.10. PSPACE ~ NPcR~s. 
Proof We prove the lemma for s(n) = n2 , but the proof can by padding be 

extended to any polynomial. There exists an NP oracle machine that accepts the 
language of all simple closed true QBFs as follows. On input B first check that B 
is simple. Guess a prime number P ;::: 2\BI of size polynomial in IBI, a sequence of 
polynomials P1, ... ,pn of degree at most 3 and with coefficients in [l..P]. Finally 
guess a sequence of numbers r 1 , ... , rn all of size IPI. Check that 

1. P1(0)-*1P1(l) > 0 and 
2. Pi+1(0)-*H1Pi+i(l) =pi(ri) and 
3. Pn(rn) = B(r'i, ... , Tn) and 

2 
4. finally that (Vi~ n)[csn (r;IYi) ~ IPI]. 

If Bis true, Lemma 5.8 guarantees that these items can be guessed such that all 
tests are passed. If Bis false and no other test fails, then Lemma 5.9 guarantees that 
P1(0)*1P1(l) = 0, so the first check must fail. 0 

By the fact that PSPACE is closed under complement and the fact that cR78 is 
also in PSPACE Theorem 5.10 gives that cR78 is complete for PSPACE under strong 
nondeterministic reductions )21]. 

COROLLARY 5.11. cR7 is completeforPSPACE under strong nondeterministic 
reductions. 

Buhrman and Mayordomo [10] showed that for t( n) = 2n k, the set Rf = { x : 
ct(x) 2: lxl} is not hard for EXP under deterministic Turing reductions. In The­
orem 5.10 we made use of the relativized Kolmogorov complexity (i.e., CS5 (xly)). 
Using exactly the same proof as in [10] one can prove that the set cRf = { (x, y) : 
ct(xly) ;::: lxl} is not hard for EXP under Turing reductions. On the other hand the 
proof of Theorem 5.10 also works for this set: PSPACE ~ NPcRf. We suspect that 
it is possible to extend this to show that EXP ~ NPcRf. So far, we have been unable 
to prove this. 

Acknowledgments. We thank Paul Vitanyi for interesting discussions and pro­
viding the title of this paper. We also thank two anonymous referees, who helped 
with a number of technical issues that cleared up much of the proofs and who pointed 
us to more correct references. One of the referees also pointed out Corollary 4.8. 

REFERENCES 

[1 J L. BABA!, Trading group theory for randomness, in Proceedings of the 17th ACM Symposium 
on Theory of Computing, Providence, RI, 1985, pp. 421-429. 

[2] J. BALCAZAR, J. DIAZ, AND J. GABARRO, Structural Complexity I, Springer-Verlag, Berlin, 
1988. 

[3] J.M. BARZDIN, Complexity of programs to determine whether natural numbers not greater than 
n belong to a recursively enumerable set, Dok!. Akad. Nauk SSSR, 9 (1968), pp. 1251-1254. 

[4] R. BEIGEL, H. BUHRMAN, AND L. FOR.TNOW, NP might not be as easy as detecting unique 
solutions, in Proceedings of the 30th ACM Symposium on Theory of Computing, Dallas, 
TX, ACM, New York, 1998, pp. 203-208. 

[5] R. BOOK, S. GREIBACH, AND B. WEGBREIT, Time- and tape-bound Turing acceptors and afi's, 
J. Comput. System Sci., 4 (1970), pp. 606-621. 

[6] H. BUHRMAN AND L. FORTNOW, Resource bounded Kolmogorov complexity revisited, in Pro­
ceedings of the 14th Annual Symposium on Theoretical Computer Science, Lecture Notes 
in Comput. Sci. 1200, Springer-Verlag, Berlin, 1997, pp. 105-116. 

[7] H. BUHRMAN AND L. FORTNOW, Resource Bounded Kolmogorov Complexity Revisited, manu­
script, available from http:/ /www.neci.nj.nec.com/homepages/fortnow /. 



RANDOMNESS IS HARD 1501 

[8] H. BUHRMAN, L. FORTNOW, AND L. TORENVLIET, Six hypothe1Ses in search of a theorem. in 
Proceedings of the 12th Annual IEEE Conference on Computational Complexity. Ulm, 
Germany, 1997, pp. 2-12. 

[9] H. BUHRMAN AND S. HOMER, Superpolynomial circ·uits, almost spar·se oracles and the e.rpo­
nential hierarchy, in Proceedings of the 12th Conference on the Foundations of Softwar<" 
Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci. (\52. R. Shya­
masundar, ed., Springer-Verlag, Berlin, 1992, pp. 116-· 127. 

[10] H. BUHRMAN AND E. MAYORDOMO, An excursion to the kolmogorov random strings. in Pro­
ceedings of the lOth Annual Conference on Structure in Complexity Theory. l\!inneapolis. 
MN, 1995, IEEE Computer Society Press, Los Alamitos, CA, pp. 197-205. 

[11] H. BUHRMAN AND L. TORENVLIET, Complete sets and structure in subrecursive classes, in 
Lecture Notes Logic 12, Springer-Verlag, Berlin, 1998, pp. 45-78. 

[12] L. FORTNOW AND M. KUMMER, Resource-bounded instance complexity, Theoret. Comput. 
Sci. A, 161 (1996), pp. 123-140. 

[13] M. FURER, 0. GoLDREICH, Y. MANSOUR, 1\1. SIPSER, AND S. ZACHOS. On completeness and 
soundness in interactive proof systems, in Randomness and Computation. Advances in 
Computing Research 5, S. Micali, ed., JAI Press, Greenwich. CT, 1989. pp. 429 ... 442. 

[14] J. HARTMANIS, Generalized Kolmogorov complexity and the stmcture of feasible computations. 
in Proceedings of the 24th IEEE Symposium on Foundations of Computer Science. Tucson. 
AZ, 1983, pp. 439--445. 

[15] J. HARTMANIS AND R. STEARNS, On the computational complexity of algorithms, Trans. Arner. 
Math. Soc., 117 (1965), pp. 285-306. 

[16] F. HEN NIE AND R. STEARNS, Two tape simulat'ion of multi tape Turing machines. J. AC!\!, 13 
(1966), pp. 533-546. 

[17] K .-I Ko, On the complexity of learning m'inimum i'ime-bounded turing machines. S!Al\1 J. 
Comput., 20 (1991), pp. 962-986. 

[18] 1\1. KUMMER, On the complexity of random strings (extended abstract}, in Proceedings of the 
13th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in 
Comput. Sci. 1046, Springer-Verlag, Berlin, 1996, pp. 25-36. 

[19] L. LEVIN, personal communication, 1994. 
[20] M. LI AND P. VITA.NY!, An Introduction to Kolmogorov Comple:i:ity and Its Applications, 2nd 

ed., Grad. Texts Comput. Sci., Springer-Verlag. Berlin, 1997. 
[21] T. LONG, Strong nondeterministic polynomial-fone reducibilities. Theoret. Comput. Sci., 21 

(1982), pp. 1-25. 
[22] C. LUND, L. FORTNOW, H. KARLOFF, AND N. N18AN, Algebraic methods for interactive proof 

systems, J. ACM, 39 (1992), pp. 859-868. 
[23] D. MARTIN, Completeness, the recursion theorem and effectively simple sets, Proc. Amer. Math. 

Soc., 17 (1966), pp. 838-842. 
[24] A. SHAMIR, IP= ?SPACE, J. ACM, 4 (1992), pp. 869-877. 
[25] M. SIPSER, A complexity theoretic approach to randomness, in Proceedings of the 15th AC11 

Symposium on Theory of Computing, Boston, MA. 1983, pp. 330 .. 335. 
[26] L. VALIANT AND V. VAZIRANI, NP is as easy as detecting unique solutions, Theoret. Comput. 

Sci., 47 (1986), pp. 85-93. 
[27] C. K. YAP, Some consequences of non-uniform conditions on uniform classes, Theoret. Com-

put. Sci., 26 (1983), pp. 287-300. . . , , , ... 
[28] S. ZACHOS, Probabilistic quantifiers and games, J. Comput. System Sci., 36 (1988), pp. 433-451. 
[29] D. ZUCKERMAN, Randomness-optimal sampling, extractors, and constr:ictwe l.eader e~ection, 

in Proceedings of the 28th ACM Symposium on Theory of Computmg. Pl11ladelph1a, PA. 

1996, pp. 286-295. 


