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Abstract-In its original form, the wavelet transform is a linear 
tool. However, it has been increasingly recognized that nonlinear 
exteI?-sions are possible. A major impulse to the development of 
nonhnear wavelet transforms has been given by the introduction of 
the lifting scheme by Sweldens. The aim of this paper, which is a se­
quel of a previous paper devoted exclusively to the pyramid trans­
form, is to present an axiomatic framework encompassing most ex­
isting linear and nonlinear wavelet decompositions. Furthermore, 
it introduces some, thus far unknown, wavelets based on mathe­
matical morphology, such as the morphological Haar wavelet, both 
in one and two dimensions. A general and flexible approach for the 
construction of nonlinear (morphological) wavelets is provided by 
the lifting scheme. This paper briefly discusses one example, the 
max-lifting scheme, which has the intriguing property that pre­
serves local maxima in a signal over a range of scales, depending 
on how local or global these maxima are. 

Index Terms-Coupled and uncoupled wavelet decomposition, 
lifting scheme, mathematical morphology, max-lifting, morpho­
logical operators, multiresolution signal decomposition, nonlinear 
wavelet transform. 

I. INTRODUCTION 

T ODAY, it is generally accepted that multiresolution ap­

proaches, such as pyramids and wavelets, are important 

in signal and image processing applications. This is largely due 

to the fact that signals (and images in particular) often contain 

physically relevant features at many scales or resolutions. For a 

proper understanding of such signals, multiresolution (or mul­

tiscale) techniques are indispensable. But there exist other good 

reasons for why taking recourse to multiresolution approaches. 

A major one is that multiresolution algorithms may offer some 

attractive computational advantages. 
In a previous paper [l ], to be referred to here as Part I, we have 

presented an axiomatic framework for pyramid decompositions 

of signals, which encompasses several existing approaches; in 

particular, linear pyramids (such as the Laplacian pyramid pro­

posed by Burt and Adelson [2]), and morphological tools such 
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as the skeleton [3]. A short overview of this framework is pro­
vided in Section II. 

Wavelet signal decomposition is a relatively new tool 
developed over the past ten or fifteen years. It has attracted 
the interest of scientists from various .disciplines, in partic­
ular mathematics, physics, computer science, and electrical 
engineering. Although wavelet decomposition is a linMr 
signal analysis tool, it is starting to be recognized that non­
linear extensions are possible [4]-[22]. The lifting scheme. 
recently introduced by Sweldens [23]-[251 (see also [26] for 
a predecessor to this scheme, known as a "ladder network"). 
has provided a useful way to construct nonlinear wavelet 
decompositions. The enormous flexibility and freedom that 
the lifting scheme offers has challenged researchers to develop 
various nonlinear wavelet transforms [4]-[ 13], [ 17], [ 19]. [2 l]. 
[22], [27]. 

The literature on nonlinear wavelet decompositions, or crir­
ically decimated nonlinear jilter banks as they are sometimes 
called, is not extensive. In 1991, Pei and Chen [28], [29j were 
among the first to propose a nonredundant (in the sense that 
preserves the number of pixels in the original image) nonlinear 
subband decomposition scheme based on mathematical mor­
phology. Their approach however does not guarantee perfect re­
construction. In 1994, Egger and Li [ 4] proposed a nonl in ear 
decomposition scheme with perfect reconstruction based on a 
median-type operator (see also [6]). Independently, Florencio 
and Schafer [5] have presented a similar decomposition; see also 
[7, Ch. 7]. More recently, Queiroz et al. [2 l] proposed a non­
linear wavelet decomposition, corresponding to the 4uincunx 
sampling grid, for low-complexity image coding; see also [7, 
Ch. 8). In [7], Florencio discusses nonlinear perfect reconstruc­
tion filter banks in more detail, and attempts to give a better 
understanding of these issues by relating them to the so-called 
critical morphological sampling theorem. In [9], Cha and Cha­
parro constructed a nonlinear wavelet decomposition sche~1e 
by means of a morphological opening operator. The resultmg 

signal decomposition scheme guarantees p~rfe~t reconstru~~i~)n. 
However, these authors did not have at their disposal the hftmg 
scheme, which was developed during the same period [23]-l25]. 
The same remark applies to the work of Hampson and Pesquet 
[8]. [11], [17) who developed nonlinear perfect reconstruction 
filter banks by considering a triangular form of the polyphase 
representation of a filter bank. The resulting approach is more 

or less identical to the lifting scheme. 

In four recent papers [10), [12], [13], [22], Claypoole et al. 
use the liftincr scheme to build nonlinear wavelet transforms. ln 
the first pap:;. [10], they propose an adaptive lifting step using 
a nonlinear selection criterion. In the other three papers [12]. 

[13], [22], they use combinations of linear and nonlinear lifting 
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steps (based on a median operator), and discuss applications in 
compression and denoising. 

Many of the schemes proposed in the previously mentioned 
papers are special cases of the general schemes discussed in this 
paper. Therefore, the theory presented here provides a rather 
general framework for constructing nonlinear filter banks with 
perfect reconstruction. It is worth noticing however that the pro­
posed theory depends on three conditions. These conditions are 
required in order for the proposed multiresolution schemes to 
guarantee perfect reconstruction and be nonredundant (in the 
sense that repeated applications of these schemes produce the 
same result). Moreover, these conditions lead to the concept of 
nonlinear biorthogonal-like multiresolution analysis, to be dis­
cussed in Section III-C, which is a natural extension of the con­
cept of biorthogonal multiresolution analysis associated with 
linear wavelet decompositions. 

The aim of this paper is twofold. First, we present an 
axiomatic framework to wavelet-type multiresolution signal 
decomposition that encompasses all known linear and nonlinear 
wavelet decomposition schemes. Second, we introduce a family 
of nonlinear wavelets based on morphological operators. The 
simplest nontrivial example of a morphological wavelet is the 
so-called morphological Haar wavelet. As we said before, the 
lifting scheme provides a general method for the construction of 
various wavelet decompositions. In the linear case, this scheme, 
in combination with direct methods based on Fourier or 
z-transform techniques, has lead to a large variation in wavelet 
decomposition schemes. In the nonlinear case, however, where 
techniques which are comparable with the (linear) Fourier 
or z-transform are nonexistent, the lifting scheme is the only 
known general method to construct wavelet decompositions. 
In this paper, we restrict ourselves to constructions based on 
morphological operators. Attention is paid to the max-lifting 
scheme, which has the interesting property that it preserves 
local maxima of a signal over several scales. 

This paper is organized as follows. In Section II, we briefly 
recall the pyramid transform introduced in Part I. In Section III, 
we present a general definition of a wavelet transform, which we 
refer to as the coupled wavelet decomposition scheme. A special 
case is the uncoupled wavelet decomposition scheme, a class 
which the linear biorthogonal wavelets belong to. Section IV 
is entirely devoted to a simple nontrivial uncoupled wavelet 
decomposition scheme based on morphological operators, the 
so-called morphological Haar wavelet. We discuss the one-di­
mensional (1-D) as well as the nonseparable two-dimensional 
(2-D) case. In Section V, we discuss the lifting scheme within 
the axiomatic context of this paper. In particular, it is shown that 
two nonlinear lifting steps generally lead to a coupled wavelet 
decomposition scheme. A number of examples, based on mor­
phological operators, are discussed. Another important example 
of the lifting scheme is introduced in Section VI. This is referred 
to as the max-lifting scheme, the most striking property of which 
is that it preserves local maxima of a signal over several scales, 
depending on how local or global these maxima are. Finally, in 
Section VII, we conclude with some final remarks. 

II. PYRAMID TRANSFORM 

In Part 1, we presented a comprehensive discussion on the 
pyramid transform. In this section, we briefly recall the main 
ideas of that work. 
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Consider a family Vj of signal spaces. Here, j may range over 
a finite or an infinite index set. Assume that we have two fami­
lies of operators, a family 'lj!j of analysis operators mapping\'] 

into VJ+1. and a family 'lj;J of synthesis operators mapping VJ+J 
back into Vj . Here, the upward arrow indicates that the corre­
sponding operator maps a signal to the higher level, whereas 
the downward arrow indicates that the operator maps a signal 
to a lower level. The analysis operator 'ljJ] is chosen to reduce 
information from a signal x j E Vj, yielding a scaled signal 
XJ+1 = 'l/i](:i::j) in VJ+1· The synthesis operator iµj maps the 

scaled signal ;c J+ 1 back to i: J = 'lj1 j ( :r: J+ i) in Vj, in such a way 

that iPj'I/;] (xJ) is "close" to a:1. By composing analysis opera­
tors, we can travel from any level i to any higher level j. This 
gives an operator 

.1! T . = .1. T 1 .1, ! 9 •.•• 1; T J. > i 
V"t,J '1'1- '1'1-- ¥· 1' 

which maps an element in V; to an element in Vj. On the other 
hand, by composing synthesis operators, we can travel from any 
level j to any lower level i. This gives an operator 

.1.l . = .1.l.1;~+1 ... ·";1 1 J. > i 
'¥1,i lf'z'fi l./'J-' 

which takes us from level j back to level i. Since the analysis 
operators are designed to reduce the information content of a 
signal, they are not invertible in general. In particular, ,,µjipJ 
will not be the identity operator in general. On the other hand, 
we always avoid synthesis operators 'lj;j that reduce information 

content. In other words, iµJ is taken to be injective. In fact, both 
conditions are automatically satisfied if we make the following 
assumption (id denotes the identity operator). 

Pyramid Condition: The analysis and synthesis operators 
1/J], 'l/;j are said to satisfy the pyramid condition if 'lf;]'lj!j =id 

on VJ+1· 
It is easily seen that the pyramid condition implies thal 

.1.!.1.l.1,T = .1.! .1.l,,0T.1,l = .1,l andthat·1;l•1;T is idempotent 
'l"1'f'1'f'J 'l"1•'f';¥'1'i"; '1"1• ¥1¥1 . 

Now, suppose that all previous conditions are satisfied, anc 
that we have addition and subtraction operators +, ...:.. on Vi 
such that x1+(xr:.x1) = x2, for x1, x2 E Yj. Given an inpu 
signal xo E Vo, we consider the following recursive signa 
analysis scheme, called the pyramid transform: 

xo--+ {x1, Yo}--+ {x2, Y1, Yo}--+··· 

--+{Xk+i1 Yk, Yk-1, .. ·,Yo}--+ .. · 

where 

and 

j?. 0. 

The original signal x 0 E Vo can be exactly reconstructed fror 
xk+l and yo, Yi. · · ·, Yk by means of the backward recursio 

l . . 
Xj = 'lj;j (Xj+l)+yj, J = k, k - 1, · · ·, 0. 

III. GENERAL WAVELET DECOMPOSITION SCHEMES 

In this section, we present a formal definition of a gener: 
wavelet decomposition scheme. This scheme encompass1 
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Fig. 1. One stage of the coupled wavelet decomposition scheme. 

linear wavelet decompositions as a special case, but allows also 
a broad ~lass of nonlinear wavelet decomposition schemes. 
We start m Section III-A with the definition of the so-called 
~ouple_d wavelet decomposition scheme which comprises two 
analysis ope_rators, one for the signal and one for the detail, and 
one synt~es1s operator. The uncoupled wavelet decomposition 
scheme introduced in Section III-B is a special case of the 
coupled ~avelet decomposition, in the sense that the synthesis 
operato~ is the s~m of two synthesis operators, the signal and 
the detail syn~hes1s operators. The linear wavelet decomposition 
belong_s to this second class; in this case the signal and detail 
a~alysis (resp. synthesis) operators correspond to lowpass and 
h1ghpass analysis (resp. synthesis) operators. In Section V, it 
will be ~xplained that the lifting scheme provides a practical 
and flexible method to design both coupled and uncoupled 
wavelet decomposition schemes. 

A. Coupled Wavelet Decomposition 

The coupled wavelet decomposition extends the pyramid 
scheme discussed in Part I; see also Section II. Assume that 
there exist sets Vj and Wj. We refer to Vj as the signal space at 
level .7 and to WJ as the detail space at level j. Signal analysis 
consists of decomposing a signal in the direction of increasina 
j by means of signal analysis operators 1);]: Vj -t "Yj+ 1 and 
detail analysis operators w]: Vj -t Wj+I · On the other hand, 
signal synthesis proceeds in the direction of decreasing j, by 
:neans of synthesis operators w_}: Vj+1 x Wi+1 -t Vj. This is 
illustrated in Fig. 1. 

The previous decomposition scheme is required to yield a 
complete signal representation, in the sense that the mappings 
('1/J_j, wJ ): VJ -t Vi+l x WJ+I and WJ: Vj+1 x WJ+l -t vj are 
inverses of each other. This leads to the following conditions: 

if :J: E VJ 

which is called the perfect reconstruction condition, and 

{ 'ljJ.J(wj(:r, y. )) = .r, 
wj(wj(:r, y)) = y, 

if :c E VJ+1, y E W;+1 

if :r E VJ+11 y E Wj+l· 

(1) 

(2) 

The two conditions in (2) guarantee that the decomposition 
is T ~onredundant. Conditio~ (1) im~li~s ~ha~ fh~ maf,p~ng 
w:j· Vj ___, Vj+1 x wi+l' given by w:i(x) - (l/;j(:J.), wj(x)). 
is injective (i.e., one-to-one) and that w] is surjective (i.e., 
onto). On the other hand, (2) implies that W J is surjective and 
that w j is injective. Furthermore, if (1) holds and if W} is 
surjective (or w] is injective) then (2) holds as well. Also, if 
(2) holds and if wj is surjective (or 1Ji J is injective), then (1) 

x 0 

(a) 

(b) 

Fig. 2. Three-level coupled wavelet decomposition scheme: (a) signal analysis 
and (b) signal synthesis. · 

holds as well. Now, given an input signal J.'o E \ (1• consider the 
following recursive analysis scheme: 

:1:0 -t {:r1. yi} __. {:r2. y2 • yi}-+ · · · 

-t {:J.'A-. Yk· ilk-I····. yi} - · · · I.~) 

where 

and 

j ~ U. (4l 

The original signal xo can be exactly reconstructed from and 
Yi, Y2, · · · , Yk by means of the following recursive synthesis 
scheme: 

:rj = w](XJ+i• YJ+1). j=k-l.k-2.··-.!l (5) 

which shows that the decomposition (3) and (4) is invertible. \Ve 
refer to the signal representation scheme governed by { l H 5) 
as the coupled wavelet decomposition scheme. Block diagrams 
illustrating this scheme, for the case when k = :l. are depicted 
in Fig. 2. 

The relationship between the coupled wavelet decomposition 
scheme and the pyramid scheme discussed in Part I can be easily 
established. Recall that the latter scheme is governed by the 
pyramid condition. Let the operators . uJ 1r, 1¥' constitute a . ) 

coupled wavelet decomposition. Fix an element 11~ E lr1 , for 

every j, and define 41]: v)+ 1 _, ij as (.r) = W~(.r. l. 
x E YJ+l· Now. the first identity in (2) gives t' 1(v:(J·)) = 
x, :r: E -Yj + 1 . In other words, the pair ( ) satisfies the 
pyramid condition. 

B. Uncoupled Wavelet Decomposition 

Of particular interest is the case when there exists a binary op­
eration + on vj, which we call addition (notice that + may also 
depend on j), and operators ~·J: "Y}+ 1 ---> \ j and ... :J: ff1 + i ~ 
vj such that 
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Fig. 3. One stage of the uncoupled wavelet decomposition scheme. 

We refer to 1/J], wJ as the signal synthesis and the detail syn­
thesis operators, respectively. Conditions (1), (2) become 

'!j!j'!j!J (x)+wJwJ (x:) = x:, 

'~;J(~;j(x)+wj(y)) =x, 

wJ('lfij(x)+wj(y)) =y, 

if ;i; E Vj (7) 

if x E VJ+i, y E WH1 (8) 

if x E VJ+1, y E Wj+l· (9) 

We refer to the signal representation scheme governed by 
(3)-(9) as the uncoupled wavelet decomposition scheme. One 
stage of this scheme is illustrated in Fig. 3. 

Given an input signal :i: 0 E V0 and the corresponding recur­
sive analysis scheme given in (3) and (4), xo can be perfectly 
reconstructed from x1c and Y1, Y2, · · ·, Y1c by means of the fol­
lowing recursive synthesis scheme: 

j = k - 1, k - 2, ... ' 0. 

Therefore, signal x j at level j is reconstructed from information 
that is only available at level j + 1. First, signal :c J+l is mapped 
down to level j by means of the signal synthesis operator ~;j 
so as to obtain an approximation x J = '!j!j ( :r: J +l) of :r: j; then, 
the detail signal YJ+l is mapped down to level j by means of 
the detail synthesis operator w} so as to obtain the detail signal 

ej = w} (YJ+l) at level j; finall_y, the results are combined by 
means of the addition operator +. 

Equation ( 6) concerns on! y the structure of the synthesis part. 
A block diagram illustrating this part, for the case when k = 3, 
is depicted in Fig. 4. The analysis part is the same as in Fig. 2(a). 

The linear biorthogonal wavelet transform [30] complies per­
fectly well with our abstract framework. In [31], we have pre­
sented two different ways to view a linear biorthogonal wavelet 
transform as an uncoupled wavelet decomposition. 

In the examples provided below, we consider only one step 
in the decomposition; i.e., we only consider decompositions be­
tween V0 and Vi, W1 . For simplicity, we delete the subindices 
j = O in the corresponding analysis and synthesis operators. 

Example 1 (Lazy Wavelet): The simplest example of an un­
coupled wavelet decomposition is the transform that splits a 
1-D discrete signal :r(n) into its odd and even samples. Let 
V0 = Vi = W1 = R2 , i.e., the space of doubly infinite 
real-valued sequences on 71.. Then, the analysis operators are 
given by 

whereas the synthesis operators are given by 

41l(:I:)(2n) = :r(n) and '1/)(:r)(2n + 1) = 0 

wl(y)(2n) = 0 and wl(y)(2n + 1) = y(n). 
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It is obvious that conditions (7)-(9) are satisfied, with + being 
the standard addition. The lazy wavelet, better known in the 
signal processing community as the polyphase transform of 
order 2 [32], is not of great interest by itself; the reason why it 
is discussed here is because it is often used as a starting point 
for the lifting scheme to be discussed in Section V. • 

Examp(e 2 (S-Transform): The S-transform can be consid­
ered as a nonlinear modification of the Haar wavelet with the 
additional property that it maps integer-valued signals onto in­
teger-valued signals, but without abandoning the property of 
perfect reconstruction. In this case, the analysis operators are 
given by 

T( )( ) lx(2n) + x(2n + l)J 
'lj;:r:n= 2 

w T (:z:)(n) = x(2n + 1) - x(2n). 

The corresponding synthesis operators are given by 

'!j;l(x)(2n) =·1pl(x)(2n+ 1) = x(n) 

ly(n)J ly(n)+lj wl(y)(2n) = - 2 and wl(y)(2n + 1) = 2 . 

Here L·J denotes the floor function, i.e., fort E R, LtJ is the 
largest integer St. Refer to Fig. 5 for an illustration. 

The specific character of these operators guarantee that 
integer signals are mapped onto integer signals, and we 
may choose V0 = Vi = W1 = 7L 2 , i.e., all doubly infinite 
integer-valued sequences. It is easy to show that conditions 
(7)-(9) are all satisfied here as well, provided that + is taken to 
be the standard addition. 

The S -transform, where "S" stands for "sequential," has 
been known in the literature for several years, and has been 
successfully used in medical imaging for lossless compression 
(33]. During the years, several modifications and generaliza­
tions have been proposed, e.g., see [34]. • 

We should point out here that certain continuity issues may 
arise in the case of an infinite-level wavelet decomposition 
scheme. However, these issues, which become manifest in 
the case of infinite decompositions, lie outside the scope of 
the work presented here, and we choose to limit ourselves to 
finite-level wavelet decomposition schemes. 

C. Nonlinear Biorthogonal-Like Mu/tire solution Analysis 

The linear biorthogonal multiresolution analysis framework 
[30) can be conceptually extended to the more general frame­
work of the uncoupled wavelet decomposition scheme. Indeed, 
consider yCHll = Ran('0j) and WU+l) = Ran(wj ), where 

J ) A 1 T 
Ran('l/J) denotes the range of an operator 'lji, ~;J = 1f;/41j and 

W,. = wlwT (recall our discussion and notation in Section II). 
J J .1 • 

From (7), we get that every signal :r E Vj has a umque decom-
• . I . I h I vU+l) d I w(J+l) position :i; = :r: +y , w ere x: E J an y E J , 

namely :r: = 1/~J(;r:)+wj(:i:). Thus, we may write 

VJ = v?+1) EB wy+1i. 

Let us assume that there exists an Ou E Vj (which depends on j 
in general) such that x-f..00 = Ov-f..x = :r, for every;;.; E Vj, and 
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Fig.4. Signal synthesis part of a three-level uncoupled wavelet decomposition scheme. 
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Fig. 5. An illustration of the S-transfonn. The white and gray nodes correspond to the even and odd samples, respectively. 

1f;J(Ov) = 0,,. If there exists an Ow E Wi (which also depends 

on j in general) such that wj(Ow) = Ov, then (8) and (9) imply 
that 

'l/J}l/J](x) =x, for x E l/j+1 (10) 

i t( ) -wjwj y -y, for y E WJ+1 (11) 

'l/J]wj(y) = Ov, for y E WJ+l (12) 

w)-1,hj(x) = 0.0,, for x E l/j+1· (13) 

This implies that ·Ji and Wj are idempotent operators on llj (also 
called projections). Furthermore (12) and (13) imply that 

where J! is the operator on Vj which is identically Ov. The projec­

tions 'I/Ji and Wj are complementary in the sense that ·J1+wi = 
~d, where id denotes the identity operator, and (1);1+wj)(x) = 
'l/lj(x)+wi(x), for x E Vj. 

IV. MORPHOLOGICAL HAAR WAVELET 

A. One-Dimensional Case 

In this section, we discuss a morphological variant of the Haar 
wavelet in one dimension. The major difference with the clas­
sical linear Haar wavelet is that the linear signal analysis filter 
of the latter is replaced by an erosion (or dilation), i.e., by taking 
the minimum (or maximum) over two samples. Readers who are 
unfamiliar with the basic concepts of mathematical morphology 
are referred to (35], (36]. 

Let Vo = Vi = W1 = R2 be the lattice of doubly infinite 
real-valued sequences. Define the analysis and synthesis opera­
tors as 

1/!T(x)(n)=x(2n)/\:z:(2n+l) (14) 

wi(x)(n) =x(2n) - x(2n + 1) (15) 

~1l(x)(2n) = 7f!L(x)(2n + 1) = x(n) ( 16) 

wl(y)(2n) = y(n) V 0, wl(y)(2n + 1) = -(y(n) /\ 0). (17) 

Here"/\'' denotes minimum and "V" denotes maximum. In Part 
I, we have seen that the operators ~ .• T, ·~,! satisfy the pyramid 
condition. The corresponding pyramid was called the morpho­
logical Haar pyramid (see Example 2 in Part l). It can also be 
shown that ( 14H17) satisfy conditions (7)-(9 ). provided that + 
is taken to be the standard addition. Therefore, the morpholog­
ical Haar wavelet is another example of an uncoupled wavelet 
decomposition scheme. 

Fig. 6 illustrates the computations associated with the anal­
ysis and synthesis operators of a three-stage morphological Haar 
wavelet decomposition scheme. The gray nodes indicate the de­
tail signal. Notice that the signal analysis operator guarantees 
that the range of values of the scaled signals { .r J. j ~ 1 } is 
the same as the range of values of the original signal .r0 • It fur­
thermore guarantees that, if the original signal .ro is discrete­
valued, the scaled signals { :z: j, j ~ 1} will be discrete-valued 
as well, a highly desirable property in lossless coding applica­
tions (37]. Moreover, the morphological Haar wavelet decom­
position scheme may do a better job in preserving edges in ;r0 , 

as compared to the linear case. This is expected, since the signal 
analysis filters in the linear Haar wavelet decomposition scheme 
are linear lowpass filters, and as such smooth-out edges. The 
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Fig. 6. Computations associated with a three-stage morphological Haar 
wavelet decomposition scheme: (a) signal analysis and (b) signal synthesis. 
The gray nodes indicate the detail signal. 

signal analysis filters in the morphological Haar case are non­
linear, and as such may preserve edge information. 

In (14), we have chosen to use minimum. It is obvious that 
we can also take maximum instead, i.e., we can set 

·1/!1 (.T)(n) = :r(2n) V x(2n + 1) 

and leave w T unchanged. In this case, the corresponding signal 
synthesis operator ·1/;1 is the same as in (16), but the detail syn­
thesis operator becomes 

wl(:y)(2n) =y(n) /I. 0 

and 

wl(y)(2n + 1) = - (y(n) V 0). 

Notice that, when we use minimum in the signal analysis op­
erator, ( 1f; T, 1f;l) is an adjunction, whereas when we use max­
imum, (·~Jl, 1jJ T) is an adjunction [36]. 

It is not difficult to define a binary version of the wavelet 
decomposition scheme (14)-(17). Indeed, let V0 =Vi= W 1 = 
{O, l}z be the Boolean lattice of doubly infinite sequences of 
Os and 1 s. We choose the "exclusive OR" operation, denoted by 
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6, as the binary operation + on Vo. Then, we define analysis 
and synthesis operators [cf. (14)-(17)] as follows: 

.q;T (:r)(n) = :r:(2n) 

wT(:c)(n) =:r(2n) 6:c(2n+1) 

1f;l(:r)(2n) = 1f;l(x)(2n + 1) = :r:(n) 

wl(y)(2n) = 0 and wl(y)(2n + 1) = y(n). 

It is easy to verify that this defines an uncoupled wavelet decom­
position scheme. Notice that the detail signal w T ( :r:) contains 1 's 
only at a transition (from 0 to 1 or vice versa) in signal :r: that 
occurs at an even point. The decomposition is self-dual, in the 
sense that 

1/J T Cx) = ·11 T ( :c) and w T (x) = w T ( .c) 

where x(n) = l -1:(n). Such a binary scheme can be extended, 
without serious effort, to finite-valued signals with values in 
{O, 1, · · ·, N - l}, N < oc, and with 6 being replaced by 
"addition modulo N." 

B. Two-Dimensional Case 

We can extend the morphological Haar wavelet decomposi­
tion scheme to two and higher dimensions by using a separable 
filter bank (e.g., by sequentially applying the 1-D decomposi­
tion on the columns and rows of a 2-D image) [30], [32]. How­
ever, we can also define a nonseparable 2-D version of the mor­
phological Haar wavelet. Indeed, let VO and Vi consist of all 
functions from 71.. 2 into lfil and let W1 consist of all functions from 
71. 2 into IR 3 . We introduce the following notation. By n, 2n we 
denote the points ('m, n), (2m, 2n) E 71. 2 , respectively, and by 
2n+, 2n+, 2ntthepoints(2m+L 2n), (2rn., 2n+l), (2m+ 
1, 2n + 1), respectively. Define 

'lj; T (x)(n) = :r(2n) /\ 1:(2n+) /\ :r(2n+) /I. :r:(2nt) (18) 

wT(:i:)(n) = (wv(x)(n), w1i(:r:)(n). w11(1:)(n)) (19) 

where Wv, wh, wd represent the vertical, horizontal, and diag­
onal detail signals, given by 

wv(x)(n) = ~(x(2n) - 1:(2n+) + :c(2n+) - 1·(2nt)) (20) 

wh(1:)(n) = ~(x(2n) - x(2n+) + x(2n+) - :i:(2nt)) (21) 

Wd(x)(n) = t(:r:(2n) - x(2n+) - :z:(2n+) + .T(2nt)). (22) 

The synthesis operators are now given by 

·1f!l(x)(2n) ='V;l(1:)(2n+) = 41l(:r:)(2n+) 

and 

=1J1(1:)(2nt) = :r:(n) (23) 

wl(y)(2n) = (Yv(n) + y1i(n)) V (Yv(n) + Yd(n)) 

V (yh(n) + Yd(n)) V 0 

w1(y)(2n+) = (Yv(n) - y1i(n)) V (Yv(n) - Yd(n)) 

V (-y1i(n) - Yd(n)) V 0 

wl(y)(2n+) = (yh(n) - Yv(n)) V (-yv(n) - 'l/d(n)) 

V (Yh(n) - YcZ(n)) V 0 

wl(y)(2nt) = (-y11 (n) - Yh(n)) V (yd(n) - y,,(n)) 

V (Yd(n) - yh(n)) V 0 

where we write y E W1 as y = (yv, Yh, Yd). It is not difficul 
to show that conditions (7)-(9) are all satisfied, provided tha 
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Fig. 7. Tua-dimensional Haar wavelet transforms an input signal :r to a scaled 
signal :c 1 and the vertical, horizontal, and diagonal detail signals y,,, Yh· yd, 
respectively. 

+ is taken to be the standard addition. Therefore, this is a 2-D 
example of an uncoupled wavelet decomposition scheme. 

The analysis operators 'lj;T and wi in (18) and (19) map a 
quadruple of signal values, as the ones depicted in the left 
hand-side of Fig. 7, to the quadruple at the right hand-side; 
here :r 1 = ·1/J T (:r) and y,, = w,,(:c) (the same for Yh· Yd). An 
example, illustrating one step of this decomposition is depicted 
in Fig. 8. 

As in the 1-D case, the minimum in the expression for ~' r can 
be replaced by a maximum. Moreover, as we explain below, it 
can also be replaced by any (extension of a) positive Boolean 
function without destroying the condition of perfect reconstruc­
tion. Recall that every Boolean function b can be written as a 
sum-of-products, where the sum represents the "OR" or "'max­
imum" and where the product represents the "AND" or "min­
imum." If the Boolean function is positive, then this sum-of­
products can be written without complemented variables. Such 
a positive Boolean function can be easily extended from {O, 1} 
to IR by replacing the sum by maximum and the product by min­
imum [36, Sec. 11.4]. 

Suppose now that b is a positive Boolean function of four 
variables and let 'lj; i be given by 

'lj;T ( :l:) ( n) = b(:i:(2n), :c(2n+ ), x(2n + ), :1:(2nt)) 

and take w T to be the same as in (19). The value of 
b( ·11. 1 , u2 , u.;~, ·u.i) equals one of its four arguments; which 
one depends on the ranking of these four elements, and can 
be deduced from (the signs of) u1 - ·u2, 1l1 - u3, u1 - 'U4. 

Knowing the value of b(v. 1 , u 2 , n3 , u4), along with the three 
differences ·u. 1 _ n 2 , ·u1 - n:i. Hi - u.4 , we are able to com­
pute u 1 , u 2 , u:3 , 11u1. This observation can be used to reco:er 
the original signal :r: from ·lf1T(:r) and w 1(:r:). Namely, usmg 
(20)-(22), it is easy to show that 

:r(2n) - :1:(2n+) =w,,(:r)(n) + wd(:r:)(n) 

:r(2n) - :r:(2n+) =w,,(:r:)(n) + WJ(:r:)(n) 

:r(2n) - J:(2nt) = w,,(x)(n) + w1i(:r)(n). 

This leads to the signal synthesis operator (23) and to detail 
synthesis operators that are similar to the ones used b:. the 
2-D version of the morphological Haar wavelet decompositJo~ 
scheme discussed above. The particular form of the detail 

h · f the Boolean synthesis operators depends on the c mce or . . . 
function b. Clearly, the resulting wavelet decomposition will 

be uncoupled. 
We can take b to be the kth order statistic of u 1 , 112' _11·3, u.4 • 

i.e., the kth value of the sequence of length four obtained by 

arranging 11 1• 112. 113, 1; 4 in decreasing order. Observe that, in 
this case and for k = 4. we obtain the morphological Haar 
wavelet (and for I.: = 1 its dual). In the following. and for the: 
sake of illustration. we present a 2-D binary example that is built 
by taking b to be the median of the sequence u 1• u 1 • n~. 11 i. 

Consider an input signal .r. with .r(2n) == a, .r(2n+ ::.:: 
:r(2n+) =c. and :1·(2ntl =d. The signal analysis operator is 
given by 

'lj,T (x)(n) 

= median(:r(2n). :c(2n). :r:(2n+l .. r(2n + ). )). 124\ 

Take w f as in ( 19), where 

t<..',.(:r)(n) = :r(2n) 6 .r(2n+) 

wh(:r)(n) =.i:(2n) 6 .r\2n+) 

W,J(.r)(n) =.r(2n) 6 .r(2n!). 

(25) 

(261 

!271 

Referring to Fig. 7, the coefficients in the matrix [I'. are mapped 
to[:,;;.]. where t = median(u. a. h. c. u = 11 .6 f,, 1· = 
a 6 c, and w = o 6 d. It is not difficult to verify that a = 
t 6 (u /\ l' /\ u·). where t =median( a. a. h. c. u =a D h. 
1• = a 6 c, and w = a 6 d. To understand this, we distinguish 
two cases: 1) u /\ v /\ tc = 0: this means that at least one of 
the values u. v. w equals 0. which implies that at least one of 
the values b, c, d equals a. This yields that t = 11, whkh is in 
agreement with a = t 6 0. 2) u /\ 1• /\ w = 1: then 11 = I' = 
w = 1, hence h = c = d = a. This yields that t = a. Again. 
this is in agreement with a = t 6 l. 

Having a recovered from I. ·11. 1•. w, we can recover Ii from 
11 = (a 6 b) 6 a= u 6 t 6 (H /\ v /\ ·w). Similarly, we can 
find c and d. This leads to synthesis operators, given by t2J and 

w}(y)(2n) = y,.(n) /\ Y1i(n) /\ Yt1(n) 

w! (y)(2n+) = :1/h(n) 6 (y, (n) /\ Yh(n) !\ ,lld(n) 

wl(y)(2n+) = :11,.(n) 6 (y,(nl /\ Yn(n) /1 .lldinll 

wl (y)(2ntJ = yi1(n) 6(y,.(n)/\1Ji,(nl /\ ,11.1in1l 

It is again not difficult to show that conditions (7H9l are all 
satisfied, provided that+ is taken to be the "exclusive OR".op­
erator. An example, illustrating one step of this decompos1twn. 
is depicted in Fig. 9. 

V. LIFTING SCHEME 

A useful and very general technique for constructing ne\v 
wavelet decompositions from existing ones has been recen.t!y 
proposed by Sweldens [23 J-!25 ], and is kMwn as the l~fnng 
scheme. Lifting amounts to modifying the analysis. and ~yn­
thesis operators in such a way that the_ propert1~s ol the mod­
ified scheme are "better" than those ot the ongmal one. Here. 
"better" can be interpreted in different ways. For example. m 
the linear case. it may mean that the number of vanishing mo­
ments is larger. Lifting can be used to construct wavele~ decom­
positions for signals that are defined on arbitrary domams. or t~) 
construct nonlinear coupled or uncoupled wavelet decomposi­
tions (in the sense of the definitions given in Section III l. wh1d1 
is of interest to us. Two types of lifting schemes can be d1st111-

ouished: 
"' • Prediction Lifting. This modifies the detail analysis oper­

ator u-· 1 and the signal synthesis operator W' in the rnupled 
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(a] (b] 

Fig. 8. Multiresolution image decomposition based on the 2-D morphological Haar wavelet transform. (a) An image :rand (b) its decomposition into the scaled 
image 4• 1 ( :r), given by ( 18), and the detail images w,, ( :r), w h ( J') and wc1( .r), given by (20)-(22). 

(a) (b] 

Fig. 9. Multiresolution binary image decomposition based on the 2-D median wavelet transform. (a) Binary image :r and (b) its decomposition into the scaled 
image ,,. 1 ( .r ), given by (24), and the detail images w ,,( .r), "''i.( .r) and u.!d( .r ), given by (25)-(27). 

case, or the signal synthesis operator 1/J! in the uncoupled 
case. 

• Update Lifting. This modifies the signal analysis operator 
1/1 T and the signal synthesis operator W l in the coupled 
case, or the detail synthesis operator w! in the uncoupled 
case. 

We treat these two cases separately. In both cases, the lifting 
operator may differ from level to level. However, for simplicity 
we restrict ourselves to operators between levels 0 and 1. 

A. Prediction L(fting 

Consider one level of a coupled wavelet decomposition 
scheme, governed by the analysis operators 1) T: V0 --+ V1 , 

w T: V0 -+ WI and the synthesis operatonid: Vi x W1 -+ Vo, 
such that the conditions (1), (2) are satisfied. In many appli-

cations, such as data compression, it is desirable to develop 
wavelet schemes that produce small detail signals YI = w T ( .1:0 ). 

Starting from a scheme like above, we might try to decrease 
the detail signal YI by utilizing signal information contained 
in XI = 'I/; T (x 0 ). This may be accomplished by means of a 
prediction operator n: V1 --+ W1 and a difference operator _:.. 
on W1 and by setting 

(28) 

as the new detail signal. This leads to the analysis step depicted 
in Fig. 10. 

Assume now that there exists an addition operator + on W 1 

such that 
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Fig. 10. Analysis and synthesis steps of a prediction lifting scheme. 

It is evident that the original signal x 0 can be reconstructed from 
x 1 and Yi , since 

Xo = W1(x1, Y1) = W1(xi, y~ + ?r(X1)). 
This leads to the synthesis step depicted in Fig. 10. Thus, we ar­
rive at the prediction lifting scheme with analysis and synthesis 
operators given by 

'1/JJ(x) ='1/JT(x), wJ(x) = wi(x)..:. 7r'l/JT(x), x E Vo 
(30) 

(31) 

To show that this defines a coupled wavelet decomposition 
scheme, we must verify that 'l/JJ, wJ, and iI!~ satisfy conditions 
(1) and (2) as well. Indeed, let x E V0 ; then 

w~('l/JJ(x), wJ(x)) 

= wl('l/JJ(x), wJ(x) + 7r'l/JJ(x)) 

= W l ( '1/J T ( x), ( w T ( x) ..:. ?r'lj; T ( x)) + 7r'l/J T ( x)) 

= wl('lj;T(x), wT(x)) = x 

where we have used ( 1) for the original scheme, and (29)-(31 ). 
Now, let x E Vi, y E W1; then 

'l/JJ(iI!~(x, y)) = 'lj;T(wl(x, y + 7r(x))) = x 

where we have used the first equation in (2) for the original 
scheme, and (30) and (31). Finally, let x E V1, y E W1; then 

wJ(w~(x, y)) 
= wi(wl(x, y + 7r(x)))::.. 7r'l/Ji(w1(x, y + 7r(x))) 

= (y + 7r(X)) _: 7r(X) = y 

where we have used (2) and (29)-(31). In these expressions,+ 
and ..:. can be the standard addition and subtraction, respectively, 
but other choices can be envisaged as well. In the binary case, 
for example, we may choose + and ::_ to be the exclusive OR. 
An example will be given in Example 5. 

The following result provides some additional properties for 
the case when the initial wavelet decomposition is uncoupled. 

Proposition 1: Consider an uncoupled wavelet decomposi­
tion scheme between Vo and V1 , W1, with synthesis operators 
'lj;l, w!, a prediction operator 7r: V1 --> W1, and binary opera­
tions +, ..:. on W1 such that (29) is satisfied. Furthermore, as­

sume that 

1) binary operator+ on Vo is associative and commutative; 
2) wl: W 1 _.. Vo is "linear," in the sense that 

wl(y1 + y2 ) = wl(yi)+wl(yz), Y1, Y2 E W1. (32) 

Then, the prediction-lifted wavelet decomposition, given 
by (30), (31 ), is uncoupled (with respect to the same ad­
dition operator +) with synthesis operators 

lf;~(x) = ~! 1 (.r)+wl7r(x) and w},(y) = wl(y). 

Proof' Under the given assumptions, we can write 

w;(x, y) ='Iil(.r, y + ir(x)) = ~,l(J·)+wl(y -t- 7r(J')) 

= 11'11(:r}+(w1(y)+wl7r(x)) 

= ('~1l(J~)+wlrr(x))+wl(y), 
which proves the result. • 

Example 3 (Lifting the Morphological Haar 
Wavelet): Consider the morphological Haar wavelet discussed 
in Section IV-A. Recall that Vii = Vi = W1 = R1 and that + 
is the standard addition. Let + and ..:. on W1 be defined by 

Yi+ Y2 = !(Y1 + Y2) and Y1..:.. Y2 = 2111 - !12 

where +, - are the standard addition and subtraction. Obvi­
ously, the equalities in (29) are satisfied. Define the prediction 
operator rr: Vi -> W1 by 

7r(:r)(n) = x(n) - .r(n + 1). 

From (14)-(17), (30) and (31), we obtain a coupled nonlinear 
wavelet decomposition scheme with analysis and synthesis op­
erators given by 

v;J(x)(n) 
=x(2n)Ax(2n+l) (.33) 

wJ(:r)(n) 
= 2(x(2n) - :r(2n + 1)) - (J-(211) /\ .r(2n +I)) 

+ (1:(2n + 2) /\ :r(2n + 3)) (341 

iJ!; ( :r, y) (2n) 

= 1:(n) + [~(y(n) + 1:(11) - .r(n + 1)) V OJ (35) 

iJ!~(x, y)(2n + 1) 

= x(n) - [~(y(n) + 1·(n) - :r(n + 1 )) /\OJ. (36) 

This scheme has two "vanishing moments" as opposed to the 
morphological Haar wavelet that has only one. By one "van­
ishing moment" we mean that a constant input signal .r(11) = h 
produces a zero detail signal, whereas by two "vanishing mo­
ments" we mean that a linear signal :r(11} = an+ b produces 
a zero detail signal. This is illustrated in Fig. 11. Observe that 
the wavelet transform in (33), (34) maps integer-valued signals 

onto integer-valued signals. • 
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Fig. 11. Morphological Haar wavelet decomposition scheme, with analysis operators ,,.r, c..-•1, as compared to the wavelet decomposition scheme (33), (34) 

obtained after prediction lifting. Notice that w I ( .r) is zero at points where the input signal is constant, whereas w J ( .r) is zero at points where the input signal is 

linear. 

B. Update Liftin[!, 

Instead of modifying the detail signal y1 , as we did in (28 ), we 
may choose to modify the scaled signal :1: 1 using the informa­
tion in y1 . We assume that there exist addition and subtraction 

operators +, ..::.. on Vi such that 

(:D1 + :r2)..::.. :r2 = (:r1 ..:.. :r2) + :r:2 = :r1, :r1, J:2 E Vi. (37) 

We get a modified scaled signal by setting 

(38) 

Here, ,\ is an operator, mapping W 1 into Vi, called the update 
operator. Although, in principle, every mapping >. can be al­
lowed as an update operator, in practice we choose >. in such a 
way that the resulting scaled signal satisfies a certain constraint. 
In the linear case, it is often required that the resulting analysis 
filter x 0 1-7 x~ is a lowpass filter. Alternatively, we may re­
quire that this mapping preserves a given signal attribute (e.g., 
average or maximum). If the unmodified scaled signal x 1 does 

not satisfy the constraint, we may choose >. in such a way that 
:r'1, given by (38), does satisfy this constraint. We refer to the 
work of Sweldens [23]-[25] and Daubechies and Sweldens [38] 
for more details. 

The update step in (38) gives rise to the diagrams depicted in 
Fig. 12. It is clear that the input signal :r0 can be reconstructed 

from J;~ and Y1, since 

Thus, we an-ive at the update lifting scheme with analysis and 
synthesis operators given by 

w~(:i:, y) = wl(:i: + >.(y), y). 

:r E Vo 

(39) 

(40) 

In the same way as we did for the prediction lifting scheme, we 
can show that (39) and ( 40) defines a coupled wavelet decompo-
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Fig. 12. Analysis and synthesis steps of an update lifting scheme. 

sition scheme. Furthermore, the following analogue to Proposi­
tion l can be established. 

Proposition 2: Consider an uncoupled wavelet decomposi­
tion scheme between Vo and Vi, W1 , with synthesis operators 
·1/; l , w ! , an update operator ,\: W1 ____, Vi, and binary operations 
+, .:__ on Vi such that (37) is satisfied. Furthermore, assume that 

1) binary operator + on Vo is associative and commutative; 
2) ·1/' 1: Vi ____, V0 is "linear," in the sense that 

Then, the update-lifted wavelet decomposition, given by 
(39) and (40), is uncoupled (with respect to the same ad­
dition operator +) with synthesis operators 

In the following example we build a nonlinear wavelet 
scheme by concatenation of a prediction and an update lifting 
step. 

Example 4 (lifting Based on the Median Operator): Let us 
take ..:, .:__ to be the standard subtraction, and +, +, + to be 
the standard addition. Consider the case of a prediction-update 
lifting scheme with initial signal decomposition given by means 
of the lazy wavelet, and prediction and update operators given 
by 

7T(;r:)(n) = :i:(n), >.(y)(n) = -median(O, y(n - 1), y(n)). 
(42) 

We obtain an uncoupled wavelet decomposition scheme, with 
analysis and synthesis operators given by 

1f;J,u(:r:)(n) 

= :i:(2n) +median 

. (0, :i:(2n - 1) - :t(2n - 2), :r:(2n + 1) - :c(2n)) (43) 

w1l.,J :i:) ( n) 

= :r:(2n + 1) - :c(2n) 

1f;~u (:r)(2·ri) 

= ·1/,~ 11 (:1:)(2n + 1) = :i:(n) 

w~u(y)(2n) 
= -median(O, y(n - 1), y(n)) 

w1~.11 (y)(2n + 1) 
= :IJ(n) - median(O, y(n - 1), y(n)). 

(44) 

(45) 

(46) 

Notice that, the update operator adjusts the value of .r( 211) based 
on the local structure of the input signal .r( 11). ff the difference 
:z:(2n -1) -:r(2n-2) is negative (or positive) and the differem:e 
:r(2n + 1) - s(2n) is positive (ornegative), then no adjustment 
is made. This happens, for ex.ample. when .r( is a local min­
imum (or maximum), as illustrated in Fig. I 3(a). If however both 
differences 1:(2n- l )-.r(2n-2) and I )-.r( 211 are neg­
ative (or positive), then .r( 211) is adjusted by adding the smallest 
(in absolute value) difference. For example. when 11) (lo-
cally) oscillates between two values, as depicted in B1b1. 
then (43) will bring .1:(2n) in line with .r(2n - l J, thus get­
ting a scaled signal lj•1L (.r) that approximates .r '"better" than 
the scaled signal (.r) before prediction-update lifting. Con­
cerning the last property. one may observe that it holds for pos­
itive as well as for negative constants t'. 

Alternatively. we may choose 

rr(:r)(n) = ~(.r(n) + + 1)) 

and ,\(y) as in (42). This choice leads to an uncoupled wavdd 
decomposition scheme that has two "vanishing moments." in 
the sense that the detail signal, resulting from an input 
:i:( n) = an + b, will be zero. 

Finally, one can replace the previous linear prediction oper· 
ator, with the nonlinear prediction operator 

rr(:1:)(n) = median(.r(n -1) .. r\11) .. /'\II+ l)J. 

This choice. together with (42) for the update operator. lead~ ll) 

a coupled wavelet decomposition scheme. . • 
Example 5 (l~iing B!nar)~ Wavel~'ts): L~t us now n~ns'.der 

the binary case, for which \o = h = H i = { ll. I } · fhe 
previous example, based on the median operator. can be refor­
mulated for binary signals as well. For this case. we take - , . 
+.+.+to be the "exclusive OR" operator D.. We can now pro­
ceed with a prediction-update lifting scheme. with initial signal 
decomposition given by means of the lazy wavelet and predic­
tion and update operators given by 

rr( J: )(n) = J'(n) 
>.(y)(n) =rnedian(O, !/(11 -1), y(n)) = y(11) 1'\ 11(11 - 1). 
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Fig. 13. Illustration of update lifting by means of (43). (a) Since .r(2n) is a local minimum in :r, (43) maps .r(2n) into itself. (b) Since J:(2n - 1) - .r(2n - 2) = 
x(2n + 1) - :r( 2n) = -1, the value x(2 n) is reduced by one, thus obtaining a scaled signal 1/'~u ( .r) that approximates .r "better than the scaled signal 1/' T ( :r) 
before prediction-update lifting. 

Noticethatmedian(O, s, t) = s/\t,fors, t. E {O, l}. The anal­
ysis and synthesis operators resulting from this lifting scheme 
can be expressed as 

'l/1J 11 (:i:)(n) 

= aT(:r(2n - 2), :1:(2n - 1), :r(2n), :i:(2n + 1)) 

wJ,,(:i:)(n) 

= {} (:c(2n - 2), :i:(2n - 1), :r:(2n), :1:(2n + 1)) 

wtJi:, y)(2n) 

= al(:i:(n), y(n - l), y(n)) 

w~u(x, y)(2n + 1) 

= bl(x(n), y(n - 1), y(n)) 

where a T, b T, al, bi are Boolean functions given by 

a1(u1, u2, 'U3, ·u4) =u3 + ('u1 + u2 - 2v.1·u2)(u4 - u3) 

bT(u1, u2, V.3, ·u4) =v.3 + V.4 - 2u3v.4 

a1(u1, u2, 11.3) =u1 + (1- 2u1)v.zu3 

b1(u1, u2, 7i3) =u1 + (1 - 2·u1)(l - u2)u3. 

Clearly, the resulting wavelet decomposition scheme is coupled 
and self-dual, in the sense that 

where x(n) = 1 - :c(n). • 
We now mention the following important consequence of 

Proposition 1 and Proposition 2. If the wavelet decomposition 
used as a starting point for lifting is uncoupled and "linear," in 
the sense that the synthesis operators wl, 'ljJl satisfy (32), (41), 
if the binary operators +, +(on W1 and Vi) satisfy (29), (37), 
and if the binary operator + on V0 is associative and commuta­
tive, then the resulting scheme after one lifting step (prediction 
or update) is also uncoupled. However, after a second lifting 
step (of the opposite type) the scheme will become coupled in 
general. This implies that prediction-update and update-predic­
tion lifting schemes will in general give rise to coupled wavelet 
decompositions, even if all assumptions associated with Propo­
sition 1 and Proposition 2 are satisfied. For example, prediction 
lifting as described in Proposition 1 yields a modified synthesis 
operator 1/J~ which is no longer "linear" and thus Proposition 2 
is not applicable to the prediction lifted scheme. 
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Fig. 14. Diagram illustrating the 1-D ma rft" h Th hi · 
• . • 1 • • . x- i. mg sc em_e. e w te nodes contain the scaled signal J· 1 (resp. ,,. ' 1. wherea; the 

sign~! .IJ1 (resp . .Y1 ). ~he firs.t hftmg step (pr~d1ct1on) modifies the detail signal, whereas the second lifting step (upd'.1te) modifies 
no\.k~~ t.:\tn!am 

~cakd ~i.µn..tl ".tH.:h thttf 
maxima are preserve . The m1t1al decompos1t10n "' 1-+ .t 1 , y1 is done by means of the lazy wavelet. · 

Finally, we point out that Daubechies and Sweldens [38] have 

s_h~wn that linear wavelet transforms can be decomposed into 

hftrng steps. To what extent such a result can be generalized to 
the nonlinear case remains to be seen. 

VI. MAX- AND MIN-LIFTING SCHEMES 

In this section, we briefly discuss a particular example of a 

wavelet decomposition, by means of prediction-update lifting, 

that leads to the so-called max-lifting scheme. More details on 

~is scheme will be provided in a forthcoming paper. We take ..:.. . 

- to be standard subtraction,+, +, -i- to be standard addition, 

and we choose prediction and update operators as 

w(:c)(n) = :c(n)V:c(n+l), >.(y)(n) = -(OVy(n-l)Vy(n)). 

In this case 

11~ ( n) = Y1 ( n) - ( :.r:1 (n) V .1: 1 (n + 1)) (prediction) (47) 

x~(n) =:z: 1 (n) + (0 Vy~(n -1) Vy~(n)) (update). (48) 

Thus, as a prediction for 111 ( n) we choose the maximum of its 

two neighbors in :r; 1 , i.e., x 1 (n) and x 1 ( n + 1). The update step 

is chosen in such a way that local maxima of the input signal :r 1 

are mapped to the scaled signal :i:~ (see below). Here, a signal 

:r is said to have a local maximum at n if :r(n) 2 :1:(n ± 1). 
The max-lifting scheme yields a coupled wavelet decomposi­

tion. This is in agreement with observations made before, since 

the max-lifting scheme is constructed by means of two nonlinear 

lifting steps. 
Given an input signal x, let :.r: 1 , y1 be the corresponding 

lazy wavelet decomposition [i.e., x 1 ( n) x( 2n) and 

Y1 (n) = :c(2n + 1) ], and let :.r:i, y~ be the output given by the 

max-lining wavelet decomposition. The following properties 

can be established [31]: 

1) If x has a local maximum at 2n, then ::ci has a local max­

imum atn with xi(n) = :r:(2n). 
2) Supposethatx(2n+l) 2'. x(2n+l+i), for-2 ~ i ~ 2. 

Then, xi has a local maximum at n or n + 1 with value 

:r( 2n + 1) depending on which value is the largest, x(2n) 

or x(2n + 2). 

3) If :i:; has a local maximum at 11. then has a lo<.: a! rnax. 
imum at m E { 211 - 1. 211. 211 + I} and .r; ( 11 ! :::: n 

Refer to Fig. 14 for an illustration. Propertie~ I .l and 2 .1 mean 
that local maxima of the input signal.rare mapped to 1he \caled 

signal :r;. Property 3 ), on the other hand, guarantees that no nelA 

local maxima of the signal are being created the ~chemt'. 

If we replace the maximum in (47l and 1481 with minimum. 
we obtain the dual scheme. which we refer to as the 
scheme. The previous properties can be modified 
by replacing 2 with:::; and "maximt.mf' with '"minimum." 

We can extend the max- and min-lifting ~chemt•s ltl 1-v..o di· 

mensions by sequentially applying the 1-D <Ill 

the columns and rows of a 2-D image. Fig. !5 depich !he re­

sult of a single level wavelet image dccompositi<lO rnemh of 

max-lifting. Notice that the decomposition produce~ tmt' ~cakd 
image and three detail images (a horizontal. verticaL and 

onal detail image). Notice also that the detail are tern 
(or almost zero) at areas of smooth graylevel variatinn. and th<H 

sharp graylevel variations are mapped to negati\l' lhladd J.:ta!i 

signal values. 
Example 6: We now illustrate the 1-D max-!if!ing and mrn­

lifting schemes, applied on a signal 11 l of 5 l 2 ,md 
demonstrate the potential of these scheme~ for e\lf<Kting re· 

gions of stationary signal behavior. We may as>.ume that a 

,i:0 ( n) consists of noise. representing signal variation within :1 

region, superimposed on a piecewise Ct)!lstant signal 'ui rep­

resenting regions of stationary signal behavior. We are in!l're~tcd 

in obtaining an approximation .0n of 8u from given d:ita .r". 
A very important observation here is that the 

scheme preserves the number and shapes of llat n:gion~ 111 

a piecewise constant signal. This is a direct conse4uenl"t' 

of the fact that this scheme preserves loeal maxima :md. 

moreover, it does not create new ones. It is therefore ,.,. 

pected that max-lifting will preserve, over a range of s.:aks. 

the number and shapes of regions of constant signal vult1< .. '. 

Fig. 16 depicts the results of seven experiments based <m a 

three-level linear wavelet decomposition schemt>. a four-level 

max-lifting scheme. and a four-level min-lifting scheme. 
Our computations consist of three steps: l l signal analysis 
x 0 1-> {:r,,. flk· !/k-l· ···./I!}, 2l filtering of the' detail 

signals 1/J 1-> Yr for j = 1. 2. · · ·. k. and 3l sign:ll synthesis 
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Fig. 15. Single-level separable image decomposition by means of max-lifting. 

{xk, fh,, f.h-1, · · ·, 1/i} e-+ xo = so. Fig. 16(a) depicts a 
signal xo with regions of stationary signal behavior, depicted 
by the signal so ( n) plotted with a thick line. In this case, 
the noise component has been generated by smoothing (with 

a four-tap averaging mask [1/4, 1/4, 1/4, 1/4]) zero mean 
white Gaussian noise with unit variance. Fig. 16(b) depicts 
the signal so (plotted with a thick line), obtained by means of 
a three-level linear denoising scheme [the use of a denoising 
scheme is justified here by considering s0 (n) as the noise-free 
signal to be recovered by means of denoising, and the signal 
variation within a particular signal region as noise to be 
removed by denoising]. This scheme performs a three-level 
signal analysis by using the Symmlet-8 wavelet [30], filters 
the detail signals by means of the soft thresholding operator 

y(n) = sign(y(n))(\y(n)\ - t), if \y(n)\ > t, and y(n) = 0, 
if \y(n)\ :S t, where t = 1J2 * ln N [39], and produces 
signal so by means of signal synthesis based on the filtered 
detail signals. We set 1 = 1. It is worthwhile noticing that, 
although signal variation has been substantially reduced, the 
reconstructed signal .5o fails to capture the staircase structure 
of signal s0 . This is mainly due to the linear nature of the 
wavelet decomposition scheme used. The signal .§ 0 depicted in 
Fig. 16(c) has been obtained by using the max-lifting scheme 
with y(n) = y(n) v 0, whereas, Fig. 16(d) depicts the signal s0 

obtained by using the min-lifting scheme with y(n) = y(n) /\ 0. 
By taking y( n) = JJ( n) V 0, we preserve positive detail signal 
information, whereas we discard negative information (i.e., 
we apply max-thresholding). By taking y(n) = y(n) /\ 0, 
we preserve negative detail signal information, whereas we 
discard positive information (i.e., we apply min-thresholding). 
Notice that the signal .§ 0 depicted in Fig. 16( c) is larger than the 
original signal ;1; 0 (n) [i.e., .50 is like an "upper envelope" for 
x 0 ( n)]. In [31 ], we have shown that the corresponding operator 
x 0 e-+ so is a morphological closing, and it is therefore exten­
sive. The signal so depicted in Fig. 16(d) is smaller than signal 
x 0 (n) [i.e., so is like a "lower envelope" for :z:o(n)]. On the 
other hand, Fig. 16(e) depicts the signal so obtained by using 
the max-lifting scheme with soft thresholding (with 1 = 1), 
whereas the signal .§0 depicted in Fig. 16(f) has been obtained 
by means of the min-lifting scheme with soft thresholding 

(with r = 1). Fig. 16(g) depicts the signal so obtained by 
means of applying max-lifting on x 0 with max-thresholding, 
followed by min-lifting with min-thresholding. On the other 
hand, Fig. 16(h) depicts the signal .§ 0 obtained by means of 
applying max-lifting on ::r: 0 , followed by min-lifting; denoising 
is obtained by applying soft thresholding on the detail signals 
(with 1 = 0.4), in the same manner as in Fig. 16(e) and (f).No­
tice that, in both cases, signal variation has been substantially 
reduced, whereas the resulting signal successfully captures the 
staircase nature of signal s0 . I 

VII. CONCLUSIONS AND FINAL REMARKS 

The main objective of the work presented in this paper was to 
provide a rigorous theoretical approach to the problem of non­
linear wavelet decomposition and develop tools that can be ef­
fectively used for building nonlinear multiresolution signal de­
composition schemes that are nonredundant and guarantee per­
fect reconstruction. The nonlinear schemes discussed as exam­
ples in this paper enjoy some useful and attractive properties. 

1) Implementation can be done extremely fast by means of 
simple operations (e.g., addition, subtraction, max, min, 
median, etc.). This is partially due to the fact that only in­
teger arithmetic is used in calculations and that use of pre­
diction/update steps in the decomposition produces com­
putationally efficient implementations. 

2) If the input to the proposed schemes is integer-valued, 
the output will be integer-valued as well. Clearly, these 
schemes can avoid quantization, an attractive property for 
lossless data compression. 

3) The proposed schemes can be easily adapted to the case of 
binary images. This is of particular interest to document 
image processing, analysis, and compression applications 
(and other industrial applications) and is important on its 
own right (e.g., see [40] for a recent work on constructing 
wavelet decomposition schemes for binary images). 

4) Due to the nonlinear nature of the proposed signal 
analysis operators, important geometric information 
(e.g., edges) is well preserved at lower resolutions. In 
the case of the max- (min-) lifting schemes, for example, 
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Fig. 16. (a) Signal .r 0 with regions of stationary signal behavior (plotted with a thick line). The result of applying on ro a denoising scheme based on: 1bl the 
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local maxima (minima) are well preserved at lower 
resolutions. This property may tum out to be particularly 
useful in wavelet-based pattern recognition approaches 
as, for example, wavelet-based face recognition schemes 
[41]. 

Despite all these attractive properties, a number of open theo­
retical and practical questions need to be addressed before such 
tools become useful in signal processing and analysis applica­
tions. For example, we need to better understand how to design 
prediction and update operators that lead to nonlinear wavelet 
decompositions that satisfy properties key to a given applica­
tion at hand, e.g., see the max-lifting scheme discussed in Sec­
tion VI. Another problem of interest is to investigate the rela­
tionship between the discrete nonlinear approach presented in 
this paper and another nonlinear multiresolution approach to 
signal analysis known as nonlinear (morphological) scale spaces 
[ 42]-[46]. In fact, due to the popularity ofnonlinear scale spaces 
in signal analysis, it may be attractive to investigate the design 
of nonlinear filter banks by means of discretizing continuous 
morphological scale spaces. Toward this direction, Pouye et al. 
[20] have recently proposed a nonlinear filter bank that is built 
by discretizing nonlinear partial differential equations (PDEs) 
used in scale-space theory. This is a very interesting approach 
for constructing nonlinear filter banks that may be compatible 
with current multiscale signal analysis techniques based on non­
linear PDEs. 

ACKNOWLEDGMENT 

The authors would like to thank J.-C. Pesquet for interesting 
and stimulating discussions and suggestions. Moreover, the au­
thors would like to thank the reviewers and P. Moulin, the Asso­
ciate Editor handling this paper, for their helpful comments and 
suggestions. 

REFERENCES 

[I] J. Goutsias and H.J. A. M. Heijmans, "Nonlinear multiresolution signal 
decomposition schemes-Part I: Morphological pyramids," IEEE 
Trans. Image Processing, vol. 9, pp. 1862-1876, Nov. 2000. 

[2] P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact 
image code," IEEE Trans. Commun., vol. 31, pp. 532-540, 1983. 

[3] P. Maragos, "Morphological skeleton representation and coding of bi­
nary images," IEEE Trans. Acoust., Speech, Signal Processing, vol. 34, 
pp. 1228-1244, 1986. 

[4] 0. Egger and W. Li, "Very low bit rate image coding using morpholog­
ical operators and adaptive decompositions," in Proc. IEEE Int. Conf 
Image Processing, Austin, TX, 1994, pp. 326-330. 

[5] D. A. F. Florencio and R. W. Schafer, "A nonexpansive pyramidal mor­
phological image coder," in Proc. IEEE Int. Conf Image Processing, 
Austin, TX, 1994, pp. 331-335. 

[6] 0. Egger, W. Li, and M. Kunt, "High compression image coding using 
an adaptive morphological subband decomposition," Proc. IEEE, vol. 
83, pp. 272-287. 1995. 

[7] D. A. F. Florencio, "A new sampling theory and a framework for non­
linear filter banks," Ph.D. dissertation, School Elect. Eng., Georgia Inst. 
Technol., Atlanta, 1996. 

[8] F. J. Hampson and J.-C. Pesquet, "A nonlinear subband decomposition 
with perfect reconstruction," in Proc. IEEE Int. Conf Acoustics, Speech, 
Signal Processing, Atlanta, GA, May 7-10, 1996, pp. 1523-1526. 

[9] H. Cha and L. F. Chaparro, "Adaptive morphological representation of 
signals: Polynomial and wavelet methods," Multidimen. Syst. Signal 
Process., vol. 8, pp. 249-271, 1997. 

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 11, NOVEMBER 2000 

[10] R. Claypoole, G. Davis, W. Sweldens, and R. Baraniuk, "Nonlinear 
wavelet transfom1s for image coding," Proc. 3lst Asi/omar Conf 
Signals, Systems, Computers, vol. 1, pp. 662-667, 1997. 

[11] F. J. Hampson, ''Methodes non lineaires en codage d'images et estima­
tion de mouvement," Ph.D. dissertation, Univ. Paris XI Orsay, Paris, 
France, 1997. 

[12] R. L. Claypoole, R. G. Baraniuk, and R. D. Nowak, "Adaptive wavelet 
transforms via lifting," in Proc. IEEE Int. Conf. Acoustics, Speech, 
Signal Processing, Seattle, WA, May 12-15, 1998. 

[13] --, "Lifting construction of nonlinear wavelet transforms," in Proc. 
IEEE-SP Int. Symp. Time-Frequency Time-Scale Analysis, Pittsburgh, 
PA, Oct. 6-9, 1998, pp. 49-52. 

[14] P. L. Combettes and J.-C. Pesquet, "Convex multiresolution analysis," 
IEEE Trans. Pattern Anal. Machine Intel/., vol. 20, pp. 1308-1318, 
1998. 

[15] J. Goutsias and H. 1. A. M. Heijmans, "An axiomatic approach to mul­
tiresolution signal decomposition," in Proc. IEEE Int. Conf Image Pro­
cessing, Chicago, IL, Oct. 4-7, 1998. 

[16] --, "Multiresolution signal decomposition schemes-Part I: Linear 
and morphological pyramids," CW!, Amsterdam, The Netherlands, 
Tech. Rep. PNA-R9810, Oct. 1998. 

[17] F. J. Hampson and J.-C. Pesquet. "cU-band nonlinear subband decom­
positions with perfect reconstruction," IEEE Trans. Image Processing, 
vol. 7, pp. 1547-1560, Nov. 1998. 

[18] H.J. A M. Heijmans and J. Goutsias, "Some thoughts on morpholog­
ical pyramids and wavelets," in Signal Processing IX: Theories and Ap­
plicatiom·, S. Theodoridis, I. Pitas, A. Stouraitis, and N. Kaloupsidis, 
Eds. Rhodes, Greece: EUSIPCO, Sept. 8-11, 1998, pp. 133-136. 

[19] --, "Morphology-based perfect reconstruction filter banks," in Proc. 
IEEE-SP Int. Symp. Time-Frequency Time-Scale Analysis, Pittsburgh, 
PA, Oct. 6-9, 1998, pp. 353-356. 

[20] B. Pouye, A. Benazza-Benyahia, I. Pollak, J.-C. Pesquet, and H. Krim, 
"Nonlinear frame-like decompositions," in Signal Processing IX: The­
ories and Applications, S. Theodoridis, I. Pitas, A. Stouraitis, and N. 
Kaloupsidis, Eds. Rhodes, Greece: EUSIPCO, Sept. 8-11, 1998, pp. 
1393-1396. 

[21] R. L. de Queiroz, D. A. F. Florencio, and R. W. Schafer, "Nonexpansive 
pyramid for image coding using a nonlinear filterbank," IEEE Trans. 
Image Processing, vol. 7, pp. 246-252, Feb. J 998. 

[22] R. L. Claypoole, R. G. Baraniuk, and R. D. Nowak, "Adaptive wavelet 
transforms via lifting," Dept. Elect. Comput. Eng., Rice Univ., Houston, 
TX, Tech. Rep. 9304, Apr. 1999. 

[23] W. Sweldens, 'The lifting scheme: A new philosophy in biorthogonal 
wavelet constructions," in Proc. SPIE Wavelet Applications Signal 
Image Processing III, vol. 2569, A. F. Lain and M. Unser, Eds., 1995, 
pp. 68-79. 

[24] --, "The lifting scheme: A custom-design construction of biorthog­
onal wavelets," Appl. Comput. Harmon. Anal., vol. 3, pp. 186-200, 
1996. 

(25] --, "The lifting scheme: A construction of second generation 
wavelets," SIAM.f.Math.Anal., vol. 29, pp. 511-546, 1998. 

[26] F. A M. L. Bruekers and A. W. M. van den Enden, "New networks 
for perfect inversion and perfect reconstruction," IEEE J. Select. Areas 
Commun., vol. JO, pp. 130-137, 1992. 

[27] H. J. A M. Heijmans and J. Goutsias, "Constructing morphological 
wavelets with the lifting scheme," in Pattern Recognition Information 
Processing, Proc. 5th lnt. Conf Pattern Recognition Information Pro­
cessing (PRJP'99), Minsk, Belarus, May 18-20, 1999, pp. 65-72. 

[28] S.-C. Pei and F.-C. Chen, "Subband decomposition of monochrome 
and color images by mathematical morphology," Opt. Eng., vol. 30, pp. 
921-933, 1991. 

[29] --, "Hierarchical image representation by mathematical morphology 
subband decomposition," Pattern Recognit. Lett., vol. 16, pp. 183-192, 
1995. 

[30] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA: Aca­
demic, 1998. 

[31] H.J. A. M. Heijmans and J. Goutsias, "Multiresolution signal decom­
position schemes-Part 2: Morphological wavelets," CW!, Amsterdam, 
The Netherlands, Tech. Rep. PNA-R9905, July 1999. 

[32] M. Vetterli and J. Kovacevic, Wavelets and Subband 
Coding. Englewood Cliffs, NJ: Prentice-Hall, 1995. 

[33] S. Ranganath and H. Blume, "Hierarchical image decomposition and 
filtering using the S-transform." Proc. SPIE Workshop Medical Imaging 
II, vol. 914, pp. 799-814, 1988. 

[34] A. Said and W. A. Pearlman, "An image multiresolution representation 
for lossless and lossy compression," IEEE Trans. Image Processing, vol. 
5, pp. 1303-1310, 1996. 



HEUMANS AND GOUTSIAS: PART 2: MORPHOLOGICAL WAVELETS 

[35] J. Serra, Image Analysis and Mathematical Morphology. London, 
U .K.: Academic Press, 1982. 

[36] H.J. A. M. Heijmans, Morphological Image Operators. Boston, MA: 
Academic, 1994. 

[37] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, "Wavelet 
transforms that map integers to integers," Appl. Comput. Harmon. Anal., 
vol. 5, pp. 332-369, 1998. 

[38] I. Daubechies and W. Sweldens, "Factoring wavelet transforms into 
lifting steps," J. Fourier Anal. Applicat., vol. 4, pp. 245-267, 1998. 

[39] D. L. Donoho, "De-noising by shoft-thresholding," IEEE Trans. Inform. 
Theory, vol. 41, pp. 613-627, 1995. 

[40] M. D. Swanson and A. H. Tewfik, "A binary wavelet decomposition of 
binary images," IEEE Trans. Image Processing, vol. 5, pp. 1637-1650, 
Dec. 1996. 

[ 41] R. Chellappa, C. L. Wilson, and S. Sirohey, "Human and machine recog­
nition of faces: A survey," Proc. IEEE, vol. 83, pp. 705-740, 1995. 

[42] L. Alvarez and J.M. Morel, "Formalization and computational aspects 
of image analysis," Acta Numer., pp. 1-59, 1994. 

[43] R. W. Brockett and P. Maragos, "Evolution equations for continuous­
scale morphological filtering," IEEE Trans. Signal Processing, vol. 42, 
pp. 3377-3386, 1994. 

(44] P. T. Jackway and M. Deriche, "Scale-space properties of the multiscale 
morphological dilation-erosion," IEEE Trans. Pattern Anal. Machine In­
tel/., vol. 18, pp. 38-51, Jan. 1996. 

[45] R. van den Boomgaard and A. Smeulders, "The morphological structure 
of images: The differential equations of morphological scale-space," 
IEEE Trans. Pattern Anal. Machine Intel/., vol. 16, pp. 1101-1113, 
1994. 

(46] J. Weickert,Anisotropic Diffusion in Image Processing. Stuttgart, Ger­
many: Teubner-Verlag, 1998. 

Henk J. A. M. Heijmans (M'97) received the M.S. 
degree in mathematics from the Technical University 
of Eindhoven, Eindhoven, The Netherlands, in 1981 
and the Ph.D. degree from the University of Ams­
terdam, Amsterdam, The Netherlands, in 1985. 

He joined the Center for Mathematics and Com­
puter Science (CWI), Amsterdam, where he worked 
on mathematical biology, dynamical systems theory, 
and functional analysis. Currently, he is heading the 
research theme "signals and images" at CWI. His pri­
mary research interests concern the mathematical as­

pects of image processing and, in particular, mathematical morphology and 
wavelets. 

191.1 

John Goutsias (S'78-M'86-SM'94) received the 
Diploma degree in electrical engineering from the 
National Technical University of Athens, Athen~. 
Greece, in 1981, and the M.S. and Ph.D. degrees 
in electrical engineering from the University of 
Southern California, Los Angeles, in 1982 and 1986, 
respectively. 

In 1986, he joined the Department of Electrical 
and Computer Engineering, The Johns Hopkins 
University, Baltimore, MD, where he is currently a 
Professor. His research interests inc 1 udc one-dimen­

sional and multi-dimensional digital signal processing, image processing and 
analysis, and mathematical morphology. He is currently an area editor for the 
Journal of Visual Communication and Image Representation and a Co-Editor 
for the Journal of Mathematical Imaging and Vision. 

Dr. Goutsias served as an Associate Editor for the IEEE TRANSACTIONS ON 

SIGNAL Pl'ROCESSING (1991-1993) and the IEEE TRANSACTIONS ON IMAGE 
Pl'ROCESSING ( 1995-1997). He is a member of the Technical Chamber of Greece 
and Eta Kappa Nu, and a registered Professional Electronics Engineer in Greece. 


