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We consider the problem of finding, for a given quadratic measure of non-unifonnity of a set of N points (such as L2 

star-discrepancy or diaphony), the asymptotic distribution of this discrepancy for mdy random points in the limit N - oo. 
We then examine the circumstances under w!lich this distribution approaches a normal distribution. For large classes of 
non-unitennity measures, a ·central Limit Theorem' can be derived. © 1997 Published by Elsevier Science B.V. 

1. Introduction 

In the field of numerical integration, there are two aspects of the general problem which bear on the accuracy 
of the numerical result. The first is, of course, the behaviour of the integrand: typically, wildly fluctuating 
functions are integrated with less accuracy than relatively smooth ones, for the same number of integration 
points. The second one is the distribution of the set of points at which one evaluates the integrand. It stands 
to reason that, if one has no a priori knowlt"dge of the integrand, a set of points that is fairly uniformly 
distributed may be expected to do better than one in which many points cluster together. It is therefore useful 
to quantify and study the notion of •unifonnity of point sets', and this has been the topic of a great number 
of publications [ 1,2]. The most important of such notions are those of the star-discrepancy and L-i. star
discrepancy, and more recently other measures of non-unifonnity that go under the name of diaphony have 
been introduced as well [ 3]. In this paper, we shall call all such measures "discrepancies'. 

As has been shown in Ref. [4,5], the use of a particular discrepancy in assessing the uniformity of a given 
point set implies that one has some notion of the generic behaviour of the integrand: it is tacitly assumed that 
the integrands to be attacked belong to some class of functions. The particular discrepancy is then recognized 
as the average-case complexity of the integration problem over that function class [ 6,7]. 
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While the Monte Carlo method, in which the integration points are chosen at random, has Jong been 
recognized as a robust and useful way of evaluating multivariate integrals, its relatively slow convergence has 
inspired a search for other point sets whose discrepancy is lower than that expected for truly random points. 
Such low-discrepancy point sets and low-discrepancy sequences have developed into a veritable industry, and 
sequences with, asymptotically, very low discrepancy are now available, especially for problems with very 
many variables [ 8]. For point sets that are extracted as the first N elements of such a sequence, though, one is 
usually still compelled to compute the discrepancy numericall;y, and compare it to the expectation for random 
points in order to show that the point set is indeed 'better than random'. This implies, however, that one has to 
know, for a given discrepancy, its expectation value for truly random points, or preferably even its probability 
density. In Refs. [9-12] we have solved this problem for large classes of discrepancies. Although computable, 
the resulting distributions are typically not very illuminating. The exception is usually the case where the 
number of dimensions of the integration problem becomes very large, in which case a normal distribution often 
arises (5,13]. In this paper, we investigate this phenomenon in more detail, and we shall describe the conditions 
under which this 'law of large dimensions' applies. 

The layout of this paper is as follows. In Section 2, we define the general structure of a discrepancy related to 
a class of integrands of which it is an average-case complexity. We show how to derive the probability density 
of this discrepancy when viewed as a stochastic variable defined on sets of truly random points. Then, we 
investigate the conditions under which this density approaches a normal density. Finally, in Section 3 we apply 
our results to a few toy-models and standard choices of discrepancy. A number of technical points are collected 
in the various appendices. Throughout this discussion, we shall only consider the asymptotic limit of a very 
large number of integration points. This implies that, in this paper, we cannot make any statements on how the 
number of points has to approach infinity with respect to the number of dimensions, as was for instance done 
in Ref. [ I 3]. In Ref. [ 15], we repair this defect, and shall be able to show which precise combination of limits 
has to be taken. 

2. General definitions and statements 

To set the stage, we shall always consider the integration region to be the s-dimensional unit hypercube K = 
[ 0, 1) s. The point set XN consists of N points xf, where k = 1, 2, ... , N labels the points and µ = I , 2, ... , s 
their coordinates. 

2.1. Quadratic discrepancy and complexity 

We will define quadratic discrepancies as the average-case complexity of an integration problem in terms 
of its averaged squared integration error [6]. For the given class of real-valued functions /(x), with x EK, 
let a measure dµ,(f) on the class of functions be given, such that the one- and two-point connected Green's 
functions are given by 

f f(x) dµ,(j) =O, 

J f(x1)f(x2) dµ(f) = J h(y;xi)h(y;x2) dµ(y). (1) 

L 

Here we assume that we can define a function h(y,x) and measure dµ,(y) over some space L such that the 
above expression makes sense. The variable y has to be suitably defined; it may be a continuous variable with 
a continuous integration measure dµ,(y), or a discrete variable, in which case J dµ(y) reduces to a sum over 
an enumerable set of discrete values, such as a lattice: all cases we will consider in this article can be expressed 
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in terms of an enumerable set of discrete values. For the moment we will stick to the more general notation of 
dµ(y). We define the quadratic discrepancy 4 DN as follows ( 4]: 

r; = J ,,,2 [!] dµ(f) ' (2) 

J N f 11 [f] = N Lf(xk) - f(x) dx. 
k=I K 

(3) 

In Ref. [ 4] it was shown that, if the function measure dµ.( /) is Gaussian in the sense that the only nonvanishing 
connected Green's function is the two-point function, then the integration error will be normally distributed 
with zero mean and variance equal to DN/N. The discrepancy DN can be written as 

I N 
DN = N Lf3(xk,x1). 

k.l=I 

/3(Xt.X/) = J CrJ(y;xk)w(y; X1) dµ(y)' 

L 

<.t1(y; x1c) = h(y; Xk) - J h(y; x) dx. (4) 
K 

In fact, DN measures how well the function h(y; ·) is integrated by the point set XN, averaged over y. Notice 
that DN is nonnegative by construction, and that for an infinite equidistributed sequence, limN-oo DN = 0. 
Moreover, the expected value of DN for a set of N truly randor.:; points in K is given by 

E [DN] = J V (/) dJ'.(f) = J J lll(y;x) 2 dxdµ(y), (5) 

L K 

where E [ · ] denotes the expectation value w.r.t. the uniform distribution over the ensemble of truly random 
point sets with N points. We shall always as<>ume this expectation value to be a finite quantity, otherwise this 
discrepancy cannot meaningfully be used for truly random points. 

In our approach to calculate discrepancy distributions. we will also use the higher momenta E [DN] (m = 
l, 2, 3, ... ) , which therefore have to be assumed to be finite 5 • We will also define some useful functions /3k 
and rk. 

f3k(Xi.X2) = J f3(xi.x)/3k-1(X,X2)dx, 

K 

f(Y1tY2) = j w(y1;x)w(y2;x) dx. 

K 

rk<Y1.Y2> = J r(y,,y)rk-1 (y,)'2)dµ(y). 

L 

(6) 

(7) 

(8) 

with f31 = f3 and f 1 = r. The function r is in a certain sense dual to the function {3. It will be more convenient 
to use, because the variable y is often an element of a countable set and r can be seen as a matrix, with 

fdy1.Y2) = fk(y1.Y2). 

4 Note that we extract a factor N out of the definition of the discrepancy as compared to other definitions in the literature such that the 
discrepancy averaged over the ensemble of truly random point sets i~ independent of N. 
s For the discrepancies we discuss, this is a valid assumption. 
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2.2. Gaussian measures on a countable basis 

In this article we will consider function classes with functions f that can be written as linear combinations 
of a countable set of basis functions {un}. 

/(x) = L VnUn(X). (9) 
n 

Often we will refer to the basis functions as modes. We assume that integrals over combinations Un 1 (x)un2 (x) · · · 
exist and introduce the parameters 

Wn = J Un(X) dx and am.n = J Um(X)Un(X) dx. ( 10) 
K K 

The variance of f can then be written as 

V [/] = [ f(xJ' d:t - I/ f(x) dx) 
2 = ~ VmVn (a..,. - Wmwn} • (11) 

A Gaussian measure on the class of functions is obtained by taking 

d (/) -IT exp(-v'!,/2<i;,) d 
µ, - .~ Vn. 

n V 21TO"jj 
(12) 

For the measure to be suitably defined, the strengths u n have to satisfy certain restrictions. In particular, we 
want the functions f to be quadratically integrable on the average. The reasonable requirement of E [ D N] to 
exist ensures that the variance of the functions f exists on the average and thus imposes a condition on the 
strengths 

E [ D N] = j V [/] dµ( /) = L u;v [ un) . 
n 

(13) 

Now we can use the formalism of the previous section to construct the discrepancy. The two-point connected 
Green's function is given by 

f f(X1 )/(x2) dµ(f) = L u!un(X1 )un(X2), 
n 

(14) 

which is nothing but a spectral representation. The functions h and (I) can be taken equal to 

hn(X) = O"nUn(X) , (l)n(X) = Un(Un(X) - Wn) , (15) 

where the variable y is replaced by the countable index n. The function f3 and the matrix r are given by 

(16) 
n 

(17) 

Note that we have for the trace of r m.n. 

Tr(r) = .L:u;vcunJ =ECDN]. (18) 
n 
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2.3. General form of discrepancy distributions 

We now turn to the problem of computing the probability density of such a discrepancy when the N points 
are (independently and uniformly) randomly distributed over K. Introducing the Dirac 15-distribution and its 
representation as a Laplace transform, we may write the probability density H(t) for the value t of discrepancy 
DN = DN(x1,xz, ... ,XN) as 

H(t)= J /···! i5(DN(X1,x2, ... ,xN)-t) dx1dx2···dxN 

K K K 

+ioo 

= 2~i J e-vGo(z) dz, (19) 

-ioo 

where the z integration runs along the imaginary axis, and Go( z) is the moment-generating function 

(20} 

At this point it may be useful to note that, since DN is nonnegative by construction, we must have H(t) = 0 
for t < 0, and hence no singular point of Go( z) may have a negative real part. 

The task is, now, to compute Go(z) as a series expansion around z = 0. In Refs. [5,9,10,12] we have shown 
how Feynman diagrams may be usefully employed to do this in a systematic way in the limit of large N. In 
this paper we shall restrict ourselves to the leading behaviour N ~ oo, in which limit we have 

R1t. = J f3k(x,x) dx = J fk(y,y) dµ(y). (21) 

K L 

In those cases where they variables are discrete and enumerable, r can be written as a real symmetric matrix, 

and then we simply have 

Go(z) = (det(l - 2zf) )-112 , (22) 

We shall - symbolically - employ the matrix and trace notation for the continuous case as well. In general. we 

have 

f1 (Yi.Y2) = A(Yi.Y2) - B(y1 )B(y2), 

A(y1,y2) = J h(y1;x)h(y2;x)dx. B(y) = j h(y;x)dx. (23) 

K K 

In many cases (cf. the case of orthonormal functions bases), we have B(y) = 0, but this is not necessary. In 
general, then, Tr (rk) consists of 2k terms. However, as we show in Appendix A, we can combine them nicely, 

so that we find 

Go(z) = exp(l/l(z))/JX{ij. 

l/l<z> = L <~Vk Tr(Ak). 
k>O 

X(Z) = l + 2)2z)kTr(BAk-IB). 
k>O 

(24) 
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2.4. Standardized variables and the Gaussian limit 

We now have derived the c.x.pression for Go ( z) in the large-N limit. Given the form of r (Yi. Y2), we 
can now compute H(t) for ,Fiven discrepancy t, if .only numerically; in fact this was done for the L2 star
discrepancy in Ref. [5] fof s:lveral dimensionalities. ·In some special cases, H(t) can even be given as an 
analytic expression [ 10,ll]. Here, however, we are interested in possible Gaussian limits, and therefore it is 
useful to replace the value t of the discrepancy by the standardized variable ~ as follows: 

(25) 

where the expectation E [ D N] and variance V [ D N] of the discrepancy (which equal R1 and 2R2, respectively) 
are taken out such that the stochastic variable t always has expectation zero and variance I . By furthermore 
going over from z to u = z/J2Ri. in .Eq. ( 19), we can write the probability density H(fl of~ as 

H(fl = H(t(fl) dt([) 
d~ 

(26) 

All information on the particulars of the discrepancy are now contained in the constants Yk and we have that the 
probability density of~ approaches the normal density whenever 'Yk --... 0 for all k ~ 3. It remains to examine 
under what circumstances this can happen. 

2.5. A law of large number of modes 

Let us assume, for the moment, that the matrix r is indeed a real symmetric matrix. This is for instance the 
case for Gaussian measures on a countable basis. Moreover, since we know that Go ( z) has no singularities for 
negative values of Re z, the eigenvalues of r are also nonnegative, and we may write 

.A,,~ 0, (27) 

where the various eigenvalues have been denoted by A,,. Note that the sum may run over a finite or an infinite 
number of eigenvalues, but all these sums must converge since E [ D N] is finite. Note, moreover, that 'Yk is 
homogeneous of degree zero in the .A,,: therefore, any scaling of the eigenvalues by a constant does not influence 
the possible Gaussian limit (although it will, of course, affect the mean and variance of D N). 

We now proceed by noting that 'Yk+I ~ 'Yt- because 

(28) 

where the first inequality is simply the Schwarz inequality, and the second one holds because the A,, are 
nonnegative. This means that i'k will approach zero fork> 3, whenever y 3 approaches zero. To see when this 
happens, we define 

An 
x - --;;;;;;::::=;;;:: n - . /.,..... ,\2 • 

V L...nr m 

x =maxx,,, 
II 

(29) 
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so that En x~ = I. It is then trivial to see that 

x3 ~ y~12 ~ x , 

7 

(30) 

from which we derive that the necessary and sufficient condition for the discrepancy distribution to approach 
a Gaussian is that 

..\2 
C= EAi -o, 

n 

,\ = max An. 
n (31) 

The Gaussian limit is thus seen to be equivalent to the statement that even the largest eigenvalue becomes 
unimportant. Clearly, a necessary condition for this is that the total number of nonvanishing eigenvalues 
(number of modes) approaches infinity. Incidentally, the condition ( 31 ) also implies that 

A-0, (32) 

for all those discrepancies that have E [DN] =En A,, = I. This is eminently reasonable, since a distribution 
centered around 1 and (by construction) vanishing for negative argument can only approach a nonnal distri
bution if its variance approaches zero. On the other hand, the condition A. - 0 is by itself not sufficient, as 
proven by a counterexample given in Appendix B. 

Another piece of insight can be obtained if we allow the eigenvalues to take on random values. We may 
introduce the rather dizzying concept of an ensemble of different definitions of discrepancy, each characterized 
by its set of eigenvalues (all nonnegative) A= { ...\1, J\.2, •••• AM}, with the usual constraint that they add up to 
I ; we keep M finite for simplicity. A natural probability measure on this ensemble is given by the probability 
density PA (A) of the random vector .A, 

P,(A) =r(M)a (t,1,,-1) . (33) 

Here r denotes Eulers gamma-function. It is easily computed that the expectation and variance of Rk = E11 .A~ 
. given, for large M, by 

k! 
E [R~:l ,..., Mk-1 ' 

V [R ] (2k) ! - (1 + k2)(k!)2 
k ,..., M2k-I • 

so that the Rk become sharply peaked around their expectation for large M. In that case, we have 

9 
'Y3 ,...., 2M' 

(34) 

(35) 

and we see that, in the above sense, almost all discrepancies have a Gaussian distribution in the limit where 
M, the number of modes, approaches infinity. 

3. Applications to different examples 

3. I. Fastest approach to a Gaussian limit 

We now examine the various definitions of discrepancies, and assert their approach to a Gaussian limit. 
Usually this is envisaged, for instance in Ref. [ 13]. as the limit where the dimensionality s of K becomes 
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very large. But, as we have shown, this is only a special case of the more general situation where the number 
of relevant modes becomes very large: another possible case is that where, in one dimension, the number of 
modes with essentially equal strength <Tn becomes very large. As an illustration, consider the case where the 
basis functions with the Gaussian measure are orthonormal and M of the nontrivial modes have equal strength 
~ = 1/M, and the rest have strength zero. The moment-generating function then takes on a particularly simple 
form, and so does the discrepancy distribution [ 11 ] , 

M ( 2z) log(Go(z)) = -2log 1- M • (36) 

It is easily seen that the gamma-distribution H ( t) approaches a normal one when M becomes very large. At the 
same time, we see the 'physical' reason behind this: it is the fact that the singularity of Go(z) in the complex 
plane (in the more general case, the singularity nearest to z = 0) moves away to infinity. One observation is 
relevant here: in Eq. (26), we have kept the integration over u along the imaginary axis Reu = 0. We might 
consider performing a saddle-point integration, with a nonvanishing value of Re u. That may give us, for a 
finite number of modes, a good approximation to the actual form of H(t). It is quite possible, and, indeed, it 
happens in the above equal-strength model, that this approximation is already quite similar to a Gaussian. In 
the equal-strength model, a saddle-point approximation for H(t) gives precisely the form of Eq. (36), the only 
difference being that r(M/2) is replaced by its Stirling approximation. On the other hand, for not-so-large M, 
this form is not too well approximated by a Gaussian centered around t = 1, since the true maximum resides 
at t = 1 - 2/M. Nevertheless, in this paper we are only interested in the limiting behaviour of H(t), and we 
shall stick to the use of condition ( 31) as an indicator of the Gaussian limit. 

One interesting remaining observation is the following. For any finite number M of eigenvalues An (n = 
l, 2, ... , M), the smallest value of the indicator C = A 2 / En A~ is obtained when An = l / M for all n. In this 
sense, the equal-strengths model gives, for finite M, that discrepancy distribution that is closest to a Gaussian. 

3.2. Lz star-discrepancy and the Wiener measure 

Here we shall discuss the standard L2 star-diS1.tepancy [2]. We start with a formulation of the problem using 
a continuous variable yon K, and dµ,(y) =dy. The function his given by 

s 

h(y; x1:) =IT B<X: < y") , 
µ=I 

(37) 

where we have introduced the 8( ·) as the logical step-function 6 • The Gaussian function measure corresponding 
to this discrepancy is therefore seen to be defined by 

J /(xt)/(x2)dµ,(/)= IT min(l-xf,l -x~), 
µ=l 

(38) 

which we can recognize as that variation of the standard Wiener sheet measure in which the function f(x) 
is pinned down at x = ( t, I, ... , 1) rather than at x = ( 0, 0, ... , 0). This is the content of the original 
Woiniakowski lemma from Ref. [ 6] . 

A formulation of this discrepancy in terms of a Gaussian measure on a countable basis can be constructed 
by realizing that a Spectral representation of the integration kernel g(Xi,X2) = ns -I min(xf ,x~) exists ( 17) 
and is given by µ;= 

6 1be logical step-function tl(P) of an expression P is equal to l if the P is true, and O if P is false. Therefore IJ(x < y) is in fact equal 
to the Heavyside function IJ(y - x). 
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g(x1.x2) = ~u;11n(X1)un(X2). 
n~O 

where the functions u,, are given by 

s 

Un(X) = 25/ 211 Sin (r(nµ) ¥xJL) • 
µ=I 

and the strengths ui by 

( 
4 )s s I 

u; = -u2 !J r(nµ)2 ' 
r(n) = (2n + I )O(n ~ 0) . 

9 

(39) 

(40) 

(41) 

Because a Gaussian measure is completely defined by its two-point Green's function, the measure defined by the 
basis functions lln is equivalent with the Wiener measure. In Appendix C we show that the discrepancy defined 
using this formulation of the Gaussian measure on a countable basis is equivalent to the L2 star-discrepancy. 

The functions Un are orthonormal, and we have 

W - 1sl2u and a - ~ n - - n m.n - um.n · (42) 

Tbe matrix r is given by 

r m.n = u;.sm.n - is~u!' (43) 

and an eigenvalue equation for the eigenvalues A can be written down easily, 

(44) 

In value the strengths <Tn are degenerate. Labelling the strengths with different values by <Tp with p = 
n~=I r( IZµ) • the degeneracy is given by 

Qw(P) = L 0 (P =TI r(nµ)) . 
n;::o µ=I 

(45) 

So A= ui, is a solution to the eigenvalue equation with a (Qw(P) - I)-fold degeneracy. If we factorize these 
solutions we obtain the following equation for the remaining eigenvalues: 

4 s""' (Tp I - 2 L.J Qiv(p) ~ _A= 0. 
/1 p 

(46) 

Some assertions concerning the remaining eigenvalues can be made using this equation. On inspection, it can 
be seen that there are no negative solutions. nor solutions larger than ur. so that oi can be used as an upper 
bound of the eigenvalues of r. If we order the ..\ such that .A1 ;::: .A3 ~ • • ·, then of 2:: ..\1 ~ ~ ;:::: .A3 2:: · · ·• This 
implies that Tr (rk) = Lp Qw(P) u~k - €where O::; €:::; uyk .. Note that l:P Qw(P) a-'f,k = Tr (i') so that traces 

of g" are upper bounds of traces of fk. Now we have 

I 
~(p) = L (211+ l)P' 

n~O 

(47) 
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and therefore for k ;::: 3, 

Yk ~ ( ~~~)k2) s (1 -2 (~r + (~y)-k (48) 

The second factor decreases monotonically from ( 15)k for s =I to one as s - oo; for the first factor, we note 
that 1 < ~(2k) < fl 4) for all k > 2. Therefore, 'Yk can be made arbitrarily small by choosing s large enough, 
and the Gaussian limit of high dimensionality is proven. Note, however, that the approach is not particularly 
fast: for large s, we have y3 "' ( 24 /25) s ,...., exp( -s /25), so that s has to become of the order of one hundred or 
so to make the Gaussian behaviour manifest. In fact, this was already noted by explicit numerical computation 
in Ref. [5]. 

3.3. Diaphony 

3.3.1. General definition . 
In one dimension the discrepancy defined through a Gaussian measure on a countable basis is called diaphony 

if the basis functions {Un} are such that 

Wn = 0 and am,n = 0111,n • (49) 

These relations are typically satisfied when the functions are orthononnal and uo(x) = I is one of the basis 
functions. The matrix r is given by 

r 111.n = u;c5m.n ' (50) 

so the eigenvalues are given by the squares a~ of the strengths itself. An extension to more dimensions can be 
obtained by taking products Un(X) = n~I u,;p (xlL) of one-dimensional functions. However, in contrast to the 
Wiener sheet measure that underlies the L1 star-discrepancy, there appears to be no 'natural' generalization of 
the strengths O'n to more dimensions, and therefore we shall discuss various possibilities. In general, we want 
to let the strength u,, depend on a global property of the vector 11. for instance, the product of the components, 
or the sum of the components: we shall call such alternatives clu~terings. 

3.3.2. Fourier diaphony 
As an application of the above, let us consider the orthononnal functions defined by the one-dimensional 

factors 

u2k-1 (x) = v'2sin(2'7Tkx), u2k(x) = v'icos(21Tkx), k= l,2,3, .... (51) 

Furthennore, it is useful to take the u n such that the sine and cosine modes with equa1 wavenumber appear 
with equal coefficients. Let us define 

k(n) = k8 (2k - l s n s 2k) . (52) 

We require that Un only depends on n via k(n), 

u,, = u(k(n)) , k(n) = (k(ni),k(n2), ... ,k(n5 }). (53) 

In that case. the diaphony is equal to 

2 

(54) 
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where, this time, the vector k runs over the whole integer lattice except the origin; and it has the appealing 
property that the value of the Fourier discrepancy is the same for point sets differing only by a translation mod 
I; the L2 star-discrepancy does not have this nice property. 

3.3.3. Fourier diaphony with product clustering 
One of the most straightforward generalizations of the Fourier diaphony. and the choice made in Ref. [ 3]. 

is to let u n depend on the product of the frequency components, 

1 s 1 
a-;= (1 + w-2/3) 8 - I rr-r(-n-µ.)-2. 

µ.=I 

r(n) = O(n =0) + k(n)O(n > 0). (55) 

The nonnalization of the u,, ensures that E [DN] = J, independent of s. In this case, keeping in mind that sines 
and cosines occur with equal strength, we have to consider the multiplicity function 

Q~(p) = L:e (p= ITr(nµ)) . 
n;:::o µ 

(56) 

ActualJy, before assigning a strength u ,,, or rather of,. we have to know the behaviour of Q~ (p) in order to 
ensure convergence of E [ D N]. In order to do so, we introduce the Dirichlet generating fu--ction for QP. (p), 

F: 11 (x) = L Q~(p) = (1 +2((x))8 , 

p>O pX 
(57) 

where we use the Riemann l function. Since this function (and, therefore, F.! I) ( x) as well) converges for all 
x > I, we are ensured that Q~(p) exceeds the value cp 1+E at most for a finite number of values of p, for all 
positive c and E. This is proven in Appendix D. It is therefore sufficient that o7, dec!"cnsrs as a power (larger 
than I) of p. In fact, taking 

' - -P a l <Ff, - cp ' 1-1 > ' (58) 

we immediately have that 

Rk = L if;,k = L Q~(p)ui,k -uik =ck [ (I+ 2((k/3) )s - t] ' (59) 
n>O p>O 

which, for given /J, fixes c such that R1 = E [DN) =I, and, moreover, gives 

'}'3 ,...., a({3)-' as s - oo, 
(I + 2((3/3) )2 

a(/3) =(I+ 2l'(2/3))-3 . 
(60) 

As indicated above, in Ref. [ 3] the value f3 = 2 is used, with a( 2) ,..., 0.291. The supremum of a( /3) equals I /3, 
as f3 - oo, and the (more interesting) infimum is a( I), about 0.147. We conclude that, for all diaphonies of the 
above type, the Gaussian limit appears for high dimensionality. For large {3, where the higher modes are greatly 
suppressed, the convergence is slowest, in accordance with the observation that the •equal-strength' model gives 
the fastest convergence; however, the convergence is still much faster than for the L2 star-discrepancy, and the 
Gaussian approximation is already quite good for s "' 4. The fastest approach to the Gaussian limit occurs when 
we force all modes to have as equal a strength as is possible within the constraints <>n the {3. The difference 
between the supremum and infimum of a( /3) is, however, not much more than a factor of 2. 



12 A. van Hamere11 et al./Computer Physics Communications 107 (1997) 1-20 

Another possibility would be to let U:, depend exponentially on p. In that way one can ensure convergence 
of the R1c while at the same time enhancing as many low-frequency modes as possible. It is proven in Appendix 
D that the function 

F}2>(x) = L:Q~(p) xP (61) 

p>O 

has radius of convergence equal to one, and therefore we may take u~ = ({:J')P with /3' between zero and one. 
If we choose /J' to be very small, we essentially keep only the modes with p = l, and therefore in that case we 
have .,,3 ,..., 1 / ( 3s - 1). This is of course in reality the same type of discrepancy as the above one, with f3 -+ oo. 
On the other hand. taking /3'-+ 1 we arrive at ')'3 - 0 (see, again, Appendix D).The difference with the first 
model is, then, that we can approach the Gaussian limit arbitrarily fast, at the price, of course, of having a 
function {J(x1c.x1) that is indistinguishable from a Dirac 6-distribution in x1c - xz, and hence meaningless for 
prac .. ical purpore.>. 

3.3.4. Fourier diaphony with sum clustering 
In the above, we have let the strength Un depend on the product of the various r(n"). This can be seen 

as mainly a matter of expediency, since the generalization to s > 1 is quite simple in that case. From a more 
'physical' point of view, however, this grouping of the u is not so attractive, if we keep in mind that each n 
corresponds to a mode with wave vector k(n). Under the product rule, wave vectors differing only in their 
direction but with equal length may acquire vastly different weights: for instance, k = (my'S,0,0, ... ) and 
k = (m,m,m, •. . ) have equal Euclidean length, m..fi, but their strengths under the product rule are 1/sm2 

and 1/m2s, respectively. This lack of 'rotational' symmetry could be viewed as a drawback in a discrepancy 
distinguished by its nice 'translational' symmetry. One may attempt to soften this problem by grouping the 
strengths u,. in another way, for instance by taking 

u 0 :u (~k(np)), (62) 

so that u depends on the sum of the components rather than on their product. The multiplicity of a given 
strength now becomes, in fact, somewhat simpler, 

Q;<P> = L(J (p = tk<nµ>) = L (~) c-• ~~ -m). 
11>0 p=I m~O p 

(63) 

where the last identity follows from the generating function 

Fi3>(x) = L:Q;(p)xP= (1 ~x)s 
11!!0 I x 

(64) 

This also immediately suggests the most natural form for the strength: a; = f3P, where p is Lµ k(nµ) as 
above. We see that R1 converges as long as {J < 1, and moreover, 

[(~)s ]2 
')'3 = 1-/J· . - I ,..., a({J)s • 

[(f$r-·r 
(65) 

where a(/J) has supremum a(O) = 1, and decreases monotonically with increasing f3. For {J close to one, we 
have a(/3) ,..., 4(1 - /3)/9, so that the Gaussian limit can be reached as quickly as desired (again with the 
reservations mentioned above). At the other extreme, note that for very small f3 we shall have 
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I 
'i'3 ,..., - if s{32 « I . 

2s (66) 

This just reflects the fact that. for extremely small {3. only the 2s lowest nontrivial modes contribute to the 
discrepancy; and even in that case the Gaussian limit is attained, although much more slowly. The criterion that 
determines whether the behaviour of ')'3 with s and f3 is exponential or of type l /2s is seen to be whether s/32 
is considered to be large or small, respectively. 

Another alternative might be a power-law-like behaviour of the strengths, such as ai, = t /pa. Also in this 
case we may compute the Rk. as follows: 

0() 

Rk = ~ Q!.(p) - 1- = - 1-jzka-I (F<3)(e-z) - t) dz L.J F pka r(ka) s • 
p>O 0 

(67) 

from which it follows that a > s to ensure convergence of E [ D N]. In the large-s limit, we therefore find that, 
also in this case, 'Y3 - l/2s. 

3.3.5. Fourier diaphony with spherical clusterii'lg 
A clustering choice which is, at least in principle, even more attractive from the symmetry point of view 

than sum clustering, is to let Un depend on jk(n) 12• hence assuring the maximum possible amount of rotational 
invariance under the constraint of translational invariance. We therefore consider the choice 

(68) 

For the function f3(xi.x2 ) = {3(x 1 - x2) we 11ow have the foHowing two alternative forms, related by Poisson 
summation: 

s ( +oo ) 
f3(x) = -l + !J /c::~ e-ak2 cos(21Tkxµ) 

( 1T)s/2 L ( n-2(x + m)2) =-1 + - exp • 
a a 

m 

(69) 

of which the first converges well for large, and the second for small, values of a; the sum over m extends over 
the whole integer lattice. The Rk are, similarly, given by 

kt = ( i: e-1:~<)s - I 
q=-oo 

= (:,)'1' (%~ .--'-<!'4 )'-I. (70) 

For large a (where, again, only the first few modes really contribute) we recover, again, the limit ')'3 - I /2s 
as s -+ oo: for small a we have, again, an exponential approach to the Gaussian limit, 

(8a)s/2 
'Y3,..., -

91T 
ass-+oo. (71) 

The distinction between the two limiting behaviours is now the magnitude of the quantity sexp(-2a), which 
now takes over the role of the s/32 of the previous paragraph. 
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3.3.6. Walsh diaphony 
Another type of diaphony is based on Walsh functions, which are defined as folJows. Let, in one dimension, 

the real number x be given by the decomposition 

x = 2-1x1+2-2x2+2-3x3 + ... ' X; E {O, l}. 

and let the nonnegative integer n be given by the decomposition 

n = n1 + 2n2 + 22n3 + 23n4 + · · · . n; E {0, I}. 

Then, the nth Walsh function Wn ( x) is defined as 

(72) 

(73) 

(74) 

The extension to the multidimensional case is of course straightforward, and it is easily seen that the Walsh 
functions form an orthonormal set. The Walsh diaphony is then given by 

DN= ~L:u! (twn(Xk)) 2 

n>O lr-1 

(75) 

In Ref. [ 13], the following choice is made: 

1 s 1 u2---IT--n - 3s - 1 r( n,,)2 ' 
p.=l ,.. 

r(n) = 8(n = 0) + 8(n > 0) L:2P 8 (2P $ n < 2P+1) . (76) 
p~O 

Note that, in contrast to the Fourier case where each mode of frequency n contains two basis functions (one 
sine and one cosine), the natural requirement of 'translational invariance' in this case requires that the Walsh 
functions from 2P up to 2P+ 1 get equal strength. The clusterings are therefore quite different from the Fourier 
case. We slightly generalize the notions of Ref. [ 13], and write 

-~ I 

u; =II < >2 • 
µ.= I r nµ. 

r(n) = 8(n = 0) + 8(n > 0) L (apP)-l/2 8(2P::;: n < 2P+1). 

p~O 

(77) 

Here, we have disregarded the overall normalization of the u's since it does not influence the Gaussian limit. 
It is an easy matter to compute the Rk; we find 

(78) 

so that the requirement E [DN] = R1 < oo implies that we must have p < 1/2. Therefore, for not too small 
values of a, we have 

(I+ a3 /(1 - 2p3))2 
a(a,p) = (I+ a2/(l - 2p2))J. (79) 

The choice made in Ref. [ 13] corresponds to a = 1 and p = l / 4, for which we find a(l, t / 4) ,...., 0.4197. The 
Gaussian limit should, therefore, be a good approximation for s larger than 6 or so. An interesting observation 
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~s th~t f?r fixed /3. a(a,{3) attains a minimum ~ta= (l - 2/33)/(1- 2/32 ), so that the choice f3 = 1/4 could 
m prmc1ple lead to a(3I/28.1/4) = 0.4165 with a marginally faster approach to the Gaussian. The overall 
infimum is seen to be a(3/2, 1/2) = 2/11 ,...., 0.182. As in the Fourier case with product clustering and a 
power-Jaw strength, there is a limit on the speed with which the Gaussian is approached: in both cases this is 
directly related to the type of clustering. 

At the other extreme, for very small a we find the limiting behaviour 

(l - 2p2)3 l . 
/'3 ,..., (I _ 2/33 ) 2 ; tf sa2 « I. (80) 

Again in this case, the slowest possible approach to the Gaussian limit is like 1 / s, directly related to the 
symmetry of the discrepancy definition with respect to the various coordinate axes. 

3.4. Lego discrepancy 

Another class of integrands and discrepancies can be constructed by dissecting the hypercube K into M 
non-overlapping bins Am (m = l, 2, ...• M), and taking the characteristic functions Dm of the bins as the bru:is 
functions of the measure. Then w,, is the volume of Am. and 

M 

L Wm = 1 and Om.11 = w,,Bm •. 11 • (81) 
111=1 

Note that in this case n runs over a finite set of values. Moreover, this model is dimension-independent, in the 
sense that the only infonnation on the dimension of K is that contained in the value of M: if the dissection 
of K into bins Ak is of the hyper-cubic type with p bins along each axis, then we shall have M = p·•. Also, a 
general area-preserving mapping of K onto itself, such as the Arnol'd cat-transform, will leave the discrepancy 
invariant: it will lead to a distortion (and possibly a dissection) of the various bins Anr. but this influences 
neither Wm nor (by definition) Um. Owing to the finiteness of M, a finite point set can, in fact, have zero 
discrepancy in this case, namely if every bin A,,, contains precisely w111 N points (assuming this number to be 
integer for every m). 

The matrix r 111•11 has now indices that label the bins (m, n = I, 2, ... M), where M is the total number of 
bins. 

(82) 

We shall now examine under what circumstances the criterion ( 31) for the appearance of the Gaussian limit is 
fulfilled. The eigenvalues A; of the matrix r m.n are, of course. given as the roots of the eigenvalue equation 

(83) 

It is seen that there is always one zero eigenvalue (the corresponding eigenvector has I/ <Tm for its mth 
component). Furthermore, the eigenvalues are bounded by maxmCU:,wm). and this bound is an eigenvalue if 
there is more than one m for which the maximum is attained. At any rate, we have for our criterion, that 

12 (~ )2 ( ') )2 C A maxm 111 Wm maxm Ojj1Wnr 

= l:AT $ Tr(f2) = L:a!1w~(l-2wnr) +<Eu;1wn1) 2 • 
(84) 

i m m 

Since the generality of the Lego discrepancy allows us to choose from a multitude of possibilities for the u's 
and w's, we now concentrate on a few special cases. 
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( 1) All wni equal. This models integrands whose local details are not resolved within areas smaller than I/ M, 
but whose magnitude may fluctuate. In that case, we have 

C I (maxm O"m ) 4 

< 1-2/M ~~ 
(85) 

n 

and a sufficient condition for the Gaussian limit is for this bound to approach zero. Note that here, as in 
the general case, only bins m with <Tm * 0 contribute to the discrepancy as well as to the criterion C, 
so that one has to be careful with models in which the integrand is fixed at zero in a large part of the 
integration region K: this type of model was, for instance, examined in Ref. [ 14]. 

( 2) Allum equal. In this case', the underlying integrands have more or less bounded magnitude, but show finer 
detail in some places (with small w) than in other places (with larger w). Now, it is simple to prove that 

Mw2 

C ~ 1 -2w + 1/M' 
~v = max Wm, 

Ill 

so that a sufficient condition is that Mw2 should approach zero. 

(86) 

(3) All u;1wm equal. This choice models functions in which the largest fluctuations appear over the smallest 
intervals. Although not a priori attractive in many cases, this choice is actually quite appropriate for, e.g. 
particle physics where cross sections display precisely this kind of behaviour. In this case we simply have 

1 
C= (M+2)(M-l)' 

(87) 

and the Gaussian limit follows whenever M - oo. 

4. Conclusions 

We have shown that a large class of discrepancies, including the L2 star-discrepancy and the diaphonies, can 
be fonnulated as the induced discrepancy of a class of functions defined by a countable set of basis functions. 
These basis functions we called modes. For such a discrepancy we derived the probability distribution, in the 
limit of a large number of points, over the ensemble of truly random point-sets. We have shown under what 
conditions this distribution tends to a Gaussian. In particular, the question of the limiting behaviour of a given 
distribution can be reduced to solving an eigenvalue problem. Using the knowledge of the eigenvalues for a given 
function class it is possible to determine under which conditions and how fast the Gaussian limit is approached. 
Finally, we have investigated the limiting behaviour of the probability distribution for the discrepancy of several 
function classes explicitly. 

The discrepancy that fastest approaches the Gaussian limit is obtained for the model in which the number of 
modes with nonzero equal strength goes to infinity, while the sum of the strengths is fixed. In fact, we give an 
argument why we cannot improve much on this limit. However, a drawback of this model is that the discrepancy 
itself becomes a sum of Dirac 8-distributions in this limit: it only measures whether points coalesce, and is 
therefore not very useful in practice. 

Secondly, we looked at the L2 star-discrepancy. Here a Gaussian distribution appears in the limit of a large 
number of dimensions. It is, however, a very slow limit: only when the number of dimensions becomes of the 
order 0 ( 102) does the Gaussian behaviour become manifest. 

For the different diaphonies the choice of the mode-strengths is more arbitrary. The strengths we discuss are 
chosen on the basis of some preferred global properties of the diaphony, such as translation- and/or rotation
invariance. Again for large dimensions the Gaussian limit is attained, either as a power-law or inverse of the 
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number of dimension. It is possible to choose the strengths in such a way that the Gaussian limit is approached 
arbitrarily fast. But the diaphony corresponding to that case again consists of a sum of Dirac a-distributions. 

Finally, for the Lego-discrepancy, we can assign strengths to the different modes in several ways. One 
example is to keep the product of the squared strength and volume of the modes fixed, then the Gaussian limit 
is reached for a large number of modes. 

All these results have been derived in the limit of large number of points. It remains to be seen, however, 
whether this is reasonable in practice. To determine when the asymptotic regime sets in, i.e. for which value of 
N, it is necessary to take into account the next-to-leading contributions. This will be the subject of Ref. [ 15]. 

Appendix A. The form of Go(Z) 

In this appendix we derive the result ( 24) for the form of Go ( z) in terms of the quantities A and B of 
Eq. ( 23). For simplicity of notation, we shall assume the discrete case where the Am.n is a matrix, and the B111 

a vector; the indices m, n are then what we called the variables y in the foregoing. Moreover, let us denote by 
[BAkBJ the sum Lm.n Bm(Ak)111.nBn. Since the matrix r m,n can be written as 

(A.I) 

the kth power of this matrix has the general form 

k - k ~ (Lr>oPr)! P B q) II [BArB])v, ( r ) m.n - (A ) m.11 - L I I I (A B) 111 ( A II ( - • 
vo.V1.P2.·.. >O 

p.q.vo.1:i.. ~O r _ 

(A.2) 

with the constraint k - 1 = p + q + v0 + 2v1 + 3v2 +···.The combinatorial factor follows directly from the 
possible positionings of the dyadic factors -8111 8 11 • Multiplying by (2t)k-I and summing over the k then gives 
us immediately 

where the last factor, with r + I, comes from the double sum over p and q with p + q = r. Upon integration 
of this result over t from 0 to z. we find 

(2z )1' 
log(Go(z)) = L ~Tr(rn) 

11>0 

= L (~~: 11 Tr(An) - ~log(I + L)2z)11 [BAn- 1B1) 
n>O n>O 

(A.4) 

This result has, in fact, already been obtained for the ca<;e of the L2 star-discrepancy in Ref. [ 5]. but here 
we demonstrate its general validity for more general discrepancy measures. In those cases where Bm = 0, the 
second term of course vanishes. 

Appendix B. A counterexample 

In this appendix we prove that the condition ( 31) for the occurrence of a Gaussian limit is, in a se~se, the 
best possible. Namely. consider a set of eigenvalues .A,0 again adding up to unity as usual, defined as follows: 
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A1 =A. 

An= (1 - .A)/(M-1), n=2,3, ...• M, 

An=O. n>M. (B.I) 

Clearly, A will indeed be the maximal eigenvalue as long as M > 1 /A. Now. 

A2 A2 

En,\; = A2 + (1- ,\)2/(M - 1) ' 
(B.2) 

and this ratio can be driven as close to unity as desired by choosing M sufficiently large. This shows that the 
simple condition A - 0 is not always enough to ensure the Gaussian limit. 

Appendix C. Spectral representation of the L2 star-discrepancy 

Mercer's theorem [ 17) states that a nonnegative-definite and continuous function on (1,0) x (I.OJ has a 
spectral decomposition. Applying this to the function min(xf, x~) then tells us that the two-point connected 
Green's function g of the Wiener measure has a spectral decomposition of Eq. (39). The eigenvalues~ and 
eigenfunctions u,. for g are given by Eq. (41) and Eq. (40). 

To show that the discrepancy defined through the functions u,. is the same as the L2 star-discrepancy pinned 
down at ( I. l, ... , I ) , we prove the equality of the ,8-functions for the two measures, 

L u;(u,.(x1) - 2sl2u,.) (u,.(x2) - 2sl2u,.) 
II 

= f (rr ocxr - Y"> - Ii o - Y">) (t:r ocx~ - yP.) - TI: o - i'>) dy. 
K' µ=I µ=I µ=I µ.=I 

(C.I) 

Evaluating both sides of the equation, we obtain 

L ( u!u,.(x1 )u,.(x2) - 2s/2~u,.(x1) - 2s/2~u1r(X2) + 2su!) 
II 

s s 

=g(x1,X2) - IJ {xf - ~(xf)2) - II{~ - ~(~)2) + O)s. (C.2) 
#'=I µ=I 

The first tenns on both sides of the equation cancel trivially. A small calculation shows that the sa..me applies 
to the last tenns on both sides of the equation. It thus remains to show that 

s 

I:2s12u!u,,(x) = IT<xP. - !CxP)2). 

" µ.=I 

This problem again factorizes for the different coordinate~. (omitting indices), 

2 (!) 3 ~ (2n ~ ll' sin (C2n + l)fx) ~ x- ~~'. 

(C.3) 

(C.4) 

which is nothing but stating that the l.h.s. of Eq. (C.4) is the Fourier decomposition of the r.h.s. To prove this, 
let f be the following periodic extension of x - !x2: 
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j(x)={!x2 -;-~x+4, xE(2m-2,2m], 
x - 2 x • x E ( 2m, 2m + 2 L (C.5) 

where m is any integer. The function f is a parabolic approximation of ~ sin( 4?Tx). It is continuous and 
diff eren~iable on JR. Hence it can be written as a Fourier series, based on a period of 4 rather than I. An explicit 
calculauon shows that the only nonzero terms come from the functions }i sin ( (2n + I) f x) ( 11 = O, J, 2, ... ) . 
The Fourier coefficients are given by 7 

1 /4 (2) 3 
r,; /(x)sin((2n+J)Ix)dx=2J2 - 3 . 

v2 7T (211 +I) 
0 

(C.6) 

Thus the Fourier series is exactly given by the I .h.s. of Eq. ( C.4). 

Appendix D. The magnitude of Q~ (p) 

Here we present the proofs of our various statements about the multiplicity function Q!.1 (p) of Section 3.3.3. 
In the first place, we know that its Dirichlet generating function, F' 1 > ( x), converges for all x > 1. Now suppose 
that QP (p) exceeded cpa an infinite number of times, with c > 0 and a > I. The Dirichlet generating function 
would then contain an infinite number of terms all larger than c, for ! < x < a, and therefore would diverge, 
in contradiction with its convergence for all x > I. 

In the second place, consider the 'standard' generating function, fi 2>(x). By inspecting how many of the 
vector components nµ. of n are zero, we see that we may write, for p > I, 

Q~(p) = t. (;)21d,(p). d,(p) =:Lo (P = ITnµ.) . 
n~O µ.=I 

(D.l) 

so that d 1 ( p) counts in how many ways the integer p can be written as a product of t factors, including ones; 
this function is discussed. for instance. in Ref. ( 16}. Now, for p prime, we have d1(p) = t, and therefore 

Q~(p) 2 2s(3s-I), equality for p prime. (0.2) 

The radius of convergence of F}2l (x) is therefore at most equal to unity. On the other hand, we can obtain 
a very crude. but sufficient, upper bound on Q~(p) as follows. Since d1(p) is a nondecreasing function oft, 
we may bound QP(p} by (3s -- l)d5 (p). Now let kp be the number of prime factors in p: then kp cannot 
exceed log(p)/ log(2), and only is equal to this when p is a pure power of 2. Also, the number of ways to 
distribute k object ins groups (which may be empty) is at most sk. and is smaller if some of the objects are 
equal. TI1erefore, ds(p) is at most skp, and we see that 

Q~(p) < (3s _ l)plog(s)/log(2), (D.3) 

or, in short, is bounded 8 by a polynomial in p. Therefore, the radius of convergence of F.; 2>(x) is also at least 
unity, and we have proven the assertion in Eq. (3.3.3). 

7 We take the functions nonnalized such that they form a orthononnal set on ( 0, 4 j, so the Fourier series is in tenns of the sine- and 
cosine functions divided by vz. 

tt Note that equality cannot occur in this case since the two requirements are mutually exclusive. 
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Finally. we consider the limit 

. . (.F:2>(x3))2 
hm 'Y3 = hm . 
/3'-l x-t (.FJ2>(x2) )3 (D.4) 

The same reasoning that led us to the radius of convergence shows that. for x approaching 1 from below, the 
function .F}2> ( x) behaves as (1 - x) -c, with c ~ 1. Therefore, y3 will behave as ( 8(1 - x) /9) c, and approach 
zero as x - 1. Note that the upper bound on Q~(p) is extremely loose: but it is enough. 
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