Corrigendum

The author is grateful to Christoph Pflaum for pointing out a mistake in the statement and proof of theorem 2.2. The correct version is:

Theorem 2.2
If we consider an expansion of a $C^3(\Omega)$-function, u, in piecewise constant functions on the grid Ω_n, for an arbitrary $n \in \mathbb{Z}^3$, $n > 0$, and if we write

$$ R_n u = v_0 + \sum_{0 \leq j \leq n} u_j, \quad (1) $$

with $v_0 \in V_0$ and $u_j \in W_j$, $0 \leq j \leq n$, then

$$ \|u_j\| \leq 2^{\frac{j}{2}|u|}, \quad (2) $$

and we get an estimate for the approximation error

$$ \|u - R_n u\| \leq \frac{1}{3} \sqrt{2} \frac{1}{3} (h_1 + h_2 + h_3)|u|. \quad (3) $$

Proof

We take the normalised $\{\tilde{\psi}_j^k\} = \{2^{(j-e)/2}\psi_j^k\}$ as a basis in W_j, $0 \leq j \leq n$, $j \neq 0$. Clearly, all these functions are orthogonal to all functions $v_0 \in V_0$ and mutually they form an orthonormal set in $W_j \subset L^2(\Omega)$. We see further $\psi_k^l \in W_j$ and support(ψ_k^l) = $\Omega_{j-e,k}$, or, in other words, $\psi_k^l \in V_j$, but ψ_k^l scales like a basis function in V_{j-e}. Hence

$$ \int 2^{(j-e)/2}\psi_j^k 2^{(j-e)/2}\psi_m^j d\Omega = 0 \quad \text{for} \quad k \neq m, $$

and

$$ \int 2^{(j-e)/2}\psi_j^k 2^{(j-e)/2}\psi_k^j d\Omega = 2^{(j-e)} \int_{\Omega_{j-e,k}} d\Omega = 1. $$

Thus, we find (1) with

$$ u_j = \sum_k a_k \tilde{\psi}_k^j = \sum_k (u, \tilde{\psi}_k^j) \psi_k^j. $$

© J.C. Baltzer AG, Science Publishers
Now
\[a_{jk} = (u, \tilde{\psi}_k^j) = \int_{\Omega} u \tilde{\psi}_k^j \ d\Omega = \int_{\Omega_{j-\epsilon,k}} u \tilde{\psi}_k^j \ d\Omega. \]

By Taylor expansion around \(z_k^{i-\epsilon} \), we have
\[\left| \int_{\Omega_{j-\epsilon,k}} u \tilde{\psi}_k^j \ d\Omega \right| \leq 2^{-2j} \| 2^{j-\epsilon} u \|_2. \quad (4) \]

For \(j \geq \epsilon \) the point \(z_k^{i-\epsilon} \) lies in the interior of \(\Omega \) and the estimate holds with
\[|u| = \max \left| \frac{\partial^3 u(x)}{\partial x_1 \ldots \partial x_3} \right|. \]

For \(\psi_k^j \) with a \(j \)-component equal to zero, the point \(z_k^{i-\epsilon} \) lies on the boundary and the function \(\psi_k^j \) is constant in one direction over the whole domain \(\Omega \), and it is of Haar-wavelet type for the non-zero indices (or index). In this situation the same estimate (4) holds with, e.g. if \(j_1 = 0 \),
\[|u| = \max \left| \frac{\partial^2 u(x)}{\partial x_2 \ldots \partial x_3} \right|. \]

For \(j = 0 \) the relation (4) is trivially satisfied. Hence, the estimate (4) holds for \(j \geq 0 \) if we use the seminorm (21), and we find
\[|a_{j,k}| \leq 2^{-3/2} 2^{-3/2 |j|} |u|, \]
\[|u_j|^2 = \sum_k |a_{jk}|^2 \leq \sum_k 2^{-3 |j| - 3} |u|^2 = 2^{-2 |j| - 3} |u|^2, \]
so that
\[|u_j| \leq 2^{1/2 |j| - 3/2} |u|, \]
which leads to (2), and
\[|u - R_n u|^2 = \sum_{j_1 > n_1} \sum_{j_2 > n_2} \sum_{j_3 > n_3} |u_j|^2 \leq \sum_{j_1 > n_1} \sum_{j_2 > n_2} \sum_{j_3 > n_3} 2^{-2 |j| - 3} |u|^2 \]
\[\leq 3^{-3} 2 (2^{-2n_1} + 2^{-2n_2} + 2^{-2n_3}) |u|^2. \]

and it follows that
\[|u - R_n u| \leq \left(\frac{2}{3} \right)^{1/2} (2^{-n_1} + 2^{-n_2} + 2^{-n_3}) |u| = \frac{1}{3} \sqrt[3]{2} (h_1 + h_2 + h_3) |u|. \]

\[\square \]