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Abstract

 

—The Dirichlet boundary value problem for a singularly perturbed elliptic reaction–diffusion
equation is considered in a strip. For this problem, special difference schemes are available that converge

 

ε

 

-uniformly with up to the second order of accuracy. Special schemes on piecewise uniform meshes and
Richardson’s technique are used to construct a scheme whose solutions converge 

 

ε

 

-uniformly with the
third order of accuracy (up to a logarithmic factor) and with the fourth order of accuracy with respect to
the orthogonal and tangential (to the boundary) variables, respectively. For Richardson’s scheme, a
decomposition scheme (with domain decomposition into overlapping subdomains) is proposed, which
preservers the 

 

ε

 

-uniform accuracy of the former.

 

1. INTRODUCTION

At present, special numerical methods have been constructed and examined for sufficiently large classes
of singularly perturbed boundary value problems. These methods, in contrast to those developed for regular
boundary value problems (e.g., see [1, 2]), give solutions that converge uniformly in the perturbation param-
eter 

 

ε

 

 (in other words, 

 

ε

 

-uniformly convergent solutions). The order of 

 

ε

 

-uniform convergence of well-
known regular methods on special condensing meshes does not exceed two in the case of boundary value
problems for elliptic reaction–diffusion equations and does not exceed unity for convection–diffusion equa-
tions even if the data in the problem are smooth (e.g., see [3–6] and the bibliography therein; see [7, 8] for
fitted operator methods on uniform meshes). This circumstance motivates interest in designing special
schemes for reaction–diffusion and convection–diffusion problems that converge 

 

ε

 

-uniformly with orders
higher than the second and first, respectively.

In the case of regular boundary value problems, the defect-correction and Richardson methods are used
to increase the order of accuracy of approximate solutions (e.g., see [1, 9, 10] and the bibliography therein).
These methods are also used to improve the time-accuracy of solutions in singularly perturbed problems
(see, e.g., [11–13]). Note that a uniform time mesh was used in these studies, which greatly simplifies the
construction and analysis of schemes of high-order accuracy in time. For large classes of singularly per-
turbed problems, the use of meshes condensing in a boundary layer (with respect to a spatial variable in the
direction across the boundary layer) is a necessary requirement for constructing 

 

ε

 

-uniformly convergent
schemes (e.g., see [4, 14]). Thus, it is of interest to develop schemes of high-order 

 

ε

 

-uniform accuracy with
respect to variables over which the mesh size varies sharply.

In this paper, we consider a boundary value problem for a singularly perturbed elliptic reaction–diffusion
equation in a vertical strip. By using Richardson’s method, we construct a special scheme that converges 

 

ε

 

-

uniformly with an order of accuracy 

 

�

 

(

 

ln

 

3

 

N

 

1

 

 + )

 

, where 

 

N

 

1

 

 determines the number of mesh points
across the strip (across the boundary layer) and 

 

N

 

2

 

 determines the number of mesh points on a unit segment
along the strip. The scheme is constructed by using piecewise uniform meshes condensing in the neighbor-
hood of the boundary layer. For Richardson’s scheme, we construct a decomposition scheme (with domain
decomposition into overlapping subdomains) that preservers the 

 

ε

 

-uniform accuracy of Richardson’s
scheme. The technique developed can be used to construct parallel Richardson schemes, i.e., high-order
accurate schemes intended for parallel computations.
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Note that Richardson’s method was used in [15] to develop a technique for improving the accuracy of
solutions to elliptic convection–diffusion equations on a strip in the construction of schemes that converge

 

ε

 

-uniformly at a rate of 

 

�

 

(

 

ln

 

3

 

N

 

1

 

 + )

 

.

2. STATEMENT OF THE PROBLEM

In a vertical strip , where

 

(2.1)

 

we consider the following boundary value problem for a singularly perturbed elliptic equation:

 

(2.2)

 

Here, 

 

Γ

 

 = \

 

D

 

; the functions 

 

a

 

s

 

(

 

x

 

), 

 

c

 

(

 

x

 

), 

 

f

 

(

 

x

 

)

 

, and 

 

ϕ

 

(

 

x

 

) 

 

are assumed to be sufficiently smooth on 

 

 

 

and 

 

Γ

 

,
respectively, and to satisfy

 

(2.3)

 

and 

 

ε 

 

is a parameter taking arbitrary values in the half-open interval (0, 1].
Here and below, 

 

M

 

 and 

 

M

 

i

 

 (

 

m

 

) are used to denote different sufficiently large (small) positive constants
independent of 

 

ε 

 

or the parameters of difference schemes. The notation 

 

L

 

(

 

j

 

.

 

k

 

)

 

(

 

M

 

(

 

j

 

.

 

k

 

)

 

, 

 

G

 

h

 

(

 

j

 

.

 

k

 

)

 

) 

 

means that these
operators (constants, meshes) were introduced in formula (

 

j

 

.

 

k

 

).
As 

 

ε 

 

tends to zero, a regular boundary layer arises in the neighborhood of 

 

Γ

 

.
For boundary value problem (2.2), (2.1), it is necessary to construct a difference scheme that converges

 

ε

 

-uniformly with an order of accuracy higher than two in each variable.

3. BASIC SCHEME FOR PROBLEM (2.2), (2.1)

We describe a classical difference scheme and a special (basic) scheme that converges 

 

ε

 

-uniformly at a

rate of 

 

O

 

(

 

ln

 

2

 

N

 

1

 

 + )

 

, i.e., a scheme that is second-order accurate in 

 

x

 

2

 

.

On , we introduce a rectangular grid

 

(3.1)

 

where 

 

 

 

and 

 

ω

 

2

 

 are arbitrary, generally nonuniform meshes on [

 

0, 

 

d

 

] and the 

 

x

 

2

 

-axis, respectively. We set

 

 =  – 

 

, where , 

 

 

 

∈

 

  

 

for 

 

s

 

 = 1 and , 

 

 

 

∈

 

 

 

ω

 

2

 

 for 

 

s

 

 = 2. Let 

 

h

 

s

 

 = 

 

max

 

i

 

 

 

and 

 

h

 

 = 

 

max

 

s

 

h

 

.

It is assumed that 

 

h

 

 

 

≤

 

 

 

MN

 

–1

 

, where 

 

N

 

 = 

 

min

 

[

 

N

 

1

 

, 

 

N

 

2

 

]

 

, 

 

N

 

1

 

 + 1

 

 is the number of mesh points in , and 

 

N

 

2

 

 +

1 is the minimum number of mesh points on a unit segment in ω2 .
Problem (2.2), (2.1) is approximated by the difference scheme

(3.2)

Here, Dk = D ∩ , Γh = Γ ∩ , and z(x) = (x) is the second (central) difference derivative on
a nonuniform mesh [2]; for example,

Scheme (3.2), (3.1) is ε-uniformly monotone (see [2]).

N1
2– N2

2–

D

D x : x1 0 d,( )∈ x2 �∈,{ },=

Lu x( ) ε2 as x( ) ∂2

∂xs
2

--------
s 1 2,=

∑ c x( )–
⎩ ⎭
⎨ ⎬
⎧ ⎫

u x( )≡ f x( ), x D,∈=

u x( ) ϕ x( ), x Γ.∈=

D D

a0 as x( ) a0, s≤ ≤ 1 2, c0 c x( ) c0, a0 c0 0,>,≤≤,=

f x( ) M, x D, ϕ x( ) M, x Γ,∈≤∈≤

N1
2– N2

2–

D

Dh ω1 ω2,×=

ω1

hs
i xs

i 1+ xs
i xs

i xs
i 1+ ω1 xs

i xs
i 1+ hs

i

ω1

Λz x( ) ε2 as x( )δ
xsxs

s 1 2,=

∑ c x( )–
⎩ ⎭
⎨ ⎬
⎧ ⎫

z x( )≡ f x( ), x Dh,∈=

z x( ) ϕ x( ), x Γh.∈=

〈

Dh Dh δ
xsxs

〈 z
xsxs

〈

δ
x1x1

z x( ) 2 h1
i h1

i 1–+( ) 1– δx1z x( ) δ
x1

z x( )–[ ], x x1
i x2,( ) Dh.∈= =〈
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The solutions of the difference scheme satisfy the estimate

(3.3)

For meshes

(3.4)

that are uniform in both variables (with mesh sizes h1 =  and h2 = ), we have

(3.5)

Let us construct a piecewise uniform mesh on which scheme (3.2) converges ε-uniformly [4, 5]. On ,
we introduce a special mesh condensing in the neighborhood of the boundary layer:

(3.6a)

where ω2 = ω2(3.4) and  is a piecewise uniform mesh constructed as follows. Let σ be a mesh parameter
depending on ε and N1 such that σ ≤ 4–1d. The interval [0, d] is partitioned into three subintervals: [0, σ],

[σ, d – σ], and [d – σ, d]. On each subinterval the mesh size is constant and is equal to  = 4σ  on

[0, σ] and [d – σ, d] and to  = 2(d – 2σ)  on [σ, d – σ]. The parameter σ is defined by the relation

(3.6·)

where m = m(7.2). Here, l = 2; in other meshes, this parameter will be chosen. The construction of  and

 = (l = 2) is completed.
The solutions of scheme (3.2), (3.6) satisfy the estimate

(3.7)

and the ε-uniform estimate

(3.8)

Theorem 1. Suppose that the solution u(x) of problem (2.2), (2.1) satisfies the estimates in Theorem 5 in
Section 7, where K = 4. Then the difference scheme (3.2), (3.6) (schemes (3.2), (3.1) and (3.2), (3.4)) con-
verges ε-uniformly (for fixed values of ε). The grid solutions satisfy estimates (3.3), (3.5), (3.7), and (3.8).

4. RICHARDSON’S SCHEME FOR PROBLEM (2.2), (2.1)

Richardson’s method is used to improve the accuracy of solutions to the special difference scheme, and
it can be described as follows.

4.1. On  we introduce grids

(4.1a)

where  = (l) for l = 4;  is a piecewise uniform mesh whose mesh size on [0, σ], [σ, d – σ], and

[d – σ, d], where σ = σ(3.6·)(ε, N1 = N1(3.6), l = 4), is k times smaller than the mesh size of ; the mesh size

of  is k times smaller than that of ; kN1 + 1 and kN2 + 1 are the number of mesh points in  and on

a unit segment of , respectively. Let

(4.1b)

We have  =  for an integer k (k ≥ 2) and  ≠  for a noninteger k.

Let zi(x) (x ∈ , i = 1, 2) be solutions of the difference schemes

(4.2a)

u x( ) z x( )– M ε N1
1–+( ) 1–

N1
1– N2

1–+[ ], x Dh.∈≤

Dh
u ω1 ω2,×=

dN1
1– N2

1–

u x( ) z x( )– M ε N1
1–+( ) 2–

N1
2– N2

2–+[ ], x Dh
u
.∈≤

D

Dh ω1* ω2,×=

ω1*

h1
1( ) N1

1–

h1
2( ) N1

1–

σ σ ε N1 l, ,( ) min 4 1– d lm 1– ε N1ln,[ ],= =

ω1*

Dh Dh

u x( ) z x( )– M N1
2– min ε 2– N1ln

2,[ ] N2
2–+{ }, x Dh,∈≤

u x( ) z x( )– M N1
2– N1ln

2
N2

2–+{ }, x Dh.∈≤

D

Dh
i ω1*

i ω2
i , i× 1 2,,= =

Dh
1

Dh 3.6( ) ω1*
2

ω1*
1

ω2
2 ω2

1 ω1*
2

ω2
2

Dh
0

Dh
1

Dh
2
.∩=

Dh
0

Dh
1

Dh
0

Dh
1

Dh
i

Λ 3.2( )z
i x( ) f x( ), x Dh

i , zi x( )∈ ϕ x( ), x Γh
i , i∈ 1 2.,= = =
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We set

(4.2b)

where γ = γ(k) = –(k2 – 1)–1. The function z0(x) (x ∈ ) is called a solution of scheme (4.2), (4.1), a scheme
based on Richardson’s technique with two nested grids.

4.2. To prove the convergence of scheme (4.2), (4.1), it is convenient to consider the expansions of zi(x)

(x ∈ , i = 1, 2) in powers of  and :

(4.3)

where v i(x) is the residual term. The function u2(x) solves the problem

The function u1(x) is represented as a sum of functions:

(4.4)

where u1j(x) (x ∈ , i = 1, 2) solve the problems

Here, ψ(x) = w(x), x ∈ D, x1 = σ, d – δ, where w(x) solves the problem of the method of lines in x2:

The functions u11(x), u12(x), and u2(x) (x ∈ ) satisfy the estimates

The component u1(x) is sufficiently smooth on ; and u2(x), on  in the strips x1 ≤ σ, σ ≤ x1 ≤ d – σ,

z0 x( ) γ z1 x( )= 1 γ–( )z2 x( ), x Dh
0
,∈+

Dh
0

Dh
i

N1
1– N2

1–

zi x( ) u x( ) k 2– i 1–( )+ N1
2– u1 x( ) N2

2– u2 x( )+[ ] v
i x( ), x Dh

i
, i∈+ 1 2,,= =

L 2.2( )u2 x( ) 12 1– ε2a2 x( ) ∂4

∂x2
4

--------u x( ), x D, u2 x( )∈– 0, x Γ.∈= =
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D

L 2.2( )u11 x( ) 12 1– ε2N1
2a1 x( ) ∂4

∂x1
4

--------u x( ) h1
1( )( )2

, x1 0 d,( )\ σ d σ–,[ ]∈

h1
2( )( )2

, x1 σ d σ–,( )∈⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

, x D,∈–=

x1 σ d, σ,–≠

u11 x( )[ ] ∂
∂x1
--------u11 x( ) 0, x D, x1∈ σ d, σ,–= = =

u11 x( ) 0, x Γ;∈=

L 2.2( )u12 x( ) 0, x D, x1 σ d, σ,–≠∈=

u12 x( ) ψ x( ), x D, x1∈ σ d, σ,–= =

u12 x( ) 0, x Γ.∈=

Lhw x( ) ε2 α1 x( )δ
x1x1

a2 x( ) ∂2

∂x2
2

--------+
⎝ ⎠
⎜ ⎟
⎛ ⎞
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⎨ ⎬
⎧ ⎫
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3
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⎨
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⎪ ⎪
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and x1 ≥ d – σ. Taking into account the estimates for u1(x) and u2(x), we estimate v i(x):

(4.5)

In view of (4.5), we find

(4.6)

and the ε-uniform estimate

(4.7)

Theorem 2. Suppose that the data in the boundary value problem (2.1), (2.2) satisfy conditions (2.3)
and, additionally, as, c, f ∈ C6 + α( ), ϕ ∈ C6 + α(Γ); and α > 0. Suppose that the components of solutions
to the problem in (7.1) satisfy a priori estimates (7.2), where K = 6. Then the solution to the difference
scheme (4.2), (4.1) converges ε-uniformly to the solution of the boundary value problem at a rate of

�( ln3N1 + ). The discrete solutions satisfy estimate (4.6), (4.7).

5. DECOMPOSITION OF SCHEME (3.2), (3.1)

The decomposition scheme based on difference scheme (3.2), (3.1) can be described as follows.

5.1. Suppose that D is covered with subdomains D(k):

(5.1a)

which have the overlap δ = d1 – d2 > 0. On  (k = 1, 2) we introduce the grids

(5.1b)

where  = . Assume that the boundaries of D(1) and D(2) pass through nodes of .

Let z0(x) be an arbitrary bounded function defined on , and let z1(x), …, zn – 1(x) (x ∈ ) have been
determined and zi(x) = ϕ(x), x ∈ Γh. We want to find zn(x). To this end, we solve the problems

(5.2a)

Let

(5.2b)

The function zn(x) (x ∈ , n = 1, 2, …) is called a solution of the difference scheme (5.2), (5.1), i.e., the
scheme for domain decomposition into overlapping subdomains.

The difference scheme (5.2), (5.1) is an approximation to the following continual scheme for the
Schwarz method.

Let u0(x) (x ∈ ) be an arbitrary bounded function, and let u1(x), …, un – 1(x) (x ∈ ) have been con-
structed and ui(x) = ϕ(x), x ∈ Γ. We construct un(x). Preliminarily, we solve the problems

(5.3a)

v
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3– min ε 3– N1ln
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i
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0
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D

N1
3– N2

4–
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⎨
⎧
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1( )
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Next, we set

(5.3b)

The function un(x) (x ∈ , n = 1, 2, …) is called a solution of the continual scheme for the Schwarz method
(on overlapping subdomains).

When z0(x) = u0(x) for x ∈ , scheme (5.2), (5.1) is an approximation to problem (5.3), (5.1a).

5.2. Note that the overlap δ of subdomains can depend on ε: δ = δ(ε).

When

(5.4)

the solutions of the difference schemes (3.2), (3.1) and (5.2), (5.1), (3.1) satisfy the estimate

(5.5)

(see [4]), where q ≤ 1 – m. On the special mesh (3.6), we obtain the estimate

(5.6)

(see [4]) and the ε-uniform estimate

(5.7)

Scheme (5.2), (5.1) with n = n∗ is said to be consistent with respect to both the accuracy of the limit solu-
tion z∞(x) at n = ∞ (of the basic scheme) and the number n of iterations (or, briefly, consistent) if

where z∞(x) = z(x) solves scheme (3.2) on .

The consistent scheme (5.2), (5.1), (3.6) satisfies the estimate

(5.8a)

and n* =  satisfies

(5.8b)

Theorem 3. Under the hypotheses of Theorem 1, the solution of the difference scheme (5.2), (5.1), (3.6)
converges ε-uniformly to the solution of problem (2.2), (2.1) as N1, N2, n  ∞. The discrete solutions sat-
isfy estimates (5.5)–(5.8).

6. DECOMPOSITION OF SCHEME (4.2), (4.1)

Let us describe the decomposition scheme based on difference scheme (4.2), (4.1), i.e., Richardson’s
scheme of fourth-order accuracy in x2 .

6.1. On  and , we introduce the grids

(6.1)

where  =  and  = . Assume that the boundaries of  pass through nodes of .
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1( ) x( ), x D
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D
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D
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Dh 4.1( )
0



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 44     No. 2      2004

HIGH-ORDER ACCURATE DECOMPOSITION OF RICHARDSON’S METHOD 315

Let (x) (x ∈ , i = 1, 2) be a given function such that (x) = ϕ(x) for x ∈ , and (x) = (x) for

x ∈ . Suppose that (x), …, (x) (x ∈ ) have been determined. We solve the problems

(6.2a)

Next, we set

(6.2b)

The function (x) (x ∈ , i = 1, 2) is a solution of problem (6.2a), (6.1). This iterative process con-

verges as n  ∞. The functions (x) (x ∈ , i = 1, 2) are used to find

(6.2c)

The function (x) (x ∈ , n = 1, 2, …) is called a solution of the difference scheme (6.2), (6.1), i.e.,
the decomposition of Richardson’s scheme (4.2), (4.1).

6.2. By virtue of (5.5), we have

(6.3)

Taking into account representation (4.3) and estimates (4.6), (4.7), and (6.3), we obtain the following esti-
mate for solutions of scheme (6.2), (6.1):

(6.4)

and the ε-uniform estimate

(6.5)

In (6.4) and (6.5), q ≤ 1 – m.
The consistent scheme (6.2), (6.1) satisfies the estimate

(6.6a)

and n* =  satisfies an estimate similar to (5.8b):

(6.6b)

Theorem 4. Let the hypotheses of Theorem 2 and condition (5.4) be fulfilled. Then the solution of the
difference scheme (6.2), (6.1) converges ε-uniformly to the solution of problem (2.2), (2.1) as N1, N2, n  ∞.
The discrete solutions satisfy estimates (6.4)–(6.6).

Remark. The technique for constructing scheme (6.2), (6.1) and the technique described in [16–18] can
be used to construct parallel Richardson schemes, i.e., high-order accurate decomposition schemes intended
for parallel computations on P > 1 processors.

7. SUPPLEMENT: A PRIORI ESTIMATES

Below, we present the a priori estimates for the solution of problem (2.2), (2.1) that were used in our
constructions (see, e.g., [4]). These estimates are established by using internal a priori estimates and esti-
mates up to the boundary (see [19]).

The solution to the problem under consideration is represented as the sum of functions:

(7.1)
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0 x( )– M N1

3– min ε 3– N1ln
3,[ ] N2

4– qn+ +{ }, x Dh
0
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0 x( )– M N1

3– N1ln
3
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4– qn+ +[ ], x Dh

0
.∈≤
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where U(x) and V(x) are the regular and singular components of the solution to the problem. The compo-
nents in (7.1) satisfy the estimates

(7.2)

where r(x, Γ) is the distance from a point x to the set Γ and m is an arbitrary number in the range (0, m0),

with m0 = . The parameter K depends on the smoothness of the data in the problem.

The function u(x) also satisfies the estimate

Theorem 5. Suppose that the data in the boundary value problem (2.2), (2.1) satisfy conditions (2.3),
and let as, c, f ∈ CK + α( ), ϕ ∈ CK + α(Γ), s = 1, 2, K ≥ 0; and α > 0. Then the components in (7.1) satisfy
estimates (7.2).
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