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Ha oTpe3Ke H3y'laeTcJI nepBaJI KpaeBaJI 3a,D;a'la THna peaKI:i;HH-,D;H<l><l>Y3HH ,D;JIJI CHHrynJipHo B03MynJ;eHHoro 

napa60JIH<IeCKoro ypa.irneHml. IlnJI annpOKCHM8.IJ;HH KpaeBOH 33.,Il;a'IH HCIIOJID3YIOTCil pa3HOCTHl.Ie cxeMhI BhICO

KOrO (c-paBHOMepHo) IIOpiI,D;Ka TO'IHOCTH TIO BpeMeHH, pa3pa60TaHHhle paHee Ha OCHOBe KOppeKIJ;HH HeBil3KH. 

HoBhIM B 3TOH cTaT1.e iIBJIHeTCiI BBe,D;eHHe pa3,D;eJieHHJI o6nacTH ,D;JIX TaKHX c-paBHOMepHhIX cxeM. YKa3aHhl 

ycnOBHJI, npH KOTOphIX pa3HOCTHhle cxeMhI, HCIIOJI:&3yeMhle He3aBHCHMO Ha mmo6nacTxx, MOryT ycKOpHTb e

paBHOMepHO pemeHHe xpaeBoH 3a,D;a'IH 6e3 noTepH TO'IHOCTH HCXQD;H:&IX cxeM. Cne,D;oBaTen:&Ho, O,D;HOBpeMeHHOe 

peIIIeHHe 33.,Il;a'IH Ha pa3HhIX IIO,D;06JiaCTiIX MO)KeT 6hITb B npHHIJ;HIIe HCIIOJib30BaHO ,Il;Jlil pacnapan:neJIHBaHHil 

Bbl'IHCJIHTeJI:&HOrO MeTO,D;a. 

Hemker P.W., Shishkin G.I., Shishkina L.P. Distributing the numerical solution of 

parabolic singularly perturbed problems with defect correction over independent processes// 

Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. - Novosibirsk, 

2000. - Vol. 3, N!! 3. - P. 229-258. 

For a singularly perturbed parabolic equation on an interval, the first boundary value problem of reaction

diffusion type is studied. For the approximation of the boundary value problem we use previously developed 

finite difference schemes, of high e-uniform order of accuracy in time, based on defect correction. The new ap- · 

proach developed in this paper is the introduction of a partitioning of the domain for these e-uniform schemes. 

We determine conditions under which the difference schemes applied independently on the subdomains can 

accelerate ( e-uniformly) the solution of the boundary value problem without losing the accuracy of the original 

schemes. Hence, the simultaneous solution on the sµbdomains can in principle be used for parallelization of 

the computational method. 

1. Introduction 

Special c-uniformly convergent difference schemes for singularly perturbed boundary value 

problems for elliptic and parabolic equations have been well developed, see e.g., [1-4, 8, 9, 

13]. If the problem data are sufficiently smooth for parabolic equations without convec

tion terms, then the order of c-uniform convergence for the scheme studied in [1, 2) will be 
O(N-2 ln2 N + N01 ), where N and N 0 denote, respectively, the number of intervals in the 

space and time discretization. For this scheme the amount of computational work is primar

ily determined by the time discretization, which is of first order accuracy only. In [3, 4) we 
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developed an algorithm based on the defect correction principle which achieves a high order 

of accuracy with respect to time and preserves second-order accuracy in space. 

To improve the efficiency of the algorithm, we also need efficient high order methods for 

solving discretized problems. In paper [14] parallel computational methods were proposed 

that make it possible to accelerate the numerical solution of singularly perturbed boundary 

value problems for parabolic reaction-diffusion equations. In the present paper we develop 

a new, related, computational method to solve the system of discrete equations that arises 

when the defect correction technique is used to improve the accuracy of the discrete problem. 

In this way, we achieve a high order of accuracy for the time variable, maintaining c:-uniform 

convergence and second-order accuracy in space, as well as high efficiency of the algorithms 

due to possible parallel computations. It showd be noted that this parallel method is not 

iterative within its time steps. 
The schemes developed for parallel computation can be considered as domain decomposi

tion variants of schemes based on the defect correction technique. The domain decomposition 

introduces additional errors (perturbations) in the solutions obtained by the qschemes. In 

this paper we determine conditions (both for the derivatives of the solutions and for the 

parameters of the difference schemes) under which parallel computation does not affect the 

accuracy of the solution. Thus, by means of parallel computation we can achieve an acceler

ation of the solution process and maintain the high order of accuracy of the schemes based 

on defect correction technique. 
In this paper we use the convention that symbol L(k.l) denotes the symbol L introduced 

in formula (k.l). Wherever no confusion is possible, additional subscripts may be omitted. 

2. Problem formulation 

In the domain G = (0, 1) x (0, T], with boundary S = G \ G we consider the following 

singularly perturbed parabolic. equation with Dirichlet boundary conditions: 

{ 2 ~ a} 
L(2.1)u(x, t) = c: a(x, t) ax2 - c(x, t) - p(x, t) at u(x, t) = J(x, t), 

u(x, t) = cp(x, t), (x, t) E S. 

(x,t) E G, (2.la) 

(2.lb) 

For S =So U Si, we distinguish the initial boundary So= {(x, t) : x E [O, 1), t = O} and the 

lateral boundary S1 = {(x, t) : x = 0 or x = 1, 0 < t ::; T}. In (2.1) a(x, t), c(x, t), p(x, t), 
J(x, t), (x, t) E G, and cp(x, t), (x, t) E S, are sufficiently smooth and bounded functions 

which satisfy 

0 < ao ::; a(x, t), 0 <po <p(x,t), c(x, t) 2:: 0, (x, t) E G. (2.lc) 

The real parameter e may take any positive value in the interval 

e E (0, 1). (2.ld) 

When the parameter c: tends to zero in (2.la) in the neighborhood of the lateral boundary 

S1 , boundary layers appear in the solution. These layers are described by a parabolic equation 

(parabolic boundary layers). 
For problem (2.1), we construct a numerical method that has a high order of accuracy 

with respect to time and, in addition, allows for parallel solution of the difference equations. 
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3. The difference scheme 

To solve problem (2.1) we first consider a classical finite difference method. On the set G 
we introduce a rectangular grid 

(3.1) 

where w is (possibly) a non-uniform grid of nodal points xi on [O, 1], w0 is a uniform grid on 
the interval [O, T]; N and N 0 are the numbers of intervals in the grids wand w0 , respectively. 
We denote T = T/No, hi= xi+l - xi, h =maxi hi, h ~ M/N, Gh = G n Gh, sh = s n Gh. 

Here and below we denote by M (or m) sufficiently large (or small) positive constants 
which do not depend on parameters e: and N. 

For problem (2.1), we use the difference scheme [10] 

where 

A(s.2)z(x, t) = f(x, t), (x, t) E Gh, 

z(x, t) = cp(x, t), (x, t) E Sh, 

A(s.2)z(x, t) { e:2 a(x, t)c5z;1; - c(x, t) - p(x, t)c5t} z(x, t), 

c5xxz(xi, t) = 2(hi-l + hi)-1 [c5:i:z(xi, t) - c5xz(xi, t) J , 

c5:i:z(xi, t) (hi)-1 ( z(xi+1, t) - z(xi, t)) , 

c5xz(xi,t) (hi-l)-1 (z(xi,t)-z(xi- 1,t)), 

c5tz(x\t) = r-1 (z(xi,t)-z(xi,t-r)), 

(3.2a) 

(3.2b) 

c5:cz(x, t) and c5:cz(x, t), c5tz(x, t) are forward and backward differences, and c5:c:1:z(x, t) ·is 
an approximation of the derivative (82 /8x 2 )u(x, t) on a non-uniform grid. 

From [10], we know that the ·difference scheme (3.2), (3.1) is monotone. By means of 
the maximum principle, and taking into account a-priori estimates of the derivatives (see 
Theorem 11.1 in the Appendix), we find that the solution of the difference scheme (3.2), 
(3.1) converges for a fixed value of the parameter e: as 

ju(x, t) - z(x, t)I ~ M(e:-1 N-1 + r), (x, t) E Gh. (3.3) 

Our proof of (3.3) is similar to the classical convergence proof for monotone difference 
schemes [10, 13]. Taking into account an a-priori estimate for the solution (see the Appendix), 
this results in the following theorem: 

Theorem 3.1. Let us assume that estimate (11.2), where n = 0, holds for the solution of 
(2.1). Then, for a fixed value of the parameter e:, the solution of (3.2), (3.1) converges to the 
solution of (2.1) with the error bound given by (3.3). 

4. The e-uniformly convergent method 

In this section we discuss an e:-uniformly convergent method for (2.1) by taking a special 
grid condensed in the neighborhood of the boundary layers. The distribution of nodes is 
derived from a priori estimates of the solution and its derivatives. We follow the approach 
described in [3, 8, 11, 13], i.e., we take 
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(4.1) 

where w0 is a uniform grid with step-size T = T N01 , and w* = w* ( u) is a special piecewise 

uniform grid depending on a parameter u E IR, which depends on e and N. We take 

·u = u(e,N) = min[l/4,melnN], where m is an arbitrary positive number. The grid w*(u) is 

constructed as follows. The interval [O, 1] is divided in three part~ [O, u], [u, 1 - u], [1~u,1], 

0 < u ~ 1/4. In each part we use a uniform grid, with N/2 subintervals in [u, 1-u] and with 

N/4 subintervals in each interval [O, u] and [1 - u, l]. 

Theorem 4.1. If the solution of problem (2.1) satisfies the hypotheses of Theorem 11.1 (see 

Appendix), where n = 0, then the solution of (3_.2), (4.1) converges e-uniformly to the solution 

of (2.1), and the following estimate holds: 

lu(x, t) - z(x, t)I ~ M(N- 2 ln2 N + T), (x, t) E G~. (4.2) 

The proof of this theorem can be found in [12, 13]. 

Remark. Under the conditions of Theorem 4.1, where n = K ;::: O, for the derivatives 

(8k0 /8tk0 )u(z, t) and the divided differences t5a z(z, t), the following estimates hold: 

I :tk:o u(z, t)I ~ Mc~.~))' (z, t) E G, k0 ~ K + 2; 

lt5it z(z, t)I < Mc~~4), (z, t) E Gh(4.1)1 t;::: lT, l ~ K + 1. 

Here we denote by t5az(z, t) the backward difference of order l: 

t5a z(z,t) = (t5i-Il z(z,t)-t5,_1t z(z,t-T)) /T, 

t50t z(z, t) = z(z, t), (z, t) E Gh, t ;::: lT, l > 1. 

5. Schwarz method for parabolic equations 

(4.3) 

(4.4) 

In this section we modify Schwarz' domain decomposition method for the boundary value 

problem (2.1), and for the solutions obtained we give the necessary and sufficient conditions 

for e-uniform convergence. 

5.1. We first describe Schwarz' classical method for problem (2.1). Let a set of open subdo

mains 

Dk, k = 1, ... ,K 

with piecewise smooth boundaries rk, rk = I'(Dk) 
K 

D = U Dk, and let 
k=l 

(5.la) 

Dk \Dk, cover the domain D: 

Gk =Dk x (O,T], k = l, ... ,K. (5.lb) 

We denote by D[k] the union of the subdomains D 1, ..• , DK which does not include Dk: 

K 
D[k] = LJ Di. (5.lc) 

i=l,i#k 
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We denote the minimal overlap of the sets Dk and D[k] by Jk, and by d the smallest value of 
~k . 
a ' i.e., 

rnin p(x\ x2
) = d, 

k,:z:l, z2 
(5.2) 

x 1 E Dk, x2 E D[k], x1, x2 ~ {Dk n D[kl}, k I, ... ,K, 

where p(x1 , x 2 ) is the distance between points x 1
, x 2 ED. In general, the value J may depend 

on the parameter c. 
Let 

u0 (x, t), (x, t) E G, (5.3a) 

be an arbitrary function satisfying the condition (2.lb). We seek a sequence of functions 
ur(x, t), (x, t) E G, r = 1, 2, .... Let a function ur(x, t) be known, The function ur+l(x, t) is 

determined in the following way. First we find functions ur+f< (x, t). These are solutions of 
the following problems: 

L(s.4)(ur+f< (x, t)) = 0, (x, t) E Gk, (5.3b) 

(x,t)EG\Gk, k=I, ... ,K. 

The required function is defined by the relation 

ur+I(x, t) = ur+jf (x, t), r = O, 1, 2, .... (5.3c) 

In the case of boundary value problem (2.1) the operator L(s.4) in (5.3b) is defined as 

L(s.4)(u(x, t)) = L(2.1)u(x, t) - J(x, t), (x, t) E G. {5.4) 

Each function ur+f< (x, t), (x1 t) E G, is the solution of a Dirichlet problem on the set Gk 

and coincides with the function ur+k.K
1
(x,t) on the set G\ Gk. This process is a natural 

generalization of the classical Schwarz "alternating)) method. 
In principle, we could give conditions under which process (5.3), (5.4), and (5.1) converges 

to the solution of boundary value problem (2.1) as r-+ oo, where r is the number of iterations. 
However, in this paper we are interested in a non-iterative variant solver based on a modified 
Schwarz method. 

5.2. Now we describe the modified Schwarz method. Let 

(5.5a) 

be a uniform grid, like w0(3.1), on [O,T] with a stepsize r. By G(t1) we denote the strip 

G(t1) { (x, t) : (x, t) E G, ti < t S t1 + r }, ti, ti + r E wo. 

Let S(t1) G(t1) \ G(t1) be the boundary of G(t1) and let v(x, t) = v(x, t; ti) be defined on 
S(t1). We denote the extension of the function v(x,t) onto the whole set G(t1) by v(x,t;t1). 

The function v(x, t; t 1) is assumed to satisfy a Lipschiz condition with respect to t. We 

subdivide the strip G(t1) into sections Gk(ti) Gk n G(ti), Sk(t1) = Gk(t1) \ Gk(t1). 

Suppose the function u(x, t), (x, t) E ovlG, for tn E wo, t s tn < T, n = 0, 1, ... , No - 1, 
has already been constructed. Now we construct the function u(x, t) for t :s; tn+i, i.e., we 
find the function u(x, t) on the strip G(tn). This is done in the following way. First we find 

functions ukf K(x, t) on the sections Gk(tn) solving the boundary value problems 
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k 

L(s.4)(uR(:z:,t)) = 0, 

l!... { u(x, t; tn), k = 1, } 
UK(:z:,t) = k-1( ) k ~ 

2 
, 

ul(x,t, 

(5.5b) 

k = 1, ... , K, tn E wo, n ~ No 1. 

Having uk I K ( x, t) on <i ( tn), we extend these functions for each value of k onto the whole 

strip G(tn) in the following way: 

(x, t) E G (tn), 

k = 1, 

k~2 

_ _ for x t E G t1" 
-k } 

} , (x, t) E G(t") \ G•(t") ( ' ) ( ), 

k = 1, ... , K, tn E wo. 

(5.5c) 

Having uk/K (x, t), for k K we define the function u(x, t) on the whole strip G(tn) by 

K 
u(x, t) = uK' (x, t), (x, t) E G(tn), tn E wo. (5.5d) 

Thereby we have the function u(x, t) defined on the domain G for t E [O, tn+l]. 
In the relations (5.5b), (5.5c) the function u(x, t; tn) is constructed on the basis of a 

function v(x, t; tn), 

(5.5e) 

Using v(x, t; tn), which is defined on the boundary S(tn) in (5.5g), we find the function 

(5.5f) 

supposing v(:z:, t; tn) = v(x, t; tn) for (x, t) E S(tn) and v(x, t; tn) = v(x, tn; tn) for (:z:, t) E 

G(tn). Here 

{ 

<p(x, t), 

v(x,t;tn) = <,o(x,t), 

u(x, t), 

(x, t) E S(tn}, 

(x, t) E S(tn) n S, 

(x, t) E S(tn) \ S, 

n = 0, 1, ... , No -1. 

Thus, the function u(x, t; tn) on G(tn) have been constructed. 

(5.5g) 

The function u ff ( x, t) on each strip G ( tn) is the solution of a Dirichlet problem on the 

section Gk(tn), whereas on the set G(tn) \ Gk(tn) it coincides with the function u(x, t; tn), 
- k-1 -

(:z:, t) E G(tn) for k = 1, and with the function ul( (x, t), (x, t) E G(tn) for k ~ 2. Thus we 

have found a function u(x, t), (:z:, t) E G, the solution of the process (5.5), (5.4), (5.1) which 
we call the· modified Schwarz method. 

Note that the process (5.5), (5.4), {5.1), "the modified Schwarz method" is not an iterative 

process in a strict sense. The boundary value problems in (5.5), (5.4), (5.1) are solved only 
once at those points of G which do not belong to the intersection of the subdomains. The 
boundary value problem is solved twice only on the intersection of the subdomains. 

In the continuous domain decomposition method (5.5) 1 (5.4), (5.1) the intermediate prob-
-k . 

lems on the subsets D(5.1), k = 1, ... , K are solved sequentially. 
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Using comparison theorems [5, 6], we obtain the estimate 

lu(x,t) u(5.s)(x,t)I ~ Q(c:,o)N0-
1

, (x,t) E G, 

where u(s.s)(x, t) is the solution of the process (5.5), (5.4), (5.1), o = O(s.2) (c:), i.e., the function 

u(s.s)(x, t) converges, as No -+ oo, to the solution of boundary value problem (2.1) for each 

fixed value of the parameter c:. Note that the function u(s.s) (x, t) for {J = 0 does not converge 

to the solution of boundary value problem (2.1) as No-+ oo. Under the condition 

c E (0,1), inf [ e:-1o(5.2)(c)] > 0 
eE(0,1] 

(5.6) 

which is equivalent to the condition o = O(s.2)(c:) 2 m(s.6)c, c E (0, 1], the function u(s.s)(x, t) 
converges e:-uniformly as No-+ oo: 

lu(x, t) - u(s.s)(x, t)I ~ MN01, (x, t) E G. 

If condition (5.6) is violated and the value o satisfies the condition 

o = 0(5.2)(c:) > 0, c E (O, 1), inf [c-1 d(s.2)(c:)] = 0, 
eE(0,1] 

the function u(s.s)(x,t) does not converge e:-uniformly. 

(5.7) 

5.3. Here we describe a continuous variant of the modified Schwarz method that allows 

parallel computations on P 2 1 processors. 
Let Dk, k = 1, ... ,K, be the subdomains from (5.la) and let each Dk be partitioned in 

P disjoint (possibly empty) parts 

k= 1, ... ,K, (5.8a) 

Here we assume that the non-empty D; do overlap, but generally Dk do not. We set 

a;= D! x (O,T], p = 1, ... , P, k = 1, ... , K. (5.Sb} 

We find the function u(x, t) by the solution of problems (5.9) similar to (5.5) but now on the 
-k -k 

set GP (tn) instead of G (tn) 

k 

L(s.4) (uf (x, t) = 0, (x, t) E a;(tn), (5.9a) 

u/f (x, t) = •-1 , (x, t) E s;(tn), p = 1, ... , P 
.!!.. { u(x, t; tn), k = 1, } 

uir(x, t), k 2 2 

for (x, t) E a:(tn), k 1, ... , K, tn E wo, n ~No 1; 

uk(a:,t) = { (5.9b) 

for 
K 

u(x, t) = u'K (x, t), (5.9c) 
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The function u(x, t; tn) v(x, t; tn), (x, t) E G(tn), tn E Wo. The function v(x, t; tn), (x, t) E 

G(tn) is determined as in (5.5f). 
Stepwise, for n 1, 2, ... , we find the function u{s.9) (x, t), (x, t) E G, i.e., the solution of 

process (5.9), (5.8). This we call the modified continuous Schwarz method for P "processors". 
The scheme (5.9) with the decomposition (5.8) can be written in "operator" form 

Q(u(x,t); wo, J(·),r.p(·),tf;(·)) _;_ 0, (x,t) E G. (5.9d) 

Here the function 1/J(x, t; tn), (x, t) E G(tn), defines the prolonged function u(x, t; tn): 

{ 
v(x, t; tn), (x, t) E S(tn), } 

u(x, t; tn) = v(x, tn; tn) + 1/J(x, t; tn), (x, t) E G(tn) ; . (x, t) E a(tn), (5.9e) 

so that in the case of conditions (5.5e), (5.5f), simply, 1/;(x, t; tn) = 0. The problem (5.9), 
(5.8) for P = 1 is identical with problem (5.5), {5.1). 

In the continuous domain decomposition method (5.9), (5.8) the intermediate problems 
-k . 

on the subsets Dp(S.S)' p 1, ... , P, k = 1, ... , K can be solved mdependently of each other, 
for all p = 1, ... , P. For this construction the following theorem [14] is useful. 

Theorem 5.1. The condition (5.6) is necessary and sufficient for c-uniform convergence (as 

No -4' co) of U(s.9)(x, t), i.e., the solution of process (5.9), (5.8) with P ;:::: 1, to u(x, t), i.e., 

the solution of boundary value problem (2.1). 

6. Difference schemes based on the Schwarz method 

6.1. Here we construct a difference scheme based on the process (5.5), (5.1} and give nec
essary and sufficient conditions for e-uniform convergence of this scheme. We introduce 

-k -k 
rectangular grids on each set G and GP : 

(6.1) 

or 
(6.2) 

-k -k -k -k 
where Gph = Gp,h· We assume that the boundaries of G and GP pass through nodes of 

- -· grids Gh and Gh, respectively. 
Now we introduce a discrete function v(x, t) = v(x, t; ti) defined on the boundary of a 

discrete strip Sh(t1) = S(t1 ) n ah, t1 E wo. By v(x, t; ti) we denote the extension of this 
function v(x, t) to the discrete set ah(t1) = a(t1) n ah. The function v(x, t; ti) is considered 
to satisfy a Lipschitz condition with respect tot. The "strip" ah(t1) consists of only two time 
levels Gh(t1) = {w x [t = ti]} U {w x [t ti + r]}, where w was introduced in (3.1). 

Now we find discrete solutions zk(x, t) by a procedure similar to (5.5). That is, assuming 
that z(x, t), t ~ tn is computed, we solve on the strip ah(tn) the following problems: 

le 
A(6.3)(z1?(x,t)) = 0, 

lL { z(x,t;tn), k = 1, } 
ZK(x,t) = k-1 ' 

zl((x,t), k;:::: 2 

(6.3a) 

k ·= 1, ... , K, tn E wo, n ~ No - 1; 
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The required function z(x, t) on the strip Gh(tn) is determined by the relation 

K 
z(x, t) = zK' (x, t), (6.3c) 

In relations (6.3a), (6.3b) 

(6.3d) 

(6.3e) 

where 

{ <p(a:, t), (x, t) E Sh(tn), tn = tO = 0, }, v(x, t; tn) <p(x, t), (x, t) E Sh(tn) n Sh, t > tn }, - ' tn > 0 
z(x, t), (x, t) E Sh(tn) \ Sh, t = tn 

(6.3f) 

(x, t) E Sh(tn), n = 0, 1, ... , No - 1. 

- k 
On each strip Gh(tn) the function zI?(x, t) is the solution of a discrete Dirichlet problem 

on the set a:(tn). On the remaining part Gh(tn) \ G~(tn), fork = 1 it coincides with the 
- 11:-1 -

function z(x, t; tn), (x, t) E Gh(tn), and fork 2 2 with the function z""'1<(x, t), (x, t) E Gh(tn). 
We define an operator A(6.3) by the relation 

A(6.s) (z(x, t)) = A(s.2)z(x, t) - f (x, t), (x, t) E Gh. (6.4) 

We seek a function zc6.3)(x, t), (x, t) E Gh, i.e., the solution of difference scheme (6.3) 
either on the grid (4.1) or on the grid (3.1) . The difference scheme (6.3) can symbolically 
be written in operator form as 

{6.3g) 

Similarly to (5.9e), here the function 1/J(x, t; tn), (x, t) E Gh(tn) determines the function 
z(x, t; tn): 

{ 
v(x, t; tn}, (x, t) E Sh(tn), } _ 

z(x, t; tn) = (x t) E G (tn). 
v(x,tn;tn)+'ef;(x,t;tn), (x,t)EGh(tn) ' ' h 

(6.3h) 

In the above case of conditions (6.3d), (6.3e) we have 1/J(x, t; tn) = 0. 
In the discrete domain decomposition method (6.3), the intermediate problems on the sub-
-h -h -

sets Dh = D(5.1) n Dh are solved sequentially. Thus, to solve boundary value problem (2.1), 
here we used difference scheme (6.3), (3.1), which is the discrete equivalent of (5.5), (5.1). In 
the following section we extend this to the "parallel" case (5.9). 
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6.2. To describe the difference scheme that approximates process (5.9), (5.8) with P parallel 

processors, assume that z(x, t) is known fort :S tn; then we solve the following problems: 

k 

A(6.3}(zf (x, t)) = 0, (x, t) E G!h(tn), (6.5a) 

k 

zf (x, t) { 
z(z, t; tn), k = 1, } k 

1c-1 , (x, t) E Sph(tn), p 
zl( (x, t), k ?: 2 

1, ... ,P 

1, ... , K, tn E wo, n :S No 1· l 

k = 1, } 
k?: 2 ' 

for {x, t) E Gh(tn), k = 1, ... , K, tn E wo. 

We define a function zc6.5)(z, t) on the strip Gh(tn) by the relation 

K 
Z(6.5)(x,t) = zK'(x,t), (x,t) E Gh(tn), tn E wo. (6.5b) 

In (6.5a) the function z(x, t; tn) = v(x, t; tn), (x, t) E Gh(tn). The function v(x, t; tn), (x, t) E 

Gh(tn) is found, using v(x, t; tn), (x, t) E Sh(tn), which is determined by relation (6.3e). Thus 

the function z(6.5)(x, t), (x, t) E Gh, i.e., the solution of difference scheme (6.5), (3.1) is found. 

The difference scheme (6.5) can be written in operator form 

(6.5c) 

with 1/J(x, t; tn) = O. 
In the discrete domain decomposition method (6.5), (3.1) the intermediate problems on 

-k -k -
the subsets Dph = DP(5.s) n Dh are solved independently of each other ("in parallel") for all 

p = 1, ... , P. For P 1 the difference scheme (6.5), (3.1) reduces to (6.3), (3.1). 

Under condition (5.6), using the standard technique of comparison theorems, we get the 

following estimate: 

(6.6) 

where Z(s.2)(x, t) and zc6.5)(x, t) are solutions of difference schemes (3.2), (3.1) and (6.5), (3.1), 

respectively. 

6.3. A technique similar to the one explained in (3, 4] gives us error bounds for the discrete 

solutions that are obtained by the difference schemes described above. Under condition 

(5.6), using the difference schemes (6.5), (3.1) and (6.5), (4.1), we obtain the following error 

estimates for the solution of boundary value problem (2.1): 

lu(x, t) - Z(6.5)(x, t)I :S M(e-1 N-1 r), (x, t) E Gh{s.1), 

lu(x, t) - Z(6.5)(x, t)I :S M(N-2 ln2 N + r), (x, t) E G~(4.i)· 

The above formulation allows us to summarize a result obtained in [14] as follows: 

(6.7a) 

(6.7b) 
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Theorem 6.1. Let the hypotheses of Theorem 4.1 hold for the data of boundary value prob
lem (2.1) and its solution. Then, under condition (5.6) and for N, No -too, the solution of 

the difference scheme (6.5), (4.1) (or scheme (6.5), (3.1)) converges to the solution of {2.1) 
e-uniformly (for a fixed value of e). The estimates (6.6), (6.7) hold for the solutions of these 

difference schemes. 

Remark. Hthe condition n = 0 of Theorem 4.1 is replaced by n = K, K 2 -1, the following 
estimate holds: 

I ( ( ))I {l+l) -1 oa Z(3.2) (x, t) - Z(6.5) x, t :s; M M(4.3) No ' (x, t) E Gh, t 2 fr, l < K + 1. 

7. Improved time accuracy 

7.1. A scheme based on defect correction. The technique used in this paper to improve 
time-accuracy is based on the one in [3]. For the difference scheme {3.2), (4.1) the error in 
the approximation of the partial derivative (8/8t) u(x, t) is caused by the divided difference 
o:;; z(x, t) and is associated with the truncation error given by the relation 

a -1 a2 ( ) -1 2 a3 
8t u(x, t) - OfU(X, t) = 2 T Bt2 U X, t - 6 T at3 u(x, t - 19), (7.1) 

where 19 E [O, r]. Therefore, we now use for the approximation of (8/8t) u(x, t) the expression 
bfu(x, t) + TOftU(x, t)/2, where onu(x, t) = oau(x, t - r)' oau(x, t) is the second central 
divided difference. We can obtain a better approximation than (3.2a) by the defect correction 

(7.2) 

with x E w and t E wo, where w and wo are as in {3.1}; T is the step-size of the grid wo; 
zC(x, t) is the "corrected" solution. Instead of ( 82 I 8t2) u(x, t) we shall use on z(x, t), where 
z(x, t), (x, t) E Gh(4.1), is the solution of the difference scheme (3.2}, (4.1). The new solution 

zc(x, t) has a consistency error of the order of O('r2 ). 

7.2. The defect correction scheme of second-order accuracy in time. Constructing 
the difference scheme in (7.2), instead of (82 /8t2 )u(x, t) we use 02f z(x, t), the second divided 
difference of the solution to the discrete problem (3.2), (4.1). On Gh we write the finite 
difference scheme { 3. 2} as 

(7.3) 

where z<1>(x, t) is the uncorrected solution. For the corrected solution z(2) (x, t) we solve the 
problem for (x, t) E Gh 

z<2>(a:, t) = cp(x, t), 

{ 
p(x, t)2-1Tgt

2
2u(x,0), t = r, } , 

p(x,t)2-1 r82tz<1>(x,t), t 2 2r 

(x, t) E Sh. 

Here the derivative g;2 u(x, 0) is obtained from equation (2.la). 

(7.4) 
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To clarify the construction, in the remainder of this section we consider a homogeneous 

initial condition: 
<p(x,O) = 0, x ED. (7.5) 

Under this condition, the following estimate [4] holds for the solution of problem (7.4), (4.1): 

{7.6) 

This is more properly formulated in the following theorem [4]: 

Theorem 7.1. Let condition (7.5) hold and assume in equation (2.1) that a, c, p, f E 
H(a+2n-2)(G), <p E H(a+2n)(G), a > 4, n K, K 2'.: 1 and let condition (11.3) and the 

estimates (11.6), (11.7) be satisfied for n = K. Then for the solution of difference scheme 

(7.4), (4.1) estimate (7.6) holds. 

7 .3. The defect correction scheme of third-order accuracy in time. The above 

procedure can be used to obtain an arbitrary large order of accuracy in time. Here we only 

show how to construct a difference scheme of third order accuracy. On the grid G h we consider 

the difference scheme 

p(x,t) ( Cnr gt22u{x,O) + C12r2 g;3u(x,o)), 

p(x, t) ( C21r %t,
2
2 u(x,O) + C22T2 gt~u(x,o)), 

p(x, t) ( Ca1T82tz(2)(x, t) + C32r2<>atz(l)(x, t)), 

z(3)(x, t) = <p(x, t), (x, t) E Sh· 

t = r, 

t= 2r, (7.7a) 

Here z(1)(x, t) and z(2>(x, t) are the solutions of problems (7.3) and (7.4), respectively, the 

derivatives (82 /8t2)u(x, 0), (83 /8t3 )u(x, 0) are again obtained from (2.la). The coefficients 

Cij are determined below. They are chosen such that they satisfy the following conditions: 

a a2 2 ea a 
Btu(x,t)=c5tu(x,t)+Cur8t2u(x,t- r)+C12T ot3 u(x,t- r)+O(-r ), 

a a2 83 

Btu(x,t) = 8tu(x,t) C21r ot2u(x,t - 2r) C22r2 Bt3 u(x,t-2r) + O(r3
), 

:t u(x, t) = 8tu(x, t) + C31 n52ru(x, t) + C32r2c53tu(x, t) + 0( r 3). 

It follows that 

Cu = C21 = Cs1 = 1/2, C12 = C32 = 1/3, C22 = 5/6. (7.7b) 

Again, for simplicity, we assume the homogeneous initial condition 

<p(x,0)=0, f(x,O) 0, xED. (7.8) 

It is proved in [4] that under condition (7.8) the following error estimate holds for the 
solution z<3>(x, t) of scheme (7.7): 
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I u(x, t) - z<3>(x, t) I ::; M [ N-2 ln2 N + T 3
] , (x, t) E Gh. (7.9) 

This is more properly formulated in the following theorem: 

Theorem 7.2. Let conditions (7.8) hold and assume in equation (2.1) that a, c, p, f E 
H{0 +2n-2)(G), cp E H(a+ 2n>(G) 1 a > 4, n K, K ;::: 2 and let condition (11.3) and the 
estimates (11.6), (11.7) be satisfied for n = K. Then for the solution of scheme (7.7), (4.1) 
the estimate (7.9) is valid. 

Illustrative numerical results without domain decomposition are discussed in [3, 4]. These 
results demonstrate the efficiency of the defect correction technique in improving the accuracy 
with respect to the time variable. However, in this paper we are interested in distributing 
the above algorithm over a number of independent ("parallel") processes. 

8. Parallel method based on defect correction 

8.1. Difference schemes of second-order accuracy in -r. Now we describe a finite 
difference scheme (6.3) constructed for the modified Schwarz method (5.5) with P = 1 in the 
case of defect correction. To approximate the alternating process (5.5), we apply the defect 
correction scheme (7.4), (4.1) to the discrete equations (6.3), (6.2). 

First we find a function z(l) (x, t), (x, t) E Gh(tn), solving problem (6.3), (6.2) 

(8.1) 

where zf (x, t) and z(x, t) are now denoted by z(l) f (x, t) and z(l) (x, t) respectively. To make 
a precise reference later, we write the procedure (6.3), (6.2) now as 

Here 

A(6.3;6.2) (z<1>f (x, t)) = O, 

(l)..&. { :z(l)(x, t; tn), k = 1, } 
z K (z, t) = k-1 ' z<1>Ir (x, t), k 2 

for (x, t) E Gh(tn), k = 1, ... , K, tn E wo. 

z<1>(x,t) = z(l)if(x,t), (x,t) E Gh(tn), tn E wo. 

(8.2a) 

(8.2b) 
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Now we find z(2).f?(x,t) for (x,t) E Gh(tn), solving the corrected problem 

A(s.3) (z<2lf(x,t}) = 0, (x,t) E G~(tn), 

{2).!. { :z{2)(x, t; tn), k = 1, } 
z K(x,t) = k-1 ' 

z(2)Jr (x, t), k ~ 2 

for (x, t) E G~(tn), k = 1, ... , K, 

{ 

z(2).f? (x, t), 

z<2>k(x,t)= :z(2)(x,t;tn), k=l,} 
(2) lc-1 ' z Ir(x,t), k ~ 2 

for (x, t) E Gh(tn}, k = 1, ... ,K, tn E wo. 

The function z(2)(x, t) on the strip Gh(tn) is defined by the relation 

z(2) (x, t) = z(2)~ (x, t), (x, t) E Gh(tn), tn E wo. 

Here 
:z(2)(x,t;tn) = v<2l(x,t;tn), (x,t) E Gh(tn), 

v<2)(z, t; tn) = v<2)(x, t; t11, z(l)(·)) 

= v(z,tn;tn) + z<1>(a::,tn+l) - z(l)(x,tn), (x,t) E Gh(tn), 

v(z,t;tn) = V(6.3f)(x,t;tn), (a:,t} E Sh(tn); 

A(s.3) (z<2>(x,t)) = Ac3.21z<2)(x,t)-/(2)(x,t), (x,t) E G~, 

j<2>(x, t) /(2)(x, t; z(1)(·)) 

= f(x, t) 
{ 

p(x, t)2- 1r gt22 u(x, 0), t = r, } , k 
(x, t) E Gh. 

p(x, t)2-1-ro2fz(l) (x, t), t ~ 2r 

(8.3a) 

(8.3b) 

(8.3c) 

We call the function zi~~3) the solution of the domain decomposition - defect correction scheme. 

The difference scheme (8.3), (4.1) symbolically can be written in operator form 

where 

Q(6.3)(z<1>(x,t};/<1)(·),rp(·),1/J(l)(·)) O, (x,t) E Gh, 

Q(6.3)(z<2)(x,t};/<2>0,rp(·),1/J(2
)(·)) = 0, (x,t) E Gh, 

/(l) (x, t) = I (x, t), ! (2) ( • (1) (·)) 
(8.3c) x, t, Z ' 

(8.3d) 

1/J(2)(x,t;tn) = 1/J(2)(x,t;tn,z(1)(·)) = z(l)(x,tn+l)-zC1)(x,tn), (x,t) E Gh(tn), t = tn+I. 

For the solutions of difference scheme (8.3), (4.1) the estimate (7.6) holds .also (assuming 
that condition {5.6) and the hypotheses of Theorem 7.1 are satisfied). 

In the case of P > 1 we discretize the process (5.9), (5.8). In grid constructions (8.2a) and 

(8.3a), solving the finite difference boundary problems on the G~, the functions z{l) ~ (x, t) 
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k (1).!. (2).!. 
and z<2)1f{x,t) are replaced by the functions Zp K(x,t) and Zp K(x,t), and the set G~ is 
replaced by the set a;h 

(i) ( (i).!. ) 
.A(S.4) Zp K (x, t) = 0, 

(i)f? _ { :z(i)(x, t; tn), k = 1, } 
Zp (x,t)- (')k-1 , 

z t J((x,t), k 2:: 2 

Here 

:z(i)(x, t; tn) = v(i)(x, t; tn), (x, t) E Gh(tn), 

v(i)(x, t; tn) = v(i)(x, t; tn, 1/J(i)(·)) 

= { 
v(x,tn;tn) +1/J(i)(x,t;tn), (x,t) E G(tn), } 
v(x, t; tn), (x, t} E S(tn) ' 

(x, t) E Gh(tn); 

v(x, t; tn) = V(6.3f)(x, t; tn}, (x, t) E Sh(tn), 

n/,(1) ( t· tn) - Q n/,(2) ( t· tn) - n/,(2) ( t• tn (1) ( )) 
'f' x, ' = ' 'f' x, ' - '1'(8.3) x, ' 'z(8.4) . ' 

.A(i) ( (i)f?( )) _.A (i)f?( ) /(i)( ) ( ) Gk 
(8.4) Zp x, t = (3.2)Zp x, t x, t ' x, t E phi 

/(
1)(x,t) = f(x,t), /(2)(x,t) = /(~!3)(x,t;z(~~4)(·)). 

In operator form the difference scheme (8.4), (6.2) is written 

Q(6.5)(z(1l(x, t); /(1)(·), <p(·), 1/J(1)(-}) = 0, (x, t) E Gh, 

Q(6.5){z(2)(x,t); /(2)(·), <p(·), 1/J(2)(·)) = 0, (x,t) E Gh, 

where 
j(1)(x, t) = f(x, t), 1<2l(x, t) = fc~.~) (x, t; z{~!4) (·)), 

1f;(1)(x,t;tn) = 0, 1/J(2l(x,t;tn) = 1/J~!!s}(x,t;tn,z~~!4)(·)). 
Following the reasoning given in [3, 4, 14] the following theorem can be derived: 

(8.4a) 

(8.4b) 

Theorem 8.1. Let the boundary value problem (2.1) and its solution satisfy the assumptions 
of Theorem 7.1. Then, under condition (5.6), the solutions of the difference schemes (8.3), 
(4.1) and (8.4), (4.1) converge, as N, No-+ oo, to the soluti'on of the boundary value problem 
c-uniformly (the solutions of schemes (8.3), (3.1) and (8.4), (3.1) converge for a fixed value 
of c). For the solutions of the difference schemes on grid (4.1) the estimate (7.6) holds. 
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Remark. If the conditions of Theorem 7.1, where n = K + 1, K 2:: -1, are satisfied, the 

following estimate holds: 

18ff (z(7.4)(x,t) - Z(s.4)(x,t))I::::; MM(~~3)N0-2 , (x,t) E Gh(4.1) 1 l::::; K + 1. 

8.2. Difference schemes of third-order accuracy in T. We approximate the boundary 
value problem by the alternating scheme with one processor 

Here 

for (x, t) E Gh(tn), k = 1, ... , K, tn E wo, i = 1, 2, 3; 

z(i)(x, t) = z(i)~ (x, t), (x, t) E Gh(tn), tn E wo, i 1, 2, 3. 

z(i)(x,t;tn) = v~~.4)(x,t;tn,1/Ji(·)), (x,t) E Gh(tn), i = 1,2,3; 

:f.(s){ n) ,,1,(s) { n) l 2 o/ x, t; t = o/(8.4) x, t; t ' 8 = ' ' 

1/;(3
) (x, t; tn) = z<2> (x, tn+l) - z<2> (x, tn); 

A~:~s)(z(s)-f<(x,t)) = A~:~4)(z(s)k(x,t)), s = 1,2, 

A~!~s)(z<3>k(x, t)) = Ac3.2)z(3)f (x, t) - f( 3)(x, t), 

t<3>(x, t) = t<3>(x, t; z(1)(·), z<2) (·)) 

= f(x, t) + 

p(x,t) ( Cnr ::2u(x,O) + C12r2 ::3u(x,o)), 

p(x, t) ( C21 T ::2u(x, O) + C22r2 %t
3
3 u(x, 0)) , 

p(z,t) (C31T02fz<2)(x,t) + Ca2r263 tz<1>(x,t)), 

(x, t) E G~, Cij Cij (7.7)· 

In the case of P > 1 processors we use the scheme 

t= T 1 

t = 2r, 

(i)k - { z(i)(x, t; tn), k = 1, } 
Zp (x, t) - (')1<-1 , (x, t) E s:h(tn), p = 1, ... , P 

z 1 Ir(x,t), k2:'.:2 

for (x, t) E a:h(tn), k = 1, ... , K, tn E wo, i = 1, 2, 3; 

(8.5) 

(8.6) 
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Here 

:z(i)(x,t; tn) =v(i)(x,t; tn), (x,t) E Gh(tn), u(i){x,t; tn) =v~~.4) (x,t; tn, ,pi(-))' 

,p(i) (x, t; tn) = 1/1~~5 ) (x, t; tn) = 1/1~~5) ( x, t; tn, z~~~6 ) ( · ), 0 < j < i) , 
f(i)(x,t) = /(~~5) (x,t; z~~~6)(·), 0 < j < i). 

Now the following theorem can be derived: 

Theorem 8.2. Let the boundary value problem (2.1) and its solution satisfy the assumptions 
of Theorem 7.2. Then, under condition (5.6), the solutions of the difference schemes (8.5), 
(4.1) and (8.6), (4.1) converge, as N, No-+ oo, to the solution of the boundary value problem 
c-uniformly (the solutions of schemes (8.5), (3.1) and (8.6), (3.1) converge for a fixed value 
of c). For the solutions of the difference schemes on grid (4.1) the estimate (7.9) holds. 

Proof of Theore.ms 8.1 and 8.2 can be obtained by using the technique developed in 
[3, 4, 14]. 

9. Distribution of the scheme (3.2), (4.1) 
over independent processes 

In this section we compare basic scheme (3.2), (4.1) with scheme (6.5), {4.1), that is, a 
decomposition scheme for P parallel solvers. These schemes have the same order of accuracy. 
For problem (6.5), (4.1) the computation time (of solving the grid problem) for sufficiently 
large number of solvers P can be essentially less than that for problem (3.2), (4.1). 

For simplicity, we consider that the time of work for one solver (the time of solving a 
problem and/ or the intermediate subproblem) is determined only by the number of nodes in 
the grid set where the boundary value problem (subproblem) is solved; all the rest operations 
are realized instantly. In the case of scheme (6.3), (4.1) for sequential solvers, the computation 
time is greater than that for scheme (3.2), (4.1) because of the covering of the subdomains. 
For relatively small overlapping of the subdomains the computation times for problems (3.2), 
(4.1) and (6.3), (4.1) are close. For scheme (6.5), (4.1) with parallel solvers the computation 
time, depending on the number P of the solvers, can be less in many cases than that for 
schemes (3.2), (4.1) and (6.3), (4.1). 

If one and the same generative grid (4.1) is used for all the schemes, it can turn out 
that the errors introduced by the domain decomposition (with the same order of accuracy) 
essentially exceed the errors of the basic scheme (3.2), (4.1). This fact reduces the effect of 
acceleration of the solution process with the use of parallel solvers. Thus, in the case of basic 
difference scheme ( 3.2), ( 4.1), the formal application of the schemes for parallel solvers (on 
the same grid (4.1)) leads to reducing the computation time and also to automatic growth 
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of the error in the approximate solution, i.e., the basic scheme and the scheme for parallel 

solvers on the same grid (4.1) turn out to be incomparable. 
It is convenient to compare the computation time of the basic difference scheme (3.2), 

(4.1) with a scheme for parallel solvers, but already on another (denser) grid, in case when 

the errors of the discrete solutions for both the schemes are equal. 
It is appropriate to speak that the use of parallel computations leads to acceleration of 

the solution process (compared to the basic scheme (3.2), (4.1)), if such a scheme with P > 1 

parallel solvers can be found for which the computation time turns out to be smaller, and 

the accuracy of the approximate solution is not less than that for the basic scheme. 

9 .1. The error of the basic scheme ( 3 .2), ( 4.1) can be represented as the sum of two compo

nents generated by the errors of approximation of the space and time derivatives, respectively: 

where o(x, t) = u(x, t) - z(3.2)(x, t), (x, t) E Gh, and, by assumption, the component o2(x, t) 
is generated by the error of approximation of the derivative w.r.t. time. The function o2 (x, t) 
is the solution of the problem 

where 

t/J2(x, t) = p(x, t) [! u(x, t) - dtu(x, t)] , (x, t) E Gh. 

We consider difference schemes for P parallel solvers on the grids 

{9.1) 

where Dh(9.1) = Dh(4.1), wC is a uniform grid on [O, T] with number of nodes Nf + 1 and 

grid step rp; generally speaking, wg{9_1) i= w6(4.1r For these difference schemes the error of 

grid solution oP(x,t) = u(x,t)- z{s.s)(x,t), (x,t) E Gh(9.1)1 where z(s.s)(x,t) is the solution 

of scheme (6.5) on grid (9.1), can be represented as the sum of functions, 

p -o3 (x, t), (x, t) E Gh, 

where the components <>f ( x' t)' of ( x' t)' and of ( x' t) are generated, respectively, by the errors 
of approximation of the space and time derivatives and by the discrepancy of the functions 

zc3.2;9.1)(x, t) and z(e.5;9.1/v, t) on the sets r;h x Wo(9.1), where zc3.2;9.1)(x, t) and z(e.5;9.1)(x, t) 

are the solutions of problem (3.2) and (6.5) on the grids af(9.1) and a;f(9.1)1 respectively, 

r; = n; \ n;. The function of (x, t) is the solution of the problem 

of (x, t) = 0, (x, t) E Sh, 

where Gh = Gh(9.1)' 

t/Jf (x, t) = p(x, t) [%t u(x, t) - oru(x, t)] , (x, t} E Gf_ 

The function of (x, t) is defined by the relation 

of(x,t) Z(3.2;9.1)(x,t) - z(e.5;9.l)(x,t), (x,t) E Gf. 
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We say that difference scheme (6.5), (9.1) for P parallel solvers accelerates (for a fixed 

value of the parameter e or e-uniformly) the solution of the boundary value problem, if the 

duration of computations (for the fixed value of the parameter e ore-uniformly) by scheme 

{6.5), (9.1) turns out to be less than that by the basic scheme, and, besides, the following 

condition holds: 
(9.2) 

where Gh = Gh(4.l)' G~ = Gh(9.1)· 

9.2. We compare the duration of computations for schemes (3.2), {4.1) and (6.5), (9.1) in 

case when the difference derivatives dfZ(3.2)(x, t) are sufficiently large as compared with the 

derivatives (82 /8t2)u(x, t). 
Further we need estimates for the quantities <>2(x,t), of(x,t) and <>f(x,t). 
For the quanitities af (x, t) and 1'2(.x, t) the following estimates hold: 

-P 
(x, t) E Gh(9.1), 

102(.x, t)i ::;; M1,.,. M(~.~)' (x, t) E Gh(4.1), 

where M = 2-1T. For the quantity of (x, t), we have the estimate 

-P 
(x, t) E Gh(9.i)· 

We give also some bounds from below for the values of i<>2(x, t)I and lt5f (x, t)!. 
Let on a certain set 

the following condition hold: 

I :t22 u(x, t) I 2:: m(2)' 
-0 

(x, t) E G . 

Then, for the quantity '52(x, t), the following estimate is valid: 

G° CG - ' 

Il!..ax I c52(x, t) I 2:: m1 m(2) T = m1 m<2) T N01, 
Gh 

- - (2) (2) 
where Gh = Gh(4.l)i T = T(u)i m = m(9.5), 

m1 = s-1 min { 2-1 (.x~ - x6) 2 mJna-1(x, t), (t5 - t~) mJnp- 1(.x, t)}. 

(9.3a) 

(9.4) 

(9.3b) 

(9.5a) 

(9.5b) 

(9.6) 

We now investigate the behavior of the quantity <53(x, t). For this we consider problem 

(3.2), (4.1) with c = 1. In this case the grid (4.1) is uniform. Assume that for the solution 

z(x, t) of scheme (3.2), (4.1) on the set 

(9. 7a) 



248 P. W. Hemker, G.I. Shishkin and L.P. Shishkina 

the following estimate holds: 

(9.7b) 

We wish to estimate max Gh j83(x, t)j from below under these conditions. 

Let a decomposition of the domain G onto subdomains a; be such that the number of 

nodes in the grid sets a;h is equal, the overlapping width of the neighboring subdomains is 
equal, and, besides, condition (5.6) holds. In this case 1's(x, t) satisfies the estimate 

Il!_ax I 8s(x, t} I 2:: m1m(l)TP, 
Gh 

where m 1 does not depend on K, P, and m1 = m1(xi - xi, ti - ti). 

(9.8) 

Note that the same estimate for 83(x, t) is satisfied if c E (0, 1], when condition (5.6) is 
true for the minimal overlapping width of the subdomains, and also the number of nodes in 

the grids a;h for all the subdomains a; is comparable (the solvers are loaded effectively). 
It follows from estimates (9.3a), (9.4) and (9.8) that in the class of schemes (6.5), (9.1) 

for parallel solvers, if the condition 

-1 -1 1 (M(2) )-1 
_ P. _ ( 1 (2) ) 

P < 2 m1(9.S) M1(9.3) m(9.7) (4.3) = * - P* m(9.7)' M(4.3) {9.9) 

is valid, there do not exist c:-uniform convergent schemes with effective w.r.t. loading parallel 
solvers (i.e., the number of solvers P, the grids wf and the decompositions of the domain G 

onto the subdomains a; under condition (5.6)} for which the estimate (9.2) holds. Note that 

the quantity P* from (9.9), under condition {9.7), infinitely grows for M(~}3) -+ 0. 

Thus, in case when the difference derivatives dfZ(3.2)(x, t), (x, t) E Gh(4.1), on the set 

G1 ~ G are sufficiently large as compared to the derivative (fJ2 /8t2 )u(x, t) on G, and the 
number P of solvers is not too large (for example, in case of condition (9.9)), the use of 
parallel computations does not bring to acceleration of the solution process in comparison 
with the basic scheme (3.2), (4.1). 

Hence, conditions (4.3), {4.4), i.e., restrictions on the derivatives (82 /8t2 )u(x, t) and 
dfZ(3.2) ( x, t), are not sufficient in order to accelerate the solution of the boundary value prob
lem by means of parallel computations. 

Theorem 9.1. Assume the derivatives (82 /8t2 )u(x, t) and dfZ(s.2)(x, t) satisfy only condi
tions (4.3), (4.4). Then the use of difference schemes {6.5), (6.4), {9.1) for parallel solvers, 
with their effective loading, does not allow us to accelerate the solution of boundary value 
problem (2.1) for fixed values of the parameter c: and N. For difference scheme (6.5), (9.1) 
acceleration of the solution process is not achieved. 

9.3. In case when the difference derivatives dfZ(s.2) (x, t) on the set Gh, t > 0 are sufficiently 

small as compared to the derivative (82/at2 }u(x,t) on G, the use of parallel solvers allows 
us to accelerate the solution of the basic scheme. In this subsection we determine conditions 
under which an increase in the number of solvers leads in fact to acceleration of the solution 
process. 

Let the work time of solvers which resolve the discrete boundary value problem on the 

layer t = t1 of the grid set D~ from Dh(4.1), is determined by the quantity /L{~), i.e., by the 

number of nodes in the set ~. 
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We begin with description of decompositions of the set D. Assume that the domain D 

consists of J non-intersecting intervals 

D<i>, j = 1, ... , J, (9.lOa) 

where D<i> n D<i> = 0 for i =f. j, D = Uf=1 D<i>; J ~ M. On each of the sets a<j> = 

D<j> x [O, T], the grid Gh with a given distribution of its nodes generates the grids G~j> 

G-h<i> = G-<j> n G-h, . 1 J J = , ... ' ' (9.lOb) 

Suppose that the boundaries of the sets a<j> pass through the nodes of the grid Gh· For 

each of the sets D<i> we construct an interval Di containing D<i> together with some 

neighborhood. This set Di satisfies three conditions: (a) Di contains the set of points the 

distance of which from Dj is no greater than ()o, where 

(9.lOc) 

with some fixed mi9.10); (b) the sides of the set Gj = Di x [O, T] pass through the nodes of 

the grid Gh; (c) the number of nodes in each of the grids D~ =Din Dh is equal and does 

not depend on the number j. The sets Di, j = 1, ... , J, form a covering of the set D, and 

the sets 
Qi, j = 1, ... ,J, 

. J . 
generated by D', form a covering of the set G, that is, G = U QJ. Assume that 

j=l 

( -j ) ( 2 ) ( -<j>) µ Dh = 1 + m(9.10) µ Dh , j = 1, ... , J, 

where mf9.1o) is a sufficiently small number. 

(9.lOd) 

(9.lOe) 

(9.lOf) 

The sets (9.lOd), that is, the decomposition of G, are used for the construction of a 

difference scheme with P solvers. Further, we construct sets 

a<k>, k = 1, ... ,K (9.lla) 

which cover the set G, where the quantity K = K(P) is chosen from the condition KP = J. 
Each of the sets Q<k> is multiply connected (for P > 1) and formed by the union of P 

non-intersecting domains from (9.lOd). Thus, for sets G~, which form the sets from (9.lla), 

the following condition holds: 

GPk c { GJ, j = 1, ... , J} d , k = 1, ... , K, p = 1, ... , P, 
(9.10 ) 

(9.llb) 

where µ(D;} = µ0 • In such a decomposition the solvers are loaded uniformly, i.e. their load 

is effective. 
Assume that the time, which is necessary for the solution of problem (3.2), (4.1) and (6.5), 

(9.1), is defined by the relations 

(9.12a) 
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K 

N{ L maxµ(D~h)· 
k=l p 

(9.12b) 

Let us define increase of acting (or acceleration of computations) by the relation 

{
K(P) }-1 

p p -1 p -1 - -k 
C = C(No, N0 , P) = 19(19 ) = No(No ) µ(Dh) L maxµ(Dph) 

k=l p 

(9.13) 

For difference scheme (6.5), (9.11), (9.1), taking into account relations (9.lOe), (9.lOf), we 
have 

and, consequently, 
C = (1 + m(9.10))-1 No(N{)-1 P. 

Finally, we give conditions ensuring acceleration for parallel computations. 
Let the conditions (9.5) and (4.4) be fulfilled for the derivative (82 /8t2)u(z, t) and the 

difference derivative 8iz(a:, t), respectively. 
In case when the steps of the grids w~4. 1 ) and w~9. 1 ) satisfy the condition 

which is equivalent to the condition 

P ( )-1 ( (2) )-1 [M M(1) M M(2) ] - •P 
No ~ m1(9.6) m(9.5) 2(9.3) (4.4) + 1(9.3) (4.J) No = No , (9.14) 

the condition (9.2) is fulfilled for the components 82{x,t), 8f(x,t), 8f(x,t). Under the con
dition Nf = N;~_14) we obtain the following relation for the quantity C: 

( 
2 )-1 (2) [ (1) (2) ]-1 

C = 1 + m(9.10) m 1c9.6) m(9.s) M 2c9.3)M(4.4) + M 1(9.3)M(4_3) P. 

Thus, if the number P of solvers is sufficiently large 

( 
2 ) ( )-1 ( (2) )-1 [ (1) (2) ] 

P > 1 + m(9.10) m1(9.6) m(9.5) M2(9.3)M(4.4) + M1(9.3)M(4.3) 

- * - * ( (2) (1) (2) ) 
= p - p m(9.5)' M(4.4)' M(4.3) ' (9.15) 

then, under the condition 
p ( 2 )-1 * N0 = 1 + m(9.10) NoP , (9.16) 

the acceleration is achieved for the solution of the boundary value problem; in this case the 
quantity C is determined by the relation 

C P(p*)-1, P* D* = .r(9.15). (9.17) 

Note that the quantity P* grows infinitely as m~~~s) -+ 0. 

Acceleration of the solution process, generally speaking, is unattainable, if condition (9.15) 
is essentially violated, for example, under condition (9.9). 
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Theorem 9.2. Let conditions ( 4.3), (9.5), ( 4.4) be fulfilled for the solutions of boundary value 
problem (2.1) and difference scheme (3.2), (4.1). Then, in the class of difference schemes 
(6.5), (9.1) for parallel solvers, c:-uniform acceleration of the solution of boundary value prob
lem (2.1) is achieved under condition (9.15); acceleration of the solution process for fixed 
values of the parameter c and N, generally speaking, is unattainable, if condition (9.15) is es
sentially violated. In case of condition (9.15), the parameters of schemes (6.5), (9.11), (9.1), 
ensuring acceleration, and the achieved rate of acceleration 0 are determined by relations 
(9.16) and (9.17). 

Remark. In case of the basic scheme, when one solver is used, the solver works with N 
unknown quantities. When P > 1 solvers are used for parallel computations, one solver 
works with NKP = (1 + mf9.10))K-1 p-I N unknown quantities. Thus, the application of the 
domain decomposition (in particular, parallel computations) leads to a decrease in loading 
for the solvers used. 

10. Distribution of scheme (7.4), ( 4.1) 
over independent processes 

We now compare the basic scheme (7.4), (4.1) with the decomposition scheme (8.4), (4.1) 
involving P parallel solvers. These schemes have the same order of accuracy. In case of 
scheme (8.4), (4.1) the error of the grid solution, generally speaking, is greater than that in 
case of scheme (7.4), (4.1). This fact is caused by the perturbation of the solution of the 
basic scheme due to its decomposition. The presence of parallel solvers allows one, for the 
same time of work; to obtain the grid solution in the greatest number of nodes as compared 
to the basic scheme. 

10.1. In this subsection we give conditions under which the use of a scheme with parallel 
solvers allows us to accelerate the solution of the boundary value problem, as compared to 
scheme (7.4), (4.1), without loss in accuracy of the numerical solution. 

The error of the solution of the basic scheme (7.4), (4.1) 

6o(x, t) = 6~2 ) (x, t) = u(x, t) - Z(7.4) (x, t), (x, t) E Gh (10.la) 

and the error of the component zW4) (a:, t) of the solution of the basic scheme 

6~1 ) {x, t) = u(x, t) - z~~~4) (x, t), (x, t) E Gh (10.lb) 

can be represented in the form of a sum of functions 

(i) (i) (i) 60 (a:, t) = 61 (x, t) + 62 {a:, t), {x, t) E Gh, i = 1, 2, {10.lc) 

where the component o~i) (x, t) is caused by the error of the approximation of the time deriva

tive, 6~2 ) (x, t) = 82(x, t). 
The error of the solution of scheme (8.4), (4.1), i.e., the function 

o(x, t) = 5(2) (x, t) = u(x, t) - Z(s.4) (x, t), (x, t) E Gh, 

and the error of the component z~!~4) (x, t), i.e., the function 

5(l)(x, t) = u(x, t) - zf!:4){x, t), (x, t) E Gh, 

(10.2a) 

(10.2b) 
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can be represented in the form of a sum of components 

J(i)(x,t) = c>ii}(x,t) +c>~i)(x,t) +o~i)(x,t) = oai)(x,t) +a~i)(x,t), 

(x, t) E Gh, i 1, 2, 

(10.2c) 

where the error c)~i) (x, t) is caused by decomposition of scheme (7.4), ( 4.1); &(2) (x, t) o(x, t), 

o~2)(x,t) o3 (x,t). 
If the grid (9.1) is used, then the function &P (x, t), i.e., the error of the solution of scheme 

(8.4), can be written in the form 

Op (x, t) = af (x, t) +of (x, t) +of (x, t), 
-P 

(x, t) E Gh(9.1)i (10.3) 

with o~10 . 3)(x, t) = oi(w.2)(x, t) for Gh(9.1) = Gh(4.1), j 1, 2, 3. The function of (x, t) is 
. p ) p ( -P 

defined by the relation: c53 {x, t) = Z(7.4;9.1)(x, t z(s.4;9.l) x, t), (x, t) E Gh. 

We say that difference scheme {8.4), (9.1) for P parallel solvers accelerates the solution 
of the boundary value problem, if the duration of computations by scheme (8.4), (9.1) is less 
than that for the basic scheme (7.4), (9.1), and, besides, the following condition holds: 

(10.4) 

10.2. We now give some estimates for the components 02(x, t), of (x, t), of (x, t). 

The functions o~i) (x, t) are the solutions of the problems 

.r(l) ( ) f (1) ( ) ( ) G A(3.2)U2 x, t = 2 x, t ' x, t E h, .r{l) ( ) ( ) s u2 x, t = 0, x, t E h; 

A(s.2)&~2) (x, t) = 1J2
> (x, t), (x, t) E Gh, o~2)(x,t) = 0, (x,t) E Sh, 

where 

JJ1
) (x, t) = p(x, t) ( :t u(x, t) - c5tu(x, t)) , 

<2> { a -1 a2 
/ 2 (x, t) = p(x, t) at u(x, t) - 2 T at2 u(x, t) - OfU(x, t) + 

For the function o~~}lO.l) ( x, t), the following estimates hold: 

t;:::: fr, (10.5) 

lr r{2)( t)I < M (M(r+3)+M(r+4)) 2 
Urf u2 x, - (4.3) (4.3} T ' 
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with r SK - 1, where K is the quantity from Theorem 7.1. 
We give some estimates from below for the function J2 ( x, t). 
Let on a certain set, 

-0 {( ) 1 2 1 2} G = x, t : x 0 S x S x0 , t0 S t S t0 , 

the following condition hold: 

{)3 ( ) =O 
-u("" t) > m 3 

("" t) E G 8t3 ..,, - ' ..,, . 

Then the following estimate is valid for the J2(x, t): 

G° CG - l 

Ir!_ax I '52(x, t) I ~ m1 m(3) r 2 = m1 m(3) T 2 N02, 
Gh 

where Gh Gh(4•1), r = r(4.1), m(
3

) = m~!~l)' m1 = m 1(9.6)· 

(10.6a) 

(10.6b) 

(10.7) 

Lemma 10.1. Let the conditions of Theorem 7.1 be fulfilled for the data of boundary value 
problem (2.1). Then estimates (10.5) hold for the function 62(x, t) and the component 

6~1 ) (x, t). If, besides, condition (10.6) is fulfilled, then estimate (10. 7) is valid. 

· rP h f · r(i)P( ) _ (i) ( ) (i)P ( ) ( ) Let us estimate u3(10.3). T e unctions u3 a:, t - z(7.4;9.l) x, t - z(s.4;9.1) x, t , x, t E 

Gh(9.1) are the solutions of the problems 

where 

Q(s.5) (<>~1)P (x, t); f<1>(·), <p<1l(·), .,µ<ilo) = o, 

Q(s.5) (o~2)P(x,t); 1<2>(·), <p<2>(·), .,µ< 2>(·)) = 0, (x,t) E Gh(9.1)1 

f<1>(x, t) - 0, <p(l)(x, t) = <p(2l(x, t) = 0, 

.,p(l)(x,t; tn) = rp6tz(l)(x,t), t = tn+l, 

1<2>(x, t) = 2-1
,-P p(x, t) ( '52f0~1 ) (x, t) 62t'5~1)P (x, t)), 

p( (l)P ) (2) ) r 6rJ3 (x, t - Ot02 (x, t) , 

Taking into account estimates (4.4), (10.5), we find 

j<>rrJ~2)P(x,t)j s M Ml;.;:>(rP) 2
, (x,t) E Gh(9.1)1 ls K + 2, 

with r SK - 2, where K ~ 2 is the quantity from the hypothesis of Theorem 7.1. 
For the component J~10 . 3) we have the estimate 

I r rP( ) I ( (r+3) M(r+4) ) ( P)2 
UrfU2 x, t SM M(4.3) + (4.3) t r , (x, t) E Gh(9.1)1 r SK - 1. 

(10.8) 

(10.9) 

Lemma 10.2. Let the conditions of Theorem 7.1, where K = 2, be fulfilled for the data 
of boundary value problem (2.1). Then estimates (10.8), (10.9) are valid for the functions 
of (x, t), Of (x, t) and the component O~l)P {x, t). 
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10.3. In case when the derivative (IP /8t3 )u(x, t) on the set G is not too small, the use of 

parallel solvers allows us to accelerate the solution of the basic scheme ( 7.4), ( 4.1). 

Let the duration of the solution of problems (7.4), (4.1) and (8.4), (9.1) be defined by 

relations {9.12a) and (9.12b), respectively, and acceleration of the solution of the boundary 

value problem is defined by relation (9.13). For the decomposition scheme we use the grid 

construction (9.11). 
In case when the steps of the grids w~4. 1 ) and w~9. 1 ) satisfy the condition 

m 1(w.7) m~~~-6) T
2 

;:::: [ M(lo.s)M(5
) + M(io.9) ( M(3

) + M(4)T)] ( TP)2, 
which is equivalent to the condition 

N{ ;:::: { (m1(10.1))- 1 (m~~6.6))- 1 [M(10.a)M(5
) + M(10.9) ( M(3

) + M(4
) T)] } No 

= M* l\T = l\T*P _ lVQ _ lYQ 1 

M* = M* ( m(3), M(3), M(4), M(5)) 

(10.10) 

{10.11) 

where M(ko) = M(~~, the estimate (10.4) holds for the components J2(x, t), of (x, t), of (x, t). 

Under the condition N{ = N;{io.io) we obtain the following expression for the quantity C: 

C ( 1 + mfg.10) )-1 (M*)-1 P. 

In case when the number P of solvers is sufficiently large 

P > (1 + m(9.10)) M* = P*, (10.12) 

acceleration can be achieved for the solution of the boundary value problem. In fact, accel

eration is achieved under the condition 

(10.13a) 

The quantity C, which characterizes the achieved acceleration of the solution, is defined by 

C = P(P*)- 1
, P* Pt10.12)· (10.13b) 

Theorem 10.1. Let the conditions of Theorem 7.1, where K = 3, hold for the data of 

boundary value problem (2.1) and let condition (10.6) be satisfied for the solution of the 

problem. Then in the class of difference scheme (8.4), (9.1) for parallel solvers €-uniform 

acceleration of the solution of the boundary value problem, as compared to the basic scheme 

(7.4), (4.1), can be achieved under condition (10.12), where M* is given by (10.11). In 

case of condition (10.12), (10.11), the parameters of scheme {8.4), (9.11), (9.1), ensuring 

the acceleration, and the achieved rate of acceleration, i. e., the quantity C, are defined by 

relations (10.13). 

Remark 1. In case when condition (10.6) is violated, that is, (83 /8t3 )u(x, t) = 0 on the 

whole domain G, we can consider problem {2.1) as a problem with constant coefficients (and 

with c(x, t) = O); the function u(x, t) = x(l - x)t2 is the solution of this problem. The 

function z~;:4)(x, t) is almost u(x, t) up to terms O(c2 ): 

(10.14a) 

.. 
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For the function zi~!4), we have the estimate 

The functions 8~i) (x, t) are the solutions of the problem 

( 
(l)P (1) ( )) Q(6.5) 83 (x, t); 0, 0, 1/; · = 0, 

where 

.1.{l) ( n) _ (1) ( tn+l) (1) ( tn) 
'+' x, t; t - -z(7.4) x, + z(7.4) x, , 

(10.14b) 

-P 
(x, t) E Gh, 

1j;<2>(x,t;tn) = 8~l)P(x,tn+l) 8~l)P(x,tn)+8b2)(x,tn+l) '5b2)(x,tn), t=tn+l. 

From (10.14), it follows that in case (5.6) we have the estimate 

~we J af)P (x, t) I ~ m (TP)2. 
Gh 

Thus, c:-uniform acceleration of the solution of the basic scheme (7.4), (4.1) is unattainable 
for any large number P of solvers (P:::; Mo, where Mo is a sufficiently large number). 

Remark 2. In case when condition (10.6) holds, but condition (10.12) is essentially vio
lated, the acceleration of the solution process by using parallel solvers is, generally speaking, 
unattainable (for fixed values of the parameter c and N). 

10.4. Let us consider the basic scheme (7.4), (4.1) and its decomposition, i.e., scheme (8.6), 
(9.1) with parallel solvers. We assume that the condition 

84 
- u(x t) > m,(4) 
8t4 ' - ' 

=O 
(x,t)EG (10.15) 

holds on a certain set G(1o.6a). 

For scheme (8.6), (9.1) we use decomposition (9.11). Then, under condition {10.10), where 

M* = M* ( m(4), Af(4), M(5), M(6), M(7)) , M(ko) 
(4.3)' (10.16) 

the estimate (10.4) is fulfilled for the components 82(x, t), of (x, t), 8f (x, t), corresponding to 
schemes (7.4), (4.1) and (8.6), (9.11), (9.1). 

Acceleration of the solution of the boundary value problem, if we use scheme (8.6), (9.1) in
stead of scheme (7.7), (4.1), can be achieved when the number P of solvers is sufficiently large, 
namely, under condition (10.12), (10.16). Acceleration of the solution process is achieved un
der condition (10.13a); for the quantity C relation (10.13b) is fulfilled. 

Theorem 10.2. Let the conditions of Theorem 7.2, where K = 5, hold for the data of 
boundary value problem (2.1) and let condition (10.15) be fulfilled for the solution of the 
problem. Then in the class of difference schemes {8.4) 1 {9.1) for parallel solvers c:-uniform 
acceleration of the solution of the boundary value problem, as compared to the basic scheme 
(7.4), (4.1), can be achieved under condition (10.12), where M"" is given by (10.16). In 
case of condition (10.12), (10.16) the parameters of scheme (8.6), (9.11), {9.1), ensuring 
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the acceleration, and the achieved rate of acceleration, i. e., the quantity C, are defined by 

relations (10.13), (10.16). 

Remark. If condition (10.15) is violated, then acceleration of the solution of the boundary 

value problem is not achieved even if a large number P of solvers is used. If condition (10.12), 

(10.16) is violated, i.e., the number of solvers used is not sufficiently large, then acceleration 

of the solution of the problem cannot be achieved. 

Conclusion 

In order to efficiently solve a singularly perturbed parabolic PDE by an £-uniform dis

cretization procedure, 2nd order accurate in space and high-order in time, we studied a defect 

correction procedure. To reduce the computation time, we splitted the procedure into P in

dependent processes, preserving e:-uniform convergence. We gave a precise description of 

conditions under which the splitting does not affect the accuracy of the method. 
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11. Appendix: Estimates of the solution and its derivatives 

Here we consider a-priori estimates for the solution of problem (2.1) and its derivatives 
derived for elliptic and parabolic equations in [11, 13]. 

We denote by H(o:)(G) = Ha,o:/2(G) a Holder space, where a is an arbitrary positive 
number [6]. We suppose that functions f (x, t) and cp(x, t) satisfy compatibility conditions at 
the corner points, so that the solution of the boundary value problem is smooth for every 
fixed value of the parameter e. 

For simplicity, we assume that at the corner points So n S 1 the following conditions hold: 

8k 0k0 

Bxk cp(x, t) = Btko cp(x, t) = 0, k + 2ko :::; [a J + 2n, (11.1) 

ak+ko 
oxk Btkof(x,t) = 0, k + 2ko:::; [a]+ 2n - 2, 

where [a J is the integer part of a number a, a > 0, n 2:: 0 is an integer number. We also 
suppose that [a] 2n 2:: 2. 

Using interior a-priori estimates and estimates up to the boundary for a regular function 
u(e, t)' [6], where u(e, t) u(x(e), t), e = x/c:, we find for (x, t) E G the estimate 

0k+ko 
Bxk 8.tko u(x, t) :::; M c:-k, k + 2ko :::; 2n + 4, n 2:: O. {11.2) 

This estimate holds, for example, for 

u E H(2n+Hv)(G), v > O, (11.3) 

where vis some small number. 
For example, (11.3) is guaranteed for the solution of (2.1) if the coefficients a, c, p, 

f E H(o:+2n-2)(G), cp E H(a+2n)(G), a> 4, n 2:: 0 and condition (11.1) is fulfilled. 
In fact we need a more accurate estimate than (11.2). Therefore, we represent the solution 

of the boundary value problem (2.1) in the form of a sum, 

u(x, t) = U(x, t) + W(x, t), (x, t) E G, (11.4) 

where U(x, t) represents the regular part, and W(x, t) the singular part, i.e. the parabolic 
boundary layer. The function U(x, t) is a smooth solution of equation (2.la) satisfying 
condition (2.lb) for t = 0. For example, under suitable assumptions for the data of the 
problem, we can consider the solution of the Dirichlet boundary value problem for equation 
(2.la) smoothly extended to the domain a* (G* is a sufficiently large neighborhood of G). 
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On the domain G, the coefficients and the initial value of the extended problem are the same 
as for (2.1). Then the function U(x, t) is a restriction (on G) of the solution to the extended 
problem, and U E H( 2n+4+v)(G), v > 0. The function W(x, t) is the solution of a boundary 
value problem for the parabolic equation 

L(2.i) W(x, t) = 0, (x, t) E G, W(x, t) = u(x, t) - U(x, t), (x, t) E S. (11.5) 

If (11.3) is true then W E H(4+ 2n+v)(G). We assume that a, c, p, f E H(a+4n)(G), cp E 
H(a+4n)(G), a > 4, n ~ 0. Now, for the functions U(x, t) and W(x, t) we derive the 
following estimates: 

I 
_ak~+-ko~ U(x t) I < M [1 + £2n+2-k] 
&k~~ ' - ' (11.6) 

ak+ko 
8xk 8tko W(x, t) ~ M £-k exp(-m(ll.7)£-lr(x, 1) ), (11.7) 

(x, t) E G, k + 2ko ~ 2n + 4, 

where r(x,1) is the distance between a point x E D and the set I = D \ D, m(ii.7) is a 
sufficiently small positive number. We summarize these results in the following theorem (see 
[13]): 

Theorem 11.1. Assume in equation (2.1) that a, c, p, f E H(a+ 2n)(G), cp E H( 0 +2n)(G), 
a > 4, n ~ 0 and let condition (11.3) be fulfilled. Then, for the solution u(x, t) of problem 
(2.1), and for its components in representation (11.4), it follows that u, U, WE H(4+ 2n)(G) 
and that the estimates (11.2), (11.6), (11.7) hold. 
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