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THE USE OF DEFECT CORRECTION FOR THE SOLUTION 

OF A SINGULARLY PERTURBED O.D.E. 

P.W. Hemker 

ABSTRACT 

The effect.of a defect correction process with a certtral - and an up
wind - difference operator is shown for a singularly perturbed two-point 

_boundary-value problem:. 
A 'mixed defect correction process' is introduced which is both stable and 
accurate for the smooth components in the solution. Application in an adap
tive procedure is mentioned. 

I . INTRODUCTION 

In this paper we describe an iterative method for the accurate solu

. · tion of a singular perturbation problem (SPP). As a model problem for more 

complex situations we take the linear two-point boundary-value problem 

(I. I) e:y" + a1y' + a2y = f on n .. (a,b), 

0 < e: « I, a 1 t 0, 

with the Dirichlet boundary conditions y(a) =Ya' 

This problem is written in·symbolic form as 

L y = f. e: 

y(b) = yb. 

It is well-known1 that for such problems with a strongly asymmetric differen

tial operator, th.e usu.al discretizations are either uns~able (central dif

ferences, finite.'element discretizations) or inaccurate (one-sided differ

ences, artif~cial viscosity). Many methods are proposed to overcome these 

difficulties (see e.g.· [1,8,9]). However, if we look for a discretiZation 

that is both accurate and direction independent (i_.e. independent of the 

sign of a 1/e:), none of the available methods is appropriate. 

In the following sections we first briefly show the disadvan~ages of 

the simple central and one-sided or artif.ieial viscosity di~cretization. 

Then we study the combination of these discretizations.in a .straightfor-. 

ward defect correction (DCP) algorithm. Further,we show a combination of a 
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i•defect correction step" and._ a "smoothing step" to o!Jtain a "mixed defect 

cor.rection iteration" (MDCP), which solves 'the problem ra_ccurately jO(h2); 

for the s•ooth components of the solutio~ and with a numerical boundary 

laye~ of width O(h) •. 

It is the advantage of this method that it does not make. use of par

)~i~ular ,.a pr,i,_ori knowledge .about _the s_olution, such as the shape or the 

locatioif of interior or boundary· layers. It only uses the fact that a small 

·. p<jtr~te~ m1,iltiplies the highest derivative. The method has no directional 

bias-'and it is able to locate the special regions. Thus, it can be used in 

an adaptive procedure to ·refine the mesh in the non-smooth parts and, in 

this way, to resolve the special regions in the solution. 

, ";o,Tqe, same iteration method (MDCP) can also be app~ied to the solution 

~9g.,siJ_>.$ul.arly perturbed partial. differential equa_tion~, such as the convec

tion diffus~on. equation [7J. In this paper, however, we restrict ourselves 
i-.·'·- - : ..•. 

to a more detailed discussion of the model equation 

(1.2) e:y" + 2y' = O, 

y(O) = O, y(l) = 1. 

2. CE~TRAL AND UPWIND DIFFERENCES FOR THE SINGULARLY PERTURBED PROBLEM 

The possible ins·tability of the central difference discretization for 

the problem (1. J) is easily shown for the example· (1.2). We take a uniform 
- ?.'- ~ 

partition {0 = x0 <·x1 
< ••• < ~ = l} of the interval (O,J). The solution 

of the· centrat difference equation 

i.;;' 

Yo = O, 

reads 
~ -~- f , ' -

"' ~Ithct · ~~ · (e.'..:h) /(e:.+h). The exact solution ·of the differential equation is 
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!(2.2) wlth·r := exp(-2h/e:). From this we derive that 

(2.3) 
J 

2 I y Cx.-> -y . I s c Ch /e:) 
]. 1 

for (hh;) + O. 

For a fixed e: the method is 0(h2) accurate, but the error may'explode for 

e: + 0 as is seen from (2.2), Because (with even N) 

lim y. = i/N 
e:-+O 1 

~ h/eN 

(for eyen i), 

(for odd i), 

and lim......_J\· y(x.) = I for x. f. 0. This large error is clearly due to i.n-
1:.--rv ' 1 ]. 

stability since the eigenvalues of the discrete operator are 

(2.4) i = 1 , 2, ••• , N-1 • 

The simplest cure against this instability_is the use of 11upwind dif

ferenc:._ing" 

(2.5) 
' -- 2 

- e:(y .• -2y.+y. 1)/h + 2{y. 1-y.)/h = o, 
1+ 1 1- 1+ 1 

i.e. one-sided differences are used to approximate the term 2y' in (1.2). 

The solution of this difference equation reads (2. 2) with r := e:/ (t+2h) •. 

Now we find 

ly(x.)-y. I ::;; c.(h/e:) 
]. 1 

for (h/e:) + 0 

and, moreover, we find lim J\ y· . = 1 for all i > 0, i.e. the discrete solu-
, E:-rv ]. 

tion has ·the same asymptotic e: + 0 behaviour as the differential equation. 

The success of the upwind scheme depends crucially'on the upstream ap

proximation in (2.5), an approximation 2(y.-y. 
1
)/h wouldhave yielded a· 

1 1-

completely wrong solution.· 

We note that the "upwind differencing" is equivalent i.o 

difference approximation with an enlarged e:: 

(2.6) u c 
Lb ' e: = Lb. ' e: +h • 

the central 
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In this form the difference scheme (2 .5) is called the "artifical viscosity'' 

I 

discretization and in this form the discretization method is independent 

· of the sign of a
1

• The stability of this discretization, uniform in E, 

easily follows from (2.4) and (2.6). 

AD.other way to study the (in-) stability of the above difference schemes 

is by Fourier or Local Mode Analysis [2J. We consider the equation on 

n = E.; we discretize the equation on a uniform partition 

{x. = ih I i e: 1l}. As a forcing function we take the "mode" 
]. 

ijhw 
e ' Re (hw) e: [ -1T, 1f J • 

With 

FT(yh) = y""' = ....!!__ t e-ijhw y (J.h) 
h r;::--i2 • l h ' 

YLiT JE:lZ 

the Fourier Transform is a norm-preserving bijection between the function 

spaces ! 2(7l) and L2
(-n,+1f), i.e. lyhl =. lyhl. 

c 
Considering the equation 1b,aYh = Lh,a yh = fh (e.g. a=E: or a=E:+h), 

we see 

(2.7) 

/ 

where S = siu(wh/2) and C = cos(wh/2). From this we derive the 2nd order 

consistency of Le : n,E 

I .... ..... I 1 "'C ( 2 2. ) I h 2 I 4 . 3 1 L -L = Lh - EW + iw ~ c &w +iw · , 
-h, E: E: ,E: . 

where £ (w) = -&w
2 + 2iw is the characteristic polynomial of ( L2). The 

E: 
(in-) stability of ~,a is shown by 

!Lh,al =I .sin~j~ 12>1/c 2~) 2 sin2 ((1)h/2-)+~--:-: 2 (~~};)· 

We see that..~,a(w) has one real zero (w=O) in conmon with La(w). A 

spurious zero appears for a+ 0, viz. (cf.(2.7)~ 
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lim 1:_. (w) • 0 for wh/2 • ±n /2. 
e:-+O -h,e: 

This' shows that, with central differences, an instable mode appears in the 

solution as e:/h + 0, which is of the form 

(2.8) y. • y (jh) = eijw = (-I)j. 
J h 

We also see that. the upwind discretization, a = e:+h, is lst order accurate 

and has no instability 

1tu -£ I s 1t · -£h I + 1£. -£ I 
-h , e: e: -h , a , e: · -h, e: e: 

4(a-e:) 2 O 2 2 s sin (wh/2) + (h ) s chw 
h2 

and 

ILu I = )Lh hi ~ lwlw/4 -h,e: ,e:+ 

""'U 
~ i.e. 1...- has no spurious zero~ -h,e: 

Illustrative in this respect are the solutions of (2.1) and (2.5) on 

the interval (O,w) with y(O) = I, y(w) = O, where we find the solution 

yi = ri with r = (e:-h)/(e:+h) and r = e/(e:+2h)1 respect;:ively. Now, 'for 

(e:/h) + 0 9 ~,e: yields the oscillating solution (2.8) whereas ri:,e: yields 

y. = 0 for i > O. 
-1 

3. STRAIGHTFORWARD DEFECT CORRECTION 

Defect correction is a general technique to solve an equation in an 

iterative process _by means of the repeated direct solution of a nearby 

simpler problem. Is the "target" problem to solve 

Lu = f, 

and can an "approximate" ~roblem 

- .... 
Lu = f 
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be solved directly, then the iterative process reads 

.(3. I) 

,..., 
(in case of a nonlinear operator Lother variants are possible). Many of 

these processes are well-known in numerical mathematics, e.g. iterative 

refinement of linear systems, Newton-like methods etc. 

It c~n be derived under rather general smoothness conditions that,,if 
~ ~ 

L and L are discretizations of the same differential problem and if L is 

stable and Land Lare consistent of the order p.and q < p,respectively, 

then u (k) is an approximation with accuracy O(hmin(p,kq» (cf.[3,4, 10]), 

without a stability requirement for L. Hence, we apply (3.1) for the solu

tion of (1.1), using L = L.c and L = L.u = Lh , with a= e: + O(h). 
(O) -h,e n,e ,a ( ) 

Starting with u = O, we find the artificial viscosity solution as u 1 

Since L is lst and L is 2nd order consistent, a single iteration step is 

already sufficient to obtain 2nd order accuracy. If the iteration (3.1) is 
• • (co) (oo) 

continued and converges to a fixed point u , then, clearly, u is the 
/ 

unstable solution of Lu = f. 

We find that the solution after one iteration step, u(2), satisfies 

Qh·. u< 2> ii Lh (2Lh -L. )- 1Lh u< 2> =f. 
,e: ,a ,a -h,e: ,a 

By Fourier analysis we find, analogous to (2.7), 

A -4S(aS-ihC) 2 
Qh, e: (w) = 2· 

h [(2a-e:)S-ihC] 

from which we derive 'that Qh is stable, uniformly for small e:: 

A 2 min2(t,a/h) 
IQh,e:l ~ 1T lwl max(1,2a/h) • 

For the smooth components of the splution the solution is accurate of order 

two: 

45
2 

(a-e:) 
2 

IQh,"' -I:,J = -z 2 2 2 2 
"- -h "' h { (2a-e:) S +h C } 
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We fin:d u(Z) to be a 2nd order accurate solution, uniformly.in e: > 0, for 

the smoo;h components in the solution. This is also found experimentally in 

the second part of Table 1. 

I - maxly.-y(x.)1 
' l. l. 

I y • -y (x. ) r, 
J. l. 

j = N/2'·'-·· 

I t l ' 

I N 10' 20 40 
·! 

10 i 20 1+0 
i 

I 
I I 

1. (1) 
1u 0.3303 0. 1665. i 0.0831 I o .0698 I o.02931 I 0.01326 

I u <2> 
I (3) 
lu , 

' l 0 .5384 
J I 0.00681 0.6213 0.5714 0 .1037 0.02707 

0.1110 0.7791 l 0. 7677 0.0544 0.01188 

Table 1. Errors in the numerical solution of 

e:y" + y' = f on (0,1), 
-6 

by straightforward DCP. (e:=lO ). 

0.00284 

I-

' 

Boundary conditions a9d fare such that y{x) = sin(4x). 

Near the boundary at x = O, where the solution is not smooth at all·,: 

the solution is not well represented. Here the accuracy is only 0(1). How-
·' , 

ever, ona mesh with D)eshwidth h such a sharp boundary layer cannot 'be're-

presen~edj anyway. For boundary layer resolution a finer mesh is nece·ssaty .. 

In or-Oer to see the effect of the boundarY layer in the nUl;{lerical $0-

lution with' h >> e:, we consider again problem (1.2) on the interval. (O,o0). 

with y{or = I, y{00 ) = 0. On a uniform mesh we find for the iterandsJ 

~1) (jh) 
' e: j 

= <e:+2h) , 

~2) (jh) 
E: j 

[ 1-j 2h2 
= <e:+2h) 

] 
e: (e:+2h) 

{3) c· > ' e: J 1-j 
2h2 

{1- jh 
2
-h (e:+h)}] 

~ Jn = <£+2h) e: (e:+2h) e: (e:+2h) 

The general solution is 

' "1 



- 98 -

(k+ J) ( .h) ( e: ) j p (. /h) 
';.;. J - e:+2h k J ;e: ' 

where Pk is a k-th degree polynomial in j, with a parameter e:/h. For small 

I (It+l) tlie. • Th • fl • 
e: h, y changes sign k times. e in uence of the numerical boundary 

layer decreases exponentially in the interior of the domain, bu~ the in-

stability creeps into the solution further and further as the iteration 

proceeds •. A single DCP step gives already 2nd accuracy. More DCP steps in

troduce more instability. 

4. MIXED DEFECT CORRECTION 

AI.tthough a single step with the straightforward DCP gives already good 

results for particular linear I-dimensional problems, we don't get the same 

favourable results for the convection-diffusion equation (cf. [6,7]). More

over, for nonlinear problems and for the 2-D problems we prefer the numeri

cal solution to be a fixed point of an iteration process. Therefore we con

struct an iterative process of "mixed defect correction" (MDCP-) type 

(4. la) 

' 
... (4.lb) {

L' Ci+l> 
l y 

i.' (i+l) 
2 y 

\ 

... LI y(i) 

- i.'2 y (i+l) 

.- L (i) - y 
1 

L 
(i+j) 

- y 
2 

If this iteration converges, we obtain two different solutions viz. 
A • .. {i) . B • {i+l) c . 

y = 11mi-+«> y and y = limi-+«> y • For our purpose we choose t 1 • Lb,e:' 
..... c ,.., ' . c ' ' 

t 2 • t 1 =~,a and t 2 = 2 diag(Lb,a) =: l\i,a' f 1 • £2 = fh. Thus, with 

a= e: +artificial viscosity, (4.la) is a defect correction step and (4.lb) 

is a damped Jacobi relaxation step. This relaxation sweep is introduced to 

reduce the high frequencies that are introduced by the DCP-step near the 

boundary layer. 

The fixed point yA of the iteration (4.1) can be characterized as the 

solution.of the equation 

{4.2) [L_ +L. n-l (L -L ) ]yA • fh , 
n,£ n,a-h,a -h,a -n,e: 

A 
which e~watiea we briefly denote by ~,e:Y = fh. 
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For the model equation (1.2), by Fourier analysis we find with a• e+h, 

analogous to (2.7), 

For & + O·there is no spurious zero: 

lim 1.~,el =I~ s4+ ~i sc[t+s
2JI - : 1s1/i+s2c~, 

&-+-0 

i.e. the discretization is stable, uniformly for e + O. Further it is con

sistent of ·2nd order: 

Hence the solution yA is· accurate 0(h2
) in the smooth parts. Results are 

shown in ~able 2. 

I 
' 
I .N 
I 

A I y I 

B 
I 

y I 

J1Wtlyi-y(xi)I I l_y i-y(xi) I, j • N/2 I 
I 
I 

I I i 
10 20 40 j 10 20 40 I 

I 

I 
I I 

I 
.. 

0.2~3 0 .02507 

1 
I 0.208 0.227 0.00653 0.00165 
I 

I 0.565 0.604 0.614 0.05953 0.01556 0.00392 I 

Table 2. Errors in the numerical solut:ion of mixed DCP; the same.# 

problem as for table. 1. 

·For sufficiently smooth solutions, we can also derive error estimates in a 

global norm using the stability of the operators Lh. and 11 . and the ,a -h,a 
relative· consistency between L and L 

1
and. ! L and n . (cf. [JO]). 

-h,e ll,a -h,a -h,a 

In order to st~dy 

compute the four ~oots 

are 

· · iwh · 
the boundary layer behaviour, we set A • e and 

A £ .. 
of M. (w) ;:::: 0. Asymptotically,for h·.-+ O, .. these 

~b,e . 
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A.
1 

= - c,/2h, t. 2,
3 

"" 2±15 + (2±2//5):, t. 4 = 1. 

~, 

.Hence, fGr a problem on the right half line the boundary layer is of the 

form 

A' i. B' i Yi = 1\1 + 1\2' 

A closer analysis shows 

Tiiis shows that, for small £/h, the error in the boundary layer is 0(1), 

but the influence of the boundary data decreases at a fixed rate per.mesh

point. Hence, also in this case, the width of the numerical boundary layer 

is O(h). 

Convergence of the MDCP iteration is proved by showing that 

D-I (D -L_ )L-I (L -L ) 
h~ct. h,a ~,a h,a h,a h,E 

has eigenvalues less than I. A good impression of the convergence behaviour 

is obtained again by local mode analysis, viz. 

lfi-1 ell. -i: >£.- 1 <£ -£ >I 
h,a -h,a -h,a -h,a h,a h,£ 

I 2c2 hz52 
= ~ scl {', + :::; ~ A(wh) 

a a282 +h 2c2 2a 
sin(wh), 

wher~ c 1 : :::: A(wh) ~ c2 ~ • With a = £+h,we find for £ << I a convergence 

factor :::: l per iteration sweep. (Note: for the two-dimensional problem, 

the convergence of the iteration is essentially more complex to analyze, 

cf. [ 7]) • 

'As a result of our iteration process we obtain two solutions: yA and 

yB. The difference between these solutions is 



A B a-e -1 
y -y =-D 2 h,o. 

A 
'\ y ' 
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which is proportional to the amount of artificial viscosity a-e and to the 
A 2nd differences in y • These differences are particularly large in those 

A B regions where the special layers exist. Hence we can use y - y to detect 

these regions and - if necessary - to refine the mesh locally. On this basis 

an adaptive procedure has been constructed, which halves the mesh size in 

those regions where yA - yB exceeds a given tolerance. By this procedure 

boundary layers are resolved automatically. Results are shown :.in table 3. 

In the adaptive procedure used, only discretizations with a fixed mesh 

.size were constructed. Where refinement is necessary a new problem on a sub

interval is generated with half the mesh siz~; after the solution of this 

,new problem (h/2) the coarse grid problem (h) is corrected for the relative 

truncation error between both meshes. This procedure is made r~f~l'.'Jivelyto 
, .. 

create finer and finer meshes, if necessary. In this way an hierarchy of 

submeshes is generated (cf. [5 ]) • 

Number of intervals in the mesh 
·, 

~ 0.) 0.05 0.025 0.0125 0 .00625 . 
i 

1/2 
I 

2 2 2 2 2 
' 1 /4 4 4 4 4 4 

1/8 8 8 8 

1/16 8 8 

I /32 8 

NP 5 5 9 13 17 

ME 0.040 0.088 0.088 0.088 0.088 
. 

Table 3. Automatic mesh refinement for 

e:y" + 2y' = o, y(O) == I, y(J) = O. 
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Shown is the number of intervals on each mesh, the total number of meshpoints 

(NP) and the maximal error over all meshpoints (ME). The criterium for mesh

refinement is 

i • 0,2,4, ••• ,N}. 

All local mesh-refinements appear at the left end of the interval (i.e. in 

the bo~ary layer). 

REMAIU<. For the one-dimensional model problem there is no clear advantage , 

of the 2"mixeq defect correction" over the straightforward defect correction. 

For the two-dimensional convection diffusion equation, however, there is a 

difference. Here, the MDCP again shows 0(h2
) accuracy in the smooth parts, 

whereas straightforward DCP does not. For 2-D problems this higher order 
·, 

accuracy is very important because the computational work is at least 

proportional to the number of meshpoints, which is O(h-~). 
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