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Abstract 

The first boundary value problem for a singularly perturbed parabolic equ<ttion of convection-diffusion 
type on an interval is studied. For the approximation of the boundary value problem we use earlier 
developed finite difference schemes, 1:-uniformly of a high order of accuracy with respect to time, based 
on defect correction. New in this paper is the introduction of a partitioning of the domain for these 
i:-uniform schemes. We determine the conditions under which the difference schemes, applied inde
pendently on subdomains may accelerate (1:-uniformly) the solution of the boundary value problem 
without losing the accuracy of the original schemes. Hence, the simultaneous solution on subdomains 
can in principle be used for parallelization of the computational method. 

AMS Subject Classifications: 65N21, 65N55, 35K20, 35825, 35A40. 

Key Words: Parabolic PDEs, convection-diffusion. higher-order time-accuracy schemes, defect cor
rection. i:-uniform convergence, parallel algorithms. Schwarz-like methods. 

I. Introduction 

Special e-uniformly convergent difference schemes for singularly perturbed 
boundary value problems for elliptic and parabolic equations are well developed, 
see, e.g., [1-9]. If the problem data are sufficiently smooth, for the parabolic 
equations with convection terms, then the order of e-uniform convergence for the 
scheme studied in [9] is (!1(N- 1 In N + Nr) 1 ), where N and No denote, respectively, 
the number of intervals in the space and time discretization. For this scheme the 
amount of computational work is primarily determined by the time discretization, 
which is of first order accuracy only. For reaction-diffusion problems in [5, 6] we 
have developed an algorithm based on the defect correction principle, which 
achieves a high order of time-accuracy and preserves E-uniform accuracy in space. 

To improve the effectivity of the algorithm, we also need efficient methods for 
solving the discretized problems. The paper [10] introduced parallel computa
tional methods that allow us to accelerate the numerical solution of singularly 
perturbed boundary value problems for parabolic reaction-diffusion equations. 

*This research was supported in part by the Netherlands Organization for Scientific 
Research NWO, dossicrnr. 047.008.007, and by the Russian Foundation for Basic 
Research under Grant N 98-01-00362. 
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Note that the method in [10) has only first order of accuracy with respect to the 

time variable. The direct use of the parallel method from [10] for the defect 

CL1rrection scheme docs not allow to achieve the order of time accuracy higher 

than one. 

In the present paper we develop new defect correction schemes for singularly 

perturbed convection-diffusion problems. In this way, we achieve a high order of 

accuracy for the time variable, maintaining <:-uniform convergence and first-order 

accuracy in space. For such schemes, as well as for the base schemes, we construct 
new schemes hased on a domain decomposition method which allow both 

sequential and parallel computations. Thus. the present algorithm is a further 

dficient improvement over what was previously developed in [6] for the reaction
diffusion case. It should he noted that this parallel method is not iterative within a 
time step. 

2. Problem Formulation 

On the domain C. where G = (0. 1) x (0, T]. with the boundary S = G\G we 
consider the following singularly perturbed parabolic equation with Dirichlet 
boundary conditions: 

{ rY <J a} 
Lr::. 1 ,u(x. t) = rn(x. t) -:--) 0 + b(x. r)-8 - c(x, t) - p(x, t)- u(x, t) 

1r x & 
= f(x. t). (x, I) E G. (2. la) 

u(x. t) = <.p(x. t). (x, t) ES. ( 2.1 b) 

For S =Su U SL, we distinguish the lateral boundary SL = { (x, t) : x = 0 or 

x = 1. 0 < t S T}. and the initial boundary So= { (x, t): x E [O, l], t = O}. In 
(2.1) a(x.t). h(x.t). c(x.t). p(x,t), f(x.t), (x,t) E G, and <.p(x,t), (x,t) ES are 
sufikiently smooth and hounded functions which satisfy 

0 <au ::S a(x. t). 0 <ho ::S b(x. t). 0 <Po S: p(x, t). c(x. t) ~ 0, (x, t) E G. 

The real parameter i: may take any small positive value, say<: E (0, !]. 

When the parameter 1: tends to zero in (2.1 a). the solution exhibits a boundary 

layer in the neighbourhood of the set Sk = { (x. t) : x = O, O ::::; t ::; T}, i.e., near the 
left side of the lateral boundary (or the outlaw boundary). Such layers are 
described by an ordinary differential equation (regular boundary layers). 

For problem (2.1) we construct a numerical method that has a higher order of 
accuracy with respect to the time and. in addition, allows for parallel solution of 
the difference equations. 
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3. Difference Scheme 

To solve problem (2.1) we first consider a classical finite difference method. On the 
set (;we introduce the rectangular grid 

(3.1) 

where w is a (possibly) non-uniform grid of nodal points, xi, in [O, l], w0 is a 
uniform grid on the interval [O, T]; N and No are the numbers of intervals in the 
grids lV and wo respectively. We define r=T/N0 , h;=xi+l _x;, h=max;h;, 
h S. M/N. 

Here and below we denote by M (or m) sufficiently large (or small) positive 
constants which do not depend on the value of parameter e or on the difference 
operators. 

For problem (2.1) we use the difference scheme [11] 

A(3.2Jz(x, t) = J(x, t), (x, t) E Gh, (3.2a) 

z(x, t) = <.p(x, t), (x, t) E Sh. (3.2b) 

Here Gh = G n Gh. Sh =Sn Gh, A(3.2J = ea(x, t)i5.<x + b(x, t)i5x - c(x, t) - p(x, t)i51, 
i5xz(x, t) is the forward difference operator, while <5.rz(x, t) and c51z(x, t) are the 
backward difference operators, and the difference derivative D,xz(x, t) is an ap
proximation of the derivative fb u(x, t) on the non-uniform mesh: 

· (;) ?(hi-I hi)-1[· (i) · (i )] O.r.\·Z X , t = - + OxZ X 1 l - 0,tZ X , l . 

The difference scheme (3.2), (3.1) is monotone [11]. By the maximum principle and 
taking into account a-priori estimates of the derivatives (see Theorem 9.1 in the 
Appendix), we find the error estimate 

lu(x, t) - z(x, t)I S. M(e-2N- 1 + r), (x, t) E Gh. (3.3) 

The proof of (3.3) follows the lines of the classical convergence proof for 
monotone difference schemes [ 11, 9]. This results in the following theorem. 

Theorem 3.1. Let estimate (9.2), where n = 0, holdfor the solution o,lproblem (2. 1 ). 
Then, for a fixed value o.l the parameter £, the solution r~l scheme (3.2), (3.1) 
converges to the solution r>f'prohlern (2. I) with an error hound given hy (3.3 ). 

4. The s-Uniformly Convergent Method 

In this section we discuss an <:-uniformly convergent method for (2.1) by taking a 
special mesh, condensed in the neighbourhood of boundary layers. The location 
of the nodes is derived from a-priori estimates of the solution and its derivatives. 
The way to construct the mesh for problem (2.1) is the same as in [5, 7, 12, 13, 9]. 
More specifically, we take 
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Gh = w*(a) x Wo, (4.1) 

where cv0 is the uniform mesh with step-size r = T /No, i.e. Wo = 00(3.1 l• and 
w* = w*(a) is a special piecewise uniform mesh depending on the parameter 
a E IR, which depends one and N. We take a= CT(4.I)(e,N) = min[l/2,m- 1elnN], 
where m = m(4.11 is an arbitrary positive number from the interval (0, mo), 
m0 = mina[a- 1 (x, t)b(x, t)]. The mesh cv*(a) is constructed as follows. The interval 
[0,1] is divided in two parts [O, a], [a, 1], 0 < cr::; 1/2. In each part we use a 
uniform grid, with N /2 subintervals in each interval [O, a] and [a, l]. 

Theorem 4.1. rt" the solution of problem (2.1) satisfies the h_vpotheses of Theorem 
9.1 (Appendix), where n = 0, then the solution of scheme (3.2), (4.1) converges 
e-un{form(v to the solution of (2.1) and the following estimate holds: 

lu(x,t) -z(x,t)I::; M(N- 1 lnN + r), (x, t) E Gh. (4.2) 

The proof of this theorem can be found in [9]. 

Remark 1. Under the conditions of Theorem 4.1, where 11 = K ~ 0, for the 
derivatives (fl0 /at'<0 )u(x,t) and the divided differences c511z(x,t), the following 
estimates hold: 

I (jn I (ko) 
Dtkou(x,t) :::;M(4.3)' (x, t) E G, ko :::; K + 2; (4.3) 

Here we denote by c511z(x, t) the backward difference of order I: 

tSliz(x,t) = (b1-11z(x,t) - c51-11z(x,t- r))/r, l ~I, 

c501z(x, t) = z(x, t), (x, t) E Gh, t ~ fr, / ~ 0. 

5. Schwarz Overlapping Method for Parabolic Equations 

We give the modified Schwarz method for boundary value problem (2.1), and for 
the solutions obtained we give the necessary and sufficient conditions of <:-uniform 
convergence. 

5.1. We first describe Schwarz' classical method for problem (2.1 ). Let the set of 
open subdomains 

d, k= 1, ... ,K (5.1 a) 

with piecewise smooth boundaries rk, rk = r(Dk) = lY\Dk, cover the domain D: 
D = uK Dk and let k=I ' 
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Gk =nk x (O,T], k= l, .. .,K. (5.lb) 

We denote by D[k] the union of the subdomains D 1, •••• DK which does not include 
the set Dk 

K 

D[kl = LJ D;, k = 1, ... , K. 
i=l,i# 

(5.lc) 

Note that the sets ok n D[k] f. 0 for all k = 1, ... , K. For simplicity, we assume 
that D\DlkJ f. 0, k = 1, ... , K. We denote the minimal overlap of the sets Y and 
Dikl by fi and J denote the least value of Jk, k = 1, ... , K, i.e. 

where p(x1 ,x2) is the distance between the points x1, x2 E 15. In general, the value 
J may depend on the parameter i;: c) = 6(s.2)(e). 

Let 

u0 (x,t), (x,t) E G (5.3a) 

be given an arbitrary function satisfying the condition (2.lb). We are to find the 
sequence of the functions u'(x, t), (x, t) E G, r = 1, 2, .... Let the function u'(x, t) 
be known. The function u'+ 1 (x, t) is determined as follows. First we find the 
functions ur+t(x, t), that is the solution of the following problems 

( r+.!,( )) L(5.4) u A X, t = 0, (x,t) Ed, (5.3b) 

- k 
(x, t) E G\ G , k = 1, ... , K. 

The required function is defined by the relation 

ur+l (x, t) = ur+f(x, t), r = 0, 1, 2, .... (5.3c) 

In the case of boundary value problem (2.1) the operator Lts.4) in (5.3b) is defined 

L(5.4J (u(x, t)) = Lt2. 1 )u(x, t) - f (x, t), (x, t) E G. (5.4) 

Each function z/+t(x, t), (x, t) E G, is the solution of the Dirichlet problem on the 
set [;k and coincides with the function ur+\' (x, t) on the set G\ Ok. This process is a 
natural generalization of the classical Schwarz 'alternating' method. 

In principle, we could give the conditions under which process (5.3), (5.4), (5.1) 
converges to the solution of boundary value problem (2.1) as r ___. oo, where r is 
the number of iterations. However, in this paper we are interested in a non
iterative variant solver based on the modified Schwarz method. 
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5.2. Now we describe the modified Schwarz method. Let 

(5.5a) 

be a uniform grid, just like wa(J.I)· on [O,T] with stepsize r. By G(t1) we denote the 
strip 

Let S(t1) = G(t1)\G(t1) be the boundary of G(t1) and let v(x,t) = v(x,t;t1) be 
defined on S(t1 ). We denote an extension of the function v(x, t) onto the whole set 
G(t1) by v(x,t;t1). The function v(x,t;t1) is assumed to satisfy a Lipschitz con
dition with respect to t. We subdivide the strip G(t1) into sections Gk(t1) = 
Gk n G(t1), Sk(t1) = Ck(t1)\Gk(t1). 

Suppose the function u(x, t), (x, t) E C, for t" E cva, t '5. t" < T, n = 0, 1, ... , 
N0 - I, has already been constructed. Now we construct the function u(x, t) for 
t:::; t11+1, i.e., we find the function u(x,t) on the strip G(t"). This is done in the 
following way. First we find the functions ukfK (x, t) on the sections ck (t"), solving 
the boundary value problems 

L(5.4)(u*(x,t)) = 0, (x,t) E Gk(t"), } 

i!. {u(x,t;t"), k= I,} for (x,t) E Gk(t"), 
uK(x, t) = , (x, t) E sk (t") 

!..::..!. uK(x,t), k2'.2 

k = 1, ... ,K; t" E cva, n '5. No - I. (5.5b) 

Here having uk I K(x, t) on ck (t" ), we extend these functions for each value k onto 
the whole strip G(t") in the following way 

{ 

u*(x, t), (x, t) E Gk(t"), } 

uf:(x,t)= u(x.,t;t"), k=l,} _ _ for(x,t)EG(t"), 
, 1 , (x,t) E G(t")\Gk(t") 

uT(x, t), k 2'. 2 

k= l, ... ,K, t" ElVo. (5.5c) 

Having uk/K (x, t), fork= K we define the function u(x, t) on the whole strip G(t") 
by 

' u(x, t) = uX'(x, t), (x, t) E G(t"), t" E w0 . (5.5d) 

Thereby we have the function u(x, t) on the domain G for t E [O, t'1+ 1]. 

In the relations (5.5b), (5.5c) the function u(x,t;t") is constructed on the base of 
the function v(x, t; t") 
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u(x, t; t") = v(x, t; t 11 ), (x, t) E G(t11 ). (5.5e) 

Using v(x, t; t") which is defined on the boundary S(t11 ) in (5.5g), we find the 
function 

v(x, t; n, (x, t) E G(t"), 

supposing v(x, t; t") = v(x, t; t") for (x, t) E S(t") 

and v(x, t; t") = v(x, t 11 ;f1 ) for (x, t) E G(t"). 

Here 

{ 
cp(x, t), 

v(x, t; t") = cp(x, t), 

u(x,t), 

(x, t) E S(t"), t" = t0 = 0, 

(x,t) E S(t") ns, t ~ t", }, 
t" > 0, (x, t) E S(t"), 

(x, t) E S(t")\S, t = t" 

n = 0, 1, ... , No - I. 

Thus, the function u(x, t; t 11 ) on G(t11 ) has been constructed. 

( 5.5f) 

(5.5g) 

The function ut(x, t) on each strip G(t") is the solution of the Dirichlet 
problem on the section {;k(t"), whereas on the set G(t")\Gk(t") it coincides with 
the function u(x, t; t11 ) (x, t) E G(t11 ) for k = 1, and with the function 
i/1:' (x, t), (x, t) E G(t") for k ~ 2. We thus find the function u(x, t), (x, t) E G, the 
solution of process (5.5), (5.4), (5.1), which we call the modified Schwarz 
method. 

Note that the modified Schwarz method is not an iterative process in the strict 
sense. The boundary value problems in (5.5), (5.4), (5.l) are solved only once at 
those points of G which do not belong to the intersection of the subdomains. The 
boundary value problem is solved twice only on the intersection of the subdo
mains. 

In the continuous domain decomposition method ( 5. 5), (5.4 ), (5.1) the interme
diate problems on the subsets b15 11 , k = 1, ... , K are solved sequentially. 

Using the comparison theorems [14, 15], we come to the estimate 

where u155J(x,t) is the solution of the process (5.5), (5.4), (5.1), (~ = c5 152i(D), i.e., 
the function u15 51 (x, t) converges, as N0 -+ :xi, to the solution of boundary value 
problem (2.1) for each fixed value of the parameter e. Note that, generally 
speaking, the function u15 .s) (x, t) for c5 = 0 does not converge to the solution of 
boundary value problem (2.1) as No -+ oo. Under the condition (see [16], Chapter 
10 of[7]) 
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fJ = c5(5.21 (a) > 0, (5.6) 

which is equivalent to the condition b = fJ( 5.21 (r:) 2: m(5.61 s, BE (0, I], the function 
u(5.5) (x, t) converges <:-uniformly as No ----+ oo: 

iu(x, t) - u(s.s1(x, t)I ::::; MN01, (x, t) E G. 

If condition (5.6) is violated and the value fJ satisfies the condition 

fJ == b(s.21(s) > 0, BE (0, I], inf [a- 1c5(s.21(s)] = 0, (5.7) 
eE(O,lj 

the function u(5.51 (x, t) does not converge a-uniformly. 

5.3. Here we describe the continuous variant of the modified Schwarz method that 
admits parallel computations on P 2: I processors. 

Let Dk, k = I, ... , K be the subdomains from (5.1 a) and let each d be partioned 
in P disjoint (possibly empty) parts 

Dk= UP Dk, 
p=l p 

k = 1, ... ,K, (5.8a) 

where fY; n D1 = 0, i-:/=). We set 

a;= D; x (O,T], p =I, ... ,P, k =I, ... ,K. (5.8b) 

We find the function u(x, t) by solving problems (5.9) similar to (5.5), but now on 
the set a;,(t11 ) instead of <]k (t") 

i 
L(5.4)(u~(x,t) = 0, (x,t) E G~(t"), (5.9a) 

t -{ u(x,t;t"), k =I,} 
Up(X, t) - ! 1 , 

uT(x,t), k2'.2 
(x,t) E s;(t11 ), p = 1, ... ,P 

for (x,t) E a;,(t11 ), k = 1, ... , K, (' E <Vo, n :5 No - I; 

.!, !u!(x,t), (x,t)EG;(t11 ),p=l, ... ,P, ) 

u•(x,t)= u(x,t;t"), k=l,}
1 

P 

(x, t) E G(t")\ U [Jk(t11 ) 

1K 1( f) k:::.>2 p=l p u x, ) - -

for (x, t) E G(t"), k = I, ... ,K, t" E wo; (5.9b) 

u(x, t) = uf(x, t), (x, t) E G(t"), t" E (00 . ( 5.9c) 
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The function u(x, t; tn) = v(x, t; tn), (x, t) E G(t"), t" E w0 . The function 
v(x, t; f'), (x, t) E G(tn) is determined like that in (5.5t). 

Stepwise, for n = I, 2, ... , we find the function u(5.91 (x, t), (x, t) E G, i.e .• the so
lution of process (5.9), (5.8). We call this the modified continuous Schwarz 
method for P "processors". 

The scheme (5.9) on the decomposition (5.8) can be written in the "operator" form 

Q(u(x,t);wo, f(·),<p(·),1/1(·)) = 0, (x,t) E G. (5.9d) 

Here the function l/J(x, t; t"), (x, t) E G(t") defines the prolonged function 
u(x, t; t"): 

_( . "'') _ { v(x, t; t"), (x, t) E S(t"), } 
u x,t,1 - , 

v(x, t"; t") + l/J(x, t; t"), (x, t) E G(n 
(x, t) E G(t"), ( 5.9e) 

so that in the case of the conditions (5.5e), (5.5t), simply, l/J(x, t; t") = 0. The 
problem (5.9), (5.8) for P = l is identical with problem (5.5), (5. I). 

In the continuous domain decomposition method (5.9), (5.8) the intermediate 
problems on the subsets .o;(s.si, p = I, ... , P, k = 1, ... , K can be solved inde-
pendently of each other, for all p = 1, ... ,P. For this construction the following 
theorem [ 1 OJ is useful. 

Theorem 5.1. The condition (5.6) is necessary and Slf:tficient for the e-un(form 
convergence (as No--+ oo) ofu(S.9b)(x,t) i.e., the solution o_fprocess (5.9), (5.8) with 
P 2': 1, to u(x, t), i.e., the solution of boundary value problem (2.1 ). 

6. Difference Schemes Based on the Schwarz Method 

6.1. Here we construct a difference scheme based on the process (5.5), (5.1) and 
give the necessary and sufficient conditions for <:-uniform convergence of this 
scheme. We introduce the rectangular grids on each set (/ and a;: 

-k -k -
G~ =a· n Gh(3.1J, 

-k -k -
Gph =GP n Gh(3.1), (6.1) 

or 

-h -k -. 
Gh = G n Gh(4.I)' ah (;k G* ph = P n h(4.I)· (6.2) 

where o;h = o;,h. yje assu~e that the boundaries of (;k and a; pass through the 
nodes of the grid Gh and G'i, respectively. 

Now we introduce the discrete function v(x, t) = v(x, t; t1) defined on the boundary 
of the discrete strip Sh(t1) =S(t1)nGh, t1 Ee.Vo. By v(x,t;t1) we denote the ex
tension of this function v(x, t) to the discrete set G1i (t1) = G(t1) n G1i. The function 
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v(x, t; t1) is considered to satisfy the Lipschitz condition with respect to t. The 
"strip" G1i(t1) consists only of two time levels 

G1i(t1) = {w x [t = t1]} u {w x [t = t1 + r]}, 

where ciJ was introduced in (3.1). 

Now we find the discrete solutions zf (x, t) by a procedure similar to (5.5). As
suming that z(x, t), t Sf', has been computed, we solve on the strip Gh(t") the 
problems 

A( 6 . 31 (zf(x~.t )) ~ 
11
0, (x~) E G~(t"), } 

{
-(x, t, t ), k - 1,} for (x, t) E G1,(t"), 

zf(x, t) = u , (x, t) E S~ (r') 
Z K (X, f), k :::: 2 

k= 1, ... , K, t"Ew0 , nSNo-1; (6.3a) 

{ 

zf(x, t), (x, t) E G~(t"), } 

zk(x,t)= i(x,t;t"), k=l,}' for(x,t)EGh(t"), 
(x,t) E Gh(t")\G1,(t") 

I I 
zT(x, t), k ;::: 2 

k= 1, ... ,K, t" Ei!Jo. (6.3b) 

The required function z(x, t) on the strip G11 (t") is defined by the relation 

z(x, t) = zf(x, t), (x, t) E G1i(t11 ), t" E cv0 . (6.3c) 

In the relations (6.3a), (6.3b) 

z(x, t; t") = v(x, t;('), (x, t) E G1i (r'), t" E 100 . (6.3d) 

The function v(x, t; t"), (x, t) E G1i(t11) is found from v(x, t; t"), (x, t) E S1i(t"), 

_( ·")-{v(x,t;t"), (x,t)ESh(t"),} v x, t, t - ' 
v(x, t11 ; t"), (x, t) E Gh(t") 

(x,t) E G1i(t11 ), ( 6.3e) 

where 

{ 

cp(x, t), (x, t) E Sh(t" ), t" = t0 = 0, } 

v(x, t; t") = cp(x, t), (x, t) E Sh(t") n Sh, t 2:: t",} , 
( 11 > 0 

z(x, t), (x, t) E S11 (r') \Sh, t = t" ' 
(6.3f) 

(x,t)ESh(t"), n=0,1, ... ,No-1. 



High-Order Time-Accurate Parallel Schemes 149 

On each strip Gh(t") the function zt(x, t) is the solution of the discrete Dirichlet 
problem on the set G;,(t11 ). On the remaining part G1t(t 11 )\GJ,(t11 ), it coincides for 
k = I with the function z(x, t; 111 ), (x, t) E G1t(l11 ) and for k ~ 2 with the function 
zY(x, t), (x, t) E G1i(t11 ). We define the operator 1\63 J by the relation 

A(63J(.:(x, t)) =: A(32)z(x, t) -f(x, t), (x, t) E G;,. ( 6.4) 

It is required to find the function z(6.3) (x, t), (x, t) E Ch, i.e., the solution of dif
ference scheme (6.3) either on the mesh (4.1) or on the mesh (3.1). The difference 
scheme (6.3) can symbolically be written in the operator form 

Q(6.3)(.:(6 3)(x, t);f(·), cp(-), t/!CJ) = 0, (x,t) E (Ji,. (6.3g) 

Similar to (5.9e), here the function tf;(x, t; t11 ), (x, t) E G1i(t11 ) defines the function 
z(x, t; t"): 

"'(· ·")-{v(x,t;t11
), (x,t)ESh(t11

),} ( ) G(n) 
.. x,t,t - v(x,t11 ;t11 )+tf;(x,t;t11 ), (x,t)EG11(t11 ) 'x,tE ht · (6.3h) 

In the above case of conditions (6.3d), (6.3e) we have 1f!(x, t; t") =: 0. 

In the discrete domain decomposition method (6.3), the intermediate problems on 
-k -k -

the subsets D1i = D(s I 1 n D;, are solved sequentially. Thus, to solve boundary 
value problem (2.1), here we used difference scheme (6.3), (3.1), which is the 
discrete equivalent of (5.5), (5.1 ). In the following section we extend this to the 
··parallel'" case (5.9). 

6.2. To describe the difference scheme that approximates process (5.9), (5.8) with 
P parallel processes, assume that .:(x, t) is known for t:::; t", then we solve the 
problems 

( 6.5a) 

,_, {z(x,t;t"), k =I,} 
z7,(x, t) = H , 

zT(x, t), k 2 2 
(x, t) E s;,1,(t''), p =I, ... ,P 

-k 
for(x,t)EGP11 (t"), k=l, ... ,K, t"Ec1Jo, n:'S:No-1; 

! },_ 
.:f,(x, t) . 

.::t(x, t) = t(x, t; t'1), 

A I 
zT(x,t), 

k = 1, }· 

k22 

(x,t) E G~,11 (t11 ), p= l, ... ,P,) 
!' 

(x. t) E G11(t11 )\ LJ G~,11(t") 
p=I 

for (x,t) E Ch(t"), k =I, ... ,K, t" E (Vu. 
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We define the function z(6.51 (x,t) on the strip Gh(t11 ) by the relation 

z(651 (x,t) = z~(x,t), (x,t) E Gh(t"), t" E wo. (6.5b) 

In (6.5a) z(x, t; 111 ) = v(x, t; t11 ), (x, t) E Gh(t11 ). The function v(x, t; t"), (x, t) E Gh(t") 
can be found from v(x, t; t11 ), (x, t) E Sh(t"), which is determined by relation (6.3e). 

The difference scheme (6.5) can be written in the operator form 

Q(6.5J(Z(6.5}(x,t);f(·),q>(·),l/I(·)) = 0, (x,t) E Gh, (6.5c) 

with l/J(x, t; t") = 0. 

In the discrete domain decomposition method ( 6.5), (3.1) the intermediate 
-k -k -

problems on the subsets Dph = Dp(S.S) n Dh are solved independent of each other 
("'in parallel") for all p= l,. .. ,P. For P= 1 the difference scheme (6.5), (3.1) 
turns into (6.3), (3.1 ). 

Under condition (5.6), using a standard technique of the comparison theorems 
(see, e.g., [I 1, 9]), we get the estimate 

(6.6) 

where z(3.21 (x, t) and z(6.5l (x, t) are the solutions of the difference schemes (3.2), 
(3.1) and (6.5), (3.1 ), respectively. 

6.3. A technique similar to the one explained in [5, 6] gives us errors bounds for 
the discrete solutions that are obtained by the difference schemes described above. 
Under condition (5.6 ), if we use the difference schemes ( 6.5), (3.1) and (6.5), (4.1 ), 
we obtain the following error estimates 

(6.7a) 

[u(x,t)-z(6.5J(x,t)[::::; M(N- 1 lnN + r), (x,t) E G~(4. 1 l. (6.7b) 

The above formulation allows us to briefly summarize a result obtained in [1 O]. 

Theorem 6.1. Let the hypotheses of Theorem 4. I holdf(Jr the data of boundary value 
problem (2.1) and its solution. Then, under condition (5.6) andfor N, No ---> oo, the 
solution l!f'the difference scheme (6.5), ( 4.1) (or scheme (6.5), (3.1)) converges to the 
solution ()/(2.1) 1:-unff(mnly (.f(Jr a fixed value of i;). The estimates ( 6.6), (6. 7) hold 
for the solutions ()f these d(fference schemes. 

Remark I. If the condition n = 0 in Theorem 4.1 is replaced by n = K, K 2: -1, 
the following estimate holds 
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Remark 2. Note that the estimates (6.7a) and (6.7b) are similar to the estimates 
(3.3) and (4.2). It means that the domain decomposition preserves the accuracy of 
the base schemes. 

7. Improved Time-Accuracy 

7.1. A Scheme Based on Defect Correction 

The technique used in this paper to improve time-accuracy is based on the one in 
[5]. For the difference scheme (3.2), (4.1) the error in the approximation of the 
partial derivative (8/8t)u(x, t) is caused by the divided difference c51z(x, t) and is 
associated with the truncation error given by the relation 

8 ( ) --- ( ) - 1- I ()2 ( ) 6-1 2 ()3 ( .a) at u x, t - bru x, t - - -r 8t2 u x, t - -r 8t3 u x, t - v ) (7.1) 

where{) E [O, -r]. Therefore we now use for the approximation of (8/8t)u(x, t) the 
expression c51u(x, t) + r61 iu(x, t)/2, where 6,ru(x, t) = 611u(x, t - r), <'51ru(x, t) is the 
second central divided difference. We can evaluate a better approximation than 
(3.2a) by defect correction 

1\3.2).t'(x, t) = f(x, t) + 2-'p(x, t)r :t: u(x, t), (7.2) 

with x E wand t E wo, where w and wo are as in (3.1 ); r is step-size of the grid w0 ; 

z"'(x, t) is the "corrected" solution. Instead of ( 82 / 8t2 )u(x, t) we shall use 6uz(x, t), 
where z(x, t), (x, t) E Gh(4.1 l is the solution of the difference scheme (3.2), ( 4.1 ). The 
new solution z"(x, t) has a consistency error e·(r2 ). 

7.2. The Defect Correction Schemes 1!f' Second-Order Accuracy in Time 

Constructing the difference scheme in (7.2), instead of (fJ2 /8t2 )u(x, t) we use 
c521z(x, t), the second divided difference of the solution to the discrete problem 
(3.2), ( 4.1 ). On Gh we write the finite difference scheme (3.2) as 

A(3.2)zl 1l(x,t) =f(x,t), (x,t) E Gh, 

zOl (x, t) = <p(x, t), (x, t) E Sh, 
(7.3) 

where z( 1 l (x, t) is the uncorrected solution. For the corrected solution z(2l (x, t) we 
solve the problem for (x, t) E G1i 

('l( ( ) { p(x, t)2- 1-r 1~~ u(x, 0), 
A(3.2)Z - x, t) = f x, t + . 

p(x, t)2-1.rb21z( I) (x, t), 
(x, t) E Gh, 

(7.4) 

zt2l (x, t) = cp(x, t), (x, t) E Sh. 

Here the derivative -ffu(x,O) is obtained from (2.la). 
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{ 

zOlf(x, t), (x, t) E 61,(t"), } 

zlllf(x,t)= ;:(1)1(.~,t;r'), k=L}' (x,t)EGh(t")\G1,(t") 

zlilT(x, t), k 2 2 

for (x,t) E Gh(t"), k = 1, .. . ,K, t" E wo; 

z(ll(x,t) =z(t)f(x,t), (x,t) E Ch(t"), t" E wo. (8.2b) 

Here 

-(Ii( ") -(!)( . ") - ( . "'') ( t) E G- (t") .JI E -z x,t;t =v x,t,t =v(6.3e)X,t,1 , x, h , 1 wo. 

Now we find z(21f(x, t) for (x, t) E Gh(t"), solving the corrected problem 

(8.3a) 

{ 
;;(2l(x t·r') k = 1 } 

zt2lf(x,t)= -. kl,,' ', (x,t)ESZ(n 
.::'21T(x, t), k 2 2 

for (x,t) E G},(111 ), k = 1, ... ,K, t" E wo; 

{

zl2lf(x,t), (x,t)EG},(t'), } 

zt2lf(x,t)= .z(2l(x,t;t"), k=l,} _ _ 
, (x,t) E Gh(t11 )\G7,(t11 ) 

(O)k I 
Z- T(x, t), k 2 2 

for (x,t) E Gh(t"), k = I, ... ,K, t" E cv0 . 

The function z(2i(x,t) on the strip Gh(t") is defined by the relation 

:Pl(x,t) =z(21f(x,t), (x,t) E Gh(t"), t" E cv0 . (8.3b) 

Here 

;:(21(x,t;t") = iP1(x,t;t"), (x,t) E Gh(t'), 

v( 2l(x,t;t") = 1Jlll(x,t;t11 ,z(l)(·)) 

= v(x,f';t") +z(ll(x,t11 t 1) -z( 1l(x,t11 ), (x,t) E G1i(t"), 

v(x, t;(') = v( 6.3.n(x, t; t"), (x, t) E S1t(t11 ); 
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A(S.3) (zl 21 (x, t)) = Ar3.2 1z( 21 (x, t) -f 21 (x, t), 

f 2l(x, t) = f1 21(x, t;z(ll(-)) = f(x. t) 

{ 
f.P 

p(x. t)r 1r-0 , u(x, 0), + ·t-

;-1 . _(ii p(x, t)- rc)21.:. (x, t). 

(x, t) E a;~. 

t = r.} 
t :'.:'. 2r ' 
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(8.3c) 

(x, t) E G7,. 

We call the function zi~ 13 l (x, t) the solution of the domain decomposition - defect 
correction scheme. The difference scheme (8.3), ( 4.1) can be briefly written in the 
operator form 

Q( 631 (z( 11 (x, t);f 11 (·), cp(-), i/;( 11 (·)) = 0. (x, t) E Ch. 

Q( 6.3J(z( 2i(x. t);f( 21(·), cp(·). l/; 121 (-)) = 0. (x. t) E G1i, (8.3d) 

where 

f 1l(x.t) =f(x,t), f( 21 (x,t) =./(~2~, 1 (x,t;zi 11 (-)), ij;l 11 (x,t;t") :=O, 

ij;l 21 (x,t;t") = l/;( 21 (x,t;t",z11 l(·)) =z! 1l(x,t11+1)-z(ll(x,t11 ), 

(x,t) E Gh(t"), t= t 11+ 1• 

For the solutions of difference scheme (8.3 ). ( 4.1) the estimate ( 7 .6) remains valid 
(under assumption that condition (5.6) and the hypotheses of Theorem 7.1 are 
fulfilled). 

8.1.2. In the case of P > l we discretise the process (5.9), (5.8). In the grid con
structions (8.2a) and (8.3a), when we solve the finite difference boundary prob
lems on GJ,, the functions zl 1 ih(x, t) and .:P 1h(x. t) are replaced by the functions 
lIJh( ) d i 21h( ) d h Gk . 1 d b h ck zp x, t an zp x, t • an t e set h is rep ace y t e set 1,1z 

(i) ( (i).l ) k A( 841 zp'(x,t) =0. (x,t)EGph(t"), (8 .4a) 

{ 
(i) ( t") k 1 } _lilh - ::: x, t; ' '= ' 

"'P (X, t) - . l I . ' 

z1' 1T(x.t). k :'.:'. 2 
( ) k ( II :et ESph t ), p= l. ... ,P 

f. ( ·1 G-k ( ") k - I K II - . - 1 "). or x. t E ph t . - . . . . ' t E Wo, I - '-· 

., !zi:lh.(x,t.),. (x,t) E a;,11 (t"), p= l •.... ,P,. .. ) 
zl 1lA'(x.t)= :zl!)(x,t;t11 ), k=I,} P 

' (x, t) E G1i(t")\ u a;h(t") 
7UIY( ) k >_ 2 . P'=I - X, t , _ 

for (x,t) E G1z(n, k =I, ... ,K, t 11 EI/Jo, i = 1,2; 
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zUl(x,t) =z(ilf(x,t), (x,t) E Gh(t"), tn E illo, i = 1,2. 

Here 

P(x, t; t) = ll(6.3.n(x, t; t"), (x, t) E Sh(t''), 

,/,(!)( . ") - Q ,1,(2)( . t'') _ ,/,(2) ( . 11 (I) ( )) 
'I' x,t,t = , 'I' x,t, - 'l'(S.}) x,t,t ,z(S.4) · , 

!\Iii ( (i)f ( )) - !\ (i}f ( ) f(i) ( ) (8.4) Zp X, l = (3.2)Zp X, l - . X, l , (x, t) E G~h' 

·(II( ) _ '( ) f(2)( ) _ ·(2) ( . 7 (!) ( )) .f x,t -f x,t, x,t -./(S.)) x,t,-(8.4) · . 

We rewrite the difference scheme (8.4), (6.2) in the operator form 

(8.4b) 

where 

(I) ( ) _ '( ) ·(2) ( ) _ (2) ( . (I) ( ) ) f x, t -.I x, t , .f x, t -.f(8.3) x, t,z, 8.4) · , 

,/,(!)( . n) - Q ,1,(2)( . .n) _ .1,(2) ( . t" (I) ( )) 
'I' x,t,t = , 'I' x,t,1 - '1'(8.31 x,t, ,z(S.4) · . 

Following the arguments given in [5, 6, 10] the following theorem can be derived. 

Theorem 8.1. Let the boundary value problem (2.1) and its solution satisf.v the 
assumptions l!f Theorem 7. I. Then, under condition (5.6), the solutions of the di.f~ 
ference schemes (8.3), (4.1) and(8.4), (4.1) converge, as N,No---> oo, to the solution 
c!f' the boundary value problem e-un(f'ormly (the .solutions of schemes (8.3 ), (3.1) and 
(8.4 ), (3.1) converge for a fixed value of the parameter e). For the solutions of the 
difference schemes on the mesh ( 4.1) the estimate (7 .6) holds. 
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8.2. The D(ff'erence Schemes of Third-Order Accuracy in r 

8.2.1. We approximate the boundary value problem by the alternating scheme 
with one processor 

Here 

A(i) (.,.(ilf(x t)) - 0 ( t) E Gk (t11 ) (8.5) ~ , - , x, h ' (8.5) 

zUlf(x,t) = {z(i~bt;tn), k = 1, }, (x,t) E SZ(tn) 
z(1lT(x, t), k ~ 2 

for (x,t) E G~(t"). k = 1,. .. ,K, t11 E wo, i = 1,2,3; 

. 
1 

{ z(ilf (x, t), (x, t) E G~h(f ), } 

z( 1lx(x,t)= z''1(x,t;t"), k=l,}, _ _ 
k 1 (x, t) E Gh(t") \ G~ (t'') 

z''lT(x, t), k;::: 2 

for (x,t) E Gh(t11 ), k = 1 ... ,K, t11 E O.Jo, i = 1, 2, 3; 

zUl(x,t)=zUl~(x,t), (x,t)EGh(t), fEwo, i=l,2,3. 

_,(i)( ·t'') _ -(i) ( . /1 ,/,i( )) ~ x, t, - v(S.4J x, t, t , 'I' · , (x,t) E Gh(t"), i = 1,2,3: 

,/,(s) ( · ") - ,/,(s) ( t· t11 ) - I 2 'I' x,t,t -'1'(8.41 x .. , s-,, 

A(sJ (z(sJf (x t)) = A (s) (.,.(s)t(x t)) s = 1 ? 
(8.5) ' (8.4) ~ ' ' '-, 

{ ( ")' ' ")' ) p(x, t) C11 r ,);2 u(x, O) + C12r- f0 u(x, 0) , 

= f(x, t) + p(x, t) ( C21 r g:2 u(x, 0) + C22r2 ~ u(x, 0)), 

p(x,t)(C31rc521z(2l(x,t) + C32r2c531z(ll(x,t)), 

t = r, } 

t = 2r, ' 

t ~ 3r 
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8.2.2. In the case of P > I processors we use the scheme 

Here 

Aul (Yl~( l) - 0 
(S.S) -p X, t - , 

{
;;lil(xt·t11 ) k-1} 

~p (X, f) - (')A I 1 
Ji)~- - .;. _,'' .' - 1 

z'T(x,t), k?:.2 
(x,t) ES;1i(t11 ). p= I, ... ,P 

f- ( ) G-k ( 11 ) k - l K 11 - ' • - I .., 3· or x, t E ph t , - , ... , , t E wo, z - , ~, , 

for(x,t)EG1i(t11 ), k=l, ... ,K, t11 Ecvo, i=l,2,3; 

-li 1( )-.,,111~( ) ( ) G- (") 11 - ._I? 1 _ x.t -- x,t, x,t E ;,t. t E<oo, 1- ,-,-· 

;;(i) ( . 11) _ -,(i) ( . 11 ,/,i(·)) - x, t, t - r (8.4 I x, t, t 1 'f' . 

,/,Ii) ( ") .1,(i) ( II) /,i ( /1 VI ( ) 0 . ·i 
'f' x, t; t = 'f' (8.51 x. t; t = tr (S.SJ x, t; t , z(S.riJ · , < J < 1. , 

f ·(i) ( ) - 1·(i) ( . _Ul ( ) 0 . ·) . x, t - . (8.5) x, t, ~(8.6) . • < J < l . 

(8.6) 

Theorem 8.2. Let the boundary value problem (2.1) and its solution satisf)• the 

as.1·11111ptio11s o/ Theorem 7.2. Then, under condition (5.6), the solutions o/ the dif~ 
ference schemes (8. 5). ( 4.1) and ( 8.6 ), ( 4. I) com•er[;r!, as N. N0 ___, oo. to the solution 

o{tlze houndary valw' proh!em r.-un(fimnly (the solutions o(dif/i'rence schemes (8.5), 

(3.1) and (8.6 ), (3.1) converge for a.fixed value o/ the parameter i;). For the solutions 
ol the difference schemes the estimate (7.9) holds. 

The proofofTheorems 8.1, 8.2 can be done by using the technique from [5, 6, 10]. 

In a similar way one can construct parallel schemes with an arbitrary high order 
of time-accuracy t(N- 1 In N + r1). I > 3. 
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Conclusion 

In order to efficiently solve a singularly perturbed parabolic PDE by an 
c:-uniform discretisation procedure, I st order accurate in space and high-order in 
time, we have studied a defect correction procedure. To possibly reduce the 
computation time, we have splitted the procedure in P independent processes, 
preserving e-uniform convergence. The requirements are precisely described 
under which the splitting does not affect the accuracy of the method. Note that 
such a technique to construct high-order time-accurate parallel methods can be 
naturally extended to multidimensional convection-dominated problems without 
affecting the accuracy. 

Appendix: Estimates of the Solution and its Derivatives 

Here we rely on the a-priori estimates for the solution of problem (2.1) and its 
derivatives as derived for elliptic and parabolic equations in [9]. 

We denote by H(,l ( G) = H>-'1 2( G) the Holder space, where r:J. is an arbitrary 
positive number [15]. We suppose that the functions f(x, t) and r.p(x, t) satisfy 
compatibility conditions at the corner points so that the solution of the boundary 
value problem is smooth for every fixed value of the parameter e. 

For simplicity, the following conditions are assumed to hold at the corner points 
So nsL 

(Jk [Jko 
fJxk q;(x, t) = fJtko q;(x, t) = 0, k + 2k0 :::; [r:J.] + 2n, (9 .1) 

0k+ko 
'" k '.) k f(x. t) = 0, k + 2k0 :::; [cx] + 2n - 2, 
UX ({II 

where [cx] is the integer part of a number cx, cx > 0, n ;::: 0 is an integer number. We 
also suppose that [e>:] + 2n ;::: 4. 

Using interior a-priori estimates and estimates up to the boundary for the regular 
function ii(~, 17), see [15], where ii(~, 17) = u(x((), t), ~ = x/c,, 1J = t/c,, we obtain 

I 
iJk I ko I __ ,-k--k11 

,,,-----k .. , u(x, t) :::; Mc. , (x, t) E G, 
ux dt"" 

k + 2ko :::; 2n + 4, n ;::: 0. (9.2) 

This estimate holds, for example, for 

u E H(2nt4Hl(G), v > 0, (9.3) 

where vis some small number. For example, (9.3) is guaranteed for the solution of 
problem (2.1) if a, h, c, p, f E H(Hln 2l(G), cp E H(~+ 211 l(G), rx > 4, n ~ 0 and 

condition (9.1) is fulfilled. 
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In fact we need a more accurate estimate than (9.2). Therefore, we decompose the 
solution of problem (2.1) into a regular component U(x, t) and a singular com
ponent W(x, t) 

u(x, t) = U(x, t) + W(x, t), (x, t) E G, (9.4) 

where W(x, t) represents the regular boundary layer. The function U(x, t) is the 
smooth solution of (2. la) satisfying condition (2.1 b) on S\S{s. For example, 
under suitable assumptions for the data of the problem, we can consider the 
solution of the Dirichlet boundary value problem for (2.1 a) smoothly extended 
to the domain G* (G* is a sufficiently large neighbourhood of G on the left 
of the set S{s). On the domain G the coefficients and the initial value of the 
extended problem are the same as for (2.1 ). Then the function U(x, t) is 
the restriction (on G) of the solution to the extended problem, and 
U E H(4 +2n+»l ( G), v > 0. The function W(x, t) is the solution of Dirichlet's 
problem for the parabolic equation 

L(2 IJ W(x, t) = 0, (x, t) E G, W(x, t) = u(x, t) - U(x, t), (x, t) ES. 

If (9.3) is true then U, WE H(4+211+"l(G). 

We suppose that a, b, c,p,f E H( 2+H4nl(G), cp E H<2+H411 l(G), oc > 4, n ::'.:: 0. Now, 
for the functions U(x, t) and W(x, t) we derive the estimates 

--U(x t) < M[l + e2+n-k-ko] I (f+ko I 
oxk()tko ' - ' 

I ()k+ko I --W(x t) < M[l + e2+n-k-k"]e-k exp(-m c:- 1x) 
oxk()1ko ' - (9.6) , 

(x, t) E G, k + 2ko s 2n + 4, 

(9.5) 

(9.6) 

where m(9.6J is an arbitrary number from the interval (0, m 0 ), mo = 
minc[a- 1 (x, t)b(x, t)]. The estimates (9.5) and (9.6) hold, for example, when a, b, c, 
p, f E H(2+H411 i(G), cp E H(2+H4nl(G) and 

U, WE H(4+2n+i·J(G), v > 0. (9.7) 

The inclusions (9.7) are guaranteed ifa, b, c, p,f E H(>+ln-2l(G), cp E H(>+211 l(G), 
oc > 4, n ::'.:: 0 and condition (9.3) is fulfilled. We summarize these results in the 
following theorem. 

Theorem 9.1. Assume in (2.1) that a, b, c, p, f E H 2+H411 (G), cp E H(2+H411 l(G), 
oc > 4, n ::'.:: 0 and let condition (9.3) be .fi1ljilled. Then, for the solution u(x, t) of 
problem (2.1 ), and.for its components in representation (9.4 ), it follows that u, U, 
WE H(4+ 211 l(G) and that the estimates (9.2), (9.5), (9.6) hold. 
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