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THE USE OF DEFECT CORRECTION FOR THE SOLUTION
OF A SINGULARLY PERTURBED O.D.E.

P.W. Hemker

ABSTRACT

/

The effect.of a defect correction process with a central - and an up-
wind - difference operator is shown for a singularly perturbed two-point
_ boundary-value problem. ' ,
A 'mixed defect correction process' is introduced which is both stable and
accurate for the smooth components in the solution. Application in an adap-
tive procedure is mentioned. '

1. INTRODUCTION

In this paper we describe an iterative method for the accurate solu-
~tion of a singular perturbation problem (SPP). As a model problem for more

complex situations we take the linear two-point boundary-value problem

(1.1 ey" + aly' +ay = f onQ = (a,b),
0 <e=<<l, a, £ 0,

with the Dirichlet boundary conditions y(a) = Y, y(b) = Ve

Thiskproblem is written in symbolic form as

Ley = f.
It is well-known,that for such problems with a strongly asymmetric differen-
tial operator, the usual discretizations are either unstable (central dif-
ferences, finite 'element discretizations) or inaccurate (one-sided differ-
ences, artificial viscosity). Many methods are proposed to overcome these
difficulties (see e.g. [1,8,9]). However, if we look for a discretization
that is both accurate and direction independent (i.e. independent of the

sign of aI/e), none of the available methods is appropriate.

In the following sections we first briefly show the disadvantages of
the simple central and one-sided or artificial viscosity discretization.
Then we study the combination of these discretizations in a straightfor-

ward defecf correction (DCP) algorithm. Further, we show a combination of a
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!'"defect correction step and, a "smoothing step" to obta:ﬁ'é "mixed defect
correctlon iteration" (MDCP), which solves the problemf;zEG;;E;I;TO(h )
for the smooth components of the_solutlop and with a numerical boundary
layer of width O(h). ‘ o .

It is the ad&antage of this method that it does not make use of par-
ticular .a priori knowledge about the solution, such as the shape or the
lo¢ation” of interior or boundary layers. It only uses the fact that a small

- parameter multlplles the highest derlvatlve. The method has no. d1rect10na1
“bias-and it is able to locate the special regions. Thus, it can be used in
~ an adaptive procedure to refine the mesh in the nbn—sméoth baffs'and,'ih |

this way, to resolve the special regions in the solution.

,:TGThe*sameriteration»methqdr(MDCP) can also be applied to the solution
<of .singularly perturbed partial differential equations, such as thé convec-
tiogigifquipnjequation,[7].'In this paper, however, we restrict ourselves

to a more detailed discussion of the model equation

(1;2) | ey" + 2y’ = 0,

y(©) =0, y@) =

2. CENTRAL AND UPWIND DIFFERENCES FOR THE SINGULARLY PERTURBED PROBLEM
The possible instability of the central difference discretization for
the problem (1.1) 1s easily shown for the example (1.2). We take a uniform
'partltlon {0 = xo < x <. .< XN 1} of the interval (O, ]) The solution
"of the central dlfference equation

fi?f}); .EF;,e'E €(y;,,729;+y;-) /b n? + @, i+17Y )/h =0, -

i=1

reads

LI S IR

(itéi?;“ﬁz‘§;«5 (I;ri)/(l?rN),

thEmos e

sithf 1< (é~h) /(e+h) . The exact solution of the differential equation is-
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12.2) wifh'r := exp(-2h/e). From this we derive that

(2.3) Iy(xi)~yil < c(h/e)2 for (h/e) > 0.
 For a f1xed ¢ the method is O(h ) accurate, but the error may explode for
e >0 as 1s seen from (2 2), because (w1th even N)° ' '

-

_ lim y = i/N ‘(for even i),
e-0 -
® h/eN (for odd i), o

and lime+d y(xi)'= 1 for X, # 0. This large error is clearly due to in-
stability‘sinée the eigenvalues of the discrete operator are

2

5
! /sz—h

€
Rt 2

(2.4) Ai = - "

cos(%?), 1=1,2,...,N-1. -
The simplest cure against this instability is the use of "upwind dif-
ferencing"

U 5 2 - -
(2.5) B Lh,e = elyyy, 2yi+yi_])/h + 20y5 4 yi)/h =0,

’

i.e. one-sided differences are used to approximate the term 2y' in (1}2).
The solution of this difference equation reads (2.2) with r := €/(e+2h).:

~

Now we find
ly()-y,| < eta/e)  for  (h/e) 0

and, moreover, we find lim =1 for all i > 0, i.e. the discrete solu-

. y .
€0 “1i
tion has the same asymptotic € > O behaviour as the differential equation.

The success of the‘Upwind scheme depends‘cruciallylon the upstream ap-
proximation in (2.5), an approximation 2(yi-yi_i)/h would have yielded a

completely wrong solution.-

We note that the "upwind differencing" is equivalent {¢ the central

difference approximation with an enlarged e:

(2.6) . Lh,e =7Lh,e+h' ’ ’ ; /
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In this form the difference scheme (2.5) is called the "artifical viscosity"

discretization and in this form the discretization method is 1ndependent

of the sign of a. The stab111ty of this dlscretlzatlon, uniform in €,

easily follows from (2.4) and (2.6).

Another way to study the (in-)stability of the above difference schemes

is by Fourier or Local Mode Analysis [2]. We consider the equation on

Q = R; we discretize the equation on a uniform partition

'{xi =ih | i € Z}. As a forcing function we take the "mode"
fh(jh) ='eijhw, Re(hw) € [-m,m].

With
FIG) = 9, = e L THM y 6w,

the Fourier Transform is a norm-preserving bijection between the function

spaces £ (Z) and L (—-n +1), i.e. Ilyhl = lyhl
Con51der1ng the equation Lo = h AL (e.g. a=e or a=e+h),

we see

@n L @ = B/ = ;-‘21 sCas-ihcl,

where S = sin(wh/2) and C = cos(wh/2). From this we derive the 2nd order

consistency of Lh et
-~ ~ _ ~C - 2 . 2 4 . 3
ILh,e Lelwf 'Lh,e (ew™#2iw) | < ch”|ew +iw I,

where L (w) = -emz + 2iw is the characteristic polynomial of (1.2). The

(1n—)stab111ty of Lh is shown by

'li | Eiﬂé%%lgll/{gggz sinz(wh/2)+4 cosz(wh/Z)

> |l ;2; 2 min(@),1).

We see that;ﬁh u(m) has one real zero (w=0) in common with fa(w). A
e

spurious zero appears for o + 0, viz. (cf,(2.7))
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1ﬁm1%l (w) =0 for wh/2 = tw/2.
-0 o€

Th1s shows that, w1th central differences, an instable mode appears in the

solution as e/h + 0, which is of the form .
(2.8) yj = yh(jh) - elJ" = (..])J.

We also see that. the upwind discretization, a = e+h, is lst order accurate

and has no instability

. Au N
g Ly Ll s Ly o h ! [Lh
< 352551 sinZ(wh/2) + 0(h2) < chw?
h
and “
£ | =18 loln /6
Lh,e ~ "h, e+hl =0

i.e. i:,e has no spurious zgro;v,

 Illustrative in this respect are the solutions of (2.1) and (2.5) on
the in?erval (0,») with y(0) =1, y(») = 0. where we find the solution
y; = rt with r = (e—h)/(e+h) and r = e/(e+2h)’respect1ve1y..Now, for
(e/h) + 0, Lg,e yields the oscillating solution (2.8) whereas Lh, y1e1ds
y; = 0 for i > 0.

‘3. STRAIGHTFORWARD DEFECT CORRECTION

Defect correction is a general technique to solve an equation in an
iterative process by means of the repeated direct solution of a nearby

simpler problem. Is the "target" problem to solve

and can an "approximate" problem

- ’
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be solved directly, then the iterative process reads
Goy o T S5 B B g

(in case of a nonlinear operator L other variants are possible). Many of
these processes are well-known in numerical mathematics, e.g. iterative

refinement of linear systems, Newton-like methods etc.

It can be derived under rather general smoothness conditionms that, if
L and I are discretizations of the same differential problem and if L is

stable and L and L are consistent of the order p and q < pyrespectively,

(k)

then u is an approximation with accuracy o(hmln(p,kq)) (cf;[3,4,10J),

without a stability requirement for L. Hence, we apply (3.1) for the solu-

. ] _.c ~o_cu ] -
tion of (1.1), using L = L and L Lh,e Lh,a’ with a = ¢ + 0(h).

(0) : (N

Starting with u = 0, we find the artificial viscosity solution as u" ’.

Since L is Ist and L is 2nd ofde: consistent, a single iteration step is

already sufficient to obtain 2nd order accuracy. If the iteration (3.1) is

(=) (=)

continued and converges to a fixed point u is the

s then, clearly, u

unstable solﬁtion of Lu = £.

We find that the solution after ome iteration step, ﬁ(z), satisfies

() g o @

’ Qﬁ,eu h,a(ZLh,d-Lh,e) Lh,au = £.

By Fourier analysis we find, analogous to (2.7),

. 2 .
ah ] (w) - 2—45 (aS 1hC) ,
’ h“[ (2a-€)S-ihC]

from which we derive that Qh is stable, uniformly for small e:

12| >'2-Iml minz(l,a/h)\
h,e' ~ 7 ' max(1,2a/h) °

For the smooth components of the solution the solution is accurate of order
two:

2
-~ -~ 4S8 - i 2
| =4 ) Isl+lu-e)s+inc] = 0@D).

h"™ {(2a-e)"S"+h"C"}
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We find u(z) to be a 2nd order accurate solution , unlformly in e > 0, for
the smooth components in the solution. This is also found experlmentally in

the sgcond part of Table 1.

| malei-y(xi)[ Iyi‘&(xi)[, i = N/2“f“

N 10- | 20 4 10 | 20 40
w1 0.3303 |0.1665 | 0.0831 |0.0698 |0.02931 |o0.01326 |, ~
e 0.6213 | 0.5714 | 0.5384 10.1037 | 0.02707 | 0.00687 '
u3 0.7770 |0.7791 | 0.7677 |0.0544 | 0.01188 | 0.00284 |

Table 1. Errors in the numerical sblution of
‘ ey" +y' =f on (0,1),
by stralghtforward DCP. (e= 10_6)

Boundary cond1t10ns and f are such that y(x) =vsin(4x);

Near the boundary at x = 0, where the solution is not smooth at all,
the solution is not well represented. Here the accuracy is onlyVO(l) How—
ever, on a mesh with meshwidth h such a sharp boundary layer cannot be re-

presented’anyway. For boundary layer resolution a finer mesh is necessary.

In‘ordér to see the effect of the boundary layer in.the‘numérical s0-
1lution with h >> g, we consider again problem (1.2) on the interval (0,%)

with y(0) = 1, y(») = 0. On a uniform mesh we find for the iterands; -

(1) ey o (_E .
u-h (Jh) = (E+2h)
. -, 2
(2),.. _ e \J . 2h
% (Jh) - (-E_'ﬁﬁ) [ 1 ] € (€+2h) ] [}
2

(3),..y . 3 . 2 jh%-h (e +h)
U'h (3h) = (-E:ﬁl—) 1-3 e (e+2h) {1- e(e+2h) 1

The general solution is

L memw o irhy
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oS Gy = 5 B Gie/m),
where P, is a k—th dégree polynomial in j, with a parameter ¢/h. For small
e/h, y(k+l) change;'sign k times. The influence of the nﬁmerical boundary
layer decreases exponentially in  the interier of the domain, but the in-
stability creeps into the solution further and further as the iteration'.
proceeds. A single DCP step gives alfeady 2nd accuracy. More DCP steps in-

troduce more instability.
4, MIXED DEFECT CORRECTION

AlZthough a Single step with the straightforward DCP gives already good
results fof particular linear 1-dimensional problems, we don't get the same
favourable results for the convection-diffusion equation (cf. [6,7]). More-
- over, for nonlinear problems and for the 2-D problems we prefer the numeri-
cal solution to be a fixed point of an iteration process. Therefore we con-

struct an iterative process of "mixed defect correction" (MDCP-) type

IR AR CANC I R A T

1 1 1,
BRCR SIE PRGOS I
\ .

ot

2 2°

- If this iteration converges, we obtain two different solutions viz.

A_ .. . (1) B L. (i+}) _<C
y 11mi+w y 7 and y ~,11mi+m y - For our purposg we choose Ll = Lh,e’

o~ c o~ ) L3 c -— - - = [}
L2 = Ll Lh,a and L2 = 2 dlag(Lh’d) =3 Dh,a’ fl f2 fh. Thus, with
a =¢ + artificial viscosity, (4.la) is a defect correction step and (4.1b)
is a damped Jacobi relaxation step. This relaxation sweep is introduced to
reduce the high frequencies that are introduced by the DCP-step near the

boundary layer.

The fixed point yA of the iteration (4.1) can be characterized as the

solution.of the equation

@2 Ty oy B Gy gy O S 6y

which equatien we briefly denote by Mh eyA = fh.
14
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For the model equation (1.2), by Fourier analysis we find with a = c+h,
analogous to (2.7), ’
41

Mh,e() S[] ]+TI—SCE1+-ETh_

h_g2q,

- For e + 0 there is no spurious zero:

h

lim I} | = | & g% +—-—sc[1+s 29 =— |s|/1+s 282,
e0 5 €

i.e. the discretization is stable, uniformly for € + 0. Further it is con—
sistent of 2nd order:

h

"ﬁh,s(w)-ih = %-s 152+ A0 - scl s 0m3).

- Hence the. solution yA is accurate 0(h2) in the smooth parts. ResuitS‘are

shown in Eable 2.

- , . ]
! max|y. -y (x;) | _l\yify(xi) l, j=N/2 |
N } 10 20 | 40 % 10 20 40
y* | o0.208 | 0.227 | 0.233 | 0.02507 | 0.00653 | 0.00165
y* | 0.565 | 0.604 | 0.614 | 0.05953 | 0.0155 | 0.00392

Table 2. Errors in the numerical solution of mixed DCP; the same.

problem as for table 1.

For sufficiently smooth solutions, we can also derive error est1mates in a

" global norm using the stability of the operators L and Dh and the -

relative consistency between Lh and Lh and_ Lh o and Dh 0" (cf£. [10]).
9’ ]

In order to study the boundary layer behaviour, we set A ='e1“h and‘
compute the four roots of Mh (w) = 0. Asymptotlcally,for h + 0, these

are



- 100 -~

N = - e/2h, A, . = 2275 + (2£2//3)F, A, =1

1 2,3

Hence, for a problem on the right half line the boundary layer is of the

form

1< 1, Dyl <1

1

A closer analysis shows

e @B+ 0@,
yh = 1 (3+/5) 2/ + 0.

This shows that, for small e/h,'the error in the boundary layer is 0(1),
but the influence of the boundary data decreases at a fixed rate per mesh-
point. Hence, also in this case, the width of the numerical boundary layer

is 0(h).

A

Convergence of the MDCP iteration is proved by showing that

-1 -1
P o Ph,a M, 00 h,a Ch,a e,

has eigenvalues less than 1. A good impression of the convergence behaviour

is obtained again by local mode analysis, viz.

I

Dh,a(Dh,a—Lh,a)Lh,u(Lh,a—Lh,e)l

/22 2.2
- X2 sc o C+h'S__ @€ )(uh) sin(uh),

’a282+h2C2 20

h
a

where C < A(wh) < 02 %-. With a = e+h,we find for € << 1 a convergence

1
factor < } per iteration sweep. (Note: for the two-dimensional problem,

the convergence of the iteration is essentially more complex to analyze,
cef. [7D).

"As a result of our itération process we obtain two solutions: yA and

B . ~ . .
y . The difference between these solutions 1is
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a~e -1 PR
y - y =TDh’a Ah y ’ . . PP PR

which is proportional to the amount of artificial viscosity a-e and to the
2nd differences in yA. These differences are particularly large in those
regions where the special layers exist. Hence we can use yA,- yB to detect
these regions and - if necessary - to refine the mesh locaily. On this basis
an adaptive procedure has been constructed, which halves the mesh size in
those regions where yA - yB exceeds a given tolerance. By this procedure

boundary layers are resolved automatically. Results are shown'in Fable 3.

In the adaptive procedure used, only discretizations with a fixed mesh
size were constructed. Where refinement is necessary a new problem on a sub-
interval is generated with half the mesh size; after the solution of this
-new problem (h/2) the coarse grid problem (h) is corrected for the relative
truncation error between both meshes. This procedure is made re;urslvebto
‘create finer and finer meshes, if necessary.. In this way an h1erarchy of

‘submeshes is generated (cf. [51).

Number of intervals in the mesh
o €1 0.1 0.05 0.025 | 0.0125 | 0.00625 -|.
1/2 2 2 2 2 2
1/4 4 4 4
1/8 8 8
1/16 8 8
1/32 8
NP 5 5 | 9 13 17
ME [0.040 | 0.088 | 0.088 | 0.088 | 0.088

Table 3. Automatic mesh refinement for
ey" + 2y' =0, y@) =1, y(1) =




- 102 ~ _ ,
Shown is the number of intervals on each mesh, the total number of meshpoints

(NP) and the maximal error over all meshpoints (ME), The criterium for mesh-

refinement is
(AR < 0.025, i =0,2,4,...,0.

All local mesh-refinements appear at the left end of the interval (i.e. in

the boupdary layer).

REMARK. For the one-dimensional model problem there is no clear advantage .
of the "mixed defect correction" over the straightforward defect correction.
For the two-dimensional convection diffusion equation, however, there is a
difference. Here, the MDCP again shows 0(h2) accuracy in the smooth parts,
whereas straightforward DCP does not. For 2-D problems this higher order
accuracy is very important because the computational work is at least

‘ proport1onal to the number of meshp01nts, which is 0(h )
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