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Abstract 

The discrete approximation of a Dirichlet problem on an interval for a singularly perturbed 
parabolic PDE is studied. A small parameter c: multiplies the highest-order derivative. For 
smaU values of the parameter, boundary layers appear that give rise to difficulties when classical 
discretization methods are applied. 

For well-known special difference schemes the order of convergence is one and two, up to a 
small logarithmic factor, with respect to the time and space variables, respectively. To obtain 
c:-uniform convergence, we us.ed a grid with nodes that are condensed in the neighbourhood of 
the boundary layers. To obta,i.n the better approximation in time, we used auxiliary discrete 

problems on the same time-grid to correct the difference approximations. It allows us to receive 
an arbitrarily large order of convergence in time if the solution is sufficiently smooth. In this 
paper we develop effective par¥lel algorithms to solve the discrete equations based on defect · 
correction. To construct such algorithms, we use a modified Schw;:µ-tz alternating process. 

1. Introduction 

Special €-uniformly convergent difference schemes for singularly perturbed boundary value problems 
for parabolic equations are well developed, see, e.g., [1]-[3], [5]-[7]. If the problem data are sufficiently 
smooth, for the parabolic equations without convection terms, the order of c:-uniform convergence 
for the scheme that was studied is O(N-2 ln2 N + N01

), where N and No denote, respectively, the 
number of intervals in the space and time discretization. 

In [1, 2] we have developed an algorithm based on the defect correction principle which achieves 
a high order of accuracy with respect to the time variable and the second-order accuracy in space. 

In [7] parallel computational methods were introduced that allowed us to accelerate the numerical 
solution of singularly perturbed boundary value problems for parabolic reaction-diffusion' equations. 
It is attractively to use both technique as defect correction as parallel algorithm as well. 

In the present paper we develop a new parallel computational method to solve the system of 
grid equations arising when the defect correction technique is used for an approximations of the 
boundary value problem. By this way, we can achieve a high order of accuracy for the time variable, 
maintaining €-uniform convergence high-order accuracy in time, as well as a high efficiency of the 
algorithms due to parallel computations. It should be noted that this parallel method does not 
require iterations at each time level. 
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2. Problem formulation 
On the domain e = (O, 1) x (0, T], with the boundary S = e \ e we consider the boundary value 
problem for singularly perturbed parabolic equation 

L(2 .1 )u(x, t) = { E
2a(x, t) ::2 - c(x, t) - p(x, t) :t} u(x, t) = f(x, t), (x, t) E G, 

u(x, t) = cp(x, t), (x, t) E S. (2.1) 
Here S = S0 U S1 , Si = { (x, t) : x = 0 or x = 1, 0 < t :::; T}, So = { (x, t} : x E [O, 1], t = O}; 

a(x, t), c(x, t), p(x, t), f (x, t), (x, t) E G, and cp(x, t), (x, t) ES are sufficiently smooth and bounded 
functions, c takes any value from (0, 1]. 

When the parameter E tends to zero in (2.1), in the neighbourhood of the lateral boundary layers 
of parabolic type appear in the solution. , 

For problem (2.1) we are to construct a numerical method that has a higher order of accuracy 
with respect to the time variable and, in addition, admits parallel computations for the solution of 
the difference equations. 

3. Difference scheme on special mesh 
To solve problem (2.1) we first consider a classical finite difference method. On the set G we introduce 
the rectangular grid 

Gh = w x wo, (3.1) 
where w is the (possibly) non-uniform grid of nodal points, xi, in [O, 1], wo is a uniform grid on the 
interval [O, T]; N and No are the numbers of intervals in the grids wand w0 respectively. We defi11e 
T = T/No, hi= xi1;"l - xi, h =maxi hi, h:::; M/N, eh= en eh, sh = s n Gh, Mis sufficiently 
large positive constant, independent on E. 

For problem (2.1) we use the difference scheme [4] 

A(3.2)z(x, t) = j(x, t), (x, t) E eh, z(x, t) = cp(x, t), (x, t) E Sh, (3.2) 
where A(3.2)z(x, t) = { E

2 a(x, t)ox; - c(x, t) - p(x, t)Ot:} z(x, t), 

ox;z(xi' t) = 2(hi-l + hi)- 1 [oxz(xi' t) - Jxz(xi' t)], 
Oxz(x, t) and Ox-z(x, t), 6t:z(x, t) are the fo:r:ward and backward differences. 

To provide an E-uniform convergence of the difference scheme we use a special mesh, condensed 
in the neighbourhood of boundary layers [1, 2, 5, 6]: 

(3.3) 
Here w0 w0 (3 .1), w* = w*(O") is a special piecewise uniform mesh, O" = 0"(3 .3)(c,N) = 
min[d/4, mclnN], where m = m(3.3 ) is an arbit~ary positive number. The mesh w*(a) is con­
structed as follows. The interval [ 0, 1] is divided in three parts [ 0, O"], [ O", 1 - O"], [ 1 - O", 1], 
O <a:::; 1/4. In each part we use a uniform grid, with N/2 subintervals in [a, 1 - a] and with N/4 
subintervals in each interval [ 0, O"] and [ 1 - O", 1 ]. 

We assume that at the corner points Son S1 the following conditions hold 
Bk ako 

Bxk cp(x, t) = f)tko cp(x, t) = 0, k + 2k0 :::; [a]+ 2n, 
ak+ko 

Bxk ()tko f(x, t) = 0, k + 2ko :::; [a]+ 2n - 2, (3.4) 
where [ a J is the integer part of a number a , a > 0 , n 2'.: 0 is an integer number. We also suppose 
that [ a ] + 2n 2'.: 2. We denote by H (a) ( G) = H a,a/2 

( e) the Holder space, where a: is an arbitrary 
positive number. 
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4. Difference schemes based on the Schwartz method 

For problem (2.1) we describe the Schwartz method that admits parallel computations on P > 1 
solvers [7]. -

4.1. Suppose, the set of subdomains 

Dk, k = 1, ... , K ( 4.1) 

with boundaries fk, fk = r(Dk) =.D\Dk, forms the covering of the set D: D = Uf=1 Dk. Let each 

subdomain Df4.1) be multiply connected and be formed by the union of P, P 2: 1 nonoverlapping 

domains (some of them may be empty): 

p 

Dk = LJ D;, k = 1, ... , K, 
p=l . 

We set 

-k -k . . 
Di nDi =0, i=/=J. (4.2) 

c; = D; x (O,T], c;(tn) = D; x (tn-i, tn], tn E wo, p = 1, ... ,P, k = 1, ... ,K. (4.3) 

We denote by D[k] the union of the subdomains D 1 , .. , DK which do not have the set Dk: 

D[k] = LJ~ 1 , i# Di. We denote the minimal width of the overlapping of the sets Dk and D[kJ by 

ok. Let 8 denote the least value of Jk, k = 1, ... , K, i.e. 

m}n
2

p(x1 ,x2 ) = 8, x1 E Dk, x2 E D[kJ, x1,- x 2 rf. {Dk nD[kJ }, (4.4) 
k,x ,x ~ 

k = 1, ... , K, p(x1 , x 2
) is the distance between the points x1

, x 2 ED. 

Suppose that 
8 = c5( 4.4)(c) > 0, £ E (0, 1], inf [c-1 8(4 .4)(£)] > 0. 

t:E(O,l] 
(4.5) 

We find the function u(x, t) by the solution of the problems 

k 

L(2.l)uf (x, t) = f(x, t), (x, t) E c;(tn), (4.6) 

uf (x, t) = k-1 

k { u(x,t;tn- 1
), 

UIC (x, t), 
k = 1, } ' 
k~2 

(x, t) E S!(tn), p = 1,. ... , P 

-k 
for (x, t) E GP (tn); where 

_.!;_ {. u~ (x, t), (x, t) E G~(tn), 
ux (x, t) = u(x, t; tn-l ), k = 1, } 

k-1 ' 
u--x (x, t), k 2: 2 

for (:t, t) E G(tn); k= 1, ... ,K; 

u(x, t) = uf (x, t), (x, t) E G(tn), tn E wo, n = 0, 1, ... , No - 1. 

Here u(x,t;tn- 1 ) = <p(x,t), (x,t) E S(tn-1 )ns, u(x,t;tn-1 ) = u(x,tn-1 ), (x,t) E G(tn), G(tn) = 
D X [tn-l, tn]. 
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4.2. We give the difference scheme that approximates differential scheme (4.6), (4.) with P 
-k parallel solvers. We introduce the rectangular grids on each set GP : 

c:h = c: n Gh, where Gh = Gh(3.1) or Gh = G~(3 . 3 ). (4.7) 

We find the functions zi-(x, t) at the strip Gh(tn) by the solution of such problems 
le 

A(3.2)(zf (x,t)) = f(x,t), (x,t) E c;h(tn), (4.8) 

.£.( ) { z(x,t;tn- 1
), z/f x,t = k-1 

. zl<(x,t), 
k = 1, } ' 
k?. 2 

-k for (x, t) E Gph(tn); where 

k 

{ 

zlf (x, t), 
z* (x, t) = z(x, t; tn-l ), 

k-1 
zl<(x, t), 

k = 1, } 
k?. 2 , 

for (x, t) E Gh(tn); k = 1, ... , K, tn E wo. We define the function z(x, t) at the strip Gh(tn) by the relation 
K 

z(:z;, t) = z"K (x, t), (x, t) E Gh(tn), tn E wo. (4.9) 
Here z(x, t; tn-l) = r.p(x, t), (x, t) E Sh(tn-l) n S, z(x, t; tn-l) = z(x, tn-i) + </>(x, t), (x, t) E Gh(tn); G(tn)h = G(tn) n Gh· If the defect correction is not used, we have </>(x, t) = 0, (x, t) E G(tn). 

We are to find the function z(x, t)., (x, t) E Gh, i.e., the solution of difference scheme (4.), (4.7). For these shemes we shall use the operator form 

Q(z(x, t);,f(.), </J(.) = 0, (x, t) E Gh(tn), (4.10) 

where <f;(x, t) = 0. 
In the decomposition method of the domain ( 4.), ( 4. 7) the intermediate problems on the subsets -k -k - . Dph = Dp(4 .) n Dh are solved m parallel for all p = 1, ... , P. 
The difference scheme ( 4.), ( 4. 7) for P = 1 is the scheme for the sequential computations. 
4.3. If condition ( 4.5) holds, by the comparison theorems we get the estimate 

I z(3.2) (x, t) - Z(4.) (x, t) I~ M N0
1

, (x, t) E Gh, ( 4.11) 

where Z(s. 2)(x,t) a'.nd Z(4.)(x,t) are the solutions of difference schemes (3.2), (3.1) and (4.), (4.7), (3.1), respectively. 
When using the difference schemes (4.), (4.7), on grids (3.1) or (3.3), under condition (4.5), we obtain the following estimates for the solution of boundary value problem (2.1): 

I u(x, t) - Z(4.) (x, t) I~ M(c:-1 N-1 + T), (x, t) E Gh(s.i), 

I u(x, t) - z(4.)(x, t) I~ M(N-2 ln2 N + T), (x, t) E G~(s.3 ). 

(4.12) 

(4.13) 
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5. Im proved time-accuracy 

5.1. For the difference scheme (3.2), (3.3) the error in the approximation of the partial derivative 
(8/8t) u(x, t) is caused by the divided difference 6tz(x, t) and is associated with the truncation error 
given by the relation 

a a2 83 

f}t u(x, t) - c}tu(x, t) = 2-l T Ot2 u(x, t) - 5-l T 2 Bt3 u(x, t - 7'J), 

where rJ E (0, r]. Therefore we now shall use for the approximation of (8/8t) u(x, t) the expression 
6tu(x, t) + n>nu(x, t)/2, where 8nu(x, t) = 8ttu(x, t- r), 6ttu(x, t) is the second central divided 
difference. We can evaluate a better approximation than (3.2) by defect correction 

(5.1) 

T is step-size of the grid w0 ; zc(x, t) is the "corrected" solution. Instead of c5n u(x, t) we shall use 
6tt z(x, t), where z(x, t), (x, t) E Gh(3 .3) is the solution of the difference scheme (3.2), (3.3). The 
new solution zc(x, t) has an accuracy of O(r2

) with respect to the time variable. 
We denote by 81tz(x, t) the backward difference of order l: 

8it z(x, t) = ( 81_ 1 t z(x, t) - 81_ 1 t z(x, t - r)) /r, t ;::: lr, l ;::: 1; 

c50t z(x, t) = z(x, t), (x, t) E Gh. 

5.2. On the grid Gh we consider the finite difference scheme (3.2), writing 

A(3.2)z( 1
) (x, t) 

z(l) (x, t) 

f(x, t), (x, t) E Gh, 

cp(x, t), (x, t) E Sh. 

(5.2) 

When constructing difference schemes of second order accuracy in r in (5.1), instead of 6nu(x, t) 
we use 82 t z(l) (x, t), which is the second divided difference of the solution to the discrete problem 
(5.2), (3.3). Then for the boundary value problem (2.1) we now have the discrete problem: 

A (2) ( ) _ f ( ) { p(x, t)2-
1 

r 8
8
t
2

2 u(x, O), 
(3 2)Z X, t - X, t + 

· p(x, t)2-1 r82 tz(l)(x, t), 

t = T, 

t;::: 2r, 
(5.3) 

z(2
) (x, t) = <p(x, t), (x, t) E Sh· 

Here z(1l(x, t) is the solution of the discrete problem (5.2), (3.3), and the derivative ~u(x, 0) 
is obtained from the equation (2.1). We shall call z(2

) (x, t) the solution of difference scheme 
(5.3), (5.2), (3.3) (or shortly, (5.3), (3.3)). 

5.3. For simplicity, _we take a homogeneous initial condition: 

• cp(x, 0) = 0, x ED. (5.4) 

Under condition (3.4) and (5.4), the following estimate [2] holds for the solution of problem (S.3) 
(or more strictly (5.3), (5.2) ) 

iu(x,t)-z(2l(x,t)·I:::::; M [c- 1 N-1 +r2 J, (x,t) E Gh( 3.1), 

iu(x,t)-z(2l(x,t) J:::::; M [ N- 2 1n2 N +T
2 J, (x,t) E Gh(3 .3)· 

(5.5) 

Theorem 5.1 Let condition (5.4) hold and assume in equation (2.1) that a, c, p, f E H (a+zn- 2) (G), 
tp E H (a+2n) ( G), a: > 4, n ;::: 1 and let condition (3.4) be satisfied for n = 1. Then for the solution 
of difference scheme (5.3), (3.3) ((5.3), (3.1)) the estimate (5.5) holds. 
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In a similar way we could construct difference schemes with an arbitrary high order of accuracy O(N-2 ln2 N + rn), n > 2. 
Numerical results and their analysis, however, without parallel computations, can be seen in (1, ?J. These results demonstrate the efficiency of the defect correction technique in improving the accuracy with respect to the time variable. But the implementation of the schemes in [1, 2) for a finer time-grid may take, generally speaking, a great deal of time. Therefore the parallel methods for the finite difference schemes based on the defect correction technique are required. 

6. Parallel method based on defect correction 
6.1. On the grid Gh we consider the finite difference schemes (4.), (4.7), writing 

' Q(z(l)(x, t); JC1)(.), </>Cl)(.)= 0, (x, t) E Gh(tn), 

where JC 1) (x, t) = f (x, t), <jJ(1) (x, t) = 0. To improve accuracy in time we solve the problem 

where 

JC 2 )(x, t) = f(x, t) + { p(x, t)2-
1 

T gt; u(x, 0), 
p(x, t)2- 1 T o2tz(l) (x, t), 

</J( 2) (x, t) = z(l) (x, tn) - z(l) (x, tn-l). 

t = T, 

t ~ 2r, 

(6.1) 

(6.2) 

6.2. For the solution of difference scheme (6.), (4.7) the estimate (5.5) holds (condition (4.5) and the hypothesis of Theorem 5.1,are assumed to be fulfilled). 

Theorem 6.1 Let the hypothesis of Theorem 5.1 be true for the data of boundary value problem (2.1). Then, under condition (4.5), the solutions of the alternating difference schemes (6.), (4.7), (3.3) (or schemes (6.), (4.7), (3.l)) converges, as N, No-+ oo, to th6 solution of the boundary value problem E-uniformly (for a fixed value of the parameter). For the solutions of the difference schemes the estimates (5.5) hold. 

The similar finite difference constructions can be used to develop the parallel domain decompo­sition scheme with high-order accuracy in time. 

Conclusion 

In this paper we have constructed the parallel d~fect correction procedure that can easily be imple­mented in order to improve the time-accuracy, still obtaining .s-uniform second-order accuracy in the space discretization, as well as to parallelize computational performance of the finite difference schemes for a parabolic PDE. 
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