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CHAPTER 1 

PRELIMINARIES 

1.1. Introduction 

Censoring occurs both in industrial life-testing (i.e. investigation 
of the distribution of the lifetime of manufactured components or complete 
systems) and in medical trials and biological experiments (e.g. on carcin
ogens). So terms synonymous to a "censored observation" are a "withdrawal", 

a "loss", or a "death due to a competing risk"; while an "uncensored obser
vation" might be a "failure", a "relapse", or a "death from the cause under 
study". More detailed examples are given in Section 3. 1. 

Formally, in all these situations one is interested in the distribution 

or distributions of n independent positive random variables x1 , •.. ,Xn. How

ever one is only in a position to observe cx 1 ,o 1J , ••• ,(Xn,on) where the oj's 
are indicator random variables (i.e. take the values zero or one only) such 
that o. takes the value 1 if observation j is uncensored, in which case x. J J 
takes the same value as x .. On the other hand, if 0. takes the value 0, ob-J J 
servation j is censored and we only know that x. takes a value larger than 

J 

In all the situations outlined above, time and random phenomena occur
ring in time play an essential role. It is our thesis that the same is true 
of the mathematics of the situation: in other words, it pays to study the 
statistical problems of interest in terms of the theory of stochastic 

processes. 

This possibility of a new and fruitful application of probability 

theory to the statistics of censored data was exploited by 0.0. Aalen in 
his thesis, AALEN (1976), and later articles, especially AALEN (1977) and 
(1978). In particular he made use of the theory of stochastic integrals as 

developed by the Strasbourg school of probabilists (see MEYER (1976) or 
JACOD (1979) for recent and complete accounts of the theory) together with 
the theory of counting processes developed especially in Berkeley by 
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various authors such as BREMAUD (1975),. DOLIVO (1974), JACOD (1975) and BOEL, 

VARAIYA & WONG (1975a, 1975b). A general survey of the theory of counting 

processes is given by BREMAUD & JACOD (1977). 

We are especially interested in a number of one- and two-sample statis

tical methods which lend themselves very nicely to a treatment in this frame

work. In the first case x1 ~··· ,xn are identically distributed with an unknown 

distribution function F which one wants to estimate; while in the second 

case the X.'s fall into two groups, those in group i being identically dis-
J 

tributed with distribution function Fi (i = 1,2), and one wants to test the 

null hypothesis F1 = F2. The methods considered are approximate and non

parametric: more explicitly, they rely on large-sample results, and do not 

assume that F, or F1 and F2 , belong to some parametric family of distribu

tions. In general no truly non-parametric (i.e. distribution-free) methods 

are possible; at least, not useful ones. 

In the first place we consider the product limit estimator of KAPLAN & 

MEIER (1958), which plays a role for censored data similar to that of the 

empirical distribution function for uncensored data, and the two-sample 

test statistics of GEHAN (1965), EFRON (1967) and COX (1972). These test 

statistics are generalizations of ones originally developed for very special 

types of censored data; the first two being Wilcoxon-type tests while the 

last one is of Savage-type. They are the most widely used and applicable 

non-parametric two-sample tests for use with censored data. 

Our plan of attack is as follows. The present chapter closes with a 

summary of notation and conventions which will be used later without comment. 

In Chapter 2 we build up an arsenal of results from the theory of stochas

tic processes in particular concerning stochastic integrals, martingales, 

counting processes and weak convergence of processes, and the interrelations 

between these subjects. The returns for using such heavy artillery will be 

unification and generality. We do not need the full force of many of the 

original results and so have striven here for simplicity. 

Chapter 3 begins with examples of how censored data can arise (we 

restrict attention till Chapter 6 to so-called right censorship) and then 

extracts a few key properties of all but one of these examples. A model with 

these properties underlies the rest of Chapter 3 and all of Chapters 4 and 

5. In Section 3.2 we introduce the product limit estimator and in Section 

3.3 the three test statistics in terms of the model for censored observa

tions which has been established. By way of illustration of the theory of 

stochastic integrals, we derive some of the small sample properties of the 



estimator and the test statistics, the latter being considered as members 
of a general class of test statistics K. Of particular interest are Theorem 
3.2.1 and Proposition 3.2.1, which give linear bounds on the product limit 
estimator analogous to well known results on the empirical distribution 
function (see SHORACK & WELLNER (1978) or VAN ZUIJLEN (1978)). 
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In Chapter 4 we proceed to derive asymptotic results on these statis
tics. Notations and definitions for this and the following chapter are 
surrunarized on pages 53, 54, 55, 58 and 59. As well as giving general re
sults on consistency (Section 4.1) against various types of alternatives and 
asymptotic normality (Sections 4.2 and 4.3) we specialize to what we call 
"the general random censorship model" (Example 4. 1.1) in which for each j, 
X. = min (X., u.) , where U 1 , •.. ,Un are "censoring variables", ind,ependent of J J J 
one another and of the Xj's, and with arbitrary distributions. We also pay 
special attention to the case when U 1 = •.. = Un T for some "stopping 
rule" T depending on the observations. The results are derived with a uni
fied approach and at the same time generalize those to be found in the lit
erature. In particular we do not require any of the distribution functions 
concerned to be continuous, and extend test statistics originally proposed 
for continuously distributed data for use in the situations where the under
lying distribution functions are (partially) discrete. 

In Chapter 5 we look at efficiencies when testing against specific 
alternatives. We develop some new test statistics, also members of K, which 
are specially suited for testing against particular parametric alternatives. 
Also we derive test statistics which are consistent when testing against the 
mere inequality of two distributions. 

Finally in Chapter 6 we sketch a number of extensions to the preceding 
theory. In particular we mention more general forms of censorship than the 
"right censorship" considered so far, and we pay some attention to the 
example in Chapter 3 which was not covered by our general model. 

1. 2. Notation 

The following notations will be used without comment in the sequel. 
Let X be a real-valued function on the set of nonnegative real numbers 
IR+ [0, 00). If X has finite left hand limits everywhere (we say "X has 
left hand limits"), then X is the function on IR+ defined by X_(t) = X(t-), 
t > O, and X_(O) = 0. We define X+ similarly when X has finite right hand 
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limits everywhere, and define X( 00 ) = lim X(t) if this exists. If X is 
t-+«> 

right continuous with left hand limits then ~X is the function x - x . If 

{XJ.: j E J} is some indexed familyoffunctions, we write x. for (X.) , etc. 
+ J- J -

Suppose Y is a real-valued function on IR which is right continuous 

with left hand limits and is of bounded variation on each bounded subinter

val of IR+ (we also say "Y is of locally bounded variation"). Moreover 

suppose that X is a Lebesgue-measurable real-valued function on JR.+ such 

that JsdO,t]!X(s) I ldY(s) I is finite for each t E IR+ (i.e. "X is locally 

integrable with respect to Y"). Here the integral is a Lebesgue-Stieltjes 

integral with respect to the total variation of Y (which assigns mass !Y(Oll 

to the point zero in line with the convention Y(O-) = 0). Then for each t 

we define 

(1.2.1) r XdY = J . X(s)dY(s) I 

0 sdO,t] 

and we denote by J XdY the function taking the value (1.2.1) in the point t. 

Note that <J XdY) (0) = X(O)Y(O). We denote by Y the continuous part of Y; c 
i.e. 

(1. 2. 2) Y(t) - l ~Y(s), 
sS:t 

where the sum is an absolutely convergent sum of at most countably many 

nonzero terms. 

All the above notations will be extended to stochastic processes in 

Section 2. 1 . 

(~ 1 F 1 P) will denote a complete probability space and w a generic member 

of~- We write cr{•} for the sub-a-algebra of F generated by a family of 

random variables and use the symbol V to denote the cr-algebra generated by 

a union of a-algebras. Convergence in probability and in distribution are 

denoted by +P and +V respectively. N(µ,a 2 ) is the normal distribution with 

meanµ and variance cr2 . 

The following are some miscellaneous points of notation. XA is the 

indicator variable for the set A. For typographical convenience our nota

tion for an indexed set (i.e. specifying a function) is the same as that 

for a set itself: we write {X(t): t E [O,oo)} for the indexed set 

{X(t)}tE[O,oo)" When dealing with a function of two variables, (t,w) +X(t,w), 

we may write X(·,w) for the function oft obtained when w is fixed. Symbols 

s,t,u,v,t are always "time variables" either in JR+ or in Ili.+ = [0, 00 ], 
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While i,j ,m,n,r are "index variables" in JN. The symbols II and v are used 
to denote minimum and maximum respectively; and # denotes the number of 

elements in a set. For a real number x, the integral part of x is denoted by 
[ x]. The symbol cc means "is proportional to". Throughout, we hold to the 

convention 0/0 = 0. 



CHAPTER 2 

SOME RESULTS FROM THE THEORY OF 

STOCHASTIC PROCESSES 

2.1. Notation and basic concepts 

References for this and the following section are MEYER (1976) or 
JACOD (1979). 

Let (Q,F,P) be a fixed complete probability space. A real stochastic 
process X = {X(t): t E [0, 00 )} is a time-indexed family of real-valued 
random variables. X can therefore also be considered as a function on 
[0, 00 ) x n and we accordingly write X(t,w) for the realized value of the 
random variable X(t) in the point w E n. The sample paths or simply paths 
of x are the real-valued functions X(· ,w) on [O,oo). If X(t) is integrable 
for each t, we write Ex for the function t + E(X(t)). We call X itself 
integrable if tEfoufoo) EIX(t) I is finite; and square integrable if x 2 is 
integrable. 

Two processes whose paths are almost surely identical are called 
indistinguishable. When we say that a process for example is right contin
uous, has left hand limits, or is of finite variation, we mean (unless 
explicitly stated otherwise) that almost all of the sample paths have this 
property. If a process has left hand limits, we can define (up to indis
tinguishability) a left continuous process x_ such that X_(·,w) = (X(· ,w)) 
for almost all w E n. We similarly define processes X+ and ~X under the 
appropriate conditions, at least up to indistinguishability. 

In the same way we can define J XdY and Y if almost all the paths of c 
X and Y have the appropriate properties (see (1.2.1) and (1.2.2)). However 
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it is not generally true that this defines stochastic processes, for 
JsE[O,t]X(s,•)dY(s,•) (denoted by J~ XdY) and Yc(t,•) are not necessarily 
measurable functions on (Q,F). In the sequel we often apply the condition 
that X and Y be measurable processes; i.e. as functions of (t,w) E [0, 00 ) xQ 
they should be measurable with respect to the product a-algebra B ® F, where 
Bis the Borel a-algebra on [0, 00). In particular, processes all of whose 
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paths are left continuous or all of whose paths are right continuous are 

measurable. The process JidYI is called the variation of Y. 

Till now the ideas of "past" and "future" have been absent. To intro-

duce them, we suppose that we are given a family {F . 
t" t € [0,<»)} of sub-

er-algebras of the complete er-algebra F such that 

(i) {Ft} is increasing: Fs c Ft for all s < t, 

(ii) {Ft} is right continuous: F = n F for all s, 
s t>s t 

(iii) {Ft} is complete: Fo contains all P-null sets of F. 

Ft is to be interpreted as the collection of all events which can occur at 

or before time t. So (i) expresses the fact that as time evolves, new events 

may happen. Conditions (ii) and (iii) are technical ones; for us they are 

completely harmless (see Appendix 2 for some results on how (ii) and (iii) 

may be verified). We define the er-algebras F = V F and F V F t- s<t s <» tE[O,oo) t" 
A collection (~ 1 F,P), {Ft: t E [O,<»)} satisfying the above requirements 

is called a stochastic basis. For the rest of this section we suppose one 

to be given. 

We can now define an adapted process X as one such that X(t) is Ft

measurable for each t. A stopping time T is an iR+-valued random variable 

such that {T~t} € Ft for each t. Interpreting T as the time some random 

phenomenon occurs, T is a stopping time if at each time instant t one can 

determine whether or not the phenomenon has yet occurred. The er-algebra FT, 

which can be interpreted as the collection of all events which can take place 

at or before time T, is defined by 

FT= {A€ F: An {T~t} €Ft Vt E [Q,oo)}. 

We next introduce three important classes of processes: martingales, 

predictable processes, and counting processes. If an adapted process M is 

right continuous with left hand limits, is such that M(t) is integrable for 

each t, and is such that 

E(M(t) JF ) = M(s) 
s 

for each s < t, then we call M a martingale. If M is a square integrable 

martingale, then lim M(t) = M(00 ) exists almost surely, and adjoining F00 to 
t-+<» 

the stochastic basis, M is a square integrable martingale on the time set 

[O,oo]. 

A predictable process is one measurable with respect to the er-algebra 

on [0, 00) x n generated by the adapted processes, all of whose paths are 

J.eft continuous on (0, 00 ). So in particular the latter processes and Borel functions 
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of them are predictable; and a deterministic process all of whose paths are 
equal to a single Borel measurable function is predictable. If H and K are 
predictable and J HdK exists, it too is predictable. 

A multivariate counting process N ={Ni: i = 1, ... ,r} is a finite 
family of adapted processes Ni such that for almost all w E n, the paths of 
N1 , ... ,Nr are nondecreasing, right continuous, integer-valued functions, 
zero at time zero, and with jumps of size +1 only, no two processes jumping 
at the same time. 

Loosely speaking, a martingale is a process without any systematic 
behaviour in the mean: if M is a martingale then for any s, the process 
t + M(t) - M(s), t E [s, 00), has zero mean given everything that has happened 
up to time s. A predictable process is one whose value at time t is fixed 
given whatever has happened up to but not including time t. This is also 
true if t is replaced with any stopping time. An r-variate counting process 
records the occurrences of r types of random phenomena, which cannot occur 
simultaneously. 

A final general concept is that of a process having a certain property 
locally. This is defined by requiring the existence of a so-called local
izing sequence of stopping times {Tn: n E JN} such that 

(i) Tn t 00 almost surely as n + oo, 

(ii) For each n, the stopped process t + X{Tn>O}X(tATn) has the required 
property. 

If X(O) = 0 almost surely, the stopped process above is indistinguish
able from the process t + X(tATn), which is MEYER's (1976) definition of 
stopped process; however our concept of localization is the same. Let us 
illustrate this important notion by showing that a univariate counting 
process N is locally bounded (a process is bounded if almost all its sample 
paths are bounded in absolute value by the same finite value). For let 
Tn = inf{t: N(t) ~ n} where the infimum of an empty set is assigned the 
value +oo. Since the events {Tn~t} and {N(t)~n} differ at most by a null set 
and N is adapted, Tn is a stopping time. Also, Tn t 00 almost surely. Final
ly, almost all of the paths of x{Tn>O}N(•ATn) are bounded in absolute value 
by n. 

In future we shall generally identify a process with the equivalence 
class of processes from which it is indistinguishable; this should be 
particularly borne in mind with statements of equality or uniqueness. It 
does lead to some anomalies: strictly speaking, only part of the equivalence 
class of a predictable or a measurable process has these properties. 
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In the theory of stochastic processes and stochastic integrals, 

martingales and predictable processes continuously play a complementary 

role. One instance of this is the following important result on local 

square integrable martingales. Let M1 and M2 be local square integrable 

martingales. Then there exists a unique predictable process <M1 ,M2> whose 

variation exists and is locally integrable such that M1M2 - <M1 ,M2> is a 

local martingale, zero at time zero. If M1 = M2, <M1 ,M2> is in fact non

decreasing. <M 1 ,M2> is called the predictable covariation process of M1 
and M2• If M1 and M2 are in fact square integrable martingales, then 

M1M2 - <M1 ,M2> is a martingale on the time interval [O,oo]. Note that 

<M 1,M 2> is right continuous with left hand limits, and that<•,•> is sym

metric and bilinear. 

2.2. Stochastic integrals 

In Section 2.1 we saw that under reasonable conditions, the integral 

of one process with respect to another can be defined in a sensible way 

and will have all the properties one can reasonably ask of it, such as 

being a stochastic process itself. The question now arises: what properties 

of x and Y relative to a given stochastic basis (~ 1 F 1 P) ,{Ft: t E [0, 00)} 

carry over to the process f XdY, defined by taking pathwise Lebesgue-Stiel

tjes integrals of X with respect to Y over the interval [O,t] for each 

t € [O,oo)? We already saw that if X and Y are predictable and f XdY 

exists, then it is predictable too. It turns out on the other hand that if 

X is predictable but Y is a martingale, then subject to some natural condi

tions f XdY is a martingale. 

Here we summarize some of the results on this theme, not in the most 

general form (see MEYER (1976) or JACOD (1979)) but suitable for our pur-

poses. 

Let M1 and M2 be local square integrable martingales with paths of 

locally bounded variation, and let H1 and H2 be predictable and locally 

bounded (in particular, H1 and H2 have these properties if they are left 

continuous with right hand limits and are adapted). Then f H1dM1 and 

f H2dM2 exist and are local square integrable martingales, and their pre

dictable covariation process satisfies 
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be locally bounded can be relaxed to re-(In fact the requirement that Hi 

quiring that f H.dM. exists and 
l. l. 

f H2d<M.,M.>be locally integrable; however l. l. l. 
we will hardly ever need this.) If the localizing sequences of stopping 
times associated with M1 ,M2 ,H 1 and H2 are sequences of constants, then the 
same holds for the localizing sequences associated with <M 1 ,M2>, f H1dM 1 , 
etc.; and if the words "local" and "locally" applied to M1 ,M2 ,H 1 and H2 can 
be dropped altogether, the same applies to <M1 ,M2 >, f H1dM1 , etc. 

We shall make much use of the following corollary of these facts. 
Let M1 and M2 be local square integrable martingales with paths of local-
ly bounded variation, zero at time zero, and let H1 and H2 be locally bound
ed predictable processes. Suppose the localizing sequences of stopping 
times associated with M1 ,M2 , H1 and H2 can be taken to be sequences of con
stants. Then the processes f H1dM 1 and f H2dM 2 exist and the following 
equalities between real-valued functions on [O,oo) hold: 

(2. 2 .1) 0, i 1 ,2' 

(2. 2. 2) 

If the words "local" and "locally" can be dropped altogether, and if 
f H1dM1 and f H2dM2 are also defined in the point 00 , then the same equali
ties hold on [O,oo]. 

In fact (2.2.1) also holds more generally. Suppose that Mis a local 
martingale (not necessarily locally square integrable) with paths of local
ly bounded variation, and suppose H is a locally bounded predictable pro
cess. Then f HdM exists and is a local martingale. Now a local martingale 
is localized by any sequence of stopping times making its variation local
ly integrable. So if for all t, E f~ IHI ldMI < 00 , then f HdM is a martin
gale. If furthermore M(O) = 0 almost surely, then (2.2.1) holds (dropping 
the index i) . 

2.3. Counting processes 

In this section we show how certain local square integrable martingales 
are associated with the multivariate counting processes defined in Section 
2.1. Recall that these could be interpreted as processes counting the occur
rences of a finite number of types of mutually exclusive phenomena. As in 
Section 2.2 we considerably specialize the general results available; see 
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BREMAUD & JACOD (1977) for a survey of these. 
Let cn,F,P) ,{Ft: t E [O,oo)} be a fixed stochastic basis and 

{Ni: i = 1, ... ,r} be an r-variate counting process. By MEYER (1976) Theorem 
I.9, there exist right continuous, nondecreasing, predictable processes Ai, 
zero at time zero, such that 

(2.3.1) i 1, ....... ,r 

are local martingales. Ai is called the compensator of Ni (and also its 
"dual predictable projection") . 

The following result shows that, for each i, Mi is in fact a local 
square integrable martingale and gives explicit expressions for <Mi,Mj>. 
It was proved under the condition that A1, ... ,Ar are continuous by BOEL, 
VARAIYA & WONG (1975a); this condition was later removed by ELLIOT (1976), 
LIPTSER & SHIRYAYEV (1978) and GILL (1978). We give a short proof based on 
an idea of J. VAN SCHUPPEN in Appendix 1. 

THEOREM 2.3.1. In the situation specified above, each compensator Ai satis
fies 0 ~~Ai~ 1. The Mi's are local square integrable martingales with 

(2.3.2) 

(2. 3 .3) i ,;. j, i,j 1, ... ,r. 

The localizing stopping times may everywhere be taken to be any nondecreas
ing sequence of stopping times {Tn}' Tn-+ oo a.s. as n-+ 00 , such that 
E L~=l Ni(Tn) < 00 for each n = 1,2, ... (here Ni(oo) = s~p Ni(t)). 

To make use of this result we need to know the processes Ai. We shall 
make use of the following theorem, adapted from a theorem of MURP-.LI-RAO 
(1969): 

THEOREM 2.3.2. Let N be a univariate counting process and let t E (0,oo) 
satisfy f(N(t)) < oo Define 

and 

t . n,i 

u 
n 

n 1, 2 f •••I i 0, 1, .•. ,2n 

f(N(t '+1) - N(t .) I Ft ) , n,1 n,1 n,i n 1, 2,... . 



Then there exists a subsequence of integers {rn}' rn + 00 as n + 00 , and a 
unique random variable u, such that for all bounded random variables X, 

as n + 

E(XUr ) + E (XU) 
n 

The compensator A of N satisfies 

A(t) U 

almost surely. 
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Note that if EN(t) = oo, one can still apply this theorem to the bound
ed counting process NA n for each n and take limits; and in the multi
variate case, the theorem can be applied to each component in turn. Also it 
often turns out that the sequence of random variables {Un} is almost sure
ly convergent as n + 00 , so u must be this limit. However the theorem only 
supplies us with a random variable U = Ut almost surely equal to A(t). To 
construct A, one should note that the facts: A is right continuous, and 
A(t) = Ut almost surely for each t, determine A given {Ut: t ~ [0, 00)} up to 
indistinguishability. 

Many other theorems can be applied to determine the compensators Ai 
of a counting process {Ni: i = 1, •.. ,r}. For instance, define (Tn,In), 
n = 1,2, .•. by 

r 
(2. 3. 4) T inf{t: I Ni (t) ;;-: n}, n 1, 2' .•. n 

i=l and 

(2. 3. 5) I i -T < 00 and LINi (Tn) 1 I n n 

otherwise I 
n 

=a. So Tn is the time of the n-th jump of {N1 , ... ,Nr}' and if 
index of the component which then jumps. Tn < 00 , In is the 

Suppose also that 

(2. 3.6) 1, ... ,r; sst}. 

(Theorem A.2.1 shows that {Ft} is automatically right continuous in this 
case.) Then Proposition 3.1 of JACOD (1975) shows how the processes 
A1 , ... ,Ar can be constructed from the conditional distributions of Tn+l 
and In+l given F0 ,T1 ,r1 , .•• ,Tn,In for each n. Conversely, A1 , •.. ,Ar in a 
sense determine the joint distribution of T1,I1 ,T2 ,r2 , ... given F0 as we 
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i;hall see presently. 

An'c.:the:r th~~orem which can be determined is DOLIVO (1974) Theorem 

2. S.1 which shows that in certain circumstances (t) may be identified 

with 

lim ~ P{Ni(s+h) -
htO 

(s) ;:: 

This result shows tlvit the compensator of a counting process can be inter

preted as the integrated or cumulative conditional rate at which it jumps; 

it can often be used heuristically to suggest what Ai is. In the discrete 

ca:ie when~ Ft "' 
2.3.2 can be applied 

and that (t) "' p 

and Ni only jumps at integer time instants, 

to show that A, too is constant between time 
l. 

Theorem 

instants, 

( t) = 1 I F 1) , t = 1 '2, ..• t- Again Ai can be inter-

pret<ld as a cumulative conditional rate for Ni. 

A final method for determining Ai is to make use of theorems on 

uniqueness and existence of processes with a given "intensity process" l''i, 
and then show that the so constructed processes Ni are indeed those one 
had in mind. Such theorems are given in BOEL, VARAIYA & WONG (1975b), while 

11.~EN (1976) Section 5D illustrates this approach. 

We now present two theorems showing that the compensators Ai determine 
in a sense the probability distribution of the original counting process. 

The first one is a simplified version of Theorem 5.1 of JACOD (1975): 

Let N {N1, .•. ,Nr} be an r-variate counting process, define 

1,2, .•• by (2.3.4) and (2.3.5), and suppose that {Ft} is given 
by (2.3.6). Suppose also that 1: 1 N, (00 ) is almost surely finite. Let P' be l1= l. 

•nother probability measure on (Q,F) such that P and P' agree on F0 and are 

absolutely continuous with respect to one another on F00 • Suppose Ni has 

oOmpensator Ai under P and compensator Ai under P'. Then for each i, Ai and 
~i are almost surely absolutely continuous with respect to one another as 
functions on [0, 00), and on F we have 

"' 

dP' 
ap-= 

TI (1 -I.M, (s)) exp - '.A. (<») J{ T } l. l. l i 1.C s~ 1'T2, ... 

The final theorem of this section states in effect that if the compen

.ator A of a univariate counting process N is such that for each t, A(t) is 

jetermined by the value of N(s), s s t, then the form of A actually determines 
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the probability distribution of the jump times of N. (A multivariate version 
cf the theorem also holds, but we shall not need it.) A proof is given in 
.O.ppendix 3, in which results of JACOD (1975, 1979) are applied. 

and define T 

Let N be a univariate counting process with compensator A, 

inf{t: N(t) :::: n}, n = 0,1, .... Suppose that outside of a n 
null set of n, 

A(t) for all t E (Tn,Tn+l]' 

n = 0,1, ... , 

where f 
n 

(n = 0,1, ... ) is a real measurable function on (JR+)n+l such that 

for 0 < t 1 < ••• < tn, fn(•;t 1 , ... ,tn) is nondecreasing, right continuous, 
and zero at time zero. Then the joint probability distribution of T1 ,T2 , ... 

·rhe compensator A of N can be expressed in the form given in Theorem 
2.3.4 if for all t 

Ft = F0 V o{N(s): s s t} 

and if F0 is independent of T1 ,T2 , ... (which is trivially the case if F0 
contains only P-null sets and their complements)_ For then by JACOD (1975) 
Propcsition 3.1 and Theorem A.2.1, 

Js dFn(u;t 1, ... ,tn) 

0 1 - Fn(u-;t1 , ••. ,tn)' 

where Fn is a regular version of the conditional distribution function of 
Tn+l - Tn given T 1 , ..• ,Tn-

2.4. A martingale central limit theorem and related results 

Suppose that for each n = 1,2, ... a stochastic basis is given on which 
r local square 

for each n, zn 

(D[0, 00 )) r where 

integrable 

= {Zn: i = 
l. 

martingales Z~, i = 1, .•. ,r, are defined. Then 
l. 

1, ... ,r} can be considered as a random element of 
D[0, 00 ) is the space of functions on [0, 00 ) which are right 

continuous with finite left hand limits, endowed with the Skorohod topology 
(see STONE (1963), LINDVALL (1973) or VERVAAT (1972)). 
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Let A~, i = 1, •.. ,r, be nondecreasing continuous functions on [0, 00), 

zero at time zero. It is well known that a random element Z00 = {Z~: i= 1, ... ,r} 
l. 

of (D[O,oo){ can be defined with the following properties: the Z~'s, 
l. 

i = 1, ... ,r, are independent Gaussian processes with continuous sample paths, 

zero at time zero, and have zero means, uncorrelated (hence independent) 
00 

increments, and variance functions Ai, i = 1, .•. ,r, i.e. 

(2. 4.1) var{Z~(t)) 
l. 

00 

A~(t). 
l. 

In fact the Zi's are local square integrable martingales with respect to 

the natural stochastic basis (let F00 = a{Z~(s): i = 1, •.• ,r, s ~ t} V N, t l. 

where N consists of all P-null sets and their complements) . We can drop the 

word "local" if A~ (oo) < oo for each i. Also 
l. 

(2.4. 2) 
00 00 

<Z. ,Z .> 
l. J 

i 

i i' j. 

00 

This well known fact has a converse. Suppose processes Zi, i = 1, ... ,r, 

are local square integrable martingales with continuous paths such that 

(2.4.2) holds for given nondecreasing functions A~, zero at time zero. Then 
l. 

the Z~'s are r independent Gaussian processes with independent increments 
l. 

and of course (2.4.1) holds; see e.g. MEYER (1971). 

This result provides the key idea in the proof of a theorem of 

REBOLLEDO (1979a), which states that if the jumps of the processes Z~, 
l. 

i = 1, .•. ,r, become small in a certain sense as n + oo, and if 

<Z~,Z~>(t) +P <Z.,Z.>{t) as n + 00 for all i, j and t, then zn +V z"' as 
l. J l. J 

n + 00 in (D[0, 00))r. In other words, if in the limit Zn has the properties 

which characterize the distribution of z00
, then Zn converges in distribution 

00 

to z 
To make the statement concerning the jumps of z~ more precise, let us 

l. 

introduce the concept of an e:-decomposition of r local square integrable 
-e: -e: e: e: martingales z 1 , •.. ,zr. Fore:> 0 let z1 , •.. ,Zr' ~ 1 , ..• ,~r be local square 

integrable martingales such that for each i, 

(2.4.3) 

(2.4.4) 

z. 
l. 

sup /Az7(t) I ~ e: almost surely, 
tdO , 00 ) -i 



17 

(2.4. 5) z~ has paths of locally bounded variation, and for each i and j 

P(3t E [O,co) such that AZ7(t) ~ 0 and AZ~(t} ~ 0) = O. 
-i J 

-e: -e: Then we call {z 1 , •.. ,zr} the jump 
-e: -e:} Intuitively speaking, {z 1 , •.• ,Zr 

part of an e:-decomposition of {z1 , •.. ,zr}. 

removes completely all the jumps of 

{z1 , •.. ,zr} for which any of the component jumps is greater in absolute 

value than e:. As an example, let N be a univariate counting process with 

compensator A, let M = N - A, and let H be a locally bounded predictable 

process. Define Z = f HdM and Ze: = f HX{JHJ~e:}dM. Then Ze: is the jump 

part of an e:-decomposition of the local square integrable martingale Z. 

We now formulate our version of REBOLLEDO's (1979a) Theorem V.I.: 

THEOREM 2.4.1. Let zn, n = 1,2, ... and z"' be defined as above and suppose 

that for each e: > 0 and each n = 1,2, .•• an £-decomposition of Zn exists 

such that 

(2.4.6) 

as n + "' for each i and t. If also 

(2.4.7) { 
A~(t) 

<Z~,Z~>(t) +p l. 
l. J 0 

i j 

i ~ j 

as n 4 00 , for all i, j and t, then 

(2.4.8) 

as n +"'in (D[0, 00))r. Furthermore, if Zn has paths of locally bounded 
i 

variation for all i and n, then 

(2.4.9) l 
s:S:t 

AZ~ (s} AZ~ (s) 
l. J 

as n + "' for all i, j and t. 

+ 
p 

i j 

i ~ j 

This theorem is also valid with [O,co) replaced everywhere by [O,co], 

noting that on [ 0, 00 ] localizing stopping times Tn, n = 1, 2, ••• , should also 

satisfy P (Tn =co) + 1 as n + co, and that we now also require A~ (co) < "' 1 

i = 1, ... ,r. 

In REBOLLEDO (1979a), the theorem is given for the case r = 1 but our 

version can be obtained from this one by a straightforward application of 

the Cramer-Wold device (see REBOLLEDO (1978) Theorem 3.5 for a similar 
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extension). Also the original theorem requires (2.4.7) to hold for the 
canonical s-decomposition, which we prefer not to introduce. However the 
proof of REBOLLEDO (1979b) Lemma 5 part 2 shows that it suffices to assume 
that any s-decomposition exists such that (2.4.6) holds. 

Recently HELLAND (1980) has given more elementary proofs of REBOLLEDO's 
theorems, while LIPTSER & SHIRYAYEV (1980) have proved a remarkably general 
central limit theorem which contains REBOLLEDO's as a special case. However 
in our applications the conditions become essentially equivalent. 

The following result of LENGLART (1977) has at first sight nothing to 
do with martingale central limit theorems. However it is a major tool in 
REBOLLEDO's proof of Theorem 2.4.1, and we shall have repeated occasion 
to use it in conjunction with the previous theorem. A fixed stochastic basis 
is supposed to be given. 

THEOREM 2.4.2. Let X and Y be adapted, right continuous, nonnegative proces
ses, and suppose also that Y is nondecreasing, zero at time zero, and 
predictable. Suppose that for all almost surely finite stopping times T, 
EX(T) :S: EY(T). Then for any stopping time T and any s,n > 0, 

P( sup X(s) 
s:S:T ,s«<> 

<: s) :S: !J + P (Y (T) > 11) . e: 

There are two basic ways in which we will make use of Theorem 2.4.2. 
Suppose that N is a univariate counting process with compensator A. Suppose 
that EN( 00 ) < so that by Theorem 2. 3. 1 M = N - A is a square integrable 
martingale. Let H be a nonnegative, bounded, predictable process. Then the 
conditions of Theorem 2.4.2 are satisfied if we take X = J HdN and Y = J HdA, 
because J HdM is a martingale on L0, 00 ] and so for any stopping time T, 
E J~ HdM = 0. Thus for any stopping time T and s,11 > O, 

On the other hand, let N, A and H be as above, except that H is not neces
sarily nonnegative. We have 

is a martingale on [0, 00 ], and Theorems 2.4.2 and 2.3.1 now yield 
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E) !J + po: '1 

> n) ?'. $ H" (1 - ilA) dA 
c 

$ !J + po: H2dA > '1)· 
( 

Let us also point out one link between Theorems 2.4.1 and 2.4.2: the latter 

can be used to show that condition (2.4.6) implies that for all t € [O,m) 

and c. > 0, 

sup 
[O,t] 

as n _,. 

Hence condition (2.4.6) together with (2.4.3) and (2.4.4) can indeed be 

interpreted as stating that the jumps of Zn disappear as n -+ "'· 
J_ 

We now turn to a very different subject. The Skorohod-Dudley theorem 

\see DUDLEY (1968) Theorem 3, or WICHURA (1970)) can be thought of as 

providing a converse to the well known result that an almost surely con

vergent sequence of random variables also converges in distribution. Because 

almost sure convergence is stronger than convergence in distribution, the 

theorem often provides a short cut in deriving new convergence in distribu

tion results from old ones. 

THEOREM 2.4.3. Let z00 ,z 1 ,z2 be random elements taking values in a 

separable metric space such that zn -+V Z00 as n -+ 00 • Then there exists a 
o::.> I 11 21 

probability space with random elements Z ,Z ,Z , ... defined on it such 

that z00
' has the same distribution as Z00 and zn' has the same distribution 

n n' 00 1 

as Z , n = 1,2, ... , and such that Z -+ Z almost surely as n-+ 00 • 

Not surprisingly we shall be applying Theorem 2.4.3 with the separable 

metric space in question being D([O,u)) or D(lO,u]) for some u E (Q,ro]. 

h · n"' I 1 [ Suppose we have s own that Z -+V Z on D( ) when is [0,u) or O,u]. We 

shall of course consider the random elements zn and z"' of D(1) as stochas

tic processes as t E 1 varies. suppose that z"' with probability 1 has 

continuous sample paths. Then because convergence in the Skorohod topology 

on a closed interval to a continuous limit is equivalent to convergence 

in the supremum norm on that interval, Theorem 2.4.3 supplies us with pro-
n1 OC)I 

cesses z and Z defined on a single probability space with the same dis-

tributions as Zn and z"' respectively, such that 

sup lzn' -z"'' I -+ O 
[O,t] 



l!!Ul'lllly as n +"" for all t E I (see VERVAAT (1972) Assumption 1.3.3 
r•arks at the beginning of his Section 1. 4) • 

t.hat if is a Gaussian process with expectation zero, indepen-
ir.ct«lfj11Wnts, and variance function A00 (t) = var(Z00 (t)) = cov(Z00 (t) ,Z00 (u)) 

00 ~ u, th<iln has continuous paths if and only if A is continuous; in 
only jui~ps at the jump times of A00

• 
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CHAPTER 3 

RIGHT CENSORSHIP 

AND STOCHASTIC INTEGRALS 

3. 1. Background 

In this section we derive a property common to a number of important 

models for "n censored observations", where n is considered fixed and the 

censorship is really "right censorship": only in Chapter 6 will we consider 

general censorship. 

We want to model the situation commonly occurring in medical follow-up 

trials, industrial life-testing, biological experimentation, and other 

fields, in which one is interested in certain aspects of the distributions 

of n independent positive random variables x 1, .•• ,xn, but either deliberate

ly or accidentally is only in a position to observe certain bivariate random - -variables (X 1,o 1), .•. ,(Xn,on) where for each j, 0 < Xj s xj and 

6. = X{x.=x.}· If c. takes the value 1, the j-th observation is uncensored 
J J ) ) -

and the observed value of X. is also the 
J 

o. = O, the j-th observation is censored 
J 

realized value of x .. However if - ) at time X., and one only knows that 
J 

xj takes (or would have taken) a value strictly greater than the observed 

value of Xj. 

One might be interested in comparing the distribution functions of the 

Xj's in particular subgroups, or in estimating some characteristics of the 

distribution functions. However for the time being we do not consider the 

purpose of the experiment. We start with a number of examples of different 

situations involving different types of censored data, giving them their 

traditional names. 

EXAMPLE 3.1.1 "(Simple) Type I censorship". 

In industrial life-testing, x1, ••• ,xn are supposed to be n independent and 

identically distributed positive random variables, with distribution func

tion F. Often it is thought that F = Fe' where {Fe: 6 ~ 0} is some parame

trized family of distributions. The random variables Xi represent the lengths 
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of time that n manufactured components function satisfactorily, each operat
ing from time zero under fixed working conditions. The components are ob
served up to a fixed time instant u > 0, at which time not all components 
may have "failed". So the data on which e.g. estimation of e or testing of 
the hypotheses FE {Fe: e E 8} is to be based is (X.,o.) = (X.Au,x{x <u}) I J J J j-
j = 1, ... ,n. 

EXAMPLE 3.1.2 "(Simple) Type II censorship". 
In the situation of Example 3.1.1, instead of terminating the experiment 
at the fixed time u, it is terminated at the time of the r-th observed 
failure for some fixed r $ n. So if X(l) 

ties of x 1, •.. ,xn, the data consists of 

j = 1, ..• ,n. 

$ ••. $ X(n) are the order statis

(X.,o.) = (X.AX( )'X{x·<x }), J J J r J- (r) 

More generally, one might stop the experiment at some random "stopping 
time", based on the observed data at that moment. The data is now 
(XjAT,X{xjST})' j = 1, •.. ,n, where T T(X 1, ••. ,xn) is such that x{TSt} is 
some function oft and (XjAt,X{x.st}), j = 1, .•. ,n. RAO, SAVAGE & SOBEL 
(1960) give some examples of sue~ censoring schemes in a two-sample situa
tion. 

This type of censorship is sometimes called "progressive censorship" 
but the term is more usually applied to the censorship discussed in Example 
3 .1. s. 

EXAMPLE 3 .1. 3 "Random censorship", "competing risks". 

In a biological experiment, one might observe the lifetimes of n experimental 
animals under certain conditions, together with the cause of death, which we 
suppose can be one of two types A or B. We are directly interested in the 
first of these two types - the animals may be divided into r groups accord
ing to different experimental conditions whose relation with A is to be in
vestigated - while B comprises various accidental causes not directly relat
ed to the experiment. Let Xj be the lifetime of the j-th animal, and let 
&j = 1 or 0 according to whether it died from A or B. We suppose that dif
ferent animals are independent of one another, and that given that animal j 
has survived up to time t, the conditional probability that it dies in the 
small time interval [t,t+h] from cause A is approximately a.(t)·h, while for 

J Bit is approximately S. (t) •h. Here a. and S. are continuous functions on J J J 
[0, 00 ) called the forces of mortality for A and B; one would suppose that a. 

J is the same for experimental animals in the same group; S. might be the same 
J 
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for all animals, or it might vary from group to group or even within groups. 

In this situation (X.,o ) can easily be shown to have the same distribution 
J j 

as (X.AU.,X{x <u }) , where X. and U. are independent, with continuous den-
J J j- j t J J t 

sities a.(t)exp(-J0 a.(s)ds) and S.(t)exp(-J0 
Jcoo J J J 

a. (s)ds < 00 , there is positive probability 
J 

$. (s)ds). 
J 

that X. 
J 

If for instance 

Here, X. can 
J 

be thought of as the lifetime animal j would have had were Sj identically 

zero and thus cause B inoperative; while Uj is the conceptual lifetime of 

animal j were a. identically zero. 
J 

So a model for this situation could consist of 2n independent positive-

or infinite-valued random variables X.,U.; j = 1, •.. ,n, from which the ob-
~ J J 

served data (X.,o.) = (X.Au.,x{x <u }) is generated. X.'s within the same 
J J J J j- j J 

group will always be supposed to have the same distribution. Removing the 

implicit restriction to continuously distributed random variables, if the 

Uj's within the same group also have the same distribution this is known 

as "the model of random censorship". Our "general random censorship model" 

(see Example 4.1.1) will allow the U.'s to have arbitrary distributions. 
J 

Note that in general there is an identifiability problem; i.e. dependent 

X.'s and U.'s with different marginal distributions can lead to the same 
J J 

distribution for (X.AU.,X{X 'U }) (see e.g. PETERSON (1975) and TSIATIS 
J J j-" j 

(1978)). 

On the other hand one might even suppose that the Uj's are not inde

pendent of one another (e.g. animals, subject to an infectious disease, 

sharing a cage). However as long as (X 1 , ... ,Xn) is independent of 

(U 1 , ... ,Un) this would not lead to problems. 

EXAMPLE 3.1.4 "Fixed censorship", "progressive censorship of Type I". 

In a clinical trial, patients with a certain complaint entering a hospital 

between two fixed dates t 1 and t 2 are immediately given a treatment whose 

effectiveness is to be investigated at time t 2 • Suppose that conditional on 

the number of patients N = n entering between t 1 and t 2 and their entrance 

times E 1 = e 1 , •.. , En= en E (t1 ,t2), the lengths of time x 1 , ... ,Xn elapsed 

between treatment time and time of eventual relapse are independent and 

identically distributed positive- or infinite-valued random variables. The 

aim is to say something about their common sub-distribution function F or 

to compare it with that associated with a different set of data pertaining 

to a different treatment. At time t 2 the available data is (Xj,oj) = 

- (X Au x ) j = 1, ... , n, where uJ. = t 2 - eJ. is the fixed "observa-
- j j' {Xf"'uj} ' 
tion limit" for the j-th patient (actually u 1 , ••. ,un are also known and some 
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statistical methods make use of them as well) . 

EXAMPLE 3.1.5 "Progressive censorship (of Type II)". 
we return now to the industrial set-up described in Examples 3.1.1 and 3.1.3. 
Supposing the distribution of then lifetimes x1 , •.. ,Xn to be continuous, 
the observation plan is now, at the time of the first observed failure time 
x to remove from the test a random selection of r 1 components out of (1) ' 
the still operating n - 1. Supposing the n - r 1 - 1 remaining components to 
h 1 . f t · y y th at time Y the next observed failure' ave 1 e lmes 1, ... , n-r1_1, en (l)' 
time, a further r 2 components are selected at random from those still on 
test and removed. This procedure is carried on till a total of s failures 
have been observed, with 

k = 1, ..• ,s; l~=l (rk+l) 

rk components being withdrawn at the k-th stage, 
= n. We now define x. = X. and o. = 1 if the j-th J J J 

component is observed to fail at time X., and define x. = X. and o = 0 if J l J i 
the i-th component is one of those removed at this time instant. The observ-
ed data is equivalent to (X.,o.), j = 1, •.• ,n. We say that component j is ~ J J 
on test at time t if X. ~ t, otherwise it has either failed or been removed J 
at an earlier time instant. 

Other terms such as "variable censorship" and "multiple censorship" 
occur in the literature, but generally one of the above examples is meant. 
All of these examples will be included in the general model of this section. 
Clearly various mixtures of these situations can also occur (and will also 
be included); for instance, in Example 3.1.4, the patients might also be 
subject to some "competing risks" such as accidental death from an un
related cause, moving away from the district covered by a hospital, or what
ever. Similarly in Example 3.1.3 there might be "planned withdrawals" of 
some of the surviving animals at fixed or random time instants for surgical 
investigations. 

We next mention one example which will not be covered; we shall give 
it some attention in Chapter 6. The essential difference between this 
example and the previous ones is that the natural time axis in the new 
example does not permit one to consider each lifetime as starting on a 
new time axis at time t = 0, and still have cause and effect only working 
forwards in time. On the contrary, after this transformation the death or 
failure of one object at time t could effect the censoring of another at 
time s < t. 



ii.res ti.r:9 with rep] aceoent 11 , 1 ~ renewal tes ting 0 • 

Suppcs" tilii t in Example 3. 1. 1, any component fa.iling before time u is im

~nedi ately replaced by a new one. So at any time instant up to u, exactly 

n cosponents of varying age an' on test. At t..11.e end of the test a random 

nun1i')er of failures have been observed and there are exactly n censored 

observations .. 

We now state the model which will underlie the rest of this chapter 
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and the following two chapters. Let (J,F,PJ be a complete probability space 
on which are defined n independent positive, possibly infinite-valued random 

variables x 1 , ..• ,xn with sub-distribution functions F 1 , •.• ,Fn defined by 

F.(t) = P(X.St), t E L0, 00), ( 00 ) = P(X.< 00). Define nondecreasing functions 
J J - + J 

G. with values in 1R by 
J 

( 3. I. 1) = J (1 
sdO,tJ 

-1 
- Fj{s-)) dFj(s). 

Define 

(3.1.2) T. 
J 

sup{t: F.(t) < 1). 
J 

We see that for each j, F.(0) == G.(0) = 0, G. is finite on [O,T.), and 
J J J J 

G. is constant on Lt ., 00 ]. If F. (1.-) < 1 then G. is bounded on L0, 00), and J J J J J 
(1j) = 1 or 0 according to whether Tj < 00 or Tj = m. In Lemma 3.2.1 we 

shall see that if on the other hand F.(1 .-) = 1, then G.(t) t G.(1 .) ="" 
J J J J J 

as t t T .• If F. has a density f., then defining the hazard rate A. = J J J J 
= fJ·/(1-FJ.) (in Example 3.1.3, \. a.), it holds for all t that G.(t} 

J J J 
= f~ \ (s) ds. So Gj can be called the cumulative hazard or cumulative risk 
for the j-th object; see again Lemma 3.2.1. 

We next suppose that (X.,o.), 
J _J 

and satisfy almost surely 0 < x. < 
J 

almost surely G.(X.) :'.> G.(X.) < 00 

J J J J 
Jj and Mj' j = 1, ... ,n, by 

(3.1. 3) N. (t) xrx.st,o .=!}' J 
J J 

( 3. 1.4) Jj (t) X{X .~t}, 
J 

(3.1. 5) M. (t) 
J 

Nj (t) -G.(X.At) 
J J 

= 1, •.. ,n, are also defined on (Q,F,P) 

00 , X. S X., and o. = x{-X -x }"Note that 
J J J r j 

We now define stochastic processes Nj, 

N. (t) -r J .dG .. 
J 0 J J 
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We can now state our key model assumptions: 

ASSUMP-TION 3.1.1. There exist sub a-algebras Ft of F making 
(n,r,PJ,{Ft: t € [O,oo)} a stochastic basis and Nj, Jj and Mj adapted processes for each j. Mj is a square integrable martingale for each j and 
<M.,M.> = f (1-l'IG.)dG., <M.,M. 1 >=0 for all j ~ j'. ) J J J J J 

ASSUMPTION 3.1.2. For each t € [0, 00 ), conditional on Ft-' 6N1 (t) , .•. ,6Nn(t) are independent zero-one random variables with expectations J.(t)l'IG.{t), J J j = 1, ••• ,n. 

We shall interpret these assumptions by relating them to the counting process theory of Section 2.3. It is convenient to consider the adaptedness requirements of Assumption 3.1.1 apart as a background assumption for both 
3.1.1 and 3.1.2. 

The adaptedness requirements are equivalent, given the stochastic 
basis (Q,f,p),{Ft: t E [O,oo)}, to requiring that X{x.st}' ojx{x.st} and XjXfX,. st} are Ft-measurable for each t and j. In facf, Assumpti~ns 3. 1.1 and 3:1.2 are satisfied with respect to some stochastic basis if and only if they are satisfied with respect to the minimal basis defined by setting for each t 

1, ... ,n}, 

where N consists of all P-null sets of F and their complements. Whatever 
may be, we are supposing that 

events {6.=0} and {o.=1} happen at ] 2 

the X.'s are stopping J ~ 
or before time X. (at 

J is minimal). If the X. 's 
J 

commence at time t = O. 

are lifetimes, we are supposing 

times and that the 

time xj' if {Ft} 
that all lifetimes 

Given these background assumptions, Assumptions 3.1.1 and 3.1.2 in effect treat the continuous and the discrete cases respectively. If X. has a 
J continuous distribution for each j, Assumption 3.1.2 is empty; on the other hand, if X. and X. are integer valued and F J J t 

F[t] for all t E [O,ro), then Assumption 3.1.2 implies Assumption 3.1.1. 
Now by the adaptedness requirements, Nj is a counting process and f JjdGj is predictable {for Jj is clearly predictable, and considered as a process, G. is tool. So requiring that M. is a martingale is equivalent J J to requiring that N. has compensator J J.dG .. Thus f J.dG. can be thought ) J J J J of as the integrated conditional rate at which N. jumps. We shall see J presently that Assumptions 3.1.1 and 3.1.2 are satisfied if there is no 



censoring at all. So we are stating that at time t, given Ft, if xj > t 

then N. has the same conditional probability of jumping in the small time 
J 
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interval (t,t+h) as if there had been no censoring. As to what this rate is: 

if F. has a continuous hazard rate A., then this conditional probability is 
J J ~ 

approximately h•A. (t). On the other hand, given F , if X. ~ t, then the 
J t J 

conditional probability of jumping in (t,t+h) is zero. 

The requirement that <M. ,M. > = J (1 - CIG.) J. dG. follows directly from 
J J J J J 

Theorem 2.3.1 and need not have been made separately. If F1 , .•. ,Fn are con-

tinuous then {N1 , •.. ,Nn} forms a multivariate counting process and the 

requirement <M. ,M., > = O also follows from Theorem 2. 3 .1. Otherwise it can 
J J 

be interpreted as a kind of pairwise independence condition, and it can in 

fact be derived from the following weaker version of Assumption 3.1.2: for 

each t and j ~ j', conditional on Ft-' 6Nj(t) and 6Nj 1 (t) are independent. 

Assumption 3.1.2 itself is very simple to interpret, if we recall that 

6Gj(t) = P(Xj=tJxj~t). Note also that Xj~t.., Xj~t; and Xj t and 

o.=1 => X.=t. So we are stating that given what has happened up to but not 
J J 

including time t, if X. < 
J~ 

and o. = 1 is zero; if X. 

t, then the conditional probability that x. = t 
J 

J J 
~ t, then the probability that X. = t and o. = 1 

J J 
is equal to P(X.=tJx.~t). 

J - J 
Furthermore, still working conditionally on Ft-' 

for j's such that X. ~ t, 
J 

the events {X.=t,o.=1} = {X.=t} are independent. 
J J J 

The next theorem gives an intuitively meaningful condition under which 

Assumptions 3.1.1 and 3.1.2 hold; as a corollary it follows that these 

assumptions hold in Examples 3.1.1 to 3.1.5 and when there is no censoring. 

The proofs of this and the following theorem simplify greatly when the F.'s 
J 

are continuous. 

THEOREM 3.1.1. Let (~ 1 F 1 P) ,{Ft: t € [0, 00)} be a stochastic basis on which 

random variables X., X. and Ii. (j 
- - J J J 

1, ..• ,n) are defined, satisfying 

O < x. < oo, X. :;; X. and o. = x{~X X} almost surely for each j. The X.'s 
J J J J j= j J 

are supposed to be independent, with (sub)-distribution functions F.; 
-1 J 

define Gj = f (1- Fj_) dFj. Suppose that Xfx.:;;t} and OjX{X.:;;t} are Ft-

measurable for each j and t. If for each t, cbnditional on Ft the Xj's 

with xj > tare independent of one another, each having the 

of xj given Xj > t, then Assumptions 3.1.1 and 3.1.2 hold. 

distribution 

PROOF. The measurability requirements of Assumption 3.1.1 follow directly 

from the measurability requirements of the theorem. Next, let 11 and I 2 be 

disjoint sets of indices contained in {1, •.• ,n} such that 1 1 is nonempty; 

let j 0 be a fixed member of 11 ; and define 10 = r 1\{j 0}. Consider the uni

variate counting process N = J . & CIN. • . & ( 1 - CIN.) dNj which counts 1 
]€ 0 J ]€ 2 J 0 
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at the single time instant t, if it exists, for which X. = t and a = 1 for J j all j c I 1, provided that for no j E 1 2, Xj 
product equ:ls 1.) Fix t <"'such that Gj 0 (t) 
i = 0, ... ,2; m = 1,2, .... For any m and i < 

t and a.= 1. (An empty 
< "' and] define t . = i2-mt, m,J. 
2m, define the event B • by m,:i.. 

B. {¥jEI1,x.>t .andX.E(t .,t ·+1]; m,i _J m,i J m,i m,i 
Vj € 12 , x 3. :> t . or (X. > t . and X. > tm,i·+i)}. m, l. J m, i J 

We shall approximate the increment of N over the interval (t .,t ·+i] ro,i m,1 with Xti. . ; in fact we have -m,1 

( 3.1.6) I (N(t '+1)-N(t . ) ) - XB m,1 m,i . $)I X{t .<x.<X.$t . 1 } JE 1 m,i J J m,i+ 

+ 

+ 

e: I 
1 

m,i 

x - -{xj,X.,>t .;X.,X.,E(t .,t . 1]; XJ.;lxJ.,} J m,i J J m,i m,i+ 

x N ~ {x.,x.,;>t .;X.,X.,E(t .,t . 1]; XJ.;l XJ.,}. J J m,i J J m,i m,i+ 

Now by the conditions of the theorem, 

) "" 
i 

FJ.{tm i+1)-FJ.(tm i)) ( F.(t ·+1> -F.(t .)) . l , ' ' Ji 1 _ J (t l J m,i J m, 1 l. ·-FJ.(tmi) J"E:I j m,i 1-F.(t .) ' 2 J m,i 
F 3.(t ·+l)-F.(t .) 11 J. .l m,i J m,i 

t 1 I J l. 1 - F. (t . ) i'm,i+l·"'JEo J m,i 

. (1 -
jc I.., 

"' 

F; I till . +l) - F. ( t . ) ) ) J ,i J m,l. i 1 - F ( t ) • J · ( t · ) -1----=---- dF · ( S) • J. m,i. Jo m,i F. (t .) Jo J 0 m, J. 

Thus 

where 0 s Ym{s) s {!- Fj 0 (t-) -l < oo for all m and sand where 

-+ IT J. (s) 
jeI J 

0 

~F.(s) ( b.F.(s) Jj (s) J TI 1 - J. (s) J ) __ o __ _ 1-Fj(s-). I J 1-F.(s-) 1-F. (s-) JE 2 J JO 
lS m-+ 00 for all s, outside of an event of probability zero. Therefore, 



choice of versions of E '1 x IF ) we have 
B . ' t . ' 

-1 

i=D 
IF 
' t 

m,i 

al.most surely. 

m,i m, 1 

J ./IG. 
] J 

IT ( 1 - J . 6G . ) J . dG . 
jEI 2 J J Jo Jo 
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Next. we consider the terms on tJie right hand side of (3.1.6). We have 

2m-1 
0 ~; E( I 

i=O 
EI IF ) ) 

'x { t . <x . <x . s:t . 1 } ' t . 
m,i J J m,i+ m,i 

as m -+ 00 • Similarly we can bound the expectation of the sum over i of con

ditional expectations of any of the other terms on the right hand side of 

;3.1.6) with P( X -XJ, J 

random · .. :ariable Y, 

-rn 
2 t, X/'Xj,) ·+ 0 as m -r 00 • Thus for any bounded 

2m-1 
E(Y. I 

i=O 

-+ E(Y • r 
0 

n J '{;G . n (1 - J . 6G . ) J . dG . ) • 
j€I0 J J j€I J J Jo Jo 

2 

Let the compensator of N be A. By Theorem 2.3.2 we now have, for all t < 00 

such that Gj 0 (t) < 00 , 

(3.1. 7) A(t) J . ti.G . I1 ( 1 - J . 6G . ) J . dG . 
J J j€I J J Jo Jo 

2 

almost surely. 

We next show that A is constant on [xj 01 00). Define 

T 
E 

inf{ t 2 X 
Jo 

A(t) -A(X. ) 2 d, 
Jo 

e: > 0, 

where inf ~ = X· and T are stopping times, xJ. ~ T, and by Theorem 
Jo e: o e: 

2. 3 .1, M = N - A is a martingale on [O ,ooJ. So by Doob' s optional stopping 

theorem, 

f(N(T )-N(x. )) 
E Jo 

f(A(T )-A(XJ· )) 2 e: P(T < ooJ. 
e: 0 e: 

But N is constant on [xj 0 , 00 ) so P(TE < oo) = 0 for each e: > 0. With probab

ility 1, Gj (Xj ) ~ Gj (Xj ) < 00 • By right continuity of A, (3.1.7) with the 
0 0 0 0 ~ 

fact that A is constant on [Xj , 00 ) shows that the processes A and 
0 
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( 1 - J .f,,G.) J. dG. 
J J Jo Jo 

are indistinguishable. 

Taking r 1 = {j}, I 2 ~shows that Nj, defined by 

has compensator Aj = f JjdGj. Hence by Theorem 2.3.1, <Mj,M.> = 
= f (1-Jj'''Gj)JjdGj. To show that say <M1 ,M2 > = 0, consider the processes 

* N2 f (1- LiN1)dN2 

* N3 = f /),NldN2. 

* * * Note that {N1,N2 ,N3} is a trivariate counting process, with compensators 

A: f (1-J2LiG2)JldGl 

A; f (1- J1bG1)J2dG2 

A; f J 1LiG1J 2dG 2 

* * * * * by various choices of r 1 and r 2 . Define Mi Ni-Ai. Since N1+N 3 * * * * * * N2+N3 = N2 we also have A1+A3 = A1 and A2+A3 = A2. Therefore 

f LiA:dA; - f LiA:dA; - f LiA;dA; - f /),A;dA; + A; 

(by Theorem 2.3.1) 

o. 

This completes the proof that Assumption 3.1.1 holds. Now for any martin
gale M, E(LiM(t) !Ft_) = 0. Applied to the martingale M = N-A, we have 
E(LiN(t) !Ft_) = M(t), i.e. 
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P(tiN.(t) = 1 l:/jE Il, fiN.(t) =O VjE 12 IF ) J J t-

J.(t)6G.(t)• IT (l-J.(t)6G.(t)), 
J J jE I J J 

2 

which shows that Assumption 3.1.2 holds too. D 

Considering the X.'s as lifetimes, commencing at time t = 0, we can - J interpret "X. > t" as stating that the j-th object is under observation J 
just after time t. So the intuitive content of Theorem 3.1.2 is that our 
assumptions hold if, for every t, given what has happened up to and includ
ing time t, the remaining lifetimes of the objects which are still under 
observation just after time t have the same joint distribution as if there 
had been no censoring. In particular, the fact that an object has not been 
censored in [O,t] gives no information about its remaining life distribu
tion. Such a condition is often used to give informal justification for 
various procedures in the analysis of censored data. 

COROLLARY 3.1.1. Assumptions 3.1.1 and 3.1.2 hold for Examples 3.1.1 to 
3.1. 5. 

PROOF. It is given that x 1 , ... ,Xn are independent, with distribution func
tions F 1 , ... ,Fn. Examples 3.1.1, 3.1.3 and 3.1.4 are special cases of the 
following: (U1····•Un) is independent of (X11···1Xn) I and xj = xj A uj' 
oj = X{x.QJ.} for each j. Example 3.1.2 is a special case of Example 3.1.5. 
In Example j.1.5, suppose that the randomizations needed at the first 
s- stages in this example are generated by random vectors v1 , ... ,Vs-l (so 
Vk specifies which objects are to be removed from those remaining at stage 
k). Suppose that x 1 , •.• ,xn, u 1 , •.. ,un or x1 , ... ,Xn,v1 , •.. ,vs-l are defined 
on a complete probability space (Q,F,P); let Nin each case be the a-algebra 
of all P-null sets of F and their complements; and define 

1, ... ,n} 
or 

1, ... ,n} 

for the first or second set of examples respectively. The conditions of 
Theorem 3.1.1 are now easy to verify (and the discussion in Appendix 2 shows 
that (D,F,P) ,{Ft: t E [Q,oo)} is indeed a stochastic basis). 0 
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Other choices of {F} in the proof of Corollary 3.1.1 would have been t 
more natural and would also have satisfied the conditions of Theorem 3.1.1. 
However the above choice is useful in applying the next theorem to Examples 
3.1.1 to 3.1.5. This theorem specifies the likelihood ratio based on the 
observations (Xj,oj), j = l, ... ,n for the hypothesis H: Xj has distribution 
function Fj, j = 1, ... ,n, and H': Xj has distribution function Fj, 
j = l, ... ,n. The conditions imply those of Theorem 3.1.1, both under Hand 
H'; they are discussed after the proof. We shall only need this theorem 
in Chapter 5. 

THEOREM 3.1.2. Let rn,F,PJ,{Ft: t E LO,:)} and (Q,F,P'),{Ft: t E [O,co)} 

form two stochastic bases, and let X., X. and o., j = 1, ... ,n, be random 
J J )~ 

variables with the usual ·properties 0 < X. < 00 , X. s X., o. x 
J J J J = {Xj=Xj}' 

(j = 1, ... ,n) almost surely P and almost surely P'; suppose that 
x1 , •.. ,x are independent under P and P' and that P(X.St) =F. (t), n J J 
P'(X.St) = F'.(t), t E [O,co), for (sub)-distribution functions F. and F'., J J J J 
j = 1, ... ,n. 

Suppose that under P or P', for each t, conditional on Ft, the Xj 's 
with Xj > t are independent, each having the distribution of xj given 
Xj > t (corresponding to P or P' respectively). Suppose that 

and 

1, ... ,n} for all t 

XjX{x.st} is Ft-measurable for all j and t, 
J 

p and P' agree on F0 

P and P' are absolutely continuous with respect to one another 

on F • 
"' 

Then on (Q,F00 ) 

dP' dF'. - Fj(Xj) J ~ (3 .1.8) dP = IT ap-(X.) IT 
- Fj(Xj) j:o.=1 j J j:o.=O 

J J 

IT - Ll.Gj txj) dG' n 1 F j (Xj) -1 ~ 
j:o.=1 LlGj (Xj) dG (X.) II 

1 F/~j) J j J j=l 



PROOF_. We apply Theorem 2. 3. 3 to the ( 2n -1) -variate counting process with 

co:11ponents indexed by the non-empty subsets of { 1, ... ,n}: 

6N. IT 
J ji!I 

( 1 - llN.) dN. 
J Jo 

Ic [1, ... ,n}, I "f 0}, 

where jO is an arbitrary member of I. As was seen in the proof of Theorem 

3.1. , N1 has (under P) compensator 

TI JJ. 6GJ. TI ( 1 - J. 6G.) J. dG . • 
jE:I\{j 0 } jil J J Jo Jo 
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Note also that the sum of all the components of the above counting process 

is the univariate counting process 

N I J TI (1 - 6N.,)dN., 
j=l j'<j J J 

which counts at each jump of Ij=l Nj' and which has compensator 

A I J ll (1 - JJ.,6GJ.,)JJ.dGJ .. 
j=l j'<j 

We also have A = ln 1 f J.dG. and 1 - 6A .. J.El (1 - J.6G.). Let 
C J= J JC .• J ~J 

< ••• < Tm be the distinct times at which N jumps (m = N ("') is random). 

By Theorem 2.3.3, on F~ 

dP' m 
dP° = IT 

£=1 

dG' 
( rr _i(x.J • rr 

j:Xj=T£,oj=1 dGj J j:Xj>T£ or 

X.=T, and o.=O 
J "' J 

1- b.Gj(T£)\ 

1 - b.Gj (T £)) 

( TI n;=l O - Jj (sJ Mj (s) l \ exp(-Lj=l f; JjdGjcl 

si{Tl' · ·. ,Tm}rrj=l (1- Jj (s) 6Gj (s) l) exp(-Lj=l f; JjdGjc) 

dG' _j_ ~ 
TI dG. {Xj) 

j:o.=1 J 
J 

n 
ll 

j=l 

(JI (1-J.(s)6G~(s)))exp{-J""0 J.dG'.) 
S J J ) JC 

(Jls(l-Jj(s)Mj(s)))exp(-f; JjdGjc) 
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(dG~ _]_ ~ 
II \dG (X.) 

j: 0 .=1 j J 
J 

dF'. _]_ ~ 
II dF (X.) 

j:o.=1 j J 
J 

by Lemma 3.2.l(i) 

0 

The expression on the right hand side of (3.1.8) is often used as a 
likelihood ratio on intuitive grounds, see e.g. COX (1975) and BRESLOW 
(1975). Note that with the definition of Ft given in Corollary 3.1.1, the 
theorem applies to all of Examples 3 .1.1 to 3 .1. 5, if changing P to P' only 
changes the distributions of the X.'s, and not of the U.'s or Vk's. J J The extra condition in Theorem 3.1.2 on the a-algebras Ft can be in-
tuitively interpreted as requiring that all random aspects of the censoring, 
except in so far as they are generated by the lifetimes Xj themselves, can 
be conceived of as being realized at time t = O, which is hardly a restric
tion at all. What is a restriction is that P and P' should agree on F0 ; i.e. 
censoring gives no information on which probability measure holds, except 
in so far as it depends on the X.'s. 

J 

3.2. One sample case: the product limit estimator 

In this section we specialize the general model given after the exam
ples of the previous section by supposing that F 1 = ... = F n = F, say. 
Define G =G. (see 3.1.1), t = t. (3.1.2), and recall the definitions of J J N., J. and M. (3.1.3 to 3.1.5). We assume that Assumption 3.1.1 holds, but J J J 
will not need Assumption 3.1.2 in this section. 

The product limit estimator F {F(t): t E [O,oo)} is an estimator of F 
based on the observations (X.,o.), = 1, .•. ,n, which reduces to the usual J J 
empirical dis,:ribution function based on x1 , ... ,Xn if oj 1 for each j 
(recall that Xj = Xj if oj = 1, otherwise Xj < Xj and oj 0, where the 
Xj's are independent and identically distributed with distribution function 
F).The estimator F was introduced in statistics by KAPLAN & MEIER (1958), 
and a closely related estimator of log(l-F) by NELSON (1972). However versions 
of it had long been known in the fields of demography and actuarial science. 
Recently, smoothed versions have been proposed (F itself is a step function), 
e.g. by AALEN & JOHANSEN (1978) and FOLDES, REJTO & WINTER (1980). 
BARLOW & CAMPO (1975) propose another estimator of a certain transform of F, 
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called the "total time on test plot". However there are some difficulties 

in applying this to censored data which have not been resolved yet. In Ap

pendix 5 we make some suggestions in this direction. 

F can be described as the sub-distribution function on [0, 00 ) which 

only assigns mass to the values of the uncensored observations, and which 

does this in such a way that for any t E [0, 00), 

(3. 2.1) 
6.f' ( t) #{j: x.=t, o.=l} 

J J 
1 - F(t-) #{j: '.Xj :2: t} 

When F is discrete, the right hand side of (3.2.1) is a very natural estima

tor of P(Xj=tlxj~t) = 6.F(t)/(1- F(t-)). F can often be thought of as the 

maximum likelihood estimator of F (the term needs qualification because in 

its usual sense, one does not exist, there being no dominating measure for 

the set of all measures on [0, 00 ), see e.g. JOHANSEN (1978)). It will be 

seen that the above definition allows F to be less than 1 and constant to 

the right of the largest observation X., if this observation or one of 
J 

the group of tied largest observations is censored. Other definitions of 

the product limit estimator set it equal to 1 on this part of the real line, 

or leave it undefined there. 

We presently give a concise definition of F in terms of the processes 

Nj and Jj' j = 1, ... ,n, and establish some of its small sample properties. 

In Section 4.1 we prove consistency under a generalization of the random 

censorship model (covering Examples 3.1.1, 3.1.3 and 3.1.4) and in Section 

4.2 we show how the estimator can be used to give confidence bands for the 

unknown F, and confidence intervals for F(t) for fixed t. 

Define processes N, Y, M, J and the product limit estimator F by 

n 
(3. 2. 2) N(t) l N. (t) #{j: X. ::; t and 6. 1} 

j=l J J J 

n 
(3. 2. 3) Y(t) l J. (t) #{j: x. :2: t} 

j=l J J 

n 
- ft (3.2.4) M(t) l M. (t) N(t) YdG 

j=l J 0 

(3. 2. 5) J(t) X{Y(t) > O} 
and 

(3. 2 .6) :Fctl 1 - II (i 6.N(s) \ 

sSt 
- Y(s)J 

where the convention 0/0 = 0 has been applied. N is nondecreasing and right 
continuous, Y is nonincreasing and left continuous; both take values in 
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{0,1, ... ,n}. Also we have Y(O} = n almost surely and 6N(s) :S: Y(s) for all 

s;if equality holds for some s then for t > s, N(t} = N(s) and Y(t) = 0. 

In any case Y(oo) = o almost surely. It is easy to check that (3.2.6) cor

responds to the earlier verbal definition of F. Since 

• ( Y(s) - Y(s+) - L'.N(s)) = Y(t+) 
(1- F(t)) 11 \1 - Y(s) - L'.N(s} n , 

s$t 

we see that (Y+/n)/(1- F) is nonincreasing, nonnegative, and takes the 

value 1 at time zero (it can in fact be interpreted as 1 minus the product 

limit estimator of the censoring distribution) . These facts give us in 
particular the right hand part of the inequality 

N/n $ F $ 1 - (Y+/n). 

The left hand part follows by comparing (3.2.6) with the equality 

N(t) = l _ 
n 

IT (i _ 6N(s) ). 
n - N(s-) s:S:t 

Equivalent to (3.2.6) is the implicit definition 

(3.2. 7) · I · dN(s) F ( t) = ( 1 - F ( s-) ) Y(";} 
sdO,t] 

Note that F and G satisfy 

(3.2.8) F(t) J ( 1 - F ( s-) ) dG ( s) I 

sdO,t] 

f -1 so it is not surprising that Y dN, the so-called empirical cumulative 

hazard function, can be considered as an estimator of G; see e.g. NELSON 
(1972). The following lemma shows that given G, equation (3.2.8) implicit
ly determines F, which suggests why (3.2.7) and (3.2.8) will be so impor

tant: the closer f Y-ldN is to G, the closer will F be to F. The proof is 
purely analytic and is given in Appendix 4. 

f -1 
LEMMA 3.2.1. Let G = (1-F_) dF for some (sub)-distribution function F 
with F(O) = 0, and define T = sup{t: F(t) < 1}. 

(i) (3.2.8) uniquely determines F if G is given; and F can be written as 

(3.2.9) F(t) = 1 - 11 (1 - M(s)) •exp(-Gc(t)) 
s$t 

for all t. 
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(ii) F and G are constant on [<,oo), G is finite and ~G < 1 on [0,<). If 

F(T-) < 1, then G(<) < 00 and ~G(<) 1 iff F(L) 1. If on the other 

hand F(<-) = 1, then G(t) t G(<) = oo as t t T. 

(iii) If F has a density f, then defining the hazard rate or failure rate A 

by ;\ f/ ( 1 - F) , 

(3.2.10) G(t) = I ;\(s)ds 
SE[O,t] 

for all t. 

More generally, if F is only continuous, we have 

(3.2.11) G = - log (1 - F) . 

(iv) For all t such that F(t) < 1, 

(3. 2.12) - ictl 
- F(t) 

1 _ Jt 1 - F(s-)(dN(s) _ dG(s)). 
0 1 - F(s) Y(s) 

Relation (3.2.12) will later be extremely useful for deriving asymp

totic results for F. It can also be derived from Theorem 3.1 of AALEN & 

JOHANSEN (1978) who used it for the same purpose. In the meantime we shall 

couple (3.2.12) with Assumption 3.1.1 to derive some well-known results on F. 
Recalling the Definitions (3.2.4) and (3.2.5) of the processes J and 

M, and using (3.2.12), we see that for t such that F(t) < 1 and Y(t) > O, 

(3. 2.13) F(t) - F(t) ( 1 - F (t)) Jt - F-
--- ~(dN-YdG) 

O 1 - F Y 

(1 - F (t)) Jt l - F_ J dM. 
O 1 - F Y 

Let us define a stopping time T by 

(3. 2.14) T = inf{t: Y(t) = O}. 

Note that F and Mare constant on [T,oo) and that (3.2.13) holds with t = T 

provided F(T) < 1. So for any t such that F(t) < 1, 

(3.2.15) F(t) - F(t) ( 1 - F (t) ) It 1 - F _ ~ dM 
O 1 - F Y 

+ X{T<t}(F(t)-F(t) - (1-F(t)) r 
0 

1-P._JdM) 
T="F y 

'1 
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Jt 1 F J (1-F(T}) (F(t} -F(T)) ( 1 - F ( t) ) - - dM -
O 1-=-F Y X{T<t} 1 - F (T} 

Now by Assumption 3.1.1 and Definition (3.2.5), Mis a square integrable 

t . l h"l l-F_J. b dd [Ot]f ht 'thF(t) <lad's mar inga e, w i. e T"="F y is oun e on , or eac wi. n J. 

predictable (J, Y and F_ are left continuous adapted processes while F is a 

deterministic process). So by (2.2.1) we obtain on {t: F(t} < 1} 

(3.2.16) E- = F - E( ( 1 - F (T) ) (F (t) - F (T) ) ) • 
F X{T<t} 1 - F (T) 

So F is in general biased downwards, and is unbiased on {t: F(t) < 1} if 
and only if almost surely, F(T) = 1 or F is constant on {t: t ~ T and 

F(t) < 1}. A sufficient condition for unbiasedness is that almost surely, 

Y(T) > 0 or for some t < T, ~N(t) = Y(t); i.e. if the largest observation 

is less than T, it, and all observations equal to it, must be uncensored. 

In this case, if F(T) = 1, then F(T) = 1 almost surely and we have unbiased

ness on [O,oo). 

Relation (3.2.16) shows that the absolute value of the bias of F(t) 

increases as t increases, and yields the following bound (true for all t 

such that F(t) < 1): 

(3.2.17) 0 $ F(t) - EF(t) $ F(t)P(Y(t) = 0). 

This improves the result given as the theorem in Section 2.2 in MEIER 

(1975), which concerns a continuous distribution function F and the model 

of fixed censorship (Example 3.1.4), and gives a slightly weaker bound. 

We next briefly study the variance of F - F, corrected for its 

"random bias"; i. e. defining 

(3.2. t8l B 
( 1 - F (T) ) (F ( t) - F (T) ) 

-x{T<t} 1 - F (T) 

we look at the variance of 

F - F - B = ( 1 - F) J 1 - :F _ -! dM 
1 -F Y 

(cf. (3.2.15)). We shall use (2.2.2). By Assumption 3.1.1 and Definition 

(3.2.4), <M,M> is given by 



(3. 2. 19) <M,M> = f Y(l-llG)dG. 

So by (2.2.2), for t < T, 

(3.2.20) var(F(t) -F(t) -B(t)) = f((F(t)-F(t) -B(t)) 2 ) 

(l-F(t)) 2 r E(<l -:-) 2J) 1 - llG 
dG 

( 1 - F) 2 0 

(l-F(t)) 2 r E( o - F l 2 J) dF 

0 \. y (1-F_) 2 (1-F) 

This suggests that the following quantity could be used as an estimate of 

the variance of F(t) - F(t) for asymptotic purposes: 

(3. 2. 21) 

This is in fact the estimator proposed by KAPLAN & MEIER (1958), formula 

2f; we investigate it further in Section 4.2. Using the inequality 

Y/n s 1 - F and (A. 4. 7) it follows straightforwardly that 

v<tl ~ n-1F<tl (1-F<tll 

with equality if and only if there are no censored observations in [O,t]. 
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The next result gives an "in probability linear bound" for the product 

limit estimator. Similar results for the empirical distribution function 

are well known; see for instance the references in SHORACK & WELLNER (1978). 

In VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1 these results (still 

for the empirical distribution function) are generalized to the case of not 

necessarily identical or continuous distribution functions. We are still 

assuming that F 1 = ••. = Fn = F, for some not necessarily continuous (sub)

distribution function F; and Assumption 3.1.1 is supposed to hold. 

THEOREM 3.2.1. Defining 

T = sup{t: Y(t) > O} 

we have for all i3 E (0,1) 

(3.2.22) P(l - F s 13-l (1- Fl on [O,T]) ~ 1-13. 
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PROOF. Define 

Z(t) 
1 - F (tJ\T) 
1-F(tJ\T) ' 

t E [0,oo). 

By (3.2.12), Z is a martingale on [O,t] for every t such that F(t) < 1. So 

by Doob's submartingale inequality for every S > 0 we have 

So we have 

p ( sup z ( s) ~ s-1 ) s; s EI z ( t) I 
sE[O,t] 

S f(Z(t)) 

P(l-F :S S-1 (1-F) on [O,tJ\T]) ~ 1-S. 

s Ecz coll 

Recalling that T sup{t: F(t) < 1}, by letting t t T we find 

P(l - F :S s-1 (1- F) on [O,T]\{T}) ~ 1- s. 

If F(T) = F(T), P(F(T) F(T )) = 1. If F(T ) < F(T) = 1, we have 

P(T=T and F(T}=l) = P(T=T}. So in both cases we obtain (3.2.22). D 

s. 

The bound in (3.2.22) is surprisingly sharp; DANIELS (1945) and 

ROBBINS (1954) show that (3.2.22) holds with equality when there is no 

censoring and F is continuous. In Appendix 6 we present a proof inspired 

by TAKACS (1967) explaining why DANIELS' and ROBBINS' result is so simple 

and why in particular there is no dependence on n. 

One might have expected (cf. VAN ZUIJLEN (1978) Theorem 1.1) that 

results similar to (3.2.22) on P(l-F ~ S(l-F) on [0,T)}, P(F :S S-lF) and 

P(F ~SF on {t: N(t) > 0, Y(t) > O}), could be obtained for the product 

limit estimator. However we have not succeeded in deriving this kind of 

result in as much generality as in Theorem 3.2.1; fortunately we only need 

the following rather limited result in the sequel. 

PROPOSITION 3.2.1. Suppose that F 1 = Fn = F for some continuous (sub)-

distribution function F, and suppose that Assumption 3.1.1 holds. Define 

F (nF+l)/(n+l). 

Then for all e > 0 there exists S 

and a E (0,1) 

S(s) E (0,1) such that for any u E [0, 00 ) 

(3.2.23) P(F ~ c:tSF on [O,u]} ~ 1- e -P(Y(u) :S cm). 
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PROOF. !f F(u) = 1 then Y(u) = 0 almost surely, and (3.2.23) holds tri.vial

ly for any E > O. So we let u and a be fixed, and suppose that F(u) < 1. 

Without loss of generality we may then also suppose that G = f (1 - F) -ldF is 

Let k = [cm]+l.Theevents {Y(u) >cm} and 

{Y(u) :: k} are identical. Also by the inequality F "= N/n (see the discus

sion after (3.2.6) I we have 

F "' (N+1)/(n+l) = a(N+l)/(an+a) '=: a(N+l)/(k+l). 

* * We sr~ll establish (3.2.22) by constructing random variables x 1 , ... ,xk 

which are independent and identically distributed with distribution func

tion F and satisfy, on the event {Y(u) ~ k} 

N(t) ~ N*(t) = #{i: X~ ~ t} 
J. 

for all t E [0,u]. 

For then, by VAN ZUIJLEN (1977) Lemma 2.3.1 (or by the remarks preceding 

Theorem 1.4 in VA.'l ZUIJLEN (1978)), 

P((N*+l)/(k+l) "'SF on [0, 00 )) 

uniformly in F and k, and (3.2.23) holds. 

* 

1 - 0 (1) as B + 0 

In fact only N will appear explicitly in the following construction. 

Let as usual Ni and Ji, i = 1, •.. ,n, be defined by 

J. (t) 
J. 

so that N = L~=l Ni and Y = l~=l Ji. Extending (Q,F,P),{Ft: t E [O,oo)}, 

define counting processes Nn+1 , ... ,Nn+k which are independent of the 

original sample space and of one another, and are such that each Nn+i' 

i = 1, ... ,k, is a time inhomogeneous Poisson process with f(Nn+i (t)) = G(t) 

for all t. Under this extension 

i 1, .... ,n, 

remain martingales, and 

i n+l, ... ,n+k 
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are martingales too. The idea of the proof is that Nn+l , ... ,Nn+k supply a 
reserve of processes jumping at the correct rate, so that by registering 

the jumps of some of the processes N1, ... ,Nn+k we obtain a new counting 
* . process which jumps at the same rate as N , defined by 

N* {t) = #{i = 1, .•. ,k: < $ t}. 

We shall only need to draw on our reserve if less thank of N1, ... ,Nn are 

still available, i.e. if Y < k. 

Let us define a process K as follows: K(O) = k, K is left continuous, 

nondecreasing, takes values in {k,k+l, ... ,n+k}, and only jumps at the times 

of the censored observations. It does this in such a way that if at time t, 

Ji(t) = 1, Ji{t+) = 0 and oi = 0 for exactly r of the i's satisfying 

i $ K(t)An, then K(t+) = K(t) + ll, where ll, is the smallest positive integer 

such that exactly r of the i's between K(t) + 1 and K(t) + ll, satisfy i > nor 

i $ n and Ji(t+) = 1. At time t we shall be registering the jumps of 

N1 , •.. ,NK(t); so this definition ensures that if one of the Ni's whose jumps 
are being registered is censored, it is immediately replaced by a new one. 

Since there are at most n censored observations, K can never exceed the 

value 2n; we shall see presently that K actually does not exceed the value 

n+k so that we indeed only need to construct Nn+i for i $ k. Next we define 

processes Ji for i = n+l, .•. ,n+k by requiring these processes to be left 

continuous and {0,1}-valued and to satisfy J.(O) = O; J. jumps to 1 at time 
1 1 

t if and only if K{t) < i but K(t+) ~ i; and Ji jumps back to zero at 

(i.e. just after) the first jump of Ni after t. 

Finally we define 

* N 

* Note the following facts. N is a counting process, because the Ni's with 
1 . . 1 * in+k I probability never Jump simu taneously. Because M =ln=l x{K~i} JidMi is 

* * a martingale, we find that the compensator of N is A defined by 

* A (t) 
n+k J 
I x{K(s)~i} Ji(s)dG(s) 

i=l sE[ O, t] 

J (K(s) ) l J. (s) dG(s). 
sdO,t] i=l 1 



Now\~ J. = k - N*. For both members are left continuous and integer 
li=l :L 
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valued. Both take the value k at time zero. Finally, both have the same 

jumps at the same times: for each process only jumps when one of the J. 's 
:L 

jumps, and if at time t there are r 1 i's with is K(t), Ji(t) = 1, Ji(t+)=O 

and 6Ni(t) = 0 and r 2 i's with is K{t), Ji (t) = 1, Ji(t+) = O and 

6Ni(t) = 1, then at time t+, K has increased to such a value that 

while 

K(t+) 

l Ji ( t+) r 1 
i=K(t)+l 

K(t) 

l 
i=l 

K(t) 

Ji (t+) = l Ji (t) - rl-r2. 
i=l 

\K(t+) 
So li=l J.(t+) = \~(t) J. (t) - r 2 , while N*(t) = N*(t-) + r From the 

:L li=l :L 2· 

fact l~=l * * Ji = k - N we deduce that N ( 00 ) = k. From this it follows that K 

some t < u we would then have K(t) s n and K(t+) 

* > Y(t+) ~ Y(u) ~ k, implying that N (t) < 0. 

> n, 

jump of Nn+i' 

* k - N it also fol-

~ k but K(u) > n. For 

and \~(t+)J.(t+) > 
li=l :L 

* * We have now also shown that N has as compensator J (k - N _) dG. But 

* by Corollary 3.1.1, N would also have this process as compensator were 

it defined by 

* * where x 1 , ... ,Xk are independent and identically distributed with distribu-

tion function F. Hence by Theorem 2.3.4, N* has the same probability dis

tribution as if it were defined in this way. 0 

The restriction above to continuous distribution functions could have 

been dropped, but only at the cost of an even more complicated proof in 

which Assumption 3.1.2 would be needed. On the other hand, similar results 

to Proposition 3.2.1 can be obtained very easily from the results in VAN 

ZUIJLEN (1977,1978) under the general random censorship model (Example 

4.1.1) by using the inequalities 

and the fact that under this model, N/n and 1 - Y+/n are empirical distribution 
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functions of independent but not identically distributed random variables. 
no extra difficulties are involved if F is allowed With such an approach, 

to have jumps. 
Finally we derive a minor result for later use: 

PROPOSITION 3.2.2. If F1 = ··· = Fn F and Assumption 3.1.1 holds, then 

I (llN-l)dN - I Y(Y-1)6GdG 

is a zero mean martingale on the time interval [0, 00 ]. 

PROOF. First note that 

I (llN-l)dN -N + I llNdN -N +I (llM+YllG}(dM+YdG} 

-N + I llMdM + I Y26GdG + f Y6MdG + f Y6GdM 

-N + f ll.MdM + I Y26GdG + 2 f YllGdM. 

Now J YllGdM is a martingale on [0, 00 ], for Yb.G is a bounded predictable 
process. By MEYER (1976) Theorem II.14, f 6MdM - <M,M> is also a martingale 
on [o,~J. So in view of (3.2.19) 

I (b.N-l)dN - J Y(Y-l)llGdG 

= f (llN-l)dN + f YdG - f Y(l-b.G)dG - f Y2b.GdG 

is a martingale on [o,~J, zero at time zero. 0 

3.3. Two sample case: the test statistics of Gehan, Efron and Cox 

We now introduce, as members of a whole class of test statistics the 
three test statistics whose study will take up a major part of this work. 
All are nonparametric in the sense that few assumptions have to be made in 
order that they can be used to construct an approximate (i.e. asymptotically 
valid) test for the null-hypothesis of interest; however only in special 
cases can they be used to give a truly nonparametric test, in the sense 
that their null-hypothesis distribution is known. We discuss this point 
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further after the necessary notation has been introduced. 

Again we specialize the model given after the examples in Section 3.1, 

this time supposing that the n observations fall into two groups, in each 

of which the distribution functions F. are the same. Relabeling the obser
J 

vations, we now suppose that the available data consists of (X .. ,o .. ), 
l.J l.J 

j = 1, ••. ,ni; i 1,2; where the distribution function Fij belonging to 

observation (i,j) satisfies F .. = F1. for each i and j. In Definitions 
l.J 

(3.1.1) to (3.1.5) we replace the index j everywhere with (i,j), and define 

G. =G .. and T. = T ..• Assumption 3.1.1 is again supposed to hold, and the 
l. l.J l. l.J 

null-hypothesis H0 we want to test is that F 1 = F2 . 

Next we define for each of the two samples i = 1 and i 2 processes 

Ni' Yi' Mi, J. and F. similarly to (3.2.2) to (3.2.6): 
l. l. 

n. 
l. 

(3. 3.1) Ni(t) l Nij(t) #{j: x .. $ t and 0 .. 1} 
j=l l.J l.J 

ni 
(3.3.2) Yi (t) l Jij(t) = #{j: xij 2:: t} 

j=l 
ni -r (3.3.3) M. (t) l Mij(t) = Ni(t) Yi (s)dGi (s) 

l. j=1 0 

(3.3.4) Ji(t) X{y. (t)>O} 
l. 

(3.3.5) 'F. (tl 1 - II ( 1 
- t.Ni(s)) 

l. Y. (s) • 
s$t l. 

-Fi is now the product limit estimator for sample i. 

By Assumption 3.1.1, M1 and M2 are square integrable zero mean 

martingales, with 

(3.3.6) i 1 or 2 

and 

(3.3.7) 0; 

Y1, Y2 , J 1 and J 2 are predictable processes. 

In motivating a certain class of test statistics we shall begin by 

supposing that the alternative hypothesis of interest is H1 : 

dG dG 
"--1 (t) 2:: - 2-(t) for µ-almost all t € [O,T1AT 2 J" dµ dµ 

where µ is any a-finite measure on [O,m) dominating both G1 and G2 (e.g. 
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ted by G and G2) . So if F 1 and F 2 have. 
the sum of the measures genera 1 
densities with respect to Lebesgue measure, and hence the hazard rates 
Al and A2 exist, the alternative hypothesis reduces to 

while if F1 and F2 each assign mass 1 to the positive integers, it reduces 
to 

{here x1 and x2 are random variables with distribution functions F1 and 
F 2). We call a1 the alternative of ordered hazards. By (3.2.9), if H1 is true then for all t, F1 (t) ~ F2 (t); i.e. we have a strong form of the 
commonly considered alternative of stochastic ordering. 

Let K be a bounded nonnegative predictable process which is a function of the observations and which satisfies Y1 (t) A Y2 (t) = 0 • K(t) = O; we denote by K+ the class of all such processes. (The class K is defined in the same way, dropping the requirement that K be nonnegative.) We shall use KE K+ as a random weight function with which estimates of dG 1 - dG 2 , i.e. dN1 _ dN2 
Y -Y--• are combined for those t for which estimation is possible, i.e. 1 2 
for which Y1 (t) and Y2 (t) arepositive. For given KE Kor K+, define 

(3.3.8) w = I 
and 

(3. 3. 9) z = J : d-11 - J : dM2 
1 2 by (3. 3. 3) • 

We now see by (2.2.1) that Ez = 0 so that under H0 , Ew(co) = O, while + under H1' if K E K , EW( 00 ) ~ 0. Also, by the assumptions on K, W{<») is an observable quantity. It seems reasonable to investigate whether a test of versus H1 can be based on W(<») • 

There are now two possibilities. Sometimes, a test can be carried out using a permutation distribution of W(~) under H0 . This would for instance be the case (for sensible choices of K) in Example 3.1.3 if under HO the 
forces of mortality for the competing risks are identical for all animals, or in Example 3.1.4 if the two samples arise by assigning one of two 
treatments at random to each patient entering. However, unless the data 
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comes from a well planned experiment, only rarely will this approach be 

possible. 

Alternatively, and this will be our approach, one could rely on large 

sample results and suppose that under H0 , W( 00 ) is approximately N(o,o 2 ) 
2 

distributed for some o which will have to be estimated. 

In view of (2.2.2), (3.3.6) and (3.3.7) we find that 

(3.3.10) 

where under HO, z = w. 
d.N· 

Recalling that f _i_ can 
d(N1+N2) Yi 

be considered as an estimator of G. (and 
l 

under H0 , J Yi+Y 2 as an estimator of G1 G2 J, we propose as alternative 

estimators for o2, v 1 ( 00 ) and v 2 (oo), where v 1 and v 2 are defined by 

( 3. 3. 11) 

and 

( 3. 3. 12) 

More explicitly, the suggested test procedure is to reject H0 in favour of 

~ -~ 
H1 , if W (00 ) v 1 (00 ) (or alternatively W (co) V 2 (co) ) takes on too large a 

value as compared with the standard normal distribution. By an abuse of 

notation, we shall say that W(00 )V 2 ( 00 )-~, 2 = 1 or 2, is a test statistic 

of the class K or K+ according to whether K E K or K € K+. If K E K+ and 
+ 

T is a stopping time depending on the observations, then Kx[O,T] E K too. 

So for any such stopping time, W(T)V 2 (T)-~ is also a test statistic of the 

class K+. In particular we can take T = t for any fixed t E [0, 00 ]. Similar 

statements hold for K € K. 

The -l's in numerator and denominator of the terms in (3.3.11) and 

(3.3.12) standing for t:.Gi in (3.3.10) have been introduced for two reasons. 

In the first place, if F 1 and F 2 are continuous these terms with probability 

1 disappear, making v 1 and v 2 simpler to calculate and also, as we shall see 

presently, correspond more closely to the relevant quantities for the test 

statistics of interest as they were originally proposed. Secondly, they make 

v2 (co), and in some cases v1 ( 00 ) too, an unbiased estimator of the null 

hypothesis variance of W( 00 ), as the following proposition shows. 
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E ( ) var(W("")). If Y1 (t) "Y2(t) ::> 1 => :.P:.:RO:::;P:_O::.:S::.:I:..:T:..:I:.:O.:.N:_::.3.:. • .:.3.:....1=-. Under HO' v 2 "" 
,.,. K(t) = o, then Ev1 ("") = var(Z( 00)) (= var(W( 00 )) under H0 J. 

~- :sy Proposition 3.2.2 and (2.2.1) applied to the martingale 

f (~N.-l)dN. - f yi(Yi-l)~GidGi and to the bounded predictable process 
2 21 l. -1 

K(Yi(Yi-1)) I 

2 

l Y. (Y.-l)W.) dGJ.. 
l. l. l. 

i=l 

if Y. (t) (Y. (t)-1) = 0 => K(t) = 0 
l l. 

Ez2 by ( 3 • 3 • 1 0) . 

This proves the statements on v1 • For v2 , we proceed similarly, applying 
Proposition 3.2.2 with N = N1 + N2 , Y = Y1 + Y2 and G = G1 = G2 • However 
since (Y1 (t) = O or Y2 (t) = 0) =1> K(t) = 0, it now follows that 
Y(t) (Y(t) - 1) = O => K(t) = O, so no additional condition has to be made. 0 

We now show that subject to some minor modifications, the test statis

tics of GEHAN (1965), EFRON (1968) and COX (1972) are members of the class 

K+. Define as in AALEN (1978) 

(3.3.14) KG yly2 

- -(3.3.15) ~ (l-F 1-) (1-F2_)J1J2 

(3.3.16) K = c 
yly2 

yl + y2 

and the associated processes WG,ZG,VlG'v2G, etc. (see (3.3.8), (3.3.9), 
(3.3.11) and (3.3.12)). Note that each of these K's is predictable, bounded 
and nonnegative, and depends only on the observations (X .. ,o .. ), 

l.J l.] 
j = 1, ••. ,ni; i = 1,2. Then we find that WG(oo) is the test statistic of 
GEEAN (1965) defined below his formula (3.1) if we let his x. 's correspond 

l. 
to our second sample and his y.'s correspond to our first 

J 
sample. GEHAN 

(1965) bases a permutation test on WG("") in the following way. Let N1 +N2 =N 

and Y1 + Y2 = Y and let T1 < ••• < Tr be the different time instants at 
which N jumps (so r is a random variable too). Put TO = o and T = "" 

r+l 
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GEHAN calls the collection 

(3.3.17) p {r; (ll.N (T.), Y (T.) -Y (T. 1 ) - ll.N(T.)) , 
1. 1. 1.+ 1. 

i O, ••• ,r} 

the pattern of the combined sample. Here, ll.N(Ti) is the number of uncen

sored observations at Ti, while Y(Ti)-Y(Ti+l)-ll.N(Ti) is the number of 

censored observations falling in the interval [Ti,Ti+l). GEHAN now supposes 

that under H0 and conditional on P, the joint distribution of the 2(r+l) 

numbers of observations from the first sample in each of these categories 

is the same as that obtained by selecting at random n 1 objects out of a 

total of n 1+n2 , which are distributed over 2(r+l) cells according to the 

numbers in P. For small samples the test can be based on the exact permuta

tion distribution of WG( 00 ) conditional on P. However for larger samples 

GEHAN proposes a normal approximation based on the exact permutation expec

tation and variance of WG(oo); he shows that under the permutation hypothesis 

( 3. 3 .18) E(WG (oo) IP) = 0 

and also calculates var(WG( 00 ) IP); we give it in a simpler form due to 

MANTEL (1967), which we also rewrite in a form more suited to our notation: 

(3. 3 .19) 

GEHAN's proof that, in a special case of Example 3.1.4, conditional on P and 

under H0, WG(oo)//var(WG( 00 ) !PJ is asymptotically standard normally distributed, 

and his proof of consistency of the corresponding test versus alternatives 

of stochastic ordering, require that F 1 and F 2 give mass 1 to a finite set 

of points. However a more generally applicable proof can be based on a 

theorem of WALD, WOLFOWITZ, NOETHER & H::>EFFDING given in PURI & SEN (1971) 

page 73, together with MANTEL'S (1967) representation of WG( 00 ) as a "linear 

permutation test statistic"; see BETHLEHEM, DOES & GILL (1977). 

BRESLOW (1970) considers WG(oo) from a purely "large-sample" point of 

view under the random censorship model (Example 3.1.4); i.e. without assum

ing that under the null-hypothesis a permutation distribution is availabe. 

He suggests estimating the null-hypothesis variance of WG( 00 ) with 
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(3.3.20) 

He assu.-nes continuous F 1 and F 2 ; in which case the first term of the above 

estimator is almost surely equal to v2G( 00). The other two terms will general~ 

ly be asymptotically negligeable compared to the first. 

EFRON (1967) proposed a test statistic Wand sketched its large-sample 

properties under the condition that there be no ties between the X .. 's; he 
l.J 

too worked under the random censorship model. Letting his x. 's correspond 
l. . 

to our first sample, and his y.'s to our second sample, W is defined by 
J 

W= -J (1-P\(s-)JJ1 (s)d((l-F2 (s))J2 (s+)). 
SE (Q 1 "') 

(3.3.21) 

w can be considered as an estimator of P(X 1~x2 J, where x 1 and x2 are 

independent random variables with distribution functions F1 and F2 . So 

under Ha• W should app~oximately equal ~-

Letting T. = max X,. and T = T1AT2, we see that 
l. j l.J 

(3.3.22) W = - J (1-!\(s-))J1 (s)d(1-F2 (s)) 

S€(0, 00 ) 

+ X{T2:5Tl}(1-!\ (T-)) (1-F2 (T-)) 

f<X> - - dN2 

0 (1-F1_)(1-F2_)J1J2 ~+ X{T2:5T1}(1-Fl(T-))(1-F2(T-)l 

by (3.2. 7). 

By integrating (3.3.21) by parts, and supposing there to be no ties amoncr 

the xij's, we also find that 

(3.3.23) 

and hence repeating the previous calculations and adding, we find 

(3.3.24) 2w- 1 

The last term here will be negligeable compared to the first one under the 

conditions EFRON (1967) envisaged for his asymptotic results. However if 

(3.3.24) is used to extend the definition of w to tied x .. 's, even if F 1 
l.J 

and F2 are continuous (as in Example 3.1.1) this last term can cause 



disastrous behaviour of W so it seems better to redefine Was~ - ~WE(""); 

we shall only consider WE(=) in the sequel. 
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As an estimator of the asymptotic null-hypothesis variance of 2W - 1, 

EFRON (1967, formula 8.12 and later remarks) proposed the estimator (modulo 

end effects similar to those in (3.3.24)) 

- 3 - 3 J00 (1-F) 1-
dF 1 + JCD (1 - F ) 

2-
dF2 

dNl 
--+ 
y2 

1 

JCD • 4 dN2 
( 1 - F 2-) y2 

0 2 

where the second form suggests that this estimator will be close to v1E(co) 

under the null hypothesis (when F1 and F2 will be close to one another) if 

F1 and F2 are continuous. In the sequel we will however only consider v 1 
and v2• Both the test statistics of GEHAN and EFRON simplify to the 

Wilcoxon test when there is no censoring. 

Finally we consider WC(co). COX (1972) considers treating a certain 

statistic U(O)/,lf((i'j" as approximately standard normally distributed for 

generating a two-sided test of H0 versus 

H'. "(1 - 'G )-1 dGl -1 dG2 
1 · '-' 1 a:µ "' c (1 - LIG2 ) dµ for some c F 1" 

where µ, supposed to dominate G1 and G2, is either Lebesgue measure or 

counting measure. (In the first case l!.Gi "' 0 and we speak of a "proportional 

hazards model"; in the second we have a "proportional odds model".) It 

turns out that calling COX's sample 0 and sample 1 our sample 2 and sainple 

respectively, 

u (0) w ("') 
c 

1 (0) = V 2C(co). 

In various special cases, THOMAS (1969 and 1975), CROWLEY & THCMAS 

(1975) and AALEN (1976) show that under H0 , U(O)/.lf((i) has asymptotically 

a standard normal distribution. 

Other authors, e.g. KALBFLEISCH & PRENTICE (1973) and BRESLOW (1974) 

propose slight variations of 1(0) for the case when ties are present. 

However these are either proposals for dealing with originally continuous 

data which later has been grouped (as in MANTEL's (1967) and BRESLOW's 
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(1970) discussion of the effect of ties on GEHAN's (1965) test statistic), 

or the authors have other alternative hypotheses in mind. 

The test statistic of COX has also been derived by MANTEL (1966), 

PETO (1972), PETO & PETO (1972) and THCMAS (1969) and is widely known as 

the log rank test and as the (generalized) Savage test. If F1 and F2 are 

continuous and Hl holds for an arbitrary a-finite measure dominating both 
c G1 and G2, then by (3.2.17), (1-F1J = (1-F2J , a so-called Lehmann 

alternative (SAVAGE (1956)). 



CHAPTER 4 

ASYMPTOTIC RESULTS 

4.1. Consistency of the product limit estimator and of test statistics 

of the class K+ 
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In this section we apply the theorem of LENGLART (Theorem 2.4.2 above) 

to obtain conditions for uniform consistency of the product limit estima

tor. We also use it, in a two sample situation, to obtain conditions under 

the alternative hypothesis for a test statistic of the class K+ to converge 

in probability to infinity as the sample sizes tend to infinity. Since in 

Section 4.3 we show that such a test statistic is asymptotically normally 

distributed under the null hypothesis, this constitutes a demonstration of 

consistency against the alternatives considered. The restriction from the 

class K to the class K+ is related to our choice of alternative hypotheses, 

all of which state in some sense that the observations in one sample are 

smaller than those in the other. We specialize the results to a general 

random censorship model (Example 4.1.1 below) and, as far as the test 

statistics are concerned, to those of GEHAN, EFRON and COX. 

First of all we collect the most important definitions and assumptions 

used throughout Chapters 4 and 5. We suppose that for each n = 1,2, .•• the 

model for n censored observations specified after the examples in Section 

3.1 is given. In particular, we shall make continued use of Assumption 

3.1.1 and, after this section, of Assumption 3.1.2 also. The underlying 

probability space (and hence also the distribution functions concerned) may 

be different for each n. We indicate dependence on n (of a distribution 

function, for instance) by a superscript; however in most other cases this 

dependence is suppressed in our notation (in particular, as far as stochas

tic processes defined for each n are concerned). We introduce the notation 

for an r-sample set-up. In future only the cases r = 1 and r = 2 will be 

considered, and dealing with the case r = 1 we shall drop the index 

i = 1, ••• ,r altogether. 
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Sor is fixed and for each n = 1,2, •.• a stochastic basis is given on 

h · h n "'ll ~n. . are w ic random variables Xij' Xij and ul.J defined, j = 1, ••• ,ni' 

i = 1, •.• ,r, where the number of observations in the i-th sample ni = ni(n) 

satisfies t 1 n. = n. We suppose that the xr:. 's are independent, xnl.. J' having 
i= l. l.] 

(sub)-distribution function F~, and X1,1, and a?. satisfying 0 < x?. < ~, 
l. l.) l.J l.J 

>?:. S xr:. and o?. = x{~n _ n} almost surely. For i = 1, •.• ,r and for each 
l.J J.J J.J X .. -X .. 

n we define stochastic ~toc~~ses by 

(4.1.1) Ni (t) = #{j: ~. s t and n 1} 
l.) oij 

(4.1.2) Yi(t) = #{j: 
~n 

xij <?: t} 

(4.1.3) M. (t) l. = N. (t) l. -r Y. (sldG?(s) 
0 l. l. 

(4.1.4) Ji(t) X{Y. (t)>O} 
l. 

(4.1.5) F. (tl 1 - II (1 
_ llNi(s)) 

l. sSt 
Y. (s) • 

l. 

n . n f n -1 n The function Gi in (4.1.3) is defined by Gi = (1-Fi_l dFi. We also 

define ,? = sup{t: F~(t) < 1}. F. is the product limit estimator of F? l. l. l. l. 
based on the observations ~j' o~j in the i-th sample. 

By Assumption 3.1.1, for each i = 1, ••• ,r, Mi is a zero mean square 

integrable martingale with 

(4.1.6) 

(4.1.7) i 1' i I• 

All the processes defined by (4.1.1) to (4.1.5) are adapted; Yi and Ji are 

predictable. 

By Assumption 3.1.2 (not used in this section), for each t, condition-

al on Ft-' 
parameters 

dent given 

for each i = 1, •.• ,r, t.Ni(t) has a binomial distribution with 

Yi(t) and ~Gi(t). Also, the ~Ni(t)'s are conditionally indepen

F 
t-

We shall be particularly interested in the following special case, 

which includes Examples 3.1.1, 3.1.3 and 3.1.4. 
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EXF!MPLE 4 .1 .1 "General random censorship model". 

n dn · 1 1 2 For each n=l,2, ••. Xij an Uij' J = , ••• ,ni' i = , ••• ,rare n indepen-

dent positive random variables, Xni' or U~. almost surely finite for each 
J l.J 

i, j and n. X~. has (sub)-distribution function F~ and u~. has (sub)-
J i. l.J ~ n 

distribution function L~ .• The observable random variables Xij and oij are 
"'Il n nl.J n 

defined by Xij = XijAUij' oij = X{X~fUfj}. n 
If (sub)-distribution functions L1 and L2 exist such that Lij =Li for 

all i and n, we speak of the (usual) random censorship model. 

n n ] If L. . X[un ) for some u .. e: (O,co , we speak of the model of fixed 
l.J ij •"" l.J 

censorship. 

We now consider the product limit estimator, setting r = 1 and drop

ping the index i everywhere. By (3.2.13), if t and n satisfy Fn(t) < 1, we 

have on the event {Y (t) > O} 

~ n J . 
(4.1.8) L:2'._ = 1 - F_ ~ dM on [O,t]. 

1 - Fn l - Fn y 

Define 

(4.1.9) H 
( l - F_JJ 

( 1 - Fn)Y 

and 

(4.1.10) z = I HdM. 

Again, if t and n satisfy Fn(t) < 1, H is a bounded predictable process 

and M a square integrable martingale on [O,t]. So by (4.1.10) and the 

theory of stochastic integrals, z 2 - <Z,Z> is a martingale on [O,t], 

where 

(4.1.11) <Z,Z> I a2 d<M,M> 

=I (1-F_)2J(1-t.Gn)dGn 
( 1 - Fn) 2y 

( (4.1.6) and (4.1.9)) 

is a predictable, nondecreasing, right-continuous process, zero at time 

zero. By the martingale property and Doob's optional sampling theorem, for 

all stopping times T < t 

E(Z(T) 2 ) = E{<Z,Z>(T)). 

We now see that Theorem 2.4.2 is applicable with z2 in the place of X and 

<z,z> in the place of Y. The following theorem then becoples straightforward 
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to prove: 

THEOREM 4.1.1 (Consistency of the empirical cumulative hazard function and 

of the product limit estimator). 

Let t E (Q,oo] be such that 

(4.1.12) Y(t) -+ "' as n + 00 
p 

and 

(4.1.13) lim sup Fn(t-) < 1. 
n+oo 

Then 

(4.1.14) sup IF (s)-Fn (s) I -+ 0 
SE[O,t] 

p 
as n -+ 00 

and 

(4.1.15) sup If: ~N - Gn (s) I -+ 0 
sE[O,t] 

p 
as n + 00 • 

If u E (O,oo] is such that (4.1.12) and (4.1.13) hold for all t < u, and if 

furthermore 

(4.1.16) lim lim sup (Fn(u) -Fn(t)) 0 
ttu n-+«> 

then (4.1.14) holds with the interval [O,t] replaced with [O,u]. 

PROOF. Letting t be fixed and satisfy (4.1.12) and (4.1.13) we see that 

and also 

(F -Fn ) 
P --= Z on [O,t] -+ 1 

1 -Fn 
as n -+- 00 , 

liro inf inf ( 1 - Fn ( s) ) > O. 
n+oo sdO,t) 

So to show first that sEEg~t) IF (s) -Fn(s) I -+P 0 it suffices to show that 

2 
sup (Z(s) ) -+P 0. Now by Theorem 2.4.2 applied to the time interval[O,t), 

sdO,t) 

P( sup Z(s) 2 ~ t:) ~ "!J. + P(<Z,Z>(t-) > nl ~ 

sdO,t) 
e: 

~ "!J. + P( Gn(t-) 
> n) (by ( 4 . 1. 11 ) ) • 

e: (1-Fn(t-JJ 2Y(t) 

By (4.1.12) and (4.1.13), the second term on the right hand side converges 



to zero as n + "" for each n > 0. Since E and n are arbitrary, we have now 

shown that 

- n 
sup IF (s) - F ( s) I + P 0 

sdO,t) 
as n + 00 

By ( 3. 2. 7) and ( 3 • 2 • 8) , on { Y ( t )> O}, 

(1-F(t-l )~ - (1-Fn(t-))J(t)ll.Gn(t). 
Y(t) 

So to complete the proof of the first part of the theorem concerning the 

product limit estimator, we must show that W (t)/Y(t) - J(t)/l.Gn(t) +p O as 

n + ""· Now since J dN/Y - J JdGn = J Y-ldM is also a square integrable 

martingale on [O,t] with <JY- 1dM,fY- 1dM> = JCJ/Y) (1-liGn)dGn, applying 

Theorem 2.4.2 on the interval [O,t] shows that 

as n +co for all E > 0. So this completes the proof that (4.1.14) holds, 

and also establishes (4.1.15). The rest of the proof is a straightforward 

monotonicity argument. 0 

and 

In the situation of Example 4.1.1, we see that 

n 
EY(t) I 

j=l 
( 1 - L~(t-)) 

J 
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var Y(t) 
n 

(1 - Fn ( t-)) l 
j=l 

{ (1 -L~(t-)) (1- (1-Fn(t-)) (1-L~(t-)))} 
J J 

:S fY(t). 

So in this case, and in the presence of Condition (4.1.13), (4.1.12) is 

equivalent to 

(4.1.17) 
n 

lim inf l 
n-rco j=l 

(1-L~(t-)) 
J 

PETERSON (1977), WINTER, FOLDES & REJTO (1978), FOLDES, REJT() & WINTER 

(1980), and FOLDES & REJT(} (1980a) and (1980b) give consistency results 

under various special cases of Example 4. 1. 1, under conditions always imply

ing (4.1.13) and (4.1.17). The results of FOLDES et al. are on strong uniform 
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consistency and include information on rates of convergence. AALEN & JOHANSEN 

(1978) Theorem 4. 5 give the first part of our Theorem 4.1.1 in the case 

that is independent of n, is continuous, and possesses a hazard rate; 

otherwise t.'1eir result is more general as it is concerned with nonparametric 

estimation of the transition probabilities of a Markov chain. 

Actually Theorem 4 .1.1 often implicitly gives conditions for uniform 

consistency of the product limit estimator on the whole real line. For in

stance, suppose the underlying distribution functions Fn are fixed, Fn = F 

for all n. As usual, define T = sup{t: F(t) < 1}. Now (4.1.13) automatical

ly holds for all t < T, while if F(T-) = F(T) then (4.1.16) holds. So if 

(4.1.12) holds with t = T in the first case, or for all t < -r in the second 

case, uniform consistency is proved on [O,T], which is equivalent to uni

for:m consistency on [0, 00). In this case Theorem 4.1.1 implies consistency 

of the natural estimator f~ ( 1-F) ds of mean lifetime f ~ ( 1-F) ds. The only 

difficulty occurs when T = 00 ; but this can be solved, assuming the mean 

lifetime itself is finite, by using (3.2.22) to bound the tail of the 

integral by a small finite quantity. 

Now we turn to the two-sample tests of the class K+ of Section 3. 3. So 

in \4.1.1) to (4.1.5), we taker= 2. For each n = n 1+n2 , Ke: K is a bounded 

predictable process, which is a function of the observations and which is 

zero where Y111 Y2 is zero. If K is nonnegative then we say K e: K+. For con

venience we repeat some of the def 'n't'ons of t h • ~ ~ s oc astic processes of 

Section 3.3 ieach defined for each n): 

(4 .1.18) 

(4.1.19) 

(4 .1.20) 

(4.1.21) 

We suppose throughout th 
at nl /\n.2 + "' as n + "'· A test of the null hypothesis 

H0 : 2 is based on comparing W(oo)/~ or W(oo)/~ with the 

standard normal distribution. These test statistics are ~alled test statis

tics of the class K or K+, according to whether K is a member of K or K+. 

We consider a sequence of one-sided alternat<ve hyPOtheses 
~ and assume that 

large positive values of the test statistics 
lead to rejection of H0 . 
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Throughout the rest of the section we suppose that F~ and F~ do not depend 

on n, defining F 1 Fn1 and F2 - Fn for all n We d fi d G i 1 2 - 2 • e ne i: i an i , = , , 
in the usual way. Alternative hypotheses of interest are: 

a;; 1 dG2 
Hl : --~ diJ on [O,i: 1Ai: 2J (where µ is a a-finite measure dominating dµ 

G1 and G2), and F1 .,;, F2 • 

H2: Gl ~ G2 on [O ,co) , and F1 .,;, F2" 

H3: Fl ~ F2 on [O,co), and F1 .,;, F2. 

These three types of alternative hypothesis can be called ordered hazards, 

ordered cumulative hazards, and stochastic ordering respectively. a1 implies 

~ and a 3 , while if F1 and F2 are continuous, a2 and a 3 are equivalent. The 

one-sided form of the alternative Hi given on page 51 is a special case of 

Hl • 
Finally we repeat the definitions of the three test statistics of 

particular interest, adding standardizing factors depending on n1 and n2 
only, which loosely speaking keep the variance of W(co) bounded away from 0 

and co as n + co: 

(4.1. 22) KG n2 

~ .. (4.1. 23) ~ -- (l-F1_)(1-F2_)J1J2 
2 

(4.1.24) KC 
ffi. Yl Y2 n1+n2 --------

2 nl n2 Y1+Y2 

All are members of K+. 

The following trivial lemma (we omit the proof) splits the proof of 

consistency into four parts: 

LEMMA 4.1.1. A one-sided test based on W( 00)/{Vi(co) (i = 1 or 2) is con

sistent against some fixed alternative hypothesis if, under that hypothesis, 

(4.1.25) 

(4.1.26) 

(4.1.27) 

(4.1.28) 

Z(co) is bounded in probability as n +co 

Vi(co) is bounded in probability as n +co 

Vi(co) is bounded away from zero in probability as n +co 

[ K(dG1-dG2) +p +"" as n + co. 
0 
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Conditions (4.1.25) to (4.1.27), which are true under very weak 

regularity conditions, are dealt with in the following sequence of lenmas. 

In the presence of these conditions, (4.1.28) is a necessary and sufficient 

condition for consistency. Establishing reasonable conditions for (4.1.28) 

itself will be a trivial enough matter under the alternative hypothesi·s 

H1, but gives a little more trouble under H2 and H3• 

J~ K2 J°" K2 
LEMMA 4.1.2. Suppose 0 yl dG1 and 0 Y2 dG2 are J:aunded in probability as 

n + ®· Then (4.1.25) and (4.1.26) with R. = 1 hold. If on the other hand 
~ K2 ~ K2 J0 y-dG2 and J0 y-dG1 are bounded in probability as n + oo, then (4.1.26) 

1 2 
holds with R. = 2. 

~-Using (4.1.6), (4.1.7) and the theory of stochastic integrals, we 

see that the following three processes are all zero-mean martingales on 

[O,oo]: 

and 

Note that 

and that 

2 J K2 z - L - (1-LiG.ldG. 
i Yi 1 1 

f K2 J K2 l -2 dN. - l -y dG. 
. y 1 . . 1 
1 i 1 1 

J K2 
o s v2 s I -y y dN .• 

i 1 2 1 

We now apply Theorem 2.4.2 by using the martingale property of each of the 

above three processes, to prove (4.1.25) and (4.1.26) with R. = 1 and R. = 2 

in turn. 

To prove the first set of assertions we make use of the fact that 
r<» K2 l· Jr.o y dG. is bounded in probability as n + 00 • By the martingale property, ]. i ]. 

for every stopping time T 



f ~ ' l· ~y dG. is a predictable process. So by Theorem 2.4.2, choosing T oo 
l. i l. 

in (2.4.10), 

P(z( 00 >2 ~ c> s ~ + P(t J"" ~2 dG. > n) 
c i 0 i l. 

for any C > 0 and n > 0, because z (00 ) = lim z (t). Since n and C are 
t~ 

arbitrary, under the hypothesis of the lemma (4.1.25) follows directly. 

The other two cases are proved in exactly the same way. 0 
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LEMMA 4. 1 • 3. Suppose that there exists a t E R + such that for i 1 or 2, 

0 < Fi (t) < 1 

-+ 00 
p as n -+ oo 

and 

is bounded away from zero in probability 

as n -+ 00 • 

Then (4 .1.27) holds with R. = 1. 

PROOF. The corxiitions of the lemma imply that [~~~] t.Gi < 1 and that 

Gi (t) < "°· By Theorem 4.1.1, we have 

sup Ifs dNi - G. (s) I "*p 0 
SE[O,t] 0 Yi 1 

and hence also 

Since 

sup 
sdO,t] 

lllNi (s) I 
Yi (s) - t.Gi (s) -+P 0 

:<:: inf (K2) • (1 -
[O,t] Yi 

the theorem is proved. 0 

as n -+ 00 

as n -+ 00 • 
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LEMMA 4.1.4. Suppose that for i 

and 

""'p 00 and Y2(t) 

2 

1 or 2 there exists t E :it such that 

.... oo as n + 00 
p 

K (sl\ (s) 
inf is bounded away from zero in probability 

SE[O,t] yl (s)Y2(s) 
as n -> ., 

Then (4.1. 27) holds with .~ = 2. 

PROOF. The proof is similar to that of Lemma 4 .1. 3 after writing 

V 2 (oo) 
6N1 yl 

- y; Y1+Y2-1 

We now turn to the more important part of Lemma 4.1.1, namely Condi-

tion (4.1.28). 

LEMMA 4.1.5. Suppose KE K+. Under H1, if some t E lR+ satisfies both 

(t) > G2 (t) and the conditions of Lemma 4.1.3, then (4.1.28) holds. 

~· Yi (t) +p 0c as n +"' implies that Cb~b Yi +p "' as n -+ "' and so 

inf K-+ "' as n -• 00 • The rest of the proof is now straightforward. D 
[O,t] P 

D 

Before considering the alternative hypotheses H2 and H3 , we illustrate 

the previous lemmas by specializing in the following theorem to the test 

statistics of GEHAN, EFRON and COX. The result is by no means the strongest 

possible; rather, we have concentrated on making the conditions simple. In 

particular, the conditions can be weakened if one is only interested in a 

consistency result with the variance estimator v1 (00). 

THEOREM 4.1.2 (Consistency against ordered hazards). 

Consider a fixed alternative in H1• Suppose that there exists t > 0 such 

that G1 (t) > G2(t) and such that for both i = 1 and 2, O <Fi (t} < 1 and 

Yi(t)/n1 is bounded away from zero in probability as n-+ "'· Then 

W (co)/~ -+ +00 as n-+ 00 , ll, = 1 and 2. Under the additional condition G G2. P 

( 4 .1.29) i 1 and 2, 
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WC(m)/lvct("") +P +00 as n +co, i = 1 and 2. Alternatively, under the addi

tional condition that Yi(T)/ni is bounded away from zero in probability as 

n +co for i 1 and 2, where T = inf{s: Y1 (s)AY2 (s) = O}, WE(co)/fVEt(m) -+P +co 

as n -+ 00 , i 1 and 2. 

~· For checking the conditions of Lemma 4.1.2 note that 

and 

where 

f K2 
yy Y.dG. 

1 2 1 1 

So it suffices to check that 

sup 
JR+ 

and 

K2 YidGi -----

are bounded in probability as n +co for each i = 1,2 and for each of the 

three test statistics. For the test statistic of GEHAN, this follows from 

the relationships 

and 

and those obtained by interchanging the induces 1 and 1. For the test sta

tistic of COX we have similarly 

nl+n2 nl+n2 
---s 

n2 n2 

and 
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Finally for the test statistic of EFRON we have 

~ 
2 

(y~~)) 
n2 

sup n1 -< 2 - n1+n2 lR+ yl 
and 

~ nl n2 nl 
sup n1 --::: Yl(T) Y2(T) n1+n2 J<+ y1y2 

The conditions of Lemmas 4.1.3, 4.1.4 and 4.1.5 are satisfied with the t 

given by the theorem. Note first that KG, KC and ~ are nonincreasing and 

nonnegative. For such a K, 

For each test statistic, it is easy to see that if for i = 1 or 2 

lim inf ~ > O, then for i'Fi, K(t) 2/n., is bounded away from zero in 
n-+«> nl +n2 J. 

probability as n + 00 , and so the result is proved in this case. Otherwise, 

from any subsequence of n's we can extract a further subsequence along 

which lim inf ~ > 0 for i = 1 or 2, and so along this sub-sequence 
n1+n2 

W( 00 )/fV~_(''°) +P 00 • But by a well known result (see e.g. BILLINJSLEY (1968) 

Theorem 2.3), this implies that W( 00 )//vr;,, (oo) +P "' as n + "'· 0 

For consistency against more general alternatives we shall have to 

take more trouble in proving (4.1.28). The next two lemmas will take the 

place of Lemma 4.1.5 for the alternatives H2 and H3• Recall that we have 

assumed that n1An2 + oo as n + ""· 

LE.!<MA 4.1.6. Define T = T1AT 2, and let k be a function on [0,oo), zero on 

(T, 00), such that J~ lk!dGi < 00 , i = 1 and 2, and such that 

(4.1.30) 

;n::::;:;;::; 
Suppose also that { ::.::=..:.::::. K converges 

n1n2 
ity as n + 00 for each t < T, and that 

uniformly on [O,t] to k in probabil-

for each i = 1,2, either Gi (T) < co 

and the uniform convergence holds also fort= T, or both 



and 

Then 

lim lim sup P( 
tf T n->-= 

0 

as n -+ "' 

nin2 
PROOF. Note that as n + 00 , ~~-+ Note also that for each n, K 

ni+n2 
(T,"') almost surely. So it suffices to show that as n + 00 

i 1 and 2. 

Now by the uniform convergence of ./ K, 
nln2 

0 on 

Jt k dG., 
0 J_ 

i 1 and 2, for each t < T, 
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and also fort= T if Gi(T) < 00 and the uniform convergence holds on [O,T]. 

In the other case J~ kdGi + J~ kdGi as t t T, and we can see directly or 

apply BILLINGSLEY (1968) Theorem 4.2 to obtain the required result. 0 

REMARK 4.1.1. Note the precise meaning of uniform convergence on [O,t] of 

the process ;ni+n2 K to the function kin probability as n + 00 ; this is 
nin2 

sup I :l:n2 K(s) - k(s) I +P 0 as n + 
SE[O,t] 1 2 

LEMMA 4.1.7. Let k be a nonnegative function such that J~ kdGi < 00 , i 1 

and 2. 

(i) Under H2 , if k is left continuous and nonincreasing, and such that 

JB dk+ < O, where Bis the set on which G1 > G2 , then (4.1.30) holds. 

(ii) Under H3 , if there exists a left continuous nonincreasing function g 

such that 

__ k __ :2: 

1 - F 1_ 

and such that JB dg+ < 0 when Bis the set on which F 1 > F2 , then 

(4.1.30) holds. 

(In each case, without the condition involving B it still holds that 

J"' J"' O kdG2 $ O kdG1 .J 
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PROOF. (i) Writing fkdG = k G - J G.dk (note that Gi (0) = 0) we see 
i + i i + I~ 

that k+{t)Gi(t) tends to a finite limit as t-+ "'1 and that 0 Gidk+ is 

finite. So 

r k (dG1 - dG2) lim k+ (t)G 1 (t) - lim k+{t)G2 (t) 
0 t-- t--

+ [ (Gl - G2)dk+ 
0 

:z: JB (Gl - G2)dk+ 

> o. 

"' r JO kdGi = 0 1 
k 

dF .• (ii) 
- F. l. 

i-

So J~ k(dG1-dG 2) :z: .io g(dF1-dF2 l > Oby the same arguments used to prove (i) .O 

Combining the conditions of Theorem 4.1.2 with those of Lemmas 4.1.6 

and 4.1.7 gives consistency results for the test statistics of COX, GEHAN 

and EFRON against alternatives H2 and a3 • In the first two cases, uniform 

convergence of /hl+n2 K to a function k as n +"'is difficult to imagine 
n1n2 

without uniform convergence of Y1/n1 and Y2/n2 to functions y 1 and y 2 say. 

Note that such functions yi are necessarily nonincreasing, nonnegative, 

left continuous and even such that y i/ ( 1 - Fi_) is nonincreasing. For 

Y./(1-Fi) is nonincreasing (see the remarks following Definition (3.2.6)), 
l. -

so for s < t 

Yi (t) 1-Fi (t-) 1-Fi (t-) 

Yi (s) s 1-Fi (s-) +P 1-Fi (s-) ' 
ifyi(t) > o, 

by Theorem 4.1.1. This makes the following theorem easy to prove: 

THEOREM 4.1.3 (Consistency of the test statistics of GEHAN and COX against 

ordered cumulative hazards or stochastic ordering). 

Consider a fixed alternative in a2 or a3• Suppose functions y1 and y2 exist 

such that Y./n. converges uniformly on [0,"') to y. in probability as 
l. l. l. 

n + "'• i = 1,2. 

Suppose at> O exists such that for i = 1 and 2, O < Fi(t) < 1 and 

yi(t) > O. Then y1 and y2 satisfy 
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(4 .1 .32i 1) 

hold. If (4.1.31) is strict, then WG( 00 )//wG2 (00 ) +P +«>as n + oo, 2 = 1 and 
n· 

2 while if lim inf --1- > 0, i = 1 and 2, and (4.1.32) is strict for all 
' . - n-+oo n1+n2 nl n2 

limit po.ints (p 1 , of (---, ---), then we (00 ) ;lvC" (00 ) -+P +«> as 
ni +n2 nl +n2 "' 

n ·-r 'X1, £ = 1 and 2 .. 

PROOF. Under the conditions of this theorem, all the conditions of Theorem 

4.1.2 hold, with the single exception of the condition G1(t) > G2 {t) for the 

right t. However this condition was only needed to make Lemma 4.1.5 applic

able, with which we proved (4.1.28). So it only remains to prove (4.1.28), 

for which we shall use Lemmas 4.1.6 and 4.1.7. Defining kG y 1y2 and 
Y1Y2 

k = , we see that kG and kc are nonnegative, left continuous and 
C P1Y1+P2Y2 

nonincreasing (by the remarks preceding the Theorem) . Also we see that 
,oo J"' J"' f"' -1 r"' Jo kGdGi ::.> 0 yidGi ::.> 0 (1-Fi_)dGi ~ 1 and that 0 kcdGi ~ Pi,;OyidGi:;; 

~Pi~ (if i'). So (4.1.31) and (4.1.32) hold under H2 by the last line of 

Lemma 4 .1. 7. 

For H3 , note that kG ( 1 - Fi-) -l is nonincreasing and left continuous, 
-1 -1 

kG (1 - F 1_) <: kG ( 1 - F 2_J , so we can choose g to be either of and that 

these functions in applying the second part of Lemma 4 .1. 7 to kG. Similarly 

we have under H3 

= (p 1 
1-F 1 -F )-l 1- 1-
---+ P2 

Y2 Y1 

1-F 1-F ) 
-1 

;:: (p 1 
2- 1----+ P2 

Y2 Y1 

;:: ( pl 
1-F 1 - F ) -l 2- 2- . 
---+ P2 

Y2 Y1 

)-1 kc ' -1 ~ 
= ( (1-F2_) (ply2 + P2Y1) (1-F2_)' 

where the central expression in the chain is a left continuous nonincreasing 

function. So (4.1.31) and (4.1.32) also hold under H3 • 

It remains to verify the conditions on the convergence of ~ n n K in 
fi1i"'+ri2 1 2 

Lemma 4.1.6. For the test statistic of GEHAN we have that I-=--..!~~- K con
n1n2 G 
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verges uniformly on [O,oo) to kG in probability as n + 

Gi (T) = oo, then kG(T)6Gi (T) 0 and 

If for i 1 or 2, 

n +n r ) (J Y . ( s ) dG . ( s) ) 
nl n 2 J ~ (s)dGi (s) s E i n i 

1 2 SE(t,·rJ SE(t,T] i 

( N. (T) - N. (t)) 
E i i 

\ ni 

$ F. (T) - F. (t) + 0 
i i 

at t t T 

uniformly inn. So the conditions of Lelll!lla 4.1.6 are satisfied for K =KG. 
Ili 

For the test statistic of COX, su,ose first that -+-- + P. E (0' 1) 
ni+n2 ni n2 . i 

as n + oo Then we certainly have that ~~- K converges uniformly on · nin2 c 
[O,u] to k in probability as n + 00 for each u such that y. (u) > 0, 

C -,l"ii"ffi12 Yi (n1+n2lni Pi i. . 
i = 1,2. Since I~ Kc$ - and k s y. --P-, it is easy to see 

1 2 ni nl n2 c i P 1 2 
that the convergence can be extended to [0, 00 ). 

If for i = 1 or 2, Gi (T) = 00 , then Kc(r)bGi (T) 0 and 

at t t T 

ni 
uniformly in n; which completes the proof of the theorem when con-n1 +n2 
verges as n + oo. Otherwise, for any subsequence we can extract a further 

. ni subsequence along which lim ~~- = p for some pi. E (0,1). For this subn1+n2 i 
subsequence we have WC(00 )//vct(00 ) +P +oo; and so the result holds in 

general. 0 

We now prove a similar result for the test statistic of EFRON: 

THEOREM 4.1.4 (Consistency of the test statistic of EFRON against ordered 

cumulative hazards or stochastic ordering). 

Consider a fixed alternative in a2 or H3 • Define T = inf{s: Y1 (s)AY2 (s) "'O} 

and suppose that Yi (T)/ni is bounded away from zero in probability as n + 00 

for i = 1 and 2. Suppose there exists t > 0 such that p (T <: t) + 1 as n + 

and such that 0 < Fi(t) < 1, i = 1 and 2, and suppose there exists a set B 

such that P(T E B) + 1 as n + oo and 
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(t:he 

T.hen 

function J (1-F 2 _)dF 1 - J (1-F 1_ldF2 is automatically nonnegative). 

.V::::-::100)-+ +oo as n + oo, £ = 1 and 2. 
El!. p 

As in the proof of Theorem 4.1.3, we only have to supply a proof of 

~ 4 ~ 1 .. 2 8) .. Now 

Y.(T) #{j:XiJ.2:T} 
_i. __ < 

ni - ni 

So by the Glivenko-Cantelli theorem, for each E > 0 

(
Yi (T) ) 

P --- 5- 1 - Fi (T-) + E ->
n. 

l. 

as n -+ 

By the hypothesis of the Theorem, Fi(T-) is bounded away from 1 in 

probability as n-+ 00 , i = 1 and 2. Now because T is a stopping time it is 

possible to repeat the proof of the first part of Theorem 4.1.1 with t 

replaced everywhere with T (in particular, in (4.1.12), (4.1.13) and 

(4.1.14)). So 

converges uniformly on [O,oo) in probability to zero as n-+ 00 • Because F. (T-) 
l. 

is bounded away from 1 in probability as n-+ 00 , Gi(T) is bounded away from 

00 , and so 

n1+n2 J"' JT -- K (dG -dG ) - (1 -F 1_) (1- F 2_J (dG 1-ctG2 ) 
nln2 0 ~ 1 2 0 

converges in probability to zero as n-+ ""·But (4.1.28) follows now imme

diately because 

It can be seen that this function is nonnegative under H2 or l'J by applying 

Lemma 4 . 1. 7 . 0 

We conclude this section with some remarks on Theorems 4.1.2 to 4.1.4. 

Note first of all that for the test statistic of COX we made the assumption 

that lim inf ~ > O for i = 1 and 2. This assumption can certainly be n-+oo n 1+n2 
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dropped in many situations but only at the cost of a far more complicated 

proof; we shall go into this matter more deeply when proving asymptotic 

normality in Section 4.3, when the same problem arises. 

For the test statistic of EFRON we imposed the rather strong condition 

L~at Yi (T)/ni is bounded away from zero in probability as n + oo, where 

T" inf{s: Y1 (s)AY2 (s)=O}. However, as we shall see in the next section 

and as EFRON (1967) remarked, his test statistic will often fail to be 

asymptotically normally distributed, unless one is prepared to use not 

{®) but WE(t) as a test statistic, where t is such that for i = 1 and 2 

Yi (t)/ni converges in probability to a positive quantity as n + oo. So our 

condition is not restrictive at all if one follows this advice; t can even 

be replaced with a stopping time. Note also that by Theorem 4.1.4 his test 

statistic seems particularly suited to testing H0 against the alternative 

hypothesis 

for all t, 

where x1 and x2 are independently distributed wit.~ distribution functions 

# F2 • If F1 and F2 are continuous, H4 is equivalent to P(X 1 At~X 2 At)?: 

?: P(X2At$X 1At) for all t. As we saw (Lemma 4.1.7), H4 is implied by both 

a2 and H3• 

In Example 4.1.1, a sufficient condition for convergence of Yi/ni is 

n. 
l. 

{4.1.33) 
ni jL uniformly in t € [0, 00 ) 

as n + 00 for some (sub)-distribution functions L., i = 1 and 2. This can be 
l. 

shown by applying the Glivenko-Cantelli theorem for independent but not 

necessarily identically distributed random variables of VAN ZUIJLEN (1978) 

(see his Theorem 2.1, Remark 2.1 and Corollary 3.1). In this case, 

Yi= (1-F1_)(1-L1_). 

Note that in Example 4.1.1, 

and 

EY.(t+) = (1-F.(t)) 
l. l. 

n. 
l. 

l 
j=l 

n. 
l. 

l 
j=l 

n 
( 1 - Lij (t)) • 

(1-L~.(t-)) 
l.J 

So in this case the condition in Theorem 4.1.4 involving Yi (T)/ni could be 
replaced with the following one: 
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"There exists t 

for each n and for i 

that lim inf _!_ l~1 1 n-- ni J= 

> 0 such that F1 (t-) < 1, i = 1 and 2, such that 
tni n 

= 1 or 2, (1- Fi (t)) lj=l (1 - Lij (t)) = O, and such 

(1-L?.ct-)) > o, i"' 1 and 2." 
l.J 

under this condition P(T=t) + 1 as n + ~ 

Results on Example 3.1.2 and similar cases can be easily obtained by 

adapting the approach used above as follows. Let K, Yi, Ni, etc. be the 

usual processes which correspond to the experiment described in Example 

3.1.2 when the experiment is not terminated at some predetermined failure, 

but allowed to continue indefinitely. Then the test statistic corresponding 

to the stopped experiment is W(T)f.v;<T>, R. = 1 or 2, where T is some stop

ping time. Equivalently, stopping the experiment corresponds to replacing 

K with K·x[O,T]' which is also a predictable process having all the usual 

properties if T is a stopping time depending on observable quantities. 

Now the conditions of Lemna 4.1.6 in fact ensure that ~n f KdG. 
1n2 J.. 

converges uniformly on [0, 00 ) to the function f kdG. in probability as 
l. 

n + m, for each i = 1,2, so we can conclude that 

(4.1.34) 

as n + 00 , if there exists a set B such that P (Te: B) + 1 as n + m and 

inf <f k(dG 1 -dG 2)) > 0. But (4.1.34) is exactly (4.1.28) if K is replaced 
B 

with Kx[O,T] in the latter. Again (4.1.25) to (4.1.27) with Z( 00 ) and VR.(oo) 

replaced with Z(T) and VR.(T) will hold under very weak regularity condi

tions. 

4.2. Weak convergence: general theorem and the product limit estimator 

This section contains a general weak convergence theorem. As an appli

cation we prove weak convergence of the product limit estimator and use 

the result to construct confidence bands for an unknown distribution func

tion F. In Section 4.3 we shall apply the general theorem in the two-sample 

case, to derive conditions under the null hypothesis for a test statistic of 

the class K to be asymptotically normally distributed. our general theorem, 

Theorem 4.2.1, is an adaptation of Theorem 2.4.1 to the situation described 

at the beginning of section 4.1: a sequence (as n = 1,2, ••• ) of r-sample 

set-ups with a total of n = tr n observations (Xn 6n ) j = 1, ••• ,ni' li=l i ij, ij , 
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i = 1, ••• ,r. The notation here will be exactly as in Section 4.1, so that 

in particular dependence on n will be suppressed, except as far as the 

underlying distribution functions F~ and the associated functions 
n -1 n 1 n Gn = f (1 - F. ) dF. are concerned (we allow F. to depend on n so as to 

i J.- l. l. 

be able to deal with a contiguous sequence of alternative hypotheses in our 

discussion of efficiencies in Chapter 5). 

Theorem 4.2.1 gives conditions for joint weak convergence of processes 

Z. = f H.CMi where for each n, M. is the square integrable martingale defin-
l. l. l. 

ed by (4.1.3), and Hi is a bounded predictable process. So for the product 

limit estimator (Theorem 4.2.2), Hi will be defined by (4.1.9) (where the 

index i has been dropped because r = 1), and for two-sample tests of the 

class K (Corollaries 4.3.1 and 4.3.2) H. is defined to be K/Y. (see (4.1.19) 
l. 1 

for the general case, and (4.1.22) t6 (4.1.24) for the special case of the 

test statistics of GEHAN, EFRON and COX) • Corollaries 4. 3. 1 and 4. 3. 2 are 

in fact little more than this substitution of K/Yi for Hi in the conditions 

of Theorem 4.2.1. However in Propositions 4.3.1 to 4.3.3 we verify these 

conditions in a very general situation for the test statistics of GEHAN, COX 

and EFRON. We close Section 4.3 with a discussion of these results. 

We take as given the situation specified at the beginning of Section 

4.1, so that in particular Assumptions 3.1.1 and 3.1.2 hold. Let us start 

by stating a list of conditions. Here, I is the interval [O,u) or [O,u] 

for some fixed u £ (O,«>), F. is some fixed (sub)-distribution function and 
-1 l. 

Gi = J (1-Fi_) dFi, i = 1, .•• ,r. For each i, hi is a nonnegative function 

finite on I and zero outside I. 

I. For each i = 1, ••• ,r 

a) F~ converges uniformly on I to F. as n + =; G. is finite on I. 
l. l. 

b} HfYi converges uniformly on each closed subinterval of I in probab-

ility to hi as n + 00 ; hi is left continuous with right hand limits 

and hi+ of bounded variation on each closed subinterval of I .if F~ 
varies with n; if ~ is fixed, hi need only be bounded on each 

closed subinterval of I. 
c) Yi(t) +P 00 as n +..,for each t e I. 

II. If u i I, then for each i = 1, ..• ,r 

a> J1 hic1-t:.<\>dGi"' "'· 

b) lim lim sup P(f ( ] Jl:Y.dG~ > &) 
ttu n+«> t,u i i i 

0 for all £ > 0. 

III. If u < 00 , then for each i = 1, ••• ,r 

J 2 n 
(u,m) HiYidGi +P 0 as n + ""· 



THEOREM 4.2.1. Suppose that for each n, H1 , ••• ,Hr are bounded predictable 

processes, and define square integrable martingales z. = f H.dM .• Suppose 
l. l. l. 

that Condition I holds for some 1 = [O,u) or [O,u] and some functions h., 
1 

co co 
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and let z1, ••• ,zr be independent zero mean Gaussian processes with indepen-

dent increments and variance functions f h. (1 - AG. )dG., defined on 1. If 
l. l. l. 

Condition II holds, such processes are also defined on [O,co]. Then 

1, ... ,r} +v {z~: i = 1, ..• ,r} as n + 00 

in (D(1))r, and a Skorohod-type construction (see Theorem 2.4.3) is pos

sible with s[up ] !z. (s) -z".'(s) I + 0 as n +co almost surely for each t e: 1 
SE 0, t l. l. 

and each i = 1, ••• ,r. Adding Condition II, this statement also holds with 

1 replaced everywhere by [O,u], and also adding III, with 1 replaced 

with [Q,oo]. 

PROOF. We may suppose throughout that Condition I holds. By Ia and Ib, and 

using the fact that G. is finite on 1, it is easy to show that <Z.,Z.> 
l. l. l. 

= f iY. (1- !J.Gr:)dGr: converges uniformly on [O,t] to f h. (1 - 6.G. )dG. in 
l. l. l. l. l. l. l. 

probability as n + 00 , for each t e: 1. If Condition II holds too, then 

arguing directly or by BILLINGSLEY (1968) Theorem 4.2, we have uniform 

convergence on [O,u]; adding condition III extends this to uniform conver

gence on [O,co]. Moreover, for i ~ i', <Zi,Zi,> = 0 for all n. 

Next, for each E > 0, for each n and each i 1, ••• ,r, define proces

ses JE and RiE on [Q,co) by 

x{ I Hi (t) !SE,i=l, .•• ,r} 

and 

I (1-J )d<Z.,Z.>. 
E 1 l. 

Note that JE is predictable and that 

sup 
sE[O,t] 

2 
sup !H.(s)Y.(sll 

se:[O,t] i i 

inf Yi (s) 
se:[O,t] 

sup 
s se:[O,t] 

h.(s)+ sup lzf(s)Y.(s}-hi(s}j 
i se:[O,t] l. i 

y. (t) 
l. 

So by Ib and Ic, s[up ] H~(s) + Oas n +co for each t e: 1, consequently 
se: O,t i. P 

for each i, E > 0 and t e: 1, 
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P(R. (t)=O) + 1 
l.E 

as n + ""· 

This certainly implies that sup R. (s) + 0 as n + ""• for each i, 
sE[O,t] l.E p . 

E > O, and t E I. Adding Condition IIb extends this to t = u, and adding 

Condition III as well extends it to all t E [Q,oo]. 

For each n = 1, 2, •.. and each i = 1, .... ,r, define 

z7 = J J dZ. = J J B.dM. 
-l. e: l. E l. l. 

and 

-e: z. - z7 = I (1-J )H.dM .. z. 
l. l. -l. E l. l. 

Note that for any i, i' and e: 

sup I LIZ~ I s e: sup i llM. I, 
[O,oo] 

-l. [ o,oo] l. 

-e 
zi and z7, 

-l. 
never jump simultaneously, and 

If F~ is continuous for all i and n (and so Fi is continuous for all i too) 
then almost surely, 

sup I ill\ (s) I s 1 
sd0, 00 ] 

for each i and n, and J h. (1- D.G. )dG. is a continuous function. Theorems l. l. l. 
2.4.1 and 2.4.3 now immediately give all the required conclusions. 

suppose on the other hand that some or all of the F1:1 1 s and F.' s have 
l. l. 

discontinuities. We can at least enumerate all these discontinuities in a 
single sequence t 1,t2, ••• , say. The idea of the proof will be to spread the 
jump that Ni makes at tm over a time interval which will be inserted at this 
point. After this is done, and all the other processes are suitably defined 
over the inserted intervals, Theorem 2.4.1 will apply giving a continuous 
process in the limit. Then by deleting all the new time intervals, we shall 
obtain the required result. 

Choose om > 0, m = 1, 2, .•• , such that l:=l cm < "" • Define the time 
transformation cp*: [O,oo] + [Q 1 oo] by 

* <I> (t) t + l 
m:t st m 

0 • 
m 
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* Define o(t) = ll~ (t). So o(t) = o if t = tm for some m, otherwise o(t) = 0. 
* m 

Let r* [O,~_(u)) if u i I and I* [o,~*(u)] if u EI. Note that for each 

t* there exists a unique t such that ~*(t) $ t* $ ~*(t), and t E 1 if 

t * E r*. 

* * * * * * E* -E* We define processes Ni, Yi, Mi, Zi' Hi, JE, ~i and Zi on the extended 

time axis as follows. Firstly, if t* = ~*(t) for some t, we define 

* * * Ni(t) = Ni(t), etc. Next, extending (Q,F,Pl if necessary, we define Ni on 

the interval [~*(t) ,~*(t )) by letting N~ make, conditional on Y. (t) and - m m i i m 
ANi(tm), ~Ni (tm) jumps of size +1 at a random selection of ~i(tm) points 

out of the Yi ( tm) points 

1, ..• ,Y.(t ). 
i m 

This is done independently over all i and m. We let Y~ and 
* * * * 1. 

* Hi be equal to 

Yi(~ (tm)) = Yi(tm) and Hi(~ (tm)) = Hi(tm) respectively on the interval 

[~*(t ),~*(t )); and fort* E [~*(t ),~*(t )) we define 
- m m - m m 

* * Mi (t ) 

* * 
[ 

t -~_o(tm)J 
- (Y. (t )+1) AG1:(t ) . 

i m i m 
m 

(We write [x] for the entier of x.) So M~ is piecewise constant on this 
1. 

interval with jumps of size ~N~ (t*) - t.GZ:(t ) at the Y. (t ) points defined 
i im im 

above. Now conditional on F~-' Yi(tm) is fixed and AN 1 (tm), ••• ,ANr(tm) are 

independent, ANi(tm) being binomially distributed with parameters Yi(tm) 

and AG~(tm). So conditional on Ftm-' N: makes independently over i= 1, .•• ,r 

* £ and~= 1, ... ,Yi(tm) a jump of size +1 at the point ~_(tm) + Y. (t )+l cm 

with probability AG~(t ). i m 
i m 

* Next define a-algebras Ft* by 

F* 
t* 

if t*=~*(t), 

if ~*(t) $ t* < ~*(t). 

We now see that M~, i = 1, ••. ,r is a square integrable martingale with 
* 1.* 

respect to {Ft*' t E [0, 00 ]}, with 

and 

* * <Mi,Mi,> O, i f. i' 
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* * * <M. ,M .>(t ) 
]. ]. 

{
<M.,M.>(t) if t* = cp*(t), 

]. J. 

* * 
[ t-c/l (t)] n n 

<Mi,Mi>(t-)+ (Yi(t)+l) o(~) (1-ll.Gi(t))~Gi(t) 

* * * if cp (t) 5 t < cp (t). 

* * ft* * * * * * we can define z.(t) = 0 HidMi for all t. Note that Hi and Yi are pre-
J. * * * dictable with respect to {Ft*: t e [O,oo]}, so that Zi is a square integra-

ble martingale for each i. We define as previously 

Note that for any i and e: > O, almost surely 

sup 
t*e[0, 00 ] 

e: sup 
t*dO,co] 

E:* -e:* Also with probability 1, z. and zi'' never jump simultaneously for all 
-J. 

i t i I and E: > 0 I 

* * for all i· ~ i'' <Zi,zi ,> = O r 

* * * and if cf>_(t) :s; t :s; cp (t), then 

as n + 00 , as long as t* e 1*. If Condition II holds, this is also true for 

t* e [o,cp*cuJ], while under the further addition of Condition III, even for 

t* E [O,co]. 

So to apply Theorem 2.4.1 to {Z~: i = 1, ••• ,r}, it remains to show that 
l. 

* * * <Zi ,Zi> (t l converges in probability to some continuous function as n + 00 

for each t* e 1*, [o,cp*(u)] or [0, 00 ] according to whether Conditions I, 

I an:t II, or I, II and III hold. 

. * * * * * t Now if t = cp (t) then <Z.,Z.>(t) = <Z ,z >(t) + f h (1-h.G.)dG. 
J.J. ii POi J. i 

under the appropriate set of conditions. If however cp:(t) :s; t* <qi* (t), then 



( 1 - L\G~ ( t) ) bG? ( t) • 
1 J. 

According to whether t* E I*, [O,$*(u)] or [0, 00 ] we have t ET, [O,u] or 

[O,oo} respectively. In each case, under the relevant set of conditions, 

<Z. ,Z.>(t-) 
1 1 

+ ft-
p h . (1 - !J.G . ) dG . 

0 l. 1 1 

If t E I, then by Ic, Yi (t) +p 00 and so 

as n + 00 • 

* * 
[ t * -cp * ( t) ] / + 

(Yi (t) + 1) o(t) /Yi (t) p 
t -cp_(t) 

as n + 00 • o(tJ 
/ 
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By Ib, H~(t)Y. (t) +P h. (t) and by Ia, (1- AG?(t))AG?(t) + (1- L\G1. (t))llG1. (t). 1 1 1 1 J. 

* * * * * So fort E I , $_(t) $ t $ $ (t), 

(4 .2 .1) 

as n _,. c::o. 

* * 1* If u f. I and II holds, then using the convergence of <Zi ,Zi> on that has 

just been proved and using BILLINGSLEY (1968) 'l'heorem 4. 2 in the same way 

as before, we see that 

* * * <Z.,Z.>($ (u)) 
1 J. -

Ju-
+ h . ( 1 - liG . ) dG .. 

p 0 1 l. J. 

Also by IIb, for each E > 0, 

lim sup P(l(u)Y. (u) (1-tiG1:(u))liG~(u) > E) 
J. J. J. J. n-+<» 

which implies that 

O, 

Thus under the addition of II, (4.2.1) holds for all t* E [O,$*(u)]. 

Finally, if III holds as well, then 

<Z~,Z~>(•) - <Z~,z~>($*(u)} + 0 
J. J. J. J. p 

as n + 00 



and therefore (4.2.1) holds for all t* E [0, 00 ], recalling that hi 

side I by definition. 

0 out-

Now the function oft* defined by the right hand side of (4.2.1) is 

continuous, so Theorem 2.4.1 can be applied to prove weak convergence of 

i = 1, ... ,r} on (D(1*))r, (D([o,~*(u)]))r or (D([O,oo]))r respectively 

according to whether Conditions I, I and II, or I, II and III have been 

imposed. Because we have weak convergence to a continuous limit the Skorohod 

construction can be applied (see Theorem 2.4.3 and the remarks following 

it) to replace +0 with almost sure 

a new probability space (except in 

convergence in the supremum distance on 

the case of D([O,$:(u))), when we obtain 

* almost sure convergence in the supremum distance on [O,t ] for each 

* t < * * . (u)). By deleting all the intervals [$_(t),$ (t)) we obtain, on 

thi.s new probability space, almost sure convergence in the supremum metric 

over all compact intervals of {Zi: i = 1, ..• ,r} to {z:: i = 1, •.• ,r}, where 

has all the required properties. Almost sure convergence implies conver

gence in distribution, so the theorem is proved. 0 

A few comments on the proof of this theorem are in order. When all the 

distribution functions concerned are continuous, the proof is a very direct 

application of Theorem 2.4.1, which is of course itself very much concerned 

with "the continuous case". In this part of the proof we only used Assump

tion 3 .1.1. To accomodate jumps, we had to carry out a rather elaborate 

construction to bring us back to the continuous case, and needed Assumption 

3.1.2 to do this. It is actually not very difficult to prove the above 

thoorel!l in the "purely discrete case" - the random variables X. . and X .. 
l.J iJ 

integer valued - rather more directly, using only Assumption 3. 1 . 2 and the 

meiumrabili ty requirements of Assumption 3 .1 .1. However it seems impossible 

to use 'l'heorem 2. 4 .1 for the continuous part and the direct method for the 

discrete part in a mixed situation. A more elegant proof than the present 

one can probably be constructed by adapting the proof of LIPTSER & 

SHIRYAYEV's (1980) functional central limit theorem for semimartingales. 

It should be noted that a version of Theorem 4 .2 .1 could have been 

proved With the interval 1 depending On i I 1 = r, Say 1 gi Ving weak COilVer-
1 

gence on D(1j_), where lj_ = 11 , [O,ui] or [O,co] according to whether 

Conditions I, I and II, or I, II and III wer~ supposed to hold for this i. 

Our first application of Theorem 4. 2 .1 is to the product limit esti-
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n:;ator. Take r = 1 , drop the index i, and suppose that the distribution func-

tion being estimated is fixed, say Fn = F for all n. 

'J:'HECiREM 4.2.2 {£<leak convergence of the product limit estimator). 

suppose r = and Fn = F for all n, and suppose that Y/n converges uniformly 

on [O,oo) to a function y in probability as n + "'· Then 

as n +"' 

on D ( 1) , where I "' {t: y(t) > O} and Z is a zero-mean Gaussian process 

with independent increments and variance function 

ro Jt X[o, 1) (tiG) dG 
var(Z (t)) = 1 _ l>G -y-

0 

t X{AN<Y} dN 
which may consistently be estimated by n f 0 Y _ liN y-; if F (t) < 1 we have 

Jt X{ i\N<Y} dN 

0 Y-l\N y 

(see ( 3. 2 . 21 ) ) • 

v<tl 
C1-F(t)) 2 

PROOF. As in Theorem 4.1.1 we use the representation (3.2.13) which we here 

rewrite as 

12 ~ 
n {F-F) (1-F) J X[O,ll (t.G) (1-F_) n 12J dM 

l - t.G ( 1-F _) Y 

on {t: Y(t) > O}. (If F(t) = 1 then on the event {Y(t) > O} we have, almost 

surely, l>N(t) = Y(t) and hence F(t) = 1.) Note that y(t) > 0 implies that 

F_(t) < 1 and G(t) < 00 • l'il9 shall verify Condition I of Theorem 4.2.1, taking 

H 

(see 4.1.4) and taking I as defined in the theorem. The only nontrivial 

part of Condition I is Ib. By Theorem 4.1.1, we see that for all t E I, 

sup IF(s)-F(s) I +P 0 
sdO,t] 

as n + 

SO for each t E 1 
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sup 
sdO,t] 

as n + "'· 

Since Fn = F for all n, we need only verify that the limit h of H2Y is 

bounded on closed subintervals of I, which is clearly the case. 

Thus Theorem 4.2.1 gives us weak convergence in D{I) of f HdM to a 

process z00
, having the required properties, in particular such that 

t x (b.G) 2 

J ( [O,l) ) y-1 (1-liG)dG 
O 1 - l::iG 

varcz"'<t)) 

= Jt X[0,1) (l::iG) dG 

0 1 - l::iG y 

By Theorem 4.1.1 we also have 

sup 1ro ~N - G(t) I +p 0 
sE[O,t] 

as n +"' 

for each t E I, so it is not difficult to show that 

I nV(s) oo I sup _ 2 - var(Z ($)) -+P 0 

sdO,t] (1- F(s) l 

for each t E 1. 0 

as n + co 

Theorem 4.2.1 of course also supplies us with a Skorohod construction 

in the uniform metric for n ~ (F-F) • We can take advantage of this fact when 

Fis a discrete distribution, giving weights in 1 to points t 1 ,t2 , ••• only, 

in order to conclude that 

1,2, .•• } 

is asymptotically distributed as 

{(1-F(t.))Z00 (t.): i = 1,2, ••• }. 
l. l. 

Theorem 4.2.2 can also be used to derive asymptotic confidence bands 

for F, conservative in the case that F has jumps. For let t E 1 be fixed, 

and note that the process {Z00 (s)/!var Z"'(t): s E [O,t]} has the same dis-
. . { (var(Z00 (s))) 

tribution as B var(Z"'(t)) : s E [O,t]}, where Bis a standard Brownian 

motion on [0,1] with continuous paths: both these processes are Gaussian, 
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with the same mean and covariance functions, and both have right continuous 

paths. So for all x, 

P( sup iz"'(s)I < x) > P( sup IB(s) I :S x), 
SE[O,t] /var Z00 (t) - - sE[0,1] 

and there is equality for all x if and only if the function var(Z00
) is con

tinuous on [O,t]. So for any t E I, 

liminf P( sup IF(s)-_F(s)I 
n-+«> SE[O,t] 1 - F(s) 

:S v<tli, • x) 
1 -F (t) 

;;: P( sup I B(s) I :S x) 
sE[O, 1] 

I ( -1 ) k ( <I> (( 2k + 1 ) x) - <I> (( 2k-1 ) x) ) I 

k=-oo 

where <!> is the standard normal distribution (see FELLER (1971), page 343, 

BILLINGSLEY (1968) page 79, or RENYI (1963), though beware of misprints in 

the first two cases). RENYI (1953) gives a table of P( sup !BI :S y~1a ) 
[O, 1] -a 

for various values of y and a, and WALSH (1962) page 334 reproduces the 

table with y denoted by A and a by A1 . Note that when there is no censoring, 

v(tl -1 F(t) 
n "'1--~F~( t""'),... ' 

( 1 - :F (t)) 2 

and the above confidence bands reduce to those proposed in RENYI (1953). 

HALL & WELLNER (1980) and GILLESPIE & FISHER (1979) propose other 

methods of basing confidence bands for F on the weak convergence of ni,(F-F) 

which may be superior in some respects; however our proposal seems to be 

the simplest to implement. 

In Example 4.1.1, the conditions of Theorem 4.2.2 become 

~ ~~ 1 L~(t) ~ L(t) as n ~co uniformly in t E [0, 00 ), for some (sub)-dis
n LJ=, J 
tribution function L (see the remarks following (4.1.33)). In this case, 

y = (1-F_) (1-L_). BRESLOW & CROWLEY (1974) prove Theorem 4.2.2 under 

the usual random censorship model with F and L continuous; MEIER (1975) 

sketches a proof under the fixed censorship model, also with F continuous. 

AALEN & JOHANSEN (1978) Theorem 4.6 give a result very close to our 

Theorem 4.2.2 in the case that F is continuous and has a hazard rate: 

they assume uniform integrability (in t and n) of n/Y and pointwise con

vergence in probability instead of uniform convergence in probability. 
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Otherwise their result is more general as it is concerned with estimation 

for a Markov chain. 

Back in Example 4.1.1, we can in fact obtain a stronger result on 

weak convergence on D[O,u], where u = sup{t: y(t) ~ O}: 

THEOREM 4.2.3 (Weak convergence of the product limit estimator on maximal 

closed interval under general random censorship). 

Suppose in the situation of Example 4.1.1 that r = 1, Fn F for all n, and 

1 n 

n l 
j=l 

L~(t) + L(t) 
J 

uniformly on [0,oo) as n + "' 

for some (sub)-distribution function L. Define y = (1 - F _) ( 1 - L _) , 

I= {t: y(t) > O}, and u =sup I. Suppose that y(u) > 0, or alternatively 

that t:,F (u) = O, 

(4. 2. 2) lim (F(u)-F(t)J 2 r ((1-F) (1-F_) (1-L_))-l dF 0, 
ttu 0 

and 
n 

(4.2.3) lim lim sup J (t,u) 

Xco, 1 i (L _) 
(1- /:J.G) dF = o. 

ttu n+oo (1- Ln) 

Then defining for each n T sup{t: Y(t) > O} and FT(t) F(tAT) I 

~ 1 - F - T 
n 1- FT(F F l +V x[O,u) • (1- F) .z"" + x{u} ·U 

as n +"" in D[O,u], where Z00 is a zero-mean Gaussian process on I with in

dependent increments and variance function 

and 

var(Z00 (t)) = r ((1-F)(1-F_)(1-L_))-l dF 
0 

u 1(1- F(u) )Z00 (u) 

lim (1-F(t))Z00 (t) 

tu 

if y(u) > O, 

if y(u) 0. 



Since lim (1-F(t))Z00 (t) almost surely exists, this does define a 
ttu 

random element of D[O,u]. If y(u) = 0 and F(u-) = 1, then u = O. 

If also F is continuous and F(u) = 1, then 

sup Inv - (1- F) 2 var z00
J +Po 

[O,u] 
as n + 

PROOF. Note first that in the case y(u) O, (4.2.3) and (4.2.2) imply 

(4.2. 4) 

and 

(4.2.5) 

J -1 
( 1 - L ) ( 1 - LIG) dF < oo 

1 -

lim lim sup (F(u) - F(t) ) 2 • 
ttu n+oo 

Jt n 
X[O,l)(L_) 

0 

((1-F)(l-F_)(l-L~))-l dF = 0. 

Next we shall show, using (4.2.2) and (4.2.4), that lim (1-F(t))Z00 (t) 
ttu 

exists almost surely if y(u) = 0. Suppose y(u) O, and fix s < u for the 
00 00 2 

moment. On [s,u), (Z -Z (s)) is a submartingale and by the well known 

Birnbaum-Marshall inequality (BIRNBAUM & MARSHALL (1961) Theorem 5.1), 

::; f ( 1 - F) 2 dF 
[s,u) E (1-,F) ( 1-F ) ( 1-L 

l r (1-L )-l (1-LIG) dF. 
E J [s,u) 
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We have in fact used a slight sharpening of the inequality because BIRNBAUM 

& MARSHALL (1961) require that (1-F) 2 and E((Z 00-Z00 (s)) 2 ) have no jumps in 

common. However their proof is easily adapted to take care of this extension. 

Therefore 

P( sup ((1-F)•Z00 
- (1-F(s))Z00 (s)) 2 ?: 2E) 

[s,u) 

::; l J ( 1 - L _) - l ( 1 - LIG) dF + P ( ( F ( u-) - F ( s)) 2 ( Z 00 
( s)) 2 ?: E) 

E [s,u) 

::; 1 J (1-L_)-l (1-LIG) dF+ ~(F(u-) - F(s)) 2 var(Z00 (s)). 

E [s,u) 

Let Em> 0 and om > 0, m = 1,2, ••. , satisfy Em+ 0 and I:=l om < 00 • For 

each m by (4.2.2) and (4.2.4) and the fact that y(u) = 0, we can choose a 
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< u such that 

P( sup ((l-F)•Z00 
- (1-F(s ))Z00 (s )) 2?: 2£) ~ o. 

[s ,u) m m m m 
m 

It is now easy to see by the B:lrel-Cantelli lemma that 

lim (1-F(t))Z00 (t) exists. Note that if y(u) = 0 and F(u-) 
ttu 

1, then by 

(4.2.2), (1-F'(t))Z00 (t) +P 0 as t tu so in this case, U = 0. 

Now we prove weak convergence of n Ii ( 1 - F) (F - FT) I ( 1 - FT) . Define for 

each n 

z = n'i J 1- F_ J 
T--=F y dM 

(replace t with tAT in (3.2.13)) so that 

(1-F)•Z. 

11.'e already know by Theorem 4.2.2 that (1 - F) ·Z +V (1 - Fl ·z"' in D[O,t] for 

each t E 1. So by BILLINGSLEY (1968) Theorem 4.2 it remains to show that 

if u t 1, then 

lim lim sup P( sup I (1-F(s))Z(s) - (1-F(t))Z(t) I > i::) 0 
ttu n+oo sE[t,u] 

for all e: > O. 

Suppose y(u) 0, fix t < u for the moment and note that 

sup I (1-F) ·Z - (1-F (t) )Z (t) I 
[t,u] 

~sup [0-F)-(Z-Z(tlll + (F(uJ-F(tl>lz<t>I. 
[t,u] 

For each t' E (t,u] such that F(t') < 1, Z-Z(t) is a square integrable 

martingale on [t,t'], and (Z-Z(tJ) 2- (<Z,Z> - <Z,Z>(t)) is a martingale 

on [t,t']. Both processes are zero at time t and have paths of bounded 

variation. Also, for s E [t,t'], 

(1-F(s) ) 2 (Z (s)-Z (t) ) 2 J (1-F) 2d((Z-Z(t)) 2 ) + 
(t,s] 
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~ J (1-F) 2d((Z-Z(t)) 2). 
(t,s] 

considered as a process, (1-F) 2 is predictable, so for any stopping time s 
taking values in [t,t'], 

where the last inequality follows from (4.1.6). Theorem 2.4.2 therefore 

gives us 

P( sup [ ( 1-F) (Z-Z (t)) [ > E J ~ ~+ P(J \\-!F-\
2 

J ~ ( 1-llG) dF >a). 
[t,t'] ; E: [t,t'] -

If F(u) < 1 we can choose t' = u in this relation; but otherwise let

ting t' t u also shows that it is true with t' = u. By Theorem 3.2.1 and 

VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1, 

P(J (1-F_)
2 J~(l-llG)dF<::S- 3 Jr 

(t,u] (l-F_) (t,u] 

as S + 0 uniformly in n. Therefore by (4.2.3) 

lim lim sup P( sup I (1-F) (Z-Z(t)) I > E:) 
ttu n-><>o [t,u] 

It remains to show that 

lim lim sup P((F(u)-F(t))JZ(tll > E:) 
ttu n-+<» 

X (Ln) 
[ O ' l ) - (1- llG) dF) = 0 ( 1) 

( 1-L ~) 

0 for all 8 > 0. 

0 for all E: > 0. 

But because z2 - <Z,Z> is a martingale on [O,t], and <Z,Z> a nondecreasing 

predictable process, again by Theorem 2.4.2 we have 
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P((F(u) -F(t)) \Z(t) I > t:) 

c ( 2 Jto $ 2 + P (F(u) -F(t)) 
E: 

A 2 ) 
( l - F -; J ~ ( 1 - t.G) dG > o 

(1-F) 

By Theorem 3.2.1 and VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1 

n 

P(Jt <1 - F_l2 J ~O-t.GldG?: s-3 Jt Xco,1i (L_l dF) o(1J 

0 (1-F) 2 y 0 (1-F)(l-F_)(l-L~) 

as S + O uniformly inn; and hence (4.2.5) yields the required result. 

Next we consider the variance estimator nV, supposing that Fis con

tinuous. If y(u) > O there is nothing to prove. So we suppose y(u) = O; 

because F (u) = 1 this implies that ( 1 - F ( t)) 2 var z"" ( t) -+ 0 as ttu. In view 

of Theorem 4.2.2 and the continuity of F, we only have to show that 

( 

A 2 Js x{ Y> 1} dN \ 
lim lim sup P sup (1-F ( s) ) n ~ Y > E} = 0 

ttu n-+ao sdt,u] 0 

for all E > O. Now by Theorem 3 .2 .1, it suffices to prove this with 1 - F (s) 

replaced by 1-F(s). Note also that because x{Y>ll(Y•(Y-1)) is predictable 

and bounded 

X{Y>l} dN 
n----= 

Y- 1 Y 

X{Y>l} 
~dG. 

By the Birnbaum-Marshall inequality and the above remarks, 

( 2 JS X{Y>l} ) 
P sup (1-F(s)) n (Y-l)Y dN > E 

S€[t,u] 0 

$ (1-F(t))2 E Jt n x{Y>l} dG + J (1-F)2 E(n x{Y>l}) dG. 
E: O (Y-1) (t,u] E Y-1 

Now 
n 

E( x{Y>l}) .J n+l ) n 3x[o 1) (L_) 
n TY:-rJ s 3'-\(Y':;T) X[0,1) (L_) s , n 

(1-F )(1-L) 

where the final inequality holds by HOEFFDING (1956) Theorem 3. Relations 

(4.2.3) and (4.2.5) now yield the required result. O 

Let us discuss some of the relationships between Conditions (4.2.2) 

to (4.2.4). If Ln = L for all n and y(u) = O, then (4.2.3) and (4.2.4) 

are equivalent. 
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Consider now the case in which F(u) = F(u-) 1. We can write 

(1-FJ 2 J ((1-F) (1-F_) (1-L_))-ldF 

= J (1-L_)-l(l-ll.G}dF + J (J((l-F)(l-F_}(l-L_)}-l dF)d((1-F} 2), 

where the first term on the right hand side is nondecreasing and the second 

nonincreasing and both are zero at time zero. So in this situation, (4.2.4) 

implies that the limit in (4.2.2) exists, though not necessarily that it 

equals zero. 

Finally, suppose that Fis continuous and F(u) = 1. If (1-L} ~ c(l-F)a 

for some a < 1 and c > 0, then (4.2.2) and (4.2.4) both hold; if on the 

other hand (1-L) ~ c(l-F) for some c > 0 then (4.2.2) and (4.2.4) both fail. 

Theorem 4.2.3 gives a positive answer to a conjecture of HALL & WELLNER 

(1980), so their paper now also provides a method for constructing confiden

ce bands for F on [O,u] instead of on [O,t] for some t < u. Several authors 

(e.g. EFRON (1967), HOLLANDER & PROSCHAN (1979)) make use of weak conver

gence on [O,u] when in fact the literature only provides weak convergence 

on [O,u). The proof of Theorem 4.2.3 can be adapted to solve a long out

standing problem concerning the product limit estimator: how to use it to 

estimate mean lifetime when no t < oo exists such that F(t) = 1. We present 

a discussion of this problem and some preliminary results in Appendix 5. 

Of course in the boW1ded case just mentioned Theorem 4.2.3 can be applied 

directly. 

4.3. Weak convergence: test statistics of the class K 

Taking r = 2 and Hi = K/Yi, i = 1 and 2, in Theorem 4.2.1 will give 

conditions for asymptotic normality Wlder the null hypothesis of W(oo) (and 

more generally also of W(T) for a possibly random time instant T); for Wlder 

the null hypothesis we have 

(4. 3 .1) - J K 
y dM2. 

2 

More details are given in Corollaries 4.3.1 and 4.3.2. However we must also 

prove consistency of the null hypothesis variance estimators v 1 (00 ) and 

v2 (00). The next result establishes consistency Wlder only slightly stronger 

conditions than those of Theorem 4.2.1. In it we also consider contiguous 

alternatives, so that the result can be used in Chapter 5 too. Note that 

Conditions (4.3.3) to (4.3.5) needed for consistency of v2 (00 ) are empty 

under the null hypothesis. 
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LEMMA 4.3.1. Consider the situation of Theorem 4.2.1, taking r = 2 and 

Hi = K/Y1 , i = 1,2. Suppose that Condition I holds, with the functions hi 

left continuous with right hand limits and of bounded variation on closed 

subintervals of 1 even if F~ does not depend on n. Suppose that the limiting 

distribution functions F 1 and F 2 are equal, F 1 =F2 = F say. Then with £ = 1 

(4.3 .2) sup Iv~ (s) - I Js h. (1- 6G)dGJ +P O 
5£[0,t] i=l 0 l. 

as n + co 

for each t € 1. If Condition II holds, we also have (4.3.2) with t u; 

and with the further addition of Condition III, (4.3.2) holds with t = "'· 

The same statement holds with £ = 2 if the following three conditions 

(for i = and 2) are added to Conditions I, II and III respectively: 

(4.3. 3) Jt I dG~ -dG I + 0 
0 l. 

as n +co for all t € 1; 

(4.3.4) 

(4.3.5) 

If u ./. 1, 

lim lim sup sup 
ttu n+oo sE(t,u] 

I dG~ I -t-<sl 
dGi' 

If u < "'• I n I dG. 
lim sup sup ~(s) 

n+oo SE(u, 00 ) dGi' 
< "' 

< co 

PROOF. From (4.1.20) and (4.1.21) we see that 

2 

l. 
i=l 

and 

v = 
2 f J 

i=l 

i' f. i; 

i' f. i. 

So under Condition I with the extra conditions on hi, it is easy to see 

that (4.3.2) holds for all t E I if (for £ = 1) 

sup lro ~l..i - G(s) I +p 0 
sdO,t] 

and if (for £ = 2) 

sup 
sE[O,t] 

as n ~ 00 for each t E I and each i = 1,2. The first relation follows imme

diately from Theorem 4.1.1, while the second relation follows by writing, on 



{s: Yl(s)AY2(s) > O} 

(4 .3 .6) Is d(N1+N2 ) 

0 yl + y2 
- G JS Y (dNl ) ~ y--dG~ + 

0 1 2 1 

Js Yl + Is Y2 n 
+ y-:;y(dG~ - dG) y:;-y-(dG2 - dG). 

0 1 2 0 1 2 

Using Theorem 2.4.2 in the same way as was done in Theorem 4.1.1 to prove 

consistency of f dNi/Yi as an estimator of G~, we find for any i and any 

fixed t € 1 that 

P( sup 
sdO,t] 

t y 2 J 

s !l + P(J (--i-) ic 1 -Mi:1ldGi:1 > n}\ 
E 0 \Yl + y2 Yi l. l. 

n s !l + PFi(t) > n) 
E \Yi (t) 
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and so the first two terms on the right hand side of (4.3.6) converge uni

formly in probability to zero on each closed subinterval of I. The same 

holds for the last two terms by Assumption (4.3.3). 

Suppose next that u i. 1 and that Condition II holds. For any sS tS u, 

2 dNl.. 
H.Y. 

l. l. Yi 

while as t varies, 

2 I 2 dN. 2 
E HY-l.-E 

i=l (s,t] i i Yi i=l 
I 2 n 

H.Y.dG. 
(s,t] J. J. J. 

is a martingale on [s,u], zero at time s. By Theorem 2.4.2 therefore, for 

all E > 0 and n > O, 

So by Condition II, 

lim lim sup P( sup lv1 (uJ-v1 (s) I> E) = 0 
t+u n-+«> si;;(t,u] 

for all E > o. Using BILLINGSLEY (1968) Theorem 4.2 as usual and the fact 

that J~ hi (1-t.Gi)dGi is finite shows that (4.3.2) holds with t= u and t= 1. 
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Adding condition III, this argument may be extended to all t E [O,=), 

still with 1 = 1. 

For t = 2 we note that for any s $ t S u, 

while for each i and i', as t varies, 

is a martingale on [s,u], zero at time s. So by Theorem 2.4.2, for each 

c > O and n > O, 

$ !l + 
€ 

I P(J H~Y.d.G~ > !l I (l+c>) 
( J l. l. l. 2 

i=l s,u 

for s sufficiently close to u, and n sufficiently large, where c < 00 is some 

constant greater than the left hand side of (4.3.4). Using Condition II 

again gives us the required result for t = u and i = 2. 

Finally using (4.3.5) and Condition III in the same way for the case 

t • '" and t = 2 completes the proof. D 

We can now give conditions for asymptotic normality of a test statis

tic of the class K (see page 55) in terms of the conditions I, II and III 

which were listed at the beginning of Section 4.2: 

COROLIJ\RY 4.3.1. For each n let KE K be a random weight function generating 

test statistics W(eo) /Iv t (oo) and more generally W(t) fvVJtl for each 

t ( (Q,oo], 1 = 1,2. Define Hi = K/Yi, i = 1 and 2, and let I be an interval 

(O,u) or [O,u] for some u E (O,oo]. Then under the null hypothesis 

F~ = F~ = F for all n, we have 

and 

V£(t) ... p a2(t) = I Jt h. (1-AG)dG 
i=l 0 l. 

i=land2 

for each t t: 1, [O,u] or [O,..,] according to whether Conditions I, I and II 
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or I, II and III are satisfied. (Condition I must be satisfied with the 

extra conditions on hi even though F7 does not depend on n.) Note that hi 

satisfies 

H~(t)Y. (t) 
J_ J_ 

0 t r/. I. 

Sometimes we shall be interested in the test statistic W(Tn) for some 

random time Tn defined for each n = 1,2, .•. (cf. the discussion at the end 

of Section 4.1 on the test statistic of EFRON and Example 3.1.2, Type II 

censorship) : 

COROLLARY 4.3.2. Consider the situation of Corollary 4.3.1. Let Tn be a 

random time instant such that Tn +P t 0 as n + oo; if t 0 is a jump point of 

a 2 (t) (defined in Corollary 4.3.1) suppose that either 

as n + oo for all E > O 

or 

as n + oo for all E > 0. 

If Condition I holds (with the extra conditions on hi) and P {Tn E I) + 1 'as 

n + "", then 

and 

V'l(Tn) +p cr 2 

2 2 n 2 2 
where a = a {t0 ) unless T approaches t 0 from below, when a = a (t0-) . 

If P(Tn E [O,u]) + 1, but Conditions I and II hold, the same conclusion is 

valid; the conclusion remains true if t 0 is arbitrary but Conditions I to 

III hold. 

Let us consider the special case of the test statistics of GEHAN, 

EFRON and COX, for which we have {cf. 4.1.22) to (4.1.24)): 
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(GEHAN) 

H~Y. (EFRON) 
l. l. 

(COX) 

for i = 1, 2, and i' # i. Suppose that functions y 1 and y 2 exist such that as 

n +"' 

(4.3. 7) sup 
td0,"') 

IY. (t) I 
_:i. __ - y. (t) 

n. :i. 
l 

and suppose also that 

i 1 and 2 

(4.3.8) pi€ [0,1] i 1 and 2. 

Recall from Section 4.1 that the functions y. are of necessity left contin-
l. -1 

uous, nonincreasing, take values in [O, 1], and are such that y i ( 1 - F _) is 

nonincreasing. A sufficient condition for (4.3.7) to hold in Example 4.1.1 

is that the average censoring distribution for each sample converges uni

formly to some distribution, i.e. 

n. 
l. 

(4.3.9) Ln I n 
Lij + L. 

l. n. l 
l. j=l 

as n + oo for each i 

uniformly on [O,ro) for some (sub)-distribution functions L 1 and L2 • In this 
-1 

case yi(l-F) (1-Li_); even when we are not in the situation of 

Example 4.1.1 we shall interpret y. (1-F )-l as the "limiting average cen-
i -

soring distribution" for sample i. 

Let us define 

(4.3.10) 

Since yi(t) > 0 implies that 1-F(t-) > O, G is finite on 1. It is now easy 

to see, using Theorem 4.1.1 for the test statistic of EFRON, that Condition 

I holds with this choice of 1 for each of the three test statistics, if we 

take 

(4.3.11) i' # i 



and hence (see Corollary 4.2.1) 

(4.3.12) 

where 

(4. 3.13) 

(4.3.14) 

and 

(4.3.15) 

In each case, k is the limit in probability of / K. 
nin2 
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The situation as regards conditions II and III is different for each 

test statistic. It will turn out that (4.3.7) and (4.3.8) are sufficient 

and almost sufficient in the case of the test statistic of GEHAN and cox 

respectively: to illustrate the "almost" we give a counterex~le in which 

We("') is not asymptotically normal though (4.3.7) and (4.3.8) hold. We 

shall give conditions in the situation of Example 4.1.1 for II and III to 

hold for the test statistic of EFRON. These conditions seem close to being 

necessary for asymptotic normality of WE(m). Note that Condition III is 

often trivially true; e.g. if F(u) = F(m) or if P(Y 1 (u+)AY 2 (u+) = 0) + 1 
n n 

as n + "'· In Example 4.1.1 the latter holds if L1 (u) = 1 or L2 (u) = 1 for 

all n. 

First we give a useful lemma: 

LE:f.MA 4.3.2. Under the null-hypothesis, if (4.3.7) holds, then 

(4.3.16) r y.dG 
0 l. 

< "' 

and 

(4.3.17) sup [Jt Yi dG - Jt y dGI + 0 as n + "'· 
te:[O,ro) 0 ni 0 i P 

PROOF. (4.3.16) follows immediately from the fact that yi S (1-F_). Clear

ly (4.3.17) holds if [0,"') is replaced by [O,s] for any s such that 

G(s) < "'· Define T = sup{t: F(t) < 1} and suppose G(T) = "'· Then Yi is al

most surely zero on (T,"') for each n, and yi is zero on (T,"'). Also 

6F(T) = 0 SO that 
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E(JT Y. ) (JT dN.) ..2::. dG = E _2:. 5: F(T) -F(t) + 0 
t ni t ni 

as t t T 

uniformly inn. So (4.3.17) holds in the case G(T) = 00 too by the usual 

arguments. D 

PROPOSITION 4.3.1 (Asymptotic normality under the null-hypothesis of the 

test statistic of GEHAN). 

Suppose that (4.3.7) and (4.3.8) hold. Then with 1 defined by (4.3.10) and 

hi by (4.3.11) and (4.3.13), Conditions I to III hold under the null-hypoth

esis for the test statistic of GEHAN. 

PROOF. Condition I has been already verified, and Condition Ila follows by 

(see (4. 3.16)). 

2 For Conditions IIb and III, note th~t Hi,Yi' 5: Yi/ni for each i and i'. 

If u = sup I and i are such that yi (u) = 0, then by Lemma 4.3.2 

lim lim sup 
ttu n-+«> 

P(J Yi dG > i::) = 0 
(t,u] ni 

for all E: > O, while if u < oo and yi is zero on (u,~), again by Lemma 4.3.2 

PROPOSITION 4.3.2 (Asymptotic normality under the null-hypothesis of the 

test statistic of EFRON). 

0 

Suppose that (4.3.7) and (4.3.8) hold and let I be defined by (4.3.10) and 

hi by (4.3.11) and (4.3.14). Then under the null-hypothesis Condition I 

holds for the test statistic of EFRON. In Example 4.1.1, under (4.3.8) and 

(4.3.9), Condition II holds if for each i 
2 n 2 

{j)J:i X[O,l)(Lj_)}(l-F_) 
-"-~--'=-'-''-'-'~~-'--~~~~-dF 

(1 - L~ ) 

n, I J lim lim sup ~-i~ 
ttu n-+«> nl+n2 (t,u] 

0 i' 'f i (4.3.18) 

J.-
so that in particular 

I (1-F-)(1-F) dF 
pi I (1 - L, ) 

I i-

(4. 3.19) < co; 

condition III holds if for each i 

(4.3.20) o. 



PROOF. Condition I has already been dealt with. So consider the situation 

of Example 4.1.1 with (4.3.9) holding. 

Condition (4.3.19) is precisely IIa. For 

f f (1- F_) 1 - F dF 
1 hJ_. (1- llG)dG = pJ_, I 1 ----

Yi 1-F_ 1-F 

p.' f J_ 1 
(1-F-)(1-F) dF 

( 1 - L. ) . 
J_-

Recalling that 

under Example 4.1.1 we obtain by Theorem 3.2.1 and VAN ZUIJLEN (1978) 

Theorem 1.1 and Corollary 3.1 
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as S + 0 uniformly in n. Conditions IIb and III now follow immediately from 

(4.3.18) and (4.3.20) respectively. 0 

Note that we only used Example 4.1.1 to supply a uniform bound for 

P (Yi/ni. 2: S (1- F ) (1 - L 1: ) on { t: J. (t) > O}); so some extensions to other 
- i- J_ 

types of censoring can also be made. Note also that if L~ = L. for all n J_ J_ 

and pi E (0,1) for each i, then (4.3.18) and (4.3.20) follow from the 

slightly strengthened form of (4.3.19): 

(4.3.21) f ( 1 - F _) 2 dF < 

1 (1-L. ) "" 1 

J_-

If F is continuous and F(u) 

for some c > O and a < 3, 

(1-L~) > c(l - F)o: J_ 

i 1 and 2. 

1, (4.3.18), (4.3.19) and (4.3.20) hold if 

for all i and n; 

(4.3.18) fails in this situation if for i 

we have pi' ~ O and 1-Li < c(l-F)o:. 

1 or 2 and some a 2: 3, c > O, 
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PROPOSITION 4.3.3 (Asymptotic normality under the null-hypothesis of the 

test statistic of COX). 

Suppose that (4.3.7) and (4.3.8) hold. Then with I defined by (4.3.10) and 

h. by (4.3.11) and (4.3.15), Condition I holds for the test statistic of 
l. 

COX. If u i I Condition II holds unless 6F(u) > 0 and for i = 1 or 2, 

p, = O and y.(u) > O. If u < oo Condition III holds unless F(u) < F( 00 ) and 
l. l. 

for i = 1 or 2, p, = O and y. (u+) > 0. Condition II also holds if 
l. J. 

Y1 (u)AY2 (u) = 0 almost surely for all n, and Condition III if 

Y1 (u+)AY2 (u+) = 0 almost surely for all n. 

PROOF. Condition I has already been dealt with. Now 

Yl Y2 nl+n2 n1+n2 Yi 
-----< ----
nl n2 Y1+Y2 - ni' ni 

i I I i. 

For i or 2, pi' > 0 and by Lemma 4.3.2 

J nl +n2 Yi 1 I --- - dG + p - y dG n! n. P ·' i · (t,u) i i J. (t,u) 

So condition II holds if ~G(u) O almost surely 

for all n. If pi< 1 and yi(u) O, 

J 
{u} 

so Condition II also holds if for i = 1 or 2, pi< 1 and yi(u) = 0. 
Similarly if for i = 1 or 2, pi< and (yi(u+) = 0 or F( 00 ) = F(u)), 

and Condition III holds in this case too. Condition III holds trivially if 

Y1(u+)AY2 (u+) = 0 almost surely for all n. Since u i I implies y 1 (u) = 0 

or y 2 (u) = 0 and u < ® implies y1 (u+) = O or y 2 (u+) O, conditions II and 

III can only fail in the situation described in the proposition. 0 

Let us discuss these results and compare them with what can be found 

in the literature. We shall neglect the fact that we consider variance 

estimators different from those of some authors, as was mentioned in Sec

tion 3.3. We therefore only consider the asymptotic normality of W(oo). 

our result on the test statistic of GEHAN is very general. GEHAN (1965) 



considers a permutation test based on WG(oo), but BRESLOW (1970) shows how 

the theory of U-statistics can be applied under the usual model of random 

censorship (Example 4.1.1, with L~. = L. for all i, j and n) to obtain 
l.J l. 

asymptotic normality of WG(oo), and sketches a modification to deal with 

fixed censorship (Example 3.1.4) under a condition equivalent to (4.3.9). 

He works with F continuous and p, E (0,1). 
l. 

Apart from the restriction to Example 4.1.1, our result on the test 

statistic of EFRON is also very satisfactory. Condition (4.3.19) seems to 

be a more or less necessary condition for asymptotic normality of WE( 00 ). 
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EFRON (1967), working under the model of random censorship just men
tioned and assuming F and Li to be continuous and pi E (0, 1), also assumes that 

(4.3.19) holds in his sketch of a proof of asymptotic normality of WE( 00 ). 

However his proof only establishes, in our terms, weak convergence of the 

process WE on D(I). So our results show that an extension to D([0, 00 ]) is 

possible. 

As we remarked in Section 4.1, it seems advisable to use WE(t) as test 

statistic for some t such that y 1 (t} > 0 and y 2 (t) > 0. EFRON (1967) makes 

this suggestion, but does not actually prove asymptotic normality in this 

case. 

Finally we consider Proposition 4.3.3 on the test statistic of COX. 

CROWLEY & THOMAS (1975) prove asymptotic normality of WC( 00 ) under the same 

random censorship model as above, assuming that F is continuous and 

pi E (0,1). So our proposition generalizes this result. 

We now show by a counterexample that Proposition 4.3.3 is not valid if 

only the Conditions (4.3.7) and (4.3.8) are imposed. More precisely, we 

show that in Example 4.1.1, WC(oo) is not necessarily asymptotically normal

ly distributed, even though (4.3.8) and (4.3.9) hold. We construct this 

counterexample by letting Condition II fail, which requires F to be discon

tinuous. However similar but more complicated counterexamples can be con

structed with continuous F in which Condition III fails. 

In Example 4.1.1, suppose that u t 
We must have u < 00 and y 2 (u) = O. Since 

"Y2 (u) = 0 almost surely for each n", we 

I, p1 = O, y 1 (u) > 0 and ~F(u) > 0. 

"L~ = L2 for all n" would imply that 

must allow L~ to vary with n (as 

in the model of fixed censorship). As we assume that (4.3.9) holds, we shall 

suppose that 

n L2 (u-) < 1 for all n, 1 as n + 
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·ro ;:ivoid degeneracies, we strengthen our previous assumptions slightly to 

Ll (u-) < 1, 0 < F(u-) < F(U) < 1, and p 1 = O. 

Now suppose that for some v1 < u < v2 , Fis constant on [v1 ,u) and on 
n 

[u,v2). suppose also that Li(v 1J < 1 for each i, and that Li cv2-) = 1 for 

each i and n. In this situation 

where under the null-hypothesis, by (4.1.3), (4.1.18), (4.1.19) and (4.1.24) 

(4.3.23) /:;.WC = 

,., ~ !:! -1 - y~(-"""'_2 - /:;.G) -- 2 (y2) (2 + y2) J J . 2 Y2 n1 n1 n1 n1 1 2 
Y2(u) 

We first show that if ~+Pc c [0, 00 ] as n + 00 , then 6WC( 00 ) and Wc(v1) 

are asymptotically independent and 

(4.3.24) ( Y1(u) cc)· 8Wc(u) +V N O,f::l:;(u)(l-fiG(u)) 
Y1 (u) + 

2 2 
(We already know that Wc(v1) _.,.V N(O,a J for some a > O.) Note that it is 

n Y2(u) 
always possible to construct L2 such that -- + c for a given c· we have 

nl P ' 

(
Y2 (u)) n2 

E -- = -(1-F(u-)) (1-Ln(u-)) 
n1 n1 2 

and 

if c c (O,~) we can then define L~(u-) by 

(1 -F(u-)) (1-Ln(u-)) 
2 

for sufficiently large n; otherwise we define L~(u-) by 



(1-F(u-)) (1-Ln(u-)) 
2 

for all n, where en is suitably chosen so that in particular en f 0 if 

c = 0 and en t oo if c = oo. 
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Since Y1 (u)/n1 +P y 1 (u) > 0 
ni+n2 

and---+ 
n2 

as n + 
~ llNi 

co, while Y. (-y - llG) 
l. i 

is bounded in probability as n + 00 , the case c = O is immediate 
ll.Ni 2 

(fYi(Y°i - ll.G) = llG(l-llG)EJi by Assumption 3.1.2). If c > O, then 

Y1 (u) +P "' and Y2 (u) +P 00 as n + 00 and it is now easy to show, using 

Assumption 3.1.2, that 

wc(vl)' and 

are asymptotically independently normally distributed with means zero and 

variances a 2 , (1-llG(u))llG(u), and (1-LIG(u))llG(u) respectively. So 

(4.3.24) holds in this case too. 
n We now obtain our counterexample by constructing the L2 1 s so that 

Y2 (u)/n1 converges in probability to different values of c along different 

subsequences; then We("') does not converge in distribution along the whole 

sequence. 
Actually this is not a counterexample to asymptotic normality of 

Wc("')//vci("'), i = 1 or 2; for provided o2 > O, it is easy to see that 

along each subsequence for which Y2 (u)/n1 +Pc for some c, VCi("') converges 

in probability to the asymptotic variance of WC(00 ), and hence 

(4.3.25) 

along this subsequence. From any subsequence a further subsequence can be 

extracted along which Y2 (u)/n1 converges in probability and therefore 

(4.3.25) holds along the original sequence. 

However, the example illustrates the complications that arise in the 

situation excluded in Proposition 4.2.3. Similar difficulties arise in 

proving consistency, which was why we assumed pi ~ (0,1) in Section 4.1 for 

the test statistic of cox. 
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CHAPTER 5 

EFFICIENCIES AND NEW TEST STATISTICS 

5.1. Introduction; comparison of variance estimators 

In this chapter we shall again be concerned with asymptotic results 

for the two-sample case, the basic notations and definitions having been 

summarized in Section 4 .1 (see especially formulae ( 4. 1 .1) to ( 4 .1 • 5) and 

(4.1.18) to (4.1.24)). In Section 5.2 we show how the methods of the previ

ous chapter can be extended to prove asymptotic normality under a contig

uous sequence of alternative hypotheses of test statistics of the class K. 
The limiting distribution has the same variance as under the null-hypothesis 

but a different expectation, from which Pitman asymptotic relative effi

ciencies can immediately be calculated and used to compare test statistics 

of the class. We shall of course pay special attention to the test statis

tics of GEHAN, EFRON and COX. 

It should be recalled that COX derived his test statistic with the 

alternative hypothesis in mind 

( 1 - LlG 2) dS l 

(1 - LlG 1) dG 2 
constant, 

a so called "proportional odds" model. In the continuous case, this reduces 

to the alternative of "proportional hazards", also known as a "Lehmann alter-

constant. It turns out that cox's test statistic is in-

deed the best of the class K for alternatives of proportional odds. This 

generalizes previous results concerning the usual model of random censor

ship (Example 4.1.1 with L~j =Li for all i, j and n) and continuous F~ 
n and F2• 

On the other hand the test-statistics of GEHAN and EFRON seem to have 

no general optimality properties; their behaviour relative to the best test 

for a given type of alternative hypothesis depends on what we shall call 

the "limiting average censoring distributions" for each sample (in Example 
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4.1.1, these are the L1 and L2 defined by (4.3.9)). 

In the case of random censorship and continuous F~'s just mentioned, 
i 

it is known that the test statistic of COX is asymptotically most powerful 

against a contiguous proportional hazards alternative if and only if L1 =L2• 

We shall show that this result is much more generally true, and offer an 

intuitive explanation. We also suggest that any nonparametric type test can 

only be asymptotically most powerful against a particular contiguous alter

native if Ll = L2, and suggest that even if Ll F L2 the best test of the 

class K for a particular alternative is in fact an optimal test in the 

wider class of nonparametric-type tests. 

In Section 5.3 we concentrate on constructing tests which should be 

especially powerful against parametric alternatives which can be reduced to 

a location family after a suitable transformation, i.e. 

F~(x) 
i 

where ~ is a fixed continuous distribution function on (-~,~>, g is a fixed 

monotone transformation and 9~ and 9~ are real parameters. We determine the 

best test of the class K for given ~ (we shall have to consider random 

weight functions which are not necessarily nonnegative) . It turns out as 

expected that such a test is asymptotically most powerful if and only if 

the limiting average censoring distributions for the two samples are equal. 

As an example, when~ is the standard normal distribution function and 

there is no censoring, this procedure supplies us with a new non-parametric 

test statistic, which is asymptotically uniformly most powerful and which 

unlike the test statistics of Fisher-Yates or Van der Waerden can be used 

with censored observations as well. We give conditions for asymptotic 

normality of this test statistic which cover the case of no censoring. 

Le Cam's theory of contiguity is very useful in this section, allowing 

us to evaluate limiting distributions only under the null-hypothesis in 

order to determine efficiencies with respect to the likelihood-ratio test. 

In Section 5.4 we pay attention to the question of how two-sample 

tests can be constructed which are consistent against a wider class of 

alternatives than those considered in Section 4.1. Since for a given random 

weight function K we can use W(s) as a test statistic for any value of s, 

it seems worth considering whether a test can be based on ~up !W(s) I 
SELO,t] 

for some chosen t. It turns out that such a test is consistent against the 
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alternative F 1 ~ F2 on [O,t]. One would expect to pay for this by a loss of 

power against an alternative to which W(t) is suited. However we indicate 

that for an alternative of the ordered hazards type, and for small values 

of the size a of the tests, the two tests are asymptotically nearly equal

ly powerful: the limit as size a + 0 of their Pitman asymptotic relative 

efficiency (which depends on a) equals 1. 

All this time we have made no comparison of the two null hypothesis 

variance estimators v1 (00 ) and v2 (00 ) (see (4.1.20) and (4.1.21)) and unfor

tunately there are reasons for preferring either. Under the null hypothesis 

we would expect v2 (00 ), which in effect combines the two samples in order to 

estimate G, to be a better estimator of the asymptotic variance of W(oo). 

However this same fact leads to extra difficulties and sometimes extra 

conditions in dealing with v2 (00 ) both under contiguous and under fixed 

alternative hypotheses, and this suggests that its convergence in probabil

ity as n + 00 might be slower in such cases. 

Under the null hypothesis or a contiguous sequence of alternatives, 

v1 (oo) and v2 (00 ) generally both converge in probability to the asymptotic 

variance of W(oo). Under a fixed alternative they have different limits; and 

other things being equal one would prefer the variance estimator with the 

smaller limiting value. 
n n Suppose then that F1 = F1 and F2 = F2 for all n, where F1 ~ F2 . Suppose 

y. 
as usual that for each i = 1,2, -2:.. converges uniformly on [0, 00 ) to a func

ni 
tion yi as n + 00 , in probability. Define 

we shall have I = [O,u] or [O,u) for some u € (0, 00 ] and G1 and G2 are 

finite on I. Suppose also that 

as n + 00 

and that for each t € r, 

converges uniformly on [O,t] to k as n + 00 , in probability, where k is left 

continuous with right hand limits and k+ of bounded variation on [O,t]. We 

define k = 0 outside J. Writing 
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2 

l (i'i'i) 

i=1 

and 2 

l 
i=1 

(i I i' i) 

(see (4.1.20) and (4.1.21)) it follows by (4.1.15) that in probability, v1 

and v2 converge uniformly on [O,t] to the functions 

2 J k2 (5.1.1) l p . , -(1 - D.G. ) dG . 
i=1 i Yi i i 

(i I i' i) 

and 
2 

JB 
p1y 1D.G1 + p2y2D.G2) 

(5.1.2) l p. 1 dG. 
i=1 l. Yi I P1Y1 + P2Y2 l. 

(i I i' i) 

as n +co, for each t E 1. 
Under some further conditions (compare the use of Conditions II and III 

in the proof of Lemma 4.2.1) this also holds with the interval [O,t] for 

t E I replaced with [O,oo]. The interesting point however is that the two 

functions in (5.1.1) and (5.1.2) are not necessarily equal, and it is not 

true that one of them is always greater than or equal to the other. Thus a 

general choice between v1 and v2 cannot be based on these considerations 

either. 

5.2. Efficiencies 

In this section we apply Theorem 4.2.1 to the two-sample situation in 

which for each i 

(5.2.1) F~(t) + F(t) uniformly in t E [O,co) 
l. 

as n + 00 

for some fixed distribution function F, with respect to which F~ is abso
l. 

lutely continuous for each i and n. We suppose that this convergence is 

such that for some real valued functions y 
i' 

(5. 2.2) as n + co 

uniformly on each closed subinterval of {t: F(t-) < 1}, and we define 

(5.2.3) 



(In Section 5.3 we shall weaken these assumptions somewhat.) At the same 

time we suppose as in Section 4.3 (see (4.3.7) and (4.3.8)) that 

Y. (t) 
(5.2.4) ~1~- + y. {t) uniformly on [0, 00 ) in probability 

ni J. 

and 

(5.2.5) pi € [0,1] 

for each i as n + 00 • Define 

(5. 2 .6) u sup r. 

From the remarks preceding Theorem 4.1.3 on page 66, we recall that the 
-1 functions yi are such that yi (1 -F_) has all the properties of 1 minus 

the left continuous version of a (sub)-distribution function: it is left 
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continuous, nonincreasing, nonnegative, and takes the value 1 at time zero. 
-1 In Example 4.1.1, if (4.3.9) holds, then yi(l-F_) = (1-Li_), i = 1 and 

2, where Li is the limiting average censoring distribution for sample i. 

However even when we are not in the situation of Example 4.1.1, we propose 

defining the limiting average censoring distribution Li by (1- Li_) = 
-1 = y i (1 - F _) 

Finally let K € K be a random weight function for each n, generating 

a sequence of test statistics W(oo)//vt( 00 ) (cf. Section 4.1, especially 

(4.1.18) to (4.1.21)), such that 

(5. 2. 7) 
nl+n2 
~~- K(t) + k(t) uniformly on closed subintervals of I 
nln2 

in probability as n + 00 1 where k is left continuous with right hand limits 

and k+ of bounded variation on closed subintervals of I. Define k = 0 out

side 1. We call k a "limiting weight function". 

As a consequence of (5.2.1) to (5.2.7), writing 

(5.2.8) 

1 and 2 

(5.2.9) K/Yi' 

then we have 
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(i' ,; i) 

and Condition I of Section 4.2 holds with 

(5.2.10) 

so that 

(5.2.11) 

Note that condition (4.3.3) of Lemma 4.3.1 is a consequence of (5.2.2). 

If also 

(5.2.12) Jt !ky. !dG < "" for all t e 1 and i 
0 l. 

1,2, 

then by (5.2.2) and (5.2.7), 

(5.2.13) IJS (dG~ 
sup K -- -

se[O,t] 0 dG 

for all t e 1 and each i = 1,2. We can extend (5.2.13) to t u and then to 

t = "' in the usual way by making the extra assumptions 

* II 

* III 

If u t I, then for i 1 and 2 

a) fl ikYi!dG <"' 

b) lim lim sup P(f[t ]IKI ldG~-dGI > e:) 
t+u n-+«> ,u 1 

and 

if u < 00 , then for i and 2 

f( ) IKI idG~-dGI -+p 0 u,co J_ 
as n -+ ""• 

0 for all e: > 0 

By Theorem 4.2.1, Lemma 4.3.1, and (5.2.13) we therefore have if 

(5.2.1) to (5.2.7) and (5.2.12) hold 

(5.2.14) (Jt Jt p y + p y ) 
wctl -+v N kydG, 1 1 2 2 k2 c1 - llGJdG 

0 0 Y1Y2 

for all t e l and V g. (t) is a consistent estimator of the asymptotic vari

ance in (5.2.14) for £ = 1 and 2. If u t 1 but Conditions II, rr*, and 

(for the case £ = 2) (4.3.4) hold, this is also true for t = u; and if 
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* u < ~ but III, III and (for the case 1 2) (4.3.5) hold too, then it is 

true for all t € [o,~J. 

Suppose we are interested in some parametric family of distributions, 
n n 

and select a sequence {(F1 ,F2): n = 1,2, ••• } of pairs of distribution func-

tions from this family such that (5.2.1) to (5.2.7) and (5.2.12) hold for 

certain functions k, y 1 , y 2 and y. Suppose that under the null-hypothesis 
n n 

sequence F 1 = F 2 = F for all n, (5.2.1) to (5.2.7) and (5.2.12) hold with 

the same k, y 1 and y 2 but with y = 0. Then under the appropriate set of con

ditions, the asymptotic relative efficiency (for this sequence of alterna

tives) of one test statistic W(t)/~ with respect to another is given 

by the ratio of their efficacies 

(5.2.15) e(k,t) 

the efficacy of such a test statistic depending on its limiting weight 

function k and the time instant t for given y 1 , y2 , y and G. 

Recall from Chapter 4 that for the test statistics of GEHAN, EFRON 

and COX, (5.2. 7) holds with 

(5.2.16) 

(5.2.17) 

and 

(5.2.18) 

2 
(1- F _) Xt 

It is a straightforward matter to extend Propositions 4.3.1 to 4.3.3 to 

cover the contiguous alternative hypothesis case. In particular Lemma 4.3.2 

remains valid under (5.2.1). However we shall not go into these details 

here, nor discuss conditions for II* and III* to hold. 

The following lemma establishes that 

maximizes (5.2.15) over the function k. Note that with such a choice of k, 

the terms corresponding to asymptotic mean and variance in (5.2.15) are 

equal to one another and hence also to the efficacy itself. 
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LEMMA 5.2.1. Let t € (O,co] be fixed and define 

on [O,t]. 

Suppose 

0 < Jt 2 
LdG 

o a 
< co 

Then if almost everywhere (dF) on [O,t] 

k " r a where a .,;, o, 

k maximizes e(k,t) over all k such that 

PROOF. We can equivalently maximize e(k,t) over all k such that the 

denominator in (5.2.15) f~ k2$dG is fixed and equal to a > O. The theory 

of Lagrange multipliers then leads us to consider the problem of maximizing 

over all k, for some fixed A. Bringing the integrands under a single 

integral sign and maximizing pointwise, assuming A > 0 this problem has 

as solution 

k 1- r 
2A $ where a 1' o. 

By the assumptions y = 0 where a = 0 almost everywhere (dF) , so we can neg

lect the case a = O. Since for a fixed A > O we can choose a # 0 such that 

f t 2 
0 k $dG = a with this choice of k, the same k is the solution of the con-

strained problem. D 

Now y 1 and y2 depend on the limiting average censoring distributions, 

which we may consider as arbitrary. So by Lemma 5.2.1, a test statistic in 

K with limiting weight function k can only be "optimal relative to y" (in 

the sense of maximizing e(k,t) for the appropriate t) if k{p 1y 1 + p 2y 2l/(y1y2J 
-1 

is proportional to y(l-~G) and so, apart from a constant of proportion-

ality which may depend on L1 and L2 , only depends on F and y. This shows that 
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the test statistics of GEHAN and EFRON will only be optimal relative to y 

when special relationships hold between y, F, L1 and L2 ; i.e. under special 

limiting average censoring distributions. We shall come across some cases 
-1 of this later. However the test statistic of COX is "optimal" if y (1 - liG) 

is constant almost everywhere (-dG) except possibly where liG = 1. 

We shall show that this case arises if 

(5.2.19) 8~(1-L'IG)-l dG, 
:L 

i 1 and 2, 

(i.e. a proportional odds model) where 

(5.2.20) 1 + c 

(5.2.21) 1 - c 

for some c ~ 0. Special cases are the geometric distribution and the Weibull 

distribution (with fixed shape but varying scale parameter); the latter in

cluding the exponential distribution. Under (5.2.19) to (5.2.21) we have, 

for i = 1 and 2, 

(1 - CIG) dGr_1 
J. 

n 
dGi - dG 

So as n + "', I + (dGd r _ 1) converges uniformly on [O,t] to P2C(l - liG) or 
n1 n2 G 

-p 1c(l -liG) according to whether i = 1 or 2, if t satisfies F(t-) < 1. Thus 

(5.2.2) holds with 

(5.2.22) y c(l-liG). 

In Figure 5.2.1 we plot e(k,t) fork 

in the case that 

kG, kE and kc as functions of t 
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-t F~(t) 
-ei:1t 

F(t) 1-e ; = 1 - e i. ; 
1 

L 1 (t) L2 (t} 1 
-at 

ll ~ O; - e 

y c = 1; pi arbitrary, 

for various values of a; a measures the degree of censoring present. These 

plots are time transformations of the more general case F continuous, 

n 
- F. 

1 
y c = 1. 

Note that the test statistic of EFRON is "accidentally" optimal at a = 1 

when kc = ~· and that e(~ 1 t) is near zero for large t for a ~ 3, when 

(4.3.18) fails. Again, the advisability of "stopping" the test statistic 

of EFRON earlier than the last observation is apparent. 

The fact that 

* * makes it very easy to verify, under H1, conditions II,. II , III, III , 

(4,3.4) and (4.3.5) for the test statistics of GEHAN, EFRON and COX in 

suitable modifications of Propositions 4.3.1 to 4.3.3; we omit the details. 

We now compare the test statistic of COX with the most powerful test 

for this problem. In the model specified by (5.2.19) to (5.2.21), let us 

suppose that 

observations 

for each n, the likelihood-ratio test statistic based on the 

("'IlX _,.n l · 1 i 1 2 f t · n Fn F ij'"ij , J = , ••• ,ni, = , or esting H0 : F1 2 = 

(i.e. c = O) versus H1 : "c is fixed and non-zero" is of the form given by 

Theorem 3.1.2: 

(5.2.33) 

dPl 

d.Po 

11 
i,j:o:r.1.=1 

1J 

6~ • II {( JI 
l. i I j s::i:r.1 . 

l.J 

1 - l:iG~(s) 
1 

1 -liG(s) 

Here we have used (3.2.9) and the fact that by (5.2.19) 



Efficacies e(k,t) with k =kc, kG 

y = 1 (Lehmann alternatives); and 

l -------------------- c 0.5 

0 a • O 

0.13 

0-1-------------, 
" = 2 

e 

and kE; F(t) = 1-exp(-t); 

1-L = 1-L = (1-F)a 
1 2 

0 "= 1 

e 

--·-------- - ------------ ... -- - -------

a • 2.5 

c 0.20 +----~------------

E 

0-1-------------T 
0 

" - 3 
4 0 a • 4 4 

Figure 5 .2.1. 
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Thus 

(5.2.24) 

-G1_1 (t) + G0 (t} = Jt (dG -dGn ) = - Jt (81.1-l)dG 
l.C O C ic O J. C 

-c01.1-1>G<t> + 
l. 

2 

l (8~ -1) f;G (s). 
s:St 

= l (log(8~)Mi (=) - Ai+Bi), 
i=l 

where Mi = Ni - f YidG as we are working under H0 , where 

(5.2.25) 

and where 

(5.2.26) 

B. = 
l. 

A. = ((8~-1) - log 8~) J= Y.dG. 
J. l. l. 0 J. 

We shall show that under a0, and under (5.2.4) and (5.2.5), the foi

lowing relationships hold (all limits being taken as n + co): 

(5.2.27) log(6~)Mi("") +v N(o,c2pi' J: yi(l-t.G)dG) (i I '/. i) I 

with log(9~)M1 (eo) and log(8~)M2 (eo) asymptotically independent, 

and 

(5.2.29) 

so that under (5.2.23) 

(5.2.30) 
dP1 2 2 2 2 

log -dP +V N(~c a ,c a ) 
O L L 

with 

(5.2.31) 

(L standing for likelihood ratio) : 



113 

THEOREM 5.2.1. Suppose that (5.2.4) and (5.2.5) hold . . rf the likelihood 

ratio for the alternative hypothesis H1 specified by (5.2.19) versus s 0 is 

given by (5.2.23), then under H0 (5.2.30) holds with a~ defined by (5.2.31). 

PROOF. We first establish (5.2.27) and the asymptotic independence of 
n n log(6 1JM 1 (00 ) and log(8 2JM 2 ("'). We shall continually use the expansion 

log (l+x) as x + 0. 

Thus we can write 

log(6~)M. (oo) = ±c(l + O(n~l:l)) {n;:- f"" n-11.i dMi, 
1 l. l. I~ o 

i' "'i, 

and we now apply a version of Theorem 4.2.1 with H. = n~~. Let us define 
l. l. 

1. = {t: v. (t) > O} and ul.. =sup I .. As was remarked after the proof of l. - l. - l. 

Theorem 4.2.1, the theorem also holds with 1 depending on i if the conclu-

sion is modified appropriately. With the interval 1. in place of 1, with 
l 

H. = n~l:l 
l. l. 

and hi = yi, Conditions I and IIa follow immediately. condition 

IIb also holds because if ui i Ii, then by Lem.~a 4.3.2 

f H~Y. dG = f ~G .... p I y. dG + 0 
(t,ui] 1 1 (t,ui] ni (t,ui] 1 

as t tu, while similarly_ Condition III holds because 

have 

as n + 00 • 

Next we consider Ai. By the expansion for log(l+x) given above, we 

r'" y.dG 
J 0 l. 

by Lemma 4.3.2. 

Finally we prove (5.2.29). By the arguments just after foX"lll'Ula (5.2.21), 

successively substituting for (1 - llG1:1l I (1 - llG) , 
l. 

llGr:-llG 1 - llGn 
1 n i 

l-llG = 1 - (0i-l)llG ~ 
1 - l\Gr: 
___ 1 = 1 -
1 - l>..G 

1 - llG~ 
n n 2 2 l. 

1 - (Si-1) f':..G + (Si-1) (llG) "1=°TG = 
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Thus ~ the expansion of the logarithm, as n + oo, 

and hence 

~ce~-1) 2 J"' Y.llGdGC1 + Ocle~-1lll 
l. 0 l. l. 

Jco y.llGdG 
0 l. 

-~ + Oen. ) ) 
l. 

i' .,, i 

as n +"' 

t y. 
using Lemma 4.3.2 to extend convergence of f 0 n~ bGdG for t € I. to 

l. l. 

t ="' D 

Now we have already shown that under H0 and under the Conditions II 

and III for the test statistic of COX we have 

(5.2.32) 

(5.2.33) 1 or 2, 

* * while under H1 and the Conditions II, III, II and III we have 

(5.2.34) 

where 

(5.2.35) 2 
(J = c 

Now by Le Cam's first lemma (see e.g. HAJEK & SIDAK (1967)), (5.2.30) and 

(5.2.32) imply that (5.2.33) also holds under H1, so we need not verify 

(4.3.4) and (4.3.5) under H1 for the case £ = 2. By Le Cam's third lemma, 

(5.2.30) implies that under H1 



So under H1, 

and 

under H0 the same relationships hold with limiting means zero. Thus the 

efficacies of the test statistic of COX and the likelihood ratio test are 
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2 2 2 2 . 
c crc and c crL respectively, and hence the asymptotic relative efficiency of 

the former with respect to the latter is given by 

Now on I 

1 + 

1 + 

This gives us 

COROLLARY 5.2.1. The test statistic of cox is asymptotically most powerful 

against the alternatives (5.2.19) if and only if pi = 0 and yi = 0 outside 

I almost everywhere -dF where AG < 1 for i = 1 or 2, or if y 1 = y 2 almost 

everywhere -dF where AG < 1 • 

This behaviour can be intuitively understood as follows. Under the 

simplest type of censoring, Example 4.1.1 with L~. = X[ ) for all i, j 
1J u. , 00 

and n (Type I censorship in each sample apart) , the resuit states that if 

pi ~ (0,1) we have efficiency 1 iff u 1 = u 2 • Both the likelihood ratio test 

(for which F must be known) and the test based on the test statistic of COX 

can be thought of as comparing estimates of F~ and F~. If u1 < u 2 , the test 
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statistic of COX only uses the information of what happens on [O,u1 ]; 

because F being arbitrary, the available information about F~ based on what 

happens in (u 1,u2J is of no use. However the likelihood ratio test statis

tic, for which F must be known, can use the information of what happens in 

(u 1 ,u2J to improve its estimate of F~ (via an improved estimation of en) 
• n n 2 

and hence make a better comparison of F1 and F2 . What is remarkable is 

rather the fact that if u1 = u 2, both tests are asymptotically equally good. 

we suggest that this behaviour is inherited by more complicated types of 

censoring; since the asymptotic results only depend on the limiting average 

censoring distributions, which might just as well have come about from the 

censoring of Example 4.1.1 with L~. = X[ui:i. «>)-a mixture of the type that 
l.J 1.J , 

has just been considered - this is hardly surprising. We see too that this 

behaviour should not depend on the special alternative hypothesis considered 

here. In a slightly different context AALEN (1976) sketches an application of 

results in LE CAM (1960) which shows that even if y 1 ;i!y2 , the test statistic 

of COX is asymptotically uniformly most powerful against Lehmann alternatives 

in the class of asymptotically similar tests. Here F is considered as the 

nuisance parameter so that intuitively speaking the classes of similar tests 

and nonparametric tests coincide. The method of proof can be adapted to our 

situation, and also applies to the optimal tests of the class K discussed in 

the next section. 
Finally we note that under (5.2.23), we could also have derived 

dP1 
(5.2.34) by considering the joint asymptotic distribution of log a:p- and 

0 
We("'), and then applying Le Cam's third lemma. Since both statistics can 

be written as stochastic integrals with respect to M1 and M2 (apart from 

the terms in log ~l which converge in probability to constants) this is a 
0 

perfectly feasible approach; we could apply the Cramer-Wold device and con-

sider arbitrary linear combinations of f : dM. with n ~ . , i ; 1 and 2, in 
i l. l. l. 

order to be able to use Theorem 4.2.1. We shall use an argument along these 

lines in Section 5.3. 

5.3. Optimal tests of the class K for parametric alternatives 

We saw in the previous section that the optimal test statistics of the 

class K for testing against a contiguous sequence of alternatives for which 

(5.2.2) holds has limiting weight function 
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and hence efficacy (when the test statistic is evaluated at time t) 

(We suppose throughout this section that (5.2.4) and (5.2.5) hold.) Now 

suppose that {Fe: e E 0} is some family of continuous distribution functions 

on [O,~l indexed by a parameter e taking values in a real interval e. We 

J -1 
write as usual Ge= (1-Fe) dFe. Suppose the distribution functions under 

alternative and null hypothesis Fn and F of the last section are such that 
i 

(5.3.1) 

n 
F. 

J. 

F 

i 1,2, n=l,2, ••• 

n 
for some e0 and ei e e. If Fe has a density fe and hazard rate Ae = 

£6 (1-Fel-1 with respect to some a-finite measure µ, it is easy to see that 

dGr.1 
(5.3.2) 

J. 
dG(t) 

Therefore, defining yi by (5.2.2) if the limit there exists (even if con

vergence is not uniform), if for some fixed c # 0 

(5.3.3) i' # i, ± = (-l)i+l, 

and if Ae(t) is differentiable with respect toe ate 

all t, then 

and (cf. (5.2.3)) 

(5.3.4) y(t) 

for µ-almost t. 

e 0 for µ-almost 

suggests we should try to find test statistics in K for which 

converges under H0 to 

(5.3.5) 
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whatever the value of 80 or the limiting average censoring distributions 

L1 and L2; such a test statistic should have efficacy 

(5.3.6) e(k,tl = c2 J: (;8 log Aele=eo)2 P1Y:~~2Y2 dG 

and be optimal in K for the family {Fe: e € e}. 

The following proposition shows once more that such a test statistic 

will only have a Pitman asymptotic relative efficiency of 100% with respect 

to the most powerful test against the alternatives specified by (5.3.1) 

and (5.3.3) when either y 1 = y 2 , or for i = 1 or 2, pi = 0 and yi = 0 where 

Yi' = 0 (i' ~ i): 

PROPOSITION 5.3.1. Suppose that F~ and Fare given by (5.3.1) and (5.3.3), 
l. 

that log dP 1/dP0 is given by (3.1.8) for each n, and that (5.2.4) and 

also that :e log Ae(t) le=eo exists almost (5.2.5) hold under H0 . Suppose 

everywhere -dF9 0 (t) and that 

~ ~ 2 

[ ( 2 A9-A9 ) J"' ( lim - ___ o dF e = 1- log 
8->-8 o >. ~ 6 - 6 o o o a 8 

o e0 

(5.3.7) 

Then under H0 

dPl 2 2 2 2 
log -dP ->-v NC4c o ,c o ) 

O L L 

where 

< "' 

PROOF. Since F 8 is continuous for all 8, by (3.1.8) and (3.2.9) we can 

write 

(5. 3. 8) 
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Here Mi is defined by Mi 

H0 . Let us define 

f YidG (and not dG~) as we are working under 

z~ j 4';f: -1 )&<, 
0 

and 

'7'· i 2(!J!;- 1)x{, R-, , ,} dM,. 

Note that almost surely, 

l 
sE[0, 00 ) 

""~en n 2 i (~llZ. (s)) = J ( - -
i 0 >-e 

0 

2 

\ 
1) dNi. 

With continuous F, M1 and M2 never jump simultaneously and [O~~) lllMil $ 1. 
So {Z~e:, i = 1,2} forms the jump part of an i::-decomposition of {Z~: i = 1,2}, 
and by Theorem 2.4.1 (making use of (2.4.9) to deal with the last two terms 
of (5.3.8)) it suffices to show that 

(5.3.9) 

for all t € [O,oo], that 

(5.3.10) 

for all E > O, and that 

(5.3.11) 
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all as n + oo. Now finiteness of the right hand side of (5.3.9) follows from 

the finiteness assertion in (5.3.7) since yidG $ dF. By the equality 

2 J1 -2 logx= (x-1) -l:!(x-1) 2(1-z)(l+z(x-1)) dz 
0 

(this equality is used in the proof of Le Cam's second lemma, see e.g. 

HAJEK & ~IDAK (1967) page 206), (5.3.11) is equivalent to 

(5.3.12) as n + 00 

Let us assume that (5.3.9) and (5.2.10) hold, so that by Theorem 2.4.1 the 

martingales z~ = J 2(1A8r/A80' - l)dMi converge weakly in D[0, 00 ] to a con

tinuous limit as n + 00 , It then follows that the suprema over [0, 00 ] of 

the absolute value of the jumps of these martingales converge in probabil-

ity to zero; i.e. 

IRer; I sup ~ -1 ~N. 
[O,oo] 80 i 

asn-+oo, i 1 and 2. 

On the event where this supremum is less than 8, the left hand side of 

(5.3.12) is smaller in absolute value than 

So under (5.3.9) and (5.3.10), (5.3.11) holds if 

is bounded in probability as n + 00 • But this also follows from (5.3.9) and 

(5.3.10), because then as we remarked earlier by (2.4.9), (*) converges 

in probability to the (finite) limit in probability of 

00 ~ 2 

JO (j~ - 1) YidG. 
0 

It suffices therefore to verify (5.3.9) and (5.3.10). Now by the well

known Hajek lemma (HAJEK & ~IDAK (1967) page 154), (5.3.7) implies that 
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A.1i-A.1i 

J"'( 2 6 6 0 a -;::- _8_8_ - -a6 log 
0 A' - O 

80 

we can rewrite the left hand side of (5.3.9) as 

:A.\-11.1i 2 

2 ni' Jt( 2 6i 80) 
c ni+n2 o F 6n-6 

60 i 0 

By VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1, for given e: > 0 there 

exists S E (0,1) such that under H0 , 

y. 
(0,oo) be fixed. On the event where ..2:. ~ 

ni 

J: (:, log 'oj,.,,)'y,dGI 

-I:'t(:, log 'oj,_,,l'y,dGI 

If s is chosen large enough subject to F(s) < 1, the last term is arbitrar

ily small and the last but one term converges to an arbitrarily small 

quantity as n + oo The first term converges to zero as n + 00 (convergence 

in L2-norm implies convergence of L2-norms). The remaining term, involving 

o, converges as n + oo to an arbitrarily small quantity if o is chosen small 
Y· 

enough. Since e: was arbitrary and P(supln~ -yij ~ o) + 1 as n + 00 , (5.3.9) 
l. 

holds. The relation (5.3.10) can be established in exactly the same way 

since 
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- 2- log ae 

+ 2 J"'(,}8 log "e I )\ PE 
o e=e { er: 0 2 -2::._ 1 

"e 
0 

+ 0 as n + "'· D 

The above proof is very similar to the usual proof of Le Cam's second 

lemma. For instance, the proof of asymptotic negligeability of the remainder 

terms in (5.3.8) (i.e. proving that (5.3.11) holds) uses a consequence of 

asymptotic normality of the leading term; the same argument is used in 

Le Cam's second lemma too. 

By Le cam's third lemma, under the conditions of Proposition 5.3.1 we 

have under H1 

and hence the efficiency of the optimal test in K (whose efficacy is given 

by (5.3.6)) relative to the most powerful test against H1 is 

with equality when y 1=y2, or for i = 1 or 2 pi = O and y i = O where y i, = 0 • 

However it still remains to show that a test statistic in K can be 

constructed for which (5.3.5) holds and hence (5.3.6) does too. We shall 

only do this in the special situation in which 
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(5.3.13) F6 (t) = 'fl(g(t) + 8) t E [O,oo), e e: e 

where g is a fixed continuous nondecreasing function from [0, 00 ] onto 

[-00 , 00 ] and '!' is a fixed continuous distribution function with positive 

density 1jJ on (-00 , 00 ), such that ijJ', the derivative of iµ, exists and is con

tinuous at all but finitely many points. We define A = ijJ/(1-'I') and 

Ji, = log 'A, and note that 

(5. 3 .14) .Q,' (ijJ' /ijJ) +'A 

exists where ijJ' does. We suppose that except possibly on arbitrarily small 

neighbourhoods of at most finitely many points of [-oo,oo], Ji,' is of bounded 

variation on [-00 , 00 ]. Finally we assume that according to some convention, 

Ji,' is assigned finite values in the points ±"' and the points where ijJ' does 

not exist. 

The family defined by (5.3.13) might be termed a "time transformed 

location family". In fact 8 is minus the location parameter for '!'; the 

reason for this choice will become apparent shortly. 

Now F 8 is continuous and has density 1jJ ( g ( •) + 6) with respect to the 

cr-fini te measure generated by g. Hence it has hazard rate Ae = 'A (g + 6) 

with respect to this measure. Since 

8
3
8 log A8 (t) = t'(g(t)+eJ = i 1 ('!'-1 (F6 (tJJJ, 

in the hope that (5.3.5) holds, we define a test statistic in K by 

(5.3.15) K K 
opt 

where F is the product limit estimator of F6 based on the combined sample. 

Possible alternatives could be to replace Fin (5.3.15) with F= (nF+l)/(n+l), 

with (n 1F1+n2F2 )/n, or with (n1F1+n2F2+1)/(n+1). The justification for 

(5.3.15) is that if g(t) + e0 is not one of the points of discontinuity of 

i•, and if y 1 (t) > 0 and y 2 (t) > 0, then under H0 

+ Ji,' ('!'-1 (Fe (t))) 
p 0 P1Y1 (t) + P2Y2 (t) 

Y1 (t)y2 (t) 

P1Y1 (t) + P2Y2(t) 

8 y1(t)y2(t) 

=ae log A9(t) pltl(t) +p2y2(t) 
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In fact we have, in probability, uniform convergence on each compact inter~ 

val on which .e.• (g+ e0J is continuous and y 1 and y2 are positive. The same 

holds for any of the alternatives to (5.3.15) mentioned above. 

Let us note some other consequences of this definition. Firstly, K 
_ opt 

is predictable, because Y1 , Y2 and F_ are. Secondly, it is bounded, because 

for each n, F takes on values from some finite set of values and hence K 
opt 

does too. Thirdly, neither e0 nor g enters into the specification of K , 
opt 

as we required. Note that we need to define .e.• in the point _.,. because 
-1 -

'!' (F_) =-"'at the first uncensored observation. Kopt is not necessarily 

nonnegative. However in cases in which shifting '!' to the right decreases the 

hazard rate everywhere (such a shift can never increase it everywhere), .e.• 

is nonnegative. This is why we chose to have +e instead of -e in (5.3.15). 

The following examples all have .e.• nonnegative and nonincreasing, which 

means that the resulting test statistics are members of K+ and hence should 

be consistent against alternatives of stochastic ordering (see Lemmas 4.1.6 

and4.1.7). 

EXAMPLE 5.3.1. Extreme value distribution (smallest extremes) of Type I. 

'!'(x) 
-eX. 

- e 

We find J.(x) ex and R.' (x) = 1, so that Kopt becomes simply Kc' the weight 

function for the test statistic of cox. This relationship is a reflection of 

the optimality of the test statistic of COX against Lehmann-alternatives, 

n 
C\ 

(1-F) i 

when F is continuous. For in this situation 

F~ = 1 - exp(C\~ log(l - F)) 

'!'(log(- log(l-F)) +log C\~) 

so that by taking g =log(- log(l-F)) and e~ =log C\~ we arrive at (5.3.13). 

Lehmann-alternatives arise for instance if F is the exponential or Weibull e 
distrib.ttion with scale parameter log(l/9). 
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EXAMPLE 5.3.2. Logistic distribution. 

'!' (x) 
1 

-x + e 

I. (x) 
1 

-x + e 
and 

-x 
2' (x) = _e __ _ 

1 + e -x 
1 - '!' (x). 

Making the natural definition 2' (-"") 1, we obtain 

K = (1 - F_)KC. opt 

When there is no censoring, we find that 

and the three tests coincide with the Wilcoxon test based on the statistic 

fc; Y2dN1 - J~ Y1dN2 • This is not unexpected: the test statistics of GEBAN 

and EFRON were constructed to be generalizations of the Wilcoxon test, 

which is asymptotically most powerful against contiguous location alterna

tives with the logistic distribution. In Figure 5.3.1 we plot e(k,t) for 

these alternatives in the same way as in Figure 5.2.1, including the new 

optimal test statistic. 

EXAMPLE 5.3.3. Double exponential distribution (Laplace distribution). 

x s: 0, 
'!' (x) 

x 2: o. 

We find 

x < 0, 

x > 0, 

so that defining 2' (-"") = 1 and 2' (0) = 2 we obtain 

The resulting test statistic bears little resemblance to the sign test with 
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Efficacies e(k,t) with k =kc, kG, kE and kept; F(t) 

y = 1- F (logistic location alternatives); and 1- L1 

1-exp(-t); 
Cl. 

1 - L 2 = ( 1- F) 

0.111 

e 
V.167 
0.160 
0.148 

" • 0 

------------------- E 

t 

" - 2 
4 

0 
c 
G 

11 ""1 

0.182 0 
0.173 c 
0.164 ---·./'-,,..------------- G 

E 
0.056 

t 

2. 5 4 

0 
c 

0.12 G 

+-~~~~~~~~-======:;:Et 
4 

Figure 5. 3. 1. 



which it should share asymptotic optimality properties when there is no 

censoring. 
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A similar optimal K is obtained if we take Fe to be the uniform dis

tribution on [O,e-6] so that 

F (t) = e(log t)+6 
e 

-e t e: [O,e ], 

and we can set g(t) = log t, ~(x) = ex on (..oo,O]. This example conflicts 

with our requirement that w should be positive on (-oo,m); however if cen

soring is such that with probability 1 all observations are less that some 
-61'.l 

fixed time u < e i for all i and n, the test statistic defined by 

K opt 
(1 - F ) -lK 

- c 

will have the expected optimality properties. 

EXAMPLE 5.3.4. Normal distribution. 

~(x) = ~(x) 

where <I> is the standard normal distribution function with density cp. This 

covers the case in which F6 is the lognormal distribution with parameters 

µ and cr such ~ = -6 is the parameter of interest and cr, unknown, is the same cr 
in both samples (and hence can be absorbed into the transformation g).In 

this example, by (5.3.14), 

t' (x) = -x + .A (x) , 

where 

A (x) = cp (x) I ( 1 - ~ (x)). 

It is well known that .A (x) - x is positive for all x and A. (x)-x + 0 as 

x + m; obviously .A(x) + O as x +-co. So t' is positive and t' (x) + m as 

x + -m. Rather than assign t' some arbitrary finite value in the point -=, 
it seems better to replace F in (5.3.15) with F = (nF+ l)/(n+ 1), obtaining 

( 
1 cfi(<l>-1\F ))) 

= -~- (F_l + ~- ·Kc. 
1 - F 

The resulting test statistic has a completely different form from the test 

statistics of Van der Waerden or Fisher-Yates with respect to which it is 
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asymptotically efficient when there is no censoring. There is no obvious 

way in which the latter statistics can be generalized to the case of cen

sored data. 

In a time transformed location family, Condition (5.3.7) of Proposi

tion 5.3.1 is equivalent to 

(5.3.16) 

which can easily be verified for all the above examples. Note that 

J~(T)2d~ 

J~(ww')2d~ 

+ 2 r 
....t:xJ 

2 I 

+ J~(h) dx 

= J:co(1Pip')2a~ + 1 ip~~;t) ' 

2 -1 so that if lim ip(t) (1-~(t)) = O, the limiting quantity in (5.3.16) 
~ 

equals the Fisher information for the location family {~(·+6): 6€ (-eo,co)}. 

In proving asymptotic normality under the null hypothesis of the test 

statistic based on K t' the only essentially new difficulties occur when, op 
as in the case ~ = 4>, an x E [-eo,co] exists such that lim sup I R.' (y) J = 00 • (In 

y-+oo 
this case, the function k defined in (5.2.7) does not have the usually 

required properties.) 

In the following proposition, we suppose that x = -"' is the only such 

point (if any exists at all); however the conditions can be modified in a 

straightforward fashion to cover other cases. After this proposition, we 

give a result (Proposition 5.3.3) on the joint asymptotic normality of 
dP1 

log dPo and Wept (00), from which the expected efficiency result is derived 

(corollary 5.3.1). Then we continue the discussion of Examples 5.3.1 to 

5.3.4. 

PROPOSITION 5.3.2 (Asymptotic normality of w (00)/lv0 (oo) under a0). 
opt ,,opt 

Let ~, t and t' have the properties given after (5.3.13) and define K t 
op 

by (5.3.15) or by one of the alternatives given immediately afterwards. 
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Suppose that F~ = F for all i and n for some continuous distribution func-
l. 

tion F and that (5.2.4) and (5.2.5) hold, and define 

u = sup{t: y 1 (t)Ay2 (t) > O}. If for i = 1 or 2 pi= O, suppose either that 

yi(u+) = 0 or that for each n, Y1 (u+)AY2 (u+) = O almost surely. Suppose 

either that i' has a limit in_., and is bounded on (-co,=), or alternatively 

that i' is bounded on [x,co) for each x > -"", 

(5.3.17) 

and 

(5.3.18) (ft -1 ~ 2 
lim lim sup P i'(~ (F_)) dF > 
t+O n~ 0 

for all E > 0 (with F replaced by one of the alternatives as appropriate). 

Then the statistics defined in (4.1.18), (4.1.20) and (4.1.21) with 

K = K t satisfy op 

(5.3.19) 

and 

(5.3.20) 1 or 2, 

asn+oo. 

PROOF. For each r ~ JN let B c (O,oo] be a finite union of intervals of the 
r 

form (a,b] such that i'(~-l(F)) is continuous and of bounded variation out-

side Brand such that {Br: r = 1,2, ••• } forms a decreasing sequence of sets 

whose intersection is finite. In particular, Br contains a subinterval 

(0,t ] where t + 0 as r-+ co if i' does not have a limit in -"', or is not 
r r 

bounded on (-oo, 00). Let Bc be the complement of B on (0, 00). It is easy to 
r r 

check that Condition I of Theorem 4.2.1 and Lemma 4.3.1 is satisfied for 

each r = 1,2, ••. with 

and 

i 1 and 2, 

with 1 = {t: y 1 (t)Ay2 (t) > O}. Conditions II and III are also satisfied 

because with probability converging to 1 as n -+ 00 , IKI S aKC on [t,co) for 
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some fixed a < oo and t < sup I; and the conditions of this proposition 

ensure that II and III are satisfied for the test statistic of COX (see 

Proposition 4.3.3, recalling that F is continuous). In the proof of Theorem 

4.2.1, Conditions I, II and III and the fact that F is continuous, are used 

to show that the conditions of Theorem 2.4.1 are satisfied for each 

r = 1,2, •.. with [O,oo) replaced by [0, 00 ] and with 

z7"n I K 
dM. i 1t2 I 

Y. XBc l. l. 
l. r 

-rne I K 

}dMi, i 1,2; E: > 0, z. 

XB~ x{l:Jvl:21 
Y. l. 

l. > E: 

and 
2 

r =I~ Y1Y2 ) (t' ,~-1(F)))2X dG, i I ,; i 1,2. A. 
l. y i p 1y1 + p 2Y 2 B~ 

n -ne The conditions will also be satisfied for Zi' z1 and Ai defined by dropping 

the factor XBc in the above three integrals provided that Ai (00 ) < 00 and 
r 

(5.3.21) lim lim sup P(f
00 

K
2 

x dG > n) = 0 
r->o> n+oo 0 Yi Br 

for all n > O and each i = 1,2. The finiteness of Ai(oo) follows from (5.3.17) 

by the fact that yidG $ dF. Also (5.3.21) certainly holds if we remove (if 
t' is unbounded) the interval (O,tr] from Br for each r, because t' (~-l(F) l 
is bounded on the rest of Br uniformly in r, and because by Proposition 4.3.3, 

(5.3.21) holds with K replaced by KC. Condition (5.3.18) is equivalent to 

(5.3.21) with Br replaced by (0,tr]. So (5.3.21) holds in general. We have 

now established (5.3.19). By Lemma 4.3.1, for each r the analogous result 

to (5.3.20) with K replaced by KXBc holds. But this result can be extended 
r 

to the required one by using finiteness of Ai(oo) for each i, the relation 

(5.3.21), and Theorem 2.4.2 exactly as was done in the proof of Lemma 4.3.1 
to make the extensions from I to [O,u] and to [O,oo]. 0 

PROPOSITION 5.3.3. Under the combined conditions of Propositions 5.3.1 and 
dP1 5.3.2, with {F6 : 6 E 8} given by (5.3.13) 1 log a.p-- and 

0 
the null hypothesis, asymptotically bivariate normally 

squared correlation coefficient equal to 

W t(00 ) are, under op 
distributed with a 



(5.3.22) 

(Under these conditions, (5.3.7) can be replaced by (5.3.16) .) 

PROOF. For any real numbers a,S define 

(± (-1) i+l) 

and 

1 KC 
+ B£' C'¥- cF-_iiy-:- x c . 

i {i· C'!'-1 tF l l:!5.._ 2 ~} 
- Y. 2B 

l. 

For each (a,$) we shall verify the conditions of Theorem 2.4.1 with the 

interval [0, 00 ) replaced by [O,oo] and with 

f H~B dM. in place of n z., 
l. l. l. 

f H~BE dM. in place of -nE z. 
l. l. l. 

and 

in place of Ai (i 1, 2) . 
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After this, the Cramer-Wold device gives the required result, with the 

asymptotic covariance of log ~and W(oo) being equal to the coefficient of 

2a8 in A~8 ( 00) + A~S(oo). Now (inOPropositions 5.3.1 and 5.3.2) we have 

already verified the conditions of Theorem 2.4.1 with (a,8) = (1,0) and 

(a,8) = (0,1). The condition involving <~8nE,z~8nE> is now seen to hold 
l. l. 

for arbitrary (a,Sl by writing 
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It remains to show that 

(5.3.23) 

as n + = for each t e [o,~J and i 1,2. In fact we shall show 

(5.3.24) ft( ~( fei 
0 a2ni\j ~ -

0 

(i I 'F i) I 

-1 as n + oo for each t e [o,~J and for any B c [O,=] such that 1' (~ (F)) is 

continuous and bounded outside B, and such that Bc c [O,s] for some s e 1. 
After that we carry out the obvious extension procedure: we find a decreas

ing sequence of sets B', each of which has the properties just required of 
oo r 

B, such that rQl s; equals the complement of 1 plus finitely many points, 

and such that 

Ear all e > O. Then if (5.3.24) holds with B = B; for each r, it holds with 

3 = ~i here we use the relation, for real functions f and g and a finite 

measure µ, 

Using the fact that Conditions II and III are satisfied for the test statis

tic of COX, we can take s; = Br u (sr 1 =) for each r, where Br is constructed 

in the proof of Proposition 5.3.2, and where sr u for all r if u e 1, 
otherwise sr < u and sr t u as r + =. 

To return to the proof of (5.3.24), we recall from the proof of 



Proposition 5.3.1 that 

converges in L2 (F) to 

Also, by the properties of B, 

1 ni 4 
R.' ('!'- (F_JJ - n Kc 

Y. i 
l. 

converges uniformly on Bc to 

in probability, as n + 00 • Since the latter function is boundec on Be, the 

L2 (F) distance between 

and 

converges in probability to zero as n +co. Thus the difference, in L2 (F), 

between 

and 

133 

converges in probability to zero as n + ""· Combining this fact with the two 

facts 

and 

sup 
t€ (Q,co) 

ly. (t) I 
_i __ - y. (t) 

ni i 
+p 0 as n + 00 

1 - 0 (1) 
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as e + O uniformly in n in the same way as was done in the proof of 

Proposition 5.3.1 yields (5.3.24). D 

COROLLARY 5.3.1. Suppose that the conditions of Propositions 5.3.1 and 

5.3.2 hold, with {Fe: e € e} given by (5.3.13), and with the asymptotic 
d~P . l .. variances of log and W (00 ) strict Y positive. Then the efficiency of 

2 opt 
the best test of the class K (the one based on K t) with respect to the op 
next powerful test for the sequence of alternatives is given by (5.3.22). 

This expression equals 1 if and only if y 1 = y 2 almost everywhere-dF 

where i'('-l(F}) ~ O, or for i = 1 or 2, Pi= 0 and yi = 0 almost every

where-dF where yi' = 0 and~· (~-l(F)} ~ 0 (i' ~ i}. 

~- That the efficiency is given by (5.3.22) is a straightforward appli

cation of Le Cam's third lemma. The conditions for an efficiency of 1 were 

investigated on page 113. D 

As far as Examples 5.3.1 to 5.3.4 are concerned, the only difficulties 

in verifying the conditions of Corollary 5.3.1 occur with the verification 

of (5.3.18) for the case ~ = ~' the standard normal distribution function. 

Now in this case, replacing F with F = (nF+1)/(n+1}, we have 

~ 

on {t: F (t) < ~}. So in the presence of Conditions (5.2.4) and (5.2.5), 

(5.3.18) is equivalent to 

(J t -1 ~ 2 ) 
lim lim sup P (~ (F_)} x{F_<~}dF > € = O 
t+O n._ 0 

under a0 for all € > O. By (5.2.4), (5.2.5) and Proposition 3.2.1, this 

holds if 

-1 for all e > O. But by the change of variables x = ~ (8F(t}}, the expres-

sion on the left hand side of this relation equals 

Jx 2 1 
lim U S $(U}du 

x+..oo -
0 

as required. This gives us 
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COROLLARY 5.3.2. Under the conditions of Proposition 4.3.3 and with F con

tinuous, (5.3.19) and (5.3.20) hold when K t is defined as in any of 
op 

Examples 5.3.1 to 5.3.4. 

This result could have been extended to discontinuous F too, but we 

have not taken the trouble as it is hardly likely that one would use one of 

the new test statistics in such a case. Many authors indicate how asympto

tically optimal test statistics might be constructed for the kind of situa

tion we have considered; in particular PETO & PETO (1972), BROWN, HOLLANDER 

& KORWAR ( 1974)' CROWLEY & THOMAS (1975) and PRENTICE (1978) all describe 

test statistics close to or identical to our proposal for the logistic dis

tribution. However, as far as we know, no proof has been given that the 

hoped for properties of such test statistics do indeed hold in general. 

The test statistics we constructed above were all members of K+. As 

examples of optimal test statistics for which Kopt is not nonnegative, we 

mention the case of varying shape parameters in the Weibull distribution, 

for which we obtain 

y « 1 - log(-log(l-F)) 

and the case of varying shape parameter a in the lognormal distribution, 

for which 

In each case, we suggest choosing the random weight function obtained by 

multiplying KC with the above expressions after replacing the argument F 

with F • 

5.4. Renyi~type tests 

We have seen that test statistics in K can be constructed to have 

good properties when testing against particular parametric alternatives. 

At the same time, such test statistics will generally be consistent against 

alternatives of e.g. stochastic ordering (see Section 4.1). Still, it is 

conceivable that one would want consistency against the alternative of mere 

inequality of F 1 and F 2 • In this section we show how this can be (nearly) 

attained by means of a simple modification of the test statistics in K, 
while retaining some of the good power properties against special alterna

tives. 
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We consider asymptotic behaviour under a fixed null and a fixed alter-

native hypothesis; i.e. 
n 

F2 = F2 for all n, F1 ~ 

either Fn = Fn = 
1 2 

F2 (H1). Suppose 

n F for all n (H 0) or F 1 = F1 and 

as usual that (5.2.4) and (5.2.5) 

hold, where unlike the case of contiguous alternatives, the functions y 1 

and y 2 will generally depend on whether one is working under H0 or H1 • Let 

u E (0, 00 ) be fixed and satisfy y 1 (u) > 0 and y 2 (u) > 0 both under HO and 

H1. Now consider a test statistic in K for which 

converges uniformly on [O,u] to a function k under HO and H1 (again, the 

function k will generally depend on whether one is working under H0 or H1). 

Suppose in each case that k is left continuous with right hand limits and 

k+ of bounded variation on [O,u]. Applying Theorem 4.2.1 and Lemma 4.3.1, 

it follows that under H0 , as n + oo, 

in D[O,u], 

00 

where z0 is a zero mean Gaussian process with independent increments and 

variance function 

var(Z~(t)) 
2 Jt p.' 2 l yl. k (1 - llG)dG 

i=l 0 i 
(i • .,, i) ; 

also 

1 or 2. 

On the other hand, under H1 , as n + 00 , 

in D[O,u], 

00 00 

where z 1 has the same properties as z0 except that its variance function is 

now given by 

var(z7 (t)) 
2 ft pi' 2 l - k ( 1 - llG. ) dG. 

i=l 0 y i 1. 1. 

(i. f i); 

also 
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tdo, u] 
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(i I "I i) , 

(For the result on v2 (u) see Section 5.1, especially formulae (5.1.1) and 

(5.1.2).) Now choosing 2 or 2 suppose that the limit in probability of 

v2 (u) is strictly positive under H0 and H1 • Then arguing as on page 80, we 

see that under H0 , as n + co, 

(5.4.1) u 

sup Jw(t) I 
tE[O,u] 

+V sup I B(t) I $ sup I B(t) I, 
tEA tE[0,1] 

where Bis a standard continuous Brownian motion on [0,1] and Ac [0,1] is 

the range of the function var(Z~(·))/varcz;(u}) : [O,u] + [0,1]. So 

A= [0,1] if F is continuous. 

However under H1 , as n +co, 

u .... co 
p 

unless J k(dG 1-aG2J is identically zero on [O,u]. This can only happen if, 
dG1 dG2 

under H1 , k = 0 on [O,u] almost everywhere-dµ where a:µ-~ dµ, whereµ is 

a a-finite measure dominating G1 and G2 . In particular, if under H1 k is 

positive on [O,t] for some t $ u such that F1 and F2 differ on [O,t], then 

the test of H0 based on the test statistic U is consistent against H1 • Note 

that if we base the test on the distribution of ~up IB(t) I even if 
t€LO, 1] 

A "I [0,1], it becomes a conservative test. 

More information is given on this distribution on page 81. The two

sample procedure we have proposed here can be considered as an extension 

of the one-sample confidence-band technique we discussed in Section 4.2, 

which itself extended a method of JIBNYI (1953); hence our name "R~nyi-type 

tests". It can also be considered as a Kolmogorov-Smirnov type test, since 

it is based 
dN1 J K - and 
yl 

on the maximum distance between two empirical processes, here 

J K dN2 
• A related class of test statistics is described by 

y2 
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FLEMING & HARRINGTON (1980), whose work is also based on AALEN (1976). 

KOZIOL & PETKAU (1978) propose the test statistic U in the special case 

when K KC (corresponding to the test statistic of COX) and when the 

censoring is simple Type II (Example 3.1.2). 

It is interesting to compare the test statistic u with its natural 

competitor 

U' 

(where the same £ has been chosen as in the definition of U). It is not 

possible to standardize U in some fixed way so as to obtain an equivalent 

test statistic, asymptotically normally distributed with fixed variance 

both under the null hypothesis and under a contiguous alternative hypothesis. 

So if a comparison between U and U' is to be made in terms of Pitman asymp

totic relative efficiency of u with respect to U', care is needed in defin

ing this concept in the first place. Defining it as the limit, for a sequen

ce of alternatives approaching the null hypothesis, of the ratio of the 

sample sizes required by size a tests based on U' and U respectively to 

achieve power S at each alternative in the sequence, it will depend on a 

and S. However, a theorem of WIEAND (1976) gives conditions under which 

this asymptotic efficiency has a limit as a+ 0 independent of SE (0,1). 

Application of WIEAND's theorem shows that in one very general case 

of interest, and under suitable regularity conditions, the limiting Pitman 

efficiency of U with respect to U' equals 1. This is the case of the order

ed hazard type of alternative hypothesis - dG 1 ~ dG2 on [O,u] or dG1 ~ dG2 

on [O,u] - and of a random weight function Kwhose limiting weight func

tion k is positive on [O,u]. The explanation of this result is that in this 

situation, the two quantities 

and 

which play an important role in determining the asymptotic behaviour under 

a fixed alternative of U and U' respectively, are equal; while the tail 

behaviour of the limiting null hypothesis distributions of U and U' res

pectively is the same too. However more attention needs to be paid to the 

small sample properties of the test statistic U before too much ....eight is 

attached to this result. 
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CHAPTER 6 

GENERAL CENSORSHIP AND TRUNCATION 

In previous chapters we have only considered so-called right censored 

observations of n lifetimes x1, ... ,Xn. Furthermore we have supposed that in 

a natural time scale each lifetime starts at time zero; in other words, at 

time teach object still under observation has age t. In Examples 3.1.1, 

3.1.2 and 3.1.5, the experiment being modelled already had this property; 

in Example 3.1.4 on the other hand independence between the observations 

was used to realign the Xi's without causing any problems. 

In this chapter we shall informally discuss a model for censored ob

servations x 1 , •.• ,xn in which we allow the time of birth to be different 

for each object; we also allow for far more general schemes of partial 

observation of these lifetimes than previously. For simplicity we restrict 

attention to the one-sample case in which x 1 , •.. ,Xn are independent and 

identically distributed with a distribution function F which we want to 

estimate. Finally we shall illustrate our remarks by looking again at 

Example 3.1.6. For other examples we refer to HYDE (1977) and LAGAKOS, 

SOMMER & ZELEN (1978). Our approach is similar to HYDE's (1977). 

For convenience we shall take as usual as time axis the positive half 

line [O,oo). Let T1 , .•• ,Tn ~ O be n random birth times, and let x1, ••• ,xn be 

the corresponding n lifetimes; we suppose that x 1 , •.. ,Xn are independent 

and identically distributed with distribution function F satisfying F(Ol = 0. 

We say that object i is born at time Ti and dies at time Ti+ Xi • 

However this system is only partially observed. We suppose that there 

also exist n random observation processes J 1 , ••• ,Jn defined on [O,~) and 

taking values in {0,1} such that if Ji(t) = 1 then object i is alive and 

under observation just before time t; in this case we suppose that we know 

the object's age t - Ti and can observe whether or not it dies at this 

T x I rt'cular it follows that J 1. is moment; i.e. whether or not t- i = i • n pa l. 

zero outside the time interval (T. ,T.+X.]. If in the interval (T1.,Ti+Xi] 
l. l. l. 

the sample paths of J. are nonincreasing and left continuous, partial 
1. 
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observation of the i-th lifetime results in a censored lifetime X. and an 
l. 

indicator random variable oi such that oi = 1 =<>X 1 = Xi, oi = 0 =<> Xi < Xi. 

However we shall not make this restriction in this chapter. 

We shall have to make some kind ,of assumption concerning the possible 

dependence between the observation processes J 1 , •.• ,Jn and the lifetimes 

x 1 , •.. ,Xn. As in Section 3.1 we wish to exclude the possibility of statis

tical dependence between whether or not an object has been or is being 

observed and its remaining lifetime. We shall formulate such an assumption 

by imitating Assumptions 3.1.1 and 3.1.2, for which we shall assume that 

X1 , •.• ,Xn, T1 , ... ,Tn' J 1 , ..• ,Jn are defined on some stochastic basis 

(fil,F,P),{Ft: t E [0, 00 )}. We also define for each i = 1, .•. ,n and each 

t E [Q, 00 ) 

(6 .1) Ni(t) x{Ti+xist,Ji (Xi+Til=l} 

(6. 2) Li (t) (t-Ti)X[Ti,"") (t} 

( 6. 3) M. (t) 
l. 

Ni (t) -r J. (s)dG(L. (s)), 
0 l. l. 

(recall that Ji is zero outside (Ti,Ti+Xi]). 

our assumptions then become: 

where G J (1-F) -ldF 

ASSUMPTION 6.1. With respect to the stochastic basis (fil,F,P),{Ft' tE [0, 00 )}, 

for each i = 1, ... ,n, Ti and Ti+ Xi are stopping times, Ji is a predictable 

process and Mi is a square integrable martingale with 

<M. ,M. > = J J. ( 1 - LiG (L. ) ) dG (L. ) 
l. l. l. l. l. 

and 

0 (i I F i) • 

ASSUMPTION 6.2. For each t, conditional on Ft-' D.N 1(t), •.. ,D.Nn(t) are 

independent zero-one random variables with expectations J 1 (t)D.G(L2 (t)), ... , 

Jn(t)D.G(Ln(t) ). 

Even though the censoring is more general, the new assumptions can be 

interpreted exactly as Assumptions 3.1.1 and 3.1.2 were; the only difference 

is that the lifetime of then objects start at times T1 , .•• ,Tn instead of 

time zero. Note that the process Ni counts 1 at the death of object i if 



and when death is observed. Thus if F has a continuous hazar:d rate ~, we 

are stating that given what has happened up to time t, the probability of 

observing the death of object i in the time interval [t,t+h] is zero if 

Ji (t) = 0; otherwise it is approximately hi. (t-T.) where t - T. is the 
l 1 

object's current age. 

If for each i, Ti 0 almost surely and Ji has the properties described 

above leading to right censored observations, Assumptions 6.1 and 6.2 are 

equivalent to 3.1.1 and 3.1.2. 

What can be observed are the processes Ji, and for each i and t such 

that Ji (t) = 1, the age of object i at time t and whether or not death oc

curs at that time instant. To estimate F we shall first want to pool our 

observations, and this leads us to define for s E [O,~) 

(6. 4) N(s) 

( 6. 5) Y (s) #{i: J. (T.+s) 
1 l. 

1} • 

1} 

Here the argument s refers to age: N(s) is the number of deaths observed at 

an age $ s, and Y(s) is the number of objects which were under observation 

at age s. It is again natural to estimate F with the product limit estimator 

defined with respect to N and Yi' i.e. by 

(6.6) F <t> 1 -
II llN(s) 

Y(S) 
s:'>t 

However it is not clear whether F will have the same properties as we es

tablished for it in Chapters 3 and 4. 

In the special case T1 

generalize the old results. 

T = O almost surely, we can easily 
n 

(Such a model is also discussed by AA.LEN {1976) 

with the further restriction that F should have a hazard rate.) Defining 

( 6. 7) M = N - J YdG 

we have in this case N = \n N Y = \n J , and M = }~ 1 M. , so that M li=l i I li=1 i C·1= l_ 

is a square integrable martingale with <M,M> = J Y(1-llG)dG and Y is a 

predictable process. Also for each t, conditional on Ft-' AN(t) is 

binomially distributed with parameters Y(t), llG(t) ·In deriving results on 

the product limit estimator in Chapters 3 and 4, the only further proper

ties of N and y we used were some of the properties of the paths of Y: 

left continuous and nondecreasing. These properties no longer hold and 
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proofs will have to be modified accordingly. For instance in Theorem 4.1.1 

the condition "Y(t) + 00 " would have to be replaced by " ;:iup Y(s) + "'" 
p SELO,t] p 

If we cannot suppose that T1 = •.. = Tn = 0, the process M defined by 

(6.4), (6.5) and (6.7) is not necessarily a martingale. However we shall 

show that it still has the same mean and covariance structure, and indicate 

the significance of this result. Define for each age s and time t 

s 
H. (t) = J. (S)X[O J(L. (t)). 

l l ,s l 

It is easy to verify that 

N(s) 
n 

l. 
i=l 

I"' H~(t)dN. (t). 
0 l l 

This suggests we also evaluate 

Thus 

n f"' l H~(t)J.(t)dG(L.(t)) 
i=l 0 l l l 

r Y(u)dG (u). 
0 

I J"" H~dM. = N(s) - fs YdG = M(s). 
i=l 0 l l 0 

But for given s, H~ is a bounded predictable process and therefore by l 

(2.2.1) and Assumption 6.1, 

(6.8) EM = E (N - I YdG) 0, 

or equivalently, 

EN I EYdG. 

Similarly using (2.2.2) we obtain 



(6.9) f(M(s)M(s')) 

n 
E l 

i=l 
foo 

0 

sAs' 
Hi 

fsAs' 
EY(1 - l:.G)dG. 

0 

Thus although M is perhaps not a square integrable martingale with <M,M> 
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= f Y ( 1 - l:.G) dG, it has exactly the same mean and covariance structure as if 

it were. This fact, together with the representation (3.2.13) of 

(F-F)/(1-F) as an integral with respect to M, suggests that if, as in 

Theorem 4.2.2, convergence in probability of Y/n implies convergence in 

distribution of n ~ (F - F), then the limiting distribution of n ~ (F - F) will 

be of the same form as in Theorem 4.2.2 and we will be able to base asymp

totic confidence band procedures on the observable processes N and Y exact

ly as was done after Theorem 4.2.2. 

Before illustrating this point further, let us mention a useful exten

sion of the above model. We have assumed that at most n lifetimes could have 

been observed. However there are no real difficulties involved in allowing 

the total number of lifetimes specified in the model to be infinite (so 

that we specify lifetimes x 1 ,x2 , ••• , birth times T1 ,T2 , •.. and observation 

processes J 1,J 2 , ... ). We still define N, Y, F and M by (6.4) to (6.7), and 

as long as f(N(~)) < oo we can establish (6.8) and (6.9) by monotone con-
2 vergence and L convergence respectively. The censoring implied by the Ji's 

is really a mixture of censoring and truncation: objects i for which the 

realized path of Ji is identically zero are not registered by the processes 

N and Y and one does not even have to know which or how many objects are of 

this kind. 

With this last extension we can finally discuss Example 3.1.6. First 

we consider a single replacement sequence; i.e. we start with a single ob

ject and replace it at death with a new one, and continue till a fixed 

length of time u has elapsed. Thus we let x1,x2, ••• be the independent and 

identically distributed lifetimes, we define the birth times by T1 = 0 and 

r~l b T = xi, n = 2,3, •.• , and define the observation processes Ji. y 
n i=1 

Ji(t) = 1..,. Ti-l < t ~ TiAu. Asswnptions 6.1 and 6.2 are easily verified 
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for the natural choice of Ft using some of the counting process theory of 

Section 2.3. Example 3.1.6 is concerned with n independent copies of this 

model. 

Two different asymptotic approaches are now available; let u become 

large or let n become large. The case u + 00 is of course rather trivial as 

far as this specific model is concerned. However more general replacement 

models in which objects can be replaced before death lead to great difficul

ties and so far no general results are known. BATHER (1977) describes such 

a model in which a death is more costly than a planned replacement. As time 

evolves an estimate of F and the corresponding cost minimizing replacement 

policy are improved. 

In the case n +~the results suggested above do hold {see GILL (1978, 

1980)). Of course we can no longer apply a martingale central limit theorem 

to n "- (F - F) I ( 1 - F), but the independence between the n copies allows us to 

apply the weak law of large nwnbers to Y/n and the central limit theorem to 

n-12M, and (3.2.13) links these to n12 (F -F). 



Appendix 1 

Proof of Theorem 2.3.1. 

Here we exploit the properties of the so-called optional quadratic 

variation process [M,M] associated with a local martingale M (see MEYER 

(1976) or JACOD (1979)). 
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Consider first the case r = 1 and drop the index i. N is locally bound

ed, and by the proof of MEYER (1976) Theorem IV.12, so is A. Since 

[M,M](t) = Isst AM(s) 2 it turns out by expanding (~(s)) 2 that 

[M,M] = I (1 - 2h.A) dM + I (1 - h.A) dA. 

1 - 2AA is a locally bounded predictable process and M is a local martingale, 

hence J (1- 2h.A)dM is a local martingale, with paths of locally bounded 

variation. Since the processes 1- AA and A are predictable, so is 

J (1- h.A)dA; and of course it too has paths of locally bounded variation. 

Combining these facts and using MEYER (1976) Chapter IV, we see that [M,M] 

is locally bounded and hence locally integrable. This implies that M is a 

local square integrable martingale. In this case, <M,M> is equal to the 

dual predictable projection of [M,M]; so 

<M,M> I (1- AA)dA. 

Since the paths of <M,M> are non-decreasing, we now see that OSAASl. 

So l - 2M is a bounded predictable process. If T is a stopping time such 

that EN(T) < oo, then EA(T) < oo, and MT (the process M stopped at T) is a 

martingale of integrable variation. consequently E ~ (1- 2h.A)dM = O; also, 

E JT (1 - AA) dA < oo; and so E[M,M] (T) < ""· But for any local martingale M, 
0 

E[M,M](T) < oo implies that MT is a square integrable martingale. 

Now we consider the case r > 1. All that remains to be proved is that 

<M M > = - J h.A.dA .• If i .;, j, N + N. is also a counting process, whose 
i' j l. J i J 

compensator must be Ai+ Aj. So 

<Mi-+Mj,Mi+Mj> = J (1-h.Ai-AAj)(dAi+dAj), 

while by bilinearity and symmetry of<•,•>, 

<Mi-+Mj,Mi+Mj> = <Mi,Mi> + <Mj,Mj> + 2<Mi,Mj>. 

Combining gives the required result. D 



147 

Appendix 2 

On constructing a stochastic basis 

If a-algebras Ft are defined in some natural way, as in formula (2.3.6) 
or in the statement of Theorem 3.1.2, it is not immediately obvious that 
they form a stochastic basis: in particular, it is not obvious that 
{Ft: t E [0, 00)} is right continuous. Here we give a theorem of DE SAM LAZARO 
(1974) which answers these and related questions in a very general setting. 
First we need some notation and definitions. 

Let (n,F,P) be an arbitrary probability space, and let (Z,Z) be an 
arbitrary measurable space. A z-valued function x on [O,oo) is called a jump 
function if for each t E [O,oo) an E > O exists such that x is constant on 
Ct,t+EJ. A process x {X(t,w): t E [O,oo), w E n} is called a jump process 
if for each t, X(t) is a measurable mapping from cn,F) to (Z,Z), and if for 
each w, the sample path X(·,w) is a jump function on [o,~J with values in z. 

THEOREM A.2.1. Let X be a jump process, and define 

F~ o{X(s): s s t}. 

Then {F~: t E [O,oo)} is right continuous. Furthermore, if T is any {F~} 
stopping time, then 

FO a{X(sAT}: s E [0, 00)}. T 

PROOF. See DE SAM LAZARO (1974) Lemma 3.3. This proof is elegant and ele
mentary, and can be read independently from the rest of the paper if one 
notes that in it, the reference to the first part of Proposition 3.1 should 
be to the second part of Proposition 2.1. D 

COROLLARY A.2.1. Let x be a jump process, and let A be an arbitrary sub 

a-algebra of F. Define 

F =AV cr{X(s): s s t}. 
t 

Then {Ft} is right continuous, and if T is any {Ft} stopping time, 

(A.2.1) AV cr{X(sAT): s E [Q, 00)} 
A v cr{T,X(sAT): s E [Q,oo)}. 
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PROOF. Define a jump process X with values in the measurable space (zxn,Z®A) 

by 

X(t,w) (X(t,w) ,w). 

Since Ft= cr{X(s): s St} and AV cr{X(sAT): s € [Q, 00)} = cr{X(sAT): s € [0, 00)} 

the result is immediate (T can be included in the final expression of 

(A.2.1) since it is automatically F measurable). 0 
T 

From corollary A.2.1, we see that if Fis complete and A contains all 

P-null sets of F, then (Q,F,P) ,{Ft: t e [O,®)} forms a stochastic basis. 

In a typical application of Theorem A.2.1, we might be given a proba

bility space (n,F,P), on which are defined random time instants (i.e. 

[o,~J-valued random variables) T1 , ••• ,Tk' and a further k random variables 

Y1, ••• ,Yk which are supposed to be "realised" or become observable at the 

time instants T1, ••• ,Tk. We wish to construct cr-algebras Ft relative to 

which T 1 , ••• , Tk are stopping .times and which reflect the availability of 

Yi from time Ti. This can be done via the construction of a jump process X 

with values in JR2k, defined by 

X(t) 1, ... ,k). 

We then get 

Fo cr{X(s): s s t} 
t 

and 

F "' 
0 

t Ft VA, 

where A is the set of all P-null sets of F (supposed to be complete) and 

their complements. So defined, (Q,F,P},{Ft: t e [Q,oo)} is a stochastic 

basis; T1, ••• ,Tk are stopping times; and for any stopping time T, 

(In fact T itself can be omitted from the list of generating random vari

ables, but the above form is easier to interpret.) 

The same construction works for random time instants Ta.' a. € A, with 

an arbitrary index set A, provided that for all w e n, for every t e [O,®) 

an e > 0 exists such that for all a.€ A, T (w) t (t,t+e]. If this property a. 
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only holds for P-almost all w E ~. then the construction can be applied 
provided that the Ta's are first redefined on the exceptional set. After 
that, augmenting F~ with all P-null sets of F as above yields a stochastic 
basis, which in fact does not depend on how the T 's have been modified. a 



Appendix 3 

Proof of Theorem 2.3.4 

Following JACOD (1975,1979), the stochastic bases constructed in the 

course of the following proof do not necessarily satisfy the completeness 

assumption ((iii) on page 8). 
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By altering N on a null set of F, we may suppose that all the paths 

of N are nondecreasing, right continuous, zero at time zero, and integer

valued with jumps of size +1 only. We may redefine T0 ,T1, ... accordingly; 

and we can alter A on a null set of F so that all of its paths are zero at 

time zero and satisfy 

By the completeness of {Ft: t E [0, 00)}, A and N remain adapted processes 

after this alteration. (It is not immediate that A is still predictable, 

but we do not need this fact anyway.) Next, define cr-algebras F~, 
t E [0, 00 ], by 

FN cr{N(s): s ~ t}. 
t 

(~,FN 1 P) ,{FN: t E [0,oo)} forms a stochastic basis on which N is a counting 
00 t 

process, all of whose paths have the usual properties. By JACOD (1979) 

Proposition 3.39, A is a predictable process with respect to this new 

stochastic basis; and all its paths are nondecreasing, right continuous, 

and zero at time zero. It is also easy to verify that N - A remains a 

martingale; so A is still the compensator of N. 

Let x be the set of nondecreasing, right continuous, integer-valued 

functions on [0,oo) which are zero at time zero and make jumps of size +1 

only. Letting x = {Xt: t E [0, 00)} denote the generic member of X, define 

cr-algebras on X by 

cr{ x : s ~ t}, 
s 

t E [0, 00 ]. 

Define on (X,X00 ) measurable functions ~n = inf{t: Xt ~ n}, n 

and define a process a= {at: t E [0, 00)} on (X,X00 ) by 

a.o = o and 

0 I 1, • • • l 
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Finally define a probability measure PN on (X,X00 ) by 

N -1 
p = peep ' 

where <P is the measurable mapping 

<j>: (fl,F~) + (x,X00), 

defined by <j>(w) = N(•,w). We now see that 

is a stochastic basis, on which X is a counting process and (by JACOD (1979) 

Proposition 3.39 again) a. is a predictable process. a. has right continuous, 

nondecreasing paths, zero at time zero. Also for all t € [0, 00), FN 
t 

= ~- 1 {Xt), and by definition PN P0 <P- 1 . Therefore by JACOD (1979) Theorem 

10. 3 7, X - a. is a martingale, so a. is the compensator of x. 
Had we started off with a different stochastic basis, and a different 

counting process N', satisfying the conditions of the theorem with the same 

functions f 0 ,f1, ••. , we would have proved that a. is also the compensator of 

X with respect to the stochastic basis (X,X ,PN 1
) ,{X : t E [0, 00 ) }. There-

N N'oo t 
for by JACOD (1975) Theorem 3.4, P and P coincide on X00 • But the joint 

probability distributions of T1,T2 , ... and Ti,T2,··· can be recovered from 

PN and PN' respectively, and the theorem is proved. 0 
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Proof of Lemma 3.2.l 
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We shall derive Lemma 3.2.1 as a corollary to the following proposition: 

PROPOSITION A.4.1. Let A and B be right continuous nondecreasing functions 

on [0, 00 ), zero at time zero; suppose Ms 1 and 6B < 1 on [Q,oo). Then the 

unique locally bounded solution z of 

(A.4.1) 

is given by 

(A.4.2) 

I 1 - Z(s-) 
Z(t) = 1 _ liB(s) (dA(s) -dB(s)l 

sdO,t] 

Z(t) 

IT ( 1 - M ( s) ) exp (-Ac ( t) ) 

1 _ _s~~~t~~~~~~~~~~~ 
IT ( 1 - M ( s) ) exp ( -B c ( t) ) ' 

sSt 

where it should be recalled that Ac is the continuous part of A, defined by 

(A.4.3) Ac(t) = A(t) - I M(s). 
sSt 

PROOF. We adapt the proof of LIPTSER & SHIRYAYEV (1978) Lemma 18.8, which 

deals with the case where B is identically zero. We shall make use of the 

following simple results: if u and V are right continuous functions of 

locally bounded variation on [0, 00 ), then for all t E [0, 00 ) 

(A.4. 4) U(t)V(t) U(O)V(O) + J U(l-)dV(s) + J V(s)dU(s), 
sE(O,t] sE(O,t] 

which can also be written in the form 

(A. 4. 5) d(UV) U_dV + VdU. 

From this one can easily derive 

(A.4.6) (
r-1 . 1 . ) \ l. r- -i 

L u u_ au, 
i=O 

r = 1,2, •.• 

and 

(A.4.7) 

If U is nondecreasing and nonnegative, then (A.4.6) gives 
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(A.4.8) r = 1,2, .... 

Let us first show that (A.4.2) does define a solution to (A.4.1). It 

is certainly locally bounded. Define 

U(t) 

and 

1 - M(s) 

s~t 1 - llB (s) 

Then if (A.4.2) holds, 

Z(t)=l-U(t)V(t)=l-U(O)V(O)-J U(s-)dV(s) -J V(s)dU(s) 
sE(O,t] SE(O,t] 

I U(s-)V(s) (-dA (s) +dB (s)) 
SE (O,t] C C 

\' (1 - M(s) \ 
- l V(s)U(s-) 1 _ llB(s) - 1/ 

s:St \ 

I -Z(s-) 
1 - llB (s) (dAc (s) - dBc (s)) 

sdO,t] 

\' 1 - Z(s-) 
L 1 - llB(s) (llA(s} - LiB(s)) 

sst 
+ 

I 1 - Z(s-) 
= .. 1 - llB(s)(dA(s)-dB(s)), 

sdo,tJ 

where (1 - llB) -l could be introduced into the integrand because A and B c c 
are continuous. 

Next, suppose Z' is another locally bounded solution of (A.4.1). 

Define Z = Z-Z', L(t) = sup!Z(s)I, a= f (1-llB)-l(dA+dB). Then for any 

s :S t 

lz<sl I s: J !z(u-l lda(ul s L(t)a(s}. 
uE[O ,s] 

Substituting the outer inequality back in the first one gives 

lz(s) I s: J L(t)a(u-)da(u) s 
udo,sJ 

1 2 
2L(t}CL(s} 

by (A.4.8) with r 2. Repeating this procedure, we find that for any r, 
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as 0 

COROLLARY: Proof of Lemma 3.2.1. 

(3.2.9) holds fort such that G(t) < 00 by setting B = O and A= Gin (A.4.1). 

If G(t) t 00 as t t t for some cr > 0, then (3.2.9) must also hold fort"' T 

by taking limits. Since G f (1-F J- 1dF, in this case we must have 

F(t) t 1 as t t cr, and so cr = T and (3.2.9) holds for all t > t. 

We have now proved assertion (i) . The only non-trivial part of (ii) is 

to show that F(t) t 1 as t t t implies G(t) t 00 as t t 1. Now for each 

t < t, ,.sup] DG(s) < 1. By (3.2.9), taking logarithms and carrying out 
SELO,t 

a Taylor expansion, 

where 

1 1 \' 2 
-G(t) - ;{Ct)G(t) ,, -G(t) - 2c(t) l 6G(s) ,, 

s,,t 
log ( 1 - F ( t) ) , 

C(t) 
-1 

sup (1-M(s)) <oo 

sdO,t] 

for each t < t. If F (t) t 1 as t t t then either G(t) too or lim sup 6G(t) 1; 
ttT 

but the latter equality also implies that G(t) t 00 • 

Assertion (iii) follows immediately from (i) since continuity of F 

implies continuity of G. 

Finally by (3.2.6) and (3.2.9) for t such that F(t) < 1, putting 

A f ~ and B = G in (A.4.2) shows that 

z 1 - :F 
l - 1 - F 

solves (A.4.1) with the present choice of A and B. But with this Z, A, and 

B, (A.4.1) is equivalent to (3.2.12) by the equality (1-F(s-))(1-6G(s)) = 
= 1 - F(s). D 
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Appendix 5 

Asymptotic normality of an estimator of mean lifetime 

Many authors consider estimation of mean lifetime J00 tdF(t) = 
0 Joo 

0 (1-F(t))dt on the basis of the product limit estimator. However either 
no attempt at proof is made (KAPLAN & MEIER (1958), BRESLOW & CROWLEY (1974)), 
or boundedness assumptions are made: YANG (1977) assumes that F(t) = 1 for 
some t < co and FLEMING (1978) .only considers estimation of J~ ( 1-F (s)) ds 
for some t such that F(t) < 1. (In these two cases Theorem 4.2.3 and 

Theorem 4.2.2 respectively can be applied directly.) The estimator consider-

JT - IT -ed is always 0 t dF(t) or 0 (1-F(t))dt where T = max X. (the notation 
j J 

here is as in the second part of Section 4.2). These quantities are related 

by 

JT (1-F(t))dt = JT t aF(t) + T(l-F(T)). 
0 0 

Here we shall consider PT 

function \.I by 

J~ (1-F(t))dt and define a corresponding 

\.It -- Jt (1-F(s))ds 
0 

and process µ by 

where FT (s) 

µt =r Cl-F (s) l 
1 - F (s) 

0 1 - FT (s) 

= F(sAT). We also de fine a 

µt = J00 

(1-F(s))ds. 
t 

ds 

function \.I by 

We assume throughout that ).1 00 = J.! 0 < 00 • 

We shall give conditions for asymptotic normality of n~(µT-µT); 
consistency of PT was mentioned on page 58. We shall assume that F(t) < 1 
for all t <co, F(=) = and T +P co as n +co. We shall not give conditions 

~ ~ 1 for n (µ 00-µT) = n µT +PO as n +co, though we shall mention an examp e 

where it holds. 

Before stating our theorem, let us note one application of our results 

which is not so obvious: namely to the Total Time on Test Plot of BARLOW & 

CAMPO (1975). This is a plot of an estimate of 
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-1 r (p) 

0 

I Joo 

(1-F(s) )ds 
0 

(1-F(s))ds 

against p € [0,1]. We propose that for censored data the plot should be 

made with F instead of F and T instead of 00 in this formula (BARLOW & CAMPO 

(1975) suggest the use of N/N( 00 ) rather than F), so our results give con
ditions for the denominator here to behave respectably. 

THEOREM A.5.1. Assume the conditions hold given in the first sentence of 

Theorem 4.2.3 and define y, T and u as was done there. Suppose furthermore 

that u = oo (so that T +P oo as n ~ oo) and F(u) 1. Then under the conditions 

(A. 5 .1) limii~r ((1-F)(l-F_)(l-L_))-l dF 
ttco 0 

0 

and 

(A. 5.2) Joo -2 n -1 n lim lim sup µ ({1-F) (1-F_l (1-L_)) x(O,l](L_) dF 
ttoo n~ t 

0 

we have 

(A. 5. 3) asn-+ 00 , 

where 

(A.5.4) 2 J"° -2 -1 o = µ ( ( 1-F) (1-F _) (1-L_)) dF < oo 

0 

o2 can be consistently estimated by 

PROOF. Let Z be defined as in the proof of Theorem 4.2.3. We have 

n~(p-µ) n~(J (1-FJ 1-F ---ds 
1 - FT 

I (1-F) ds) 

- J ~ F - FT 
( 1-F) ds J ZdiJ n 

1 - FT 

µZ - J ilaz. 

To prove (A.5.3) for some o2 it suffices to show that for all s > 0 

lim lim sup 
ttco n~ 

0 
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and that the same holds with liW~up omitted and with z"' instead of z. We 

can consider the parts iiz and fjidz separately. Now the second part is easy 

to deal with in the usual way since it is a square integrable martingale 

with predictable variation process 

J -2(1 - F ) 2 J µ 1 _ F n y (1-~G)dG. 

We use the inequality of LENGLART (Theorem 2.4.2), in which we bound 1-F 

with 13- 1 (1-F_) and n J/Y with S-l((1-F_) (l-L~))-1 X(O,l](L~) according to 

Theorem 3.2.1 and VAN ZUIJLEN (1978) Theorem 1.1 and Corollary 3.1 respec

tively. The part jiz can be dealt with exactly as was (1-F)Z in Theorem 

4.2.3. Running through the proof of that theorem we see that (A.5.1) and 

(A.5.2) correspond to (4.2.2) and (4.2.3); each time a term (1-F) 2 has 
-2 been replaced by µ . 

This proves weak convergence of the process n~(jl-µ) in D[O,=]. Since 

obviously T +P"' as n +"'we also have asymptotic normality of n~(µT-µT). 
By the proof we have lim jj z"' ( t) = 0 almost surely and so the limiting 

~ t+ex> t 
variance of n <PT-µT) has no component corresponding to jiz and thus is 

given by (A.5.4) corresponding to fjidZ only. Consistency of the estimator 

of this variance follows by similar arguments to those used in the proof 

of Theorem 4. 2. 3, noting also the remarks on consistency of i1T on page 58. 0 

Note that 

µ2 f ((1-F) (1-F_) (1-L_))-l dF 

f ji2 (( 1-F) ( 1-F _) ( 1-L_)) -ldF + J (J ( (1-F) ( 1-F _) ( 1-L_)) -ldF p<ii2J 

so that (A.5.2) implies that the limit in (A.5.1) exists, but not neces

sarily that it is zero (cf. the remarks after Theorem 4.2.3). 

In the case of no censoring, these conditions become 

-2 F(t) 
0 lim µ - F(t) t+"' t 

and 

J: ii~ d(1 
F(t) ) < "' 
- F(t) 

since by (A.4. 7) 
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Now 

We have 

Thus 

((1-F)(l-F_))-l dF d(1- (1-F)-l). 

F(t) 
- F(t) 

2 It -
µs d 

0 s 

It 2 
µ d( 1 

0 s 

rt +2J (l-
o 

F(s) ) 
- F(s) 

-1 - -
(1-F(s)) )µ(s)dµ(s) 

It -2 ( ) I -2 -2 µ d( F s ) 2 µ ds + µ µ 
s 1 - F (s) - s t 0. 

0 

rt 
J v 2 dF(v). 

0 

F(t) 
- F (t) ' 

and conditions (A.5.1) and (A.5.2) are in the case of no censoring equiva

lent to 

(A. 5. 5) 

Now 

var(X.) < "' and 
J 

F(t) 
- F(t) 

o. 

iJ~ F (t) 
---= (E(X.-t[x. > t)) 2 •F(t)(1-F(t)) 
1 - F (t) J J 

so a slightly stronger assumption is 

and lim sup E(x.-t[x. > t) < 00 

t-+oo J J 

This certainly holds when F has an increasing hazard rate which is the 

case for many realistic limetime models (e.g. gamma distribution, Weibull 

distribution with shape parameter 2 1, exponential distribution, normal 

distribution. The lognormal distribution does not have an increasing 

hazard rate but (A.5.5) is satisfied for it too). 

As a second example consider the case of an exponential distribution 

with exponentially distributed censoring, 1-F(t) = e-t and 1-Ln(t) = e-Bt 

for all n, so that 8 represents the degree of censoring. It is now easy 



to check that (A.5.1) and (A.5.2) hold if and only if$< 1. In this case 

vt = e-t and T tends to infinity like log n so that n~ µT +P 0 as n + 00 , 

and we have 

as n + 00 • 
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Appendix 6 

Proof of a theorem of Dani e 1 s 

Here we sketch a proof inspired by TAl<Acs (1967) though our argument 

is geometric rather than combinatorial. 

THEOREM A.6.1 (DANIELS (1945), ROBBINS (1954)). Let F be the empirical 

distribution function based on a random sample of size n from the contin

uous distribution function F. Then 

P(F(t) s S-l F(t) VtJ = 1- B VB .:: [0,1]. 
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PROOF. It suffices to consider the case when F is the uniform distribution 
• -1 on [0,1]. Extend indefinitely and repetitively the graph of F and of B F 

as in Figure A.6.1. We imagine the extended graph of Fas a staircase or 

mountain side, on which the sun shines with rays parallel to the line S- 1F. 

The probability required is the probability that at o the sun can be seen, 

or alternatively 1 minus the probability that O is in shadow • 

Let Y1 < 

define Y n+r 
distributed on 

••• < Yn be the order statistics of the random sample and 

1 +Yr' r 1, .•. ,n. Let R be a random variable uniformly 

{1, ... ,n} independently of the sample, and condition on 

the horizontal step lengths z 1 "' YR+l - YR, ••• , zn = YR+n - YR+n-l (i.e · we 

forget that it is a step of length Y 1 - Y on which O lies, and condi-n+ n 
tion only on the shape of the staircase) • It is easy to see that conditional 

on these lengths, the point o lies uniformly distributed on the horizontal 

sections z1, .•. ,z (~~ 1 z. "'1). Now of these sections a length exactly 
n li= l. 

1 - B is in the light and B is in shadow (see Figure A.6 .1; there are points 

in the light even if o is not). Thus conditional on z1, ••• ,zn the required 

probability is 1 - B and unconditionally it must be too. D 

Figure A.6.1. 
t 



165 

REFERENCES 

AALEN, 0.0. (1976), Statistical Theory for a Family of Counting Processes, 

Inst. of Math. Stat., Univ. of Copenhagen, Copenhagen. 

AALEN, o.o. (1977), Weak Convergence of Stochastic Integrals related to 

Counting Processes, z. Wahrscheinlichkeitstheorie und verw. 

Gebiete ~, p.261-277. 

AALEN, O.O. (1978), Nonparametric Inference for a Family of Counting Proces

ses, Ann. Statist. §_, p.701-726. 

AALEN, o.o. & S. JOHANSEN (1978), An Empirical Transition Matrix for 

Nonhomogeneous Markov Chains based on Censored Observations, 

Scand. J. Statist. ~, p.141-150. 

BARLOW, R.E. & R. CAMPO (1975), Total Time on Test Processes and Applica

tions to Failure Data Analysis, p.451-481 in: Reliability and 

Fault Tree Analysis, R.E. Barlow, J.F. Fussel & N.D. Singpurwalla 

(eds), SIAM, Philadelphia. 

BATHER, J.A. (1977), On the Sequential Construction of an Optimal Age 

Replacement Policy, Bull. Int. Stat. Inst. 47, p.253-266. 

BETHLEHEM, J.G., DOES, R.J.M.M. & R.D. GILL (1977), verdelingsvrije Metho

den bij Censurering, Report SN 6, Dept. of Math. Stat., 

Mathematisch Centrum, Amsterdam. 

BILLINGSLEY, P. (1968), weak Convergence of Probability Measures, Wiley, 

New York. 

BIBNBAUM, z.w. & A.W. MARSHALL (1961), Some Multivariate Chebyshev Inequal

ities with Extensions to Continuous Parameter Processes, Ann. 

Math. Statist. ~' p.687-703. 

BOEL, R., VARAIYA, P. & E. WONG (1975a), Martingales on Jump Processes, 

I: Representation Results, SIAM J. Control .!2.• p.999-1021. 

BOEL, R., VARAIYA, P. & E. WONG (1975b), Martingales on Jump processes, 

II: Applications, SIJ\M J. control 12.1 p.1022-1061. 

BroiM.Aun, P. (1975), The Martingale Theory of Point Processes over the 

Real Half Line admitting an Intensity, p. 519-542 in: Control 

Theory, Numerical Methods and Computer System Modelling, 



166 

A. Bensoussan & J.L. Lions (eds), Lecture Notes in Economics 

and Mathematical Systems .!Q.2., Springer-Verlag, Berlin. 

BREMAUD, P. & J. JACOD (1977), Processus Ponctuels et Martingales: 

Resultats Recents sur la Modelisation et le Filtrage, 

Adv. Appl. Prob. 2_, p.362-416. 

BRESLOW, N. (1970), A Generalized Kruskal-Wallis Test for Comparing 

K Samples Subject to Unequal Patterns of Censorship, Biometrika 

2]_, p.579-594. 

BRESLOW, N. (1974), Covariance Analysis of Censored Survival Data, 

Biometrics 30, p.89-99. 

BRESLOW, N. & J. CROWLEY (1974), A Large Sample Study of the Life Table 

and Product Limit Estimates under Random Censorship, Ann. Statist. 

~I p,437-453, 

BRESLOW, N. (1975), Analysis of Survival Data under the Proportional Hazards 

Model, Int. Stat. Rev. 43, p.45-58. 

BROWN, B.W., HOLLANDER, M. & R.M. KORWAR ( 1974) 1 Nonparametric Tests for 

Independence with Censored Data, with Applications to Heart 

Transplant Studies, p.327-354 in: Reliability and Biometry, 

F. Proschan & R.J. Serfling (eds), SIAM, Philadelphia. 

cox, D.R. (1972), Regression Models and Life-tables, J. Roy. Statist. Soc. 

B. 34, p.187-200 (with discussion). 

cox, D.R. (1975), Partial Likelihood, Biometrika 62, p.269-276. 

CROWLEY, J. & D.R. THCMAS (1975), Large Sample Theory for the Log Rank Test, 

Technical Report no. 415, Dept. of Statist., University of 

Wisconsin, Madison, Wisconsin. 

DANIELS, H.E. (1945), The Statistical Theory of the Strength of Bundles 

or Threads, I, Proc. Roy. Soc. A 183, p.405-435. 

DOLIVO, F.G. (1974), Counting Processes and Integrated Conditional Rates: 

a Martingale Approach with Application to Detection Theory, 

Ph.D. thesis, University of Michigan. 

DUDLEY, R.M. (1968), Distances of Probability Measures and Random Variables, 

Ann. Math. Statist. ~, p.1563-1572. 

EFRON, B. (1967), The Two Sample Problem with Censored Data, Proc. Fifth 

Berkeley Symp. Math. Stat. Prob. ~ .. p.831-853. 



167 

ELLIOT, R.J. (1976), Stochastic Integrals for Martingales of a Jump Process 

with Partially Acessible Jump Times, z. Wahrscheinlichkeitstheorie 

und verw. Gebiete 36, p.213-226. 

FELLER, W. (1968), An Introduction to Probability Theory and its Applications, 

Vol. I ( 3rd Edition) , Wiley, New York. 

FELLER, W. (1971), An Introduction to Prol>a.bility Theory and its Applications, 

Vol. II (2nd Edition), Wiley, New York. 

FLEMING, T.R. & D.P. HARRINGTON (1980), A Class of Hypothesis Tests for One 

and Two Sample Censored Survival Data, Dept. of Appl. Math. and 

Comp. Sci. Report 80-9, University of Virginia. 

FOLDES, A., REJT6°, L. & B.B. WINTER (1980), Strong Consistency Properties 

of Nonparametric Estimators for Randomly Censored Data, I: The 

Product-Limit Estimator; II: Estimation of Density and Failure 

Rate (to appear in Periodica Math. Hung.). 

FOLDES, A. & L. REJ'l'() (1980a), Asymptotic Properties of the Nonparametric 

Survival Curve Estimators under Variable Censoring (to appear 

in Proceedings of the PSMS Symposium, Lecture Notes in 

Mathematics, Springer-Verlag, Berlin). 

FOLDES, A. & L. REJTO" (1980b), Strong Uniform Consistency for Nonparametric 

Survival Curve Estimators from Randomly Censored Data (to appear 

in Ann. Statist.). 

GEliAN, E.A. (1965), A Generalized Wilcoxon Test for Comparing Arbitrarily 

Singly-Censored Samples, Biometrika 52, p.203-223. 

GILL, R.D. (1978), Testing with Replacement and the Product Limit Esti

mator, Report SW 5 7, Dept. of Math. Stat. , Mathematisch Centrum, 

Amsterdam (condensed version to appear in Ann. Statist.) 

GILL, R.D. (1980), Nonparametric Estimation based on Censored Observations 

of a Markov Renewal Process, z. Wahrscheinlichkei tstheorie und 

verw. Gebiete g, p.97-116. 

GILLESPIE, M. J. & L. FISHER ( 1979) , Confidence Bands for the Kaplan-Meier 

Survival Curve Estimate, Ann. Statist. z, p.920-924. 

HAJEK, J. & z. MIDAK (1967), Theory of Rank Tests, AcadeIDic Press, 

New York. 



IBB 

HALL, W.J. & J.A. WELLNER (1980), Confidence Bands for a Survival Curve 

from Censored Data, Biometrika 67, p.133-143. 

HELLAND, I.S. (1980), Central Limit Theorems for Martingales with Discrete 

or Continuous Time, submitted to Adv. Appl. Probability. 

HOEFFDING, W. (1956), On the Distribution of the Number of Successes in 

Independent Trials, Ann. Math. Statist. rl_, p.713-721. 

HOLLANDER, M. & F. PROSCHAN (1979), Testing to Determine the Underlying 

Distribution using Randomly Censored Data, Biometrics ~· 

p.393-401. 

HYDE, J. (1977), Testing Survival under Right Censoring and Truncation, 

Biometrika 64, p.225-230. 

JACOD, J. (1973), On the Stochastic Intensity of a Random Point Process 

over the Half-Line, Technical Report 51, Dept. of Stat., 

Princeton Univ. 

JACOD, J. (1975), Multivariate Point Processes: Predictable Projection, 

Radon-Nikodym Derivatives, Representation of Martingales, 

Z. Wahrscheinlichkeitstheorie und verw. Gebiete l!_, p.235-253. 

JACOD, J. (1979), Calcul Stochastique et Problemes de Martingales, Lecture 

Notes in Mathematics 714, Springer-Verlag, Berlin. 

JOHANSEN, S. (1978), The Product Limit Estimator as Maximum Likelihood 

Estimator, Scand. J. Statist. ~· p.195-199. 

KALBFLEISCH, J.D. & R.L. PRENTICE (1973), Marginal Likelihoods based on 

Cox's Regression and Life Models, Biometrika 60, p.267-278. 

KAPLAN, E.L. & P. MEIER (1958), Nonparametric Estimation from Incomplete 

Observations, J. Amer. Statist. Assoc. 53, p.457-481. 

KOZIOL, J.A. & A.J. PETKAU (1978), Sequential Testing of the Equality of 

Two Survival Distributions using the Modified Savage Statistic, 

Biometrika 65, p.615-623. 

LAGAKOS, S.W., SOMMER, C.J. & M. ZELEN (1978), Semi Markov Models for 

Censored Data, Biometrika 65, p.311-317. 

LE CAM, L. (1960), Locally Asymptotically Normal Families of Distributions, 

University of California Publications in Statistics 2_, p.37-98. 



LENGLART, E. (1977), Relation de Domination entre deux Processus, Ann. 

Inst. Henri Poincare 11_, p.171-179. 

LINDVALL, T. (1973), Weak Convergence of Probability Measures and Random 

Functions in the Function Space D[Q,oo), J. Appl. Prob • .!:..Q_, 

p.109-121. 

LIPTSER, R.S. & A.N. SHIRYAYEV (1978), Statistics of Random Processes, 

II: Applications, Springer-Verlag, Berlin. 

LIPTSER, R.S. & A.I<. SHIRYAYEV (1980), A Functional Central Limit Theorem 

for Semimartingales, to appear. 

MANTEL, N. (1966), Evaluations of Survival Data and Two New Rank Order 

Statistics Arising in its Consideration, Cancer Chernother. 

Rep. 50, p.163-170. 

MANTEL, N. (1967), Ranking Procedures for Arbitrarily Restricted Observa

tion, Biometrics llr p.65-78. 

MEIER, P. (1975), Estimation of a Distribution Function from Incomplete 

Observations, p.67-87 in: Perspectives in Probability and 

Statistics, J. Gani (ed.), Applied Prob. Trust, Sheffield. 

MEYER, P.A. (1971), Demonstration Simplifiee d'un Theoreme de Knight, 

p.191-195 in: Seminaire de Probabilites v, Lecture Notes in 

Mathematics 191, Springer-verlag, Berlin. 

MEYER, P.A. (1972), Temps d'Arret Algebriquement Previsibles, p.159-163 

in: Seminaire de Probabilites VI, Lecture Notes in Mathematics 

258, Springer-Verlag, Berlin. 

MEYER, P.A. (1976), Un Cours sur les Integrales Stochastiques, p.245-400 

in: Seminaire de Probabilites x, Lecture Notes in Mathematics 

511, Springer-Verlag, Berlin. 

MURALI-RAO, K. (1969), On Decomposition Theorems of Meyer, Math. Scand. 

24, p.66-78. 

169 

NELSON, w. (1972), Theory and Applications of Hazard Plotting for Censored 

Failure Data, Technometrics ~, p.945-966. 

PETERSON, A.V. (1975), Nonparametric Estimation in the Competing Risks 

Problem, Technical Report no. 73, Dept. of Statistics, Stanford 

University, Stanford. 



170 

PETERSON, A.V. (1977), Expressing the Kaplan-Meier Estimator as a Function 

of Empirical Subsurvival Functions, J. Amer. Statist. Assoc. 

r!:._, p.854-858. 

PETO, R. (1972), Rank Tests of Maximal Power against Lehmann-type Alterna

tives, Biometrika ~· p.472-474. 

PETO, R. & J. PETO (1972), Asymptotically Efficient Rank Invariant Test 

Procedures, J.R. Statist. Soc. (A) 135, p.185-206. 

PRENTICE, R.L. (1978), Linear Rank Tests with Right Censored Data, 

Biometrika 65, p.167-179. 

PURI, M.L. & P.K. SEN (1971), Nonparametric Methods in Multivariate 

Analysis, Wiley, New York. 

RAO, U.V.R., SAVAGE, I.R. & M. SOBEL (1960), Contributions to the Theory 

of Rank Order Statistics: Two Sample Censored Case, Ann. Math. 

Statist. l!._, p.415-426. 

REBOLLEDO, R. (1978), Sur les Applications de la Theorie des Martingales 

a l'Etude Statistique d'une Famille de Processus Ponctuels, 

p.27-70 in: Journees de Statistique des Processus Stochastiques 

(Proceedings, Grenoble 1977), Lecture Notes in Mathematics 636, 

Springer-Verlag, Berlin. 

REBOLLEDO, R. (1979a), Central Limit Theorems for Local Martingales, 

to appear in z. Wahrscheinlichkeitstheorie und verw. Gebiete. 

REBOLLEDO, R. (1979b), Decomposition de Martingales Locales et Rarefaction 

des Sauts, p.138-146 in: Seminaire de Probabilites XIII, Lecture 

Notes in Mathematics 721, Springer-Verlag, Berlin. 

REBOLLEDO, R. (1979c}, La Methode de Martingales Appliquee a l'Etude de la 

Convergence en Loi de Processus, to appear in Memoires du Soc. 

Math. de France. 

RENYI, A. (1953), On the Theory of Order Statistics, Acta Math. Acad. Sci. 

Hungar. ! 1 p.191-231. 

RENYI, A. (1963), On the Distribution Function L(z), Selected Translations 

in Math. Statist. and Probability!• p.219-224. 

ROBBINS, H. (1954), A One-Sided Confidence Interval for an Unknown Distribu

tion Function, Ann. Math. Statist. 25, p.409. 



171 

DE SAM LAZARO, J. (1974), Surles Helices du Flot Special sous une Fonction, 

Z. Wahrscheinlichkeitstheorie und verw. Gebiete 30, p.279-302. 

SAVAGE, I.R. (1956), Contributions to the Theory of Rank order statistics 

- the Two-Sample Case, Ann. Math. Stat. 27, p.590-615. 

SHORACK, G.R. & J.A. WELLNER (1978), Linear Bounds on the Empirical Distri

bution Function, Ann. Probab • .§_, p.349-353. 

STONE, C. (1963), Weak Convergence of Stochastic Processes defined on 

Semi-infinite Time Intervals, Proc. Am. Math. Soc • .!!• 
p.694-696. 

TAKACS, L. (1967), Combinatorial Methods in the Theory of Stochastic 

Processes, Wiley, New York. 

THCMAS, D.R. (1969), Conditionally Locally Most Powerful Rank Tests for the 

Two-sample Problem with Arbitrarily Censored Data, Technical 

Report no. 7, Dept. of Statistics, Oregon State University. 

THOMAS, D.R. (1975), On a Generalized Savage Statistic for Comparing Two 

Arbitrarily Censored Samples, Technical Report, Dept. of 

Statistics, Oregon State University. 

TSIATIS, A.A. (1978), An Example of Nonidentifiability in Competing Risks, 

Scana. Actuarial J. 1978, p.235-239. 

VERVAAT, w. (1972), Success Epochs in Bernoulli Trials (with Applications 

in Number Theory), Mathematical Centre Tracts 42, Mathematisch 

Centrum, Amsterdam. 

WALSH, J.E. (1962), Handbook of Nonparametric Statistics (Vol. I: Investi

gation of Randomness, Moments, Percentiles and Distributions), 

van Nostrand, Princeton. 

WICHURA, M.J. (1970), On the Construction of Almost Uniformly Convergent 

Random Variables with Given Weakly Convergent Laws, Ann. Math. 

Statist. !!_, p.284-291. 

WIEAND, H.S. (1974), On a Condition under which the Pitman and Bahadur 

Approaches to Efficiency Coincide, Ph.D. dissertation, Univ. 

of Maryland. 

WIEAND, H.S. (1976), A Condition under which Pitman and Bahadur Approaches 

to Efficiency Coincide, Ann. Statist. !• p.1003-1011. 



172 

WINTER, B.B., FOLDES, A. & L. REJTCJ (1978), Glivenko-Cantelli Theorems 

for the Product Limit Estimate, Problems of Control and Infor

mation Theory]_, p.213-225. 

YANG, G. (1977), Life Expectancy under Random Censorship, Stochastic 

Processes and their Applications §_, p.33-39. 

VAN ZUIJLEN, M.C.A. (1977), Empirical Distributions and Rank Statistics, 

Mathematical Centre Tracts 79, Mathematisch Centrum, Amsterdam. 

VAN ZUIJLEN, M.C.A. (1978), Properties of the Empirical Distribution Func

tion for Independent Nonidentically Distributed Random Variables, 

Ann. Probability .§_, p.250-266. 



173 

SUBJECT I NOE X 

Accidental optimality: 110 degree of censoring: 110,160 

adapted: 8 discrete case: 26 

age: 141 distribution-free method: 2 

alternative hypothesis: 45 Doob's optimal stopping theorem: 29 

asymptotic normality: 90,94ff Doob's submartingale inequality: 40 

asymptotic relative efficiency: see double exponential distribution: 125 

efficiency dual predictable projection: 12 

asymptotically uniformly most power-

ful test: 102 Efficacy: 107;111,117,126 

efficiency: 101,104,107,115,138 

Sias of product limit estimator: 38 

Birnbaum-Marshall inequality: 83 

birth time: 143 

Brownian motion: 137 

Canonical E-decomposition: 18 

censored observation: 1,21 

class K, K+: 46 

compensator: 12 

competing risk: 1,22,24,46 

complete a-algebras: 8 

confidence bands: 80,87,143 

consistency: 53,62ff,135 

contigui tr 102 

contiguous alternatives: 87,101,107 

continuous case: 26 

convergence in distribution: 4 

convergence in probability: 4 

counting process: 9, 11 

covariance structure: 142 

Cramer-Wold device: 17,116,131 

cumulative hazard: 25 

cumulative rate: 14 

cummulative risk: 25 

Death: 1 

empirical cumulative hazard: 36 

empirical distribution function: 

35,39,43 

empty product: 28 

E-decomposition: 16 

exponential distribution: 109,124,160 

extreme value distribution: 124 

Failure: 1 

failure rate: 36 

Fisher information: 128 

fixed censorship: 23,81,97 

force of mortality: 22,46 

future: 8 

Gamma distribution: 160 

Gaussian process: 16 

general random censorship: 3,23,43 

generalized Savage test: 52 

geometric distribution: 109 

Glivenko-Cantelli theorem: 70 

grouped data: 51 

Hajek le111111a: 120 

hazard rate: 25,27,36,58,81,160 
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Identifiability: 23 

in probability linear bound: 39 

increasing a-algebras: 8 

index variable: 5 

indicator variable: 4 

indistinguishable: 7 

inequality of Lenglart: 18 

integrable process: 7 

integral part: 5 

integrated rate: 14 

intensity process: 14 

logistic distribution: 125,126,135 

lognormal distribution: 135,160 

loss: 1 

Maximum likelihood estimator: 35 

martingale: 8 

martingale central limit theorem: 17 

maximum: 5 

mean lifetime: 58,87,157ff 

measurable process: 7 

minimal stochastic basis: 26 

minimum: 5 

Jump function: 147 multiple censorship: 24 

jump part of an i;;-decomposi tion: 17 multi variate counting process: 9 

jump process: 147 

Kolmogorov-Smirnov type test: 137 

Laplace distribution: 125 

large sample approach: 47 

Le Cam's lemma: 114,116,120,122,134 

Lebesgue-Stieltjes integral, 

for processes: 10 

left continuous process: 7 

Lehmann alternative: 52,111,116,124 

lifetimes: 22 

life-testing: 1,21 

likelihood ratio: 32,34 

likelihood ratio test: 115 

limiting average censoring distribu-

tion: 105, 108 

Natural stochastic basis: 16 

non-parametric method: 44,102,116 

normal approximation: 49 

normal distribution: 127,135,160 

null hypothesis: 45 

Observation process: 139 

on test at time t: 24 

one-sample case: 2,35,139 

one-sided alternative: 58 

optional quadratic variation: 145 

order statistics: 22 

ordered cumulative hazards: 59,66,68 

ordered hazards: 46,59,62,103 

Parametric alternatives: 116 

limiting weight function: 105,108,116partial observation: 139 

local: 9 past: 8 

locally bounded variation: 4 

locally integrable: 4 

location family: 102,123 

log rank test: 52 

pathwise integral: 10 

pattern of combined sample: 49 

permutation distribution: 46,49 

permutation hypothesis: 49 



permutation test: 48 Skorohod topology: 15,19 

Pitman asymptotic relative efficien- Skorohod-type construction: 73 

cy: see efficiency smoothed estimator: 35 

planned replacement: 144 square integrable martingale: 8 

planned withdrawal: 24 square integrable process: 7 

predictable covariation process: 10 stochastic basis: 8,147 

predictable process: 8 stochastic integral: 10 

product limit estimator: stochastic ordering: 46,59,62,66, 

2,35,56ff,78ff,141ff 68,124 

progressive censorship: 22 stochastic process: 7 

progressive censorship of Type I: 23 stopped experiment: 71,110 

progressive censorship of Type II: 24 stopping time: 8 

proportional hazards: 51,101,102 

proportional odds: 51,101,109 

proportionality symbol: 5 

Radon-Nikodym derivative: 14,32,34 

Test statistic of Cox: 

44,48ff,62ff,96ff 

test statistic of Efron: 

44,48ff,62ff,94ff 

random censorship: 22,23,81 (see also test statistic of Fisher-Yates: 

general random censorship) 102,127 

rate of convergence: 58 test statistic of Gehan: 

relapse: 1 44,48ff ,62ff,94ff 
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renewal testing: 25 test statistic of the class K, K+: 47 

Renyi-type test: 135,137 test statistic of van der Waerden: 

replacement policy: 144 102,127 

replacement sequence: 143 testing with replacement: 25 

right censorship: 21,139 ties: 51 

right continuous process: 7 time transformed location family: 

right continuous a-algebras: 8 102,123 

Sample path: 7 

Savage test: 52 

Savage-type test: 2 

scale parameter: 109 

shape parameter: 109,135,160 

sign test: 125 

simple type I censorship: 21 

simple type II censorship: 22,138 

Skorohod-Dudley theorem: 19 

time variable: 4 

total time on test plot: 35,157 

truncation: 139 

two-sample case: 2,44 

type I censorship: 21,23 

type II censorship: 22,24,137 

Unbiasedness of product limit 

estimator: 38 

uncensored observation: 
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under observation: 31 

uniform consistency: 53 

uniform distribution: 127 

variation of a process: 8 

Wald-Wolfowitz-Noether-Hoeffding 

theorem: 49 

Variable censorship: 24 weak convergence: 4,71 

variance estimator for product limit Weibull distribution: 109,124,135,160 

estimator: 39,79,83 

variance estimator for two-sample 

test statistics: 47,103 

variance function: 16 

Wiener process: 137 

Wilcoxon test: 51,125 

Wilcoxon-type test: 2 

withdrawal: 1,24 
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