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Abstract 

We are interested in estimating the intensity parameter of a Boolean model of discs (the 

bombing model) from a single realization. To do so, we derive the conditional distribution 

of the points (germs) of the underlying Poisson process. We demonstrate how to apply 

coupling from the past to generate samples from this distribution, and use the samples 

thus obtained to approximate the maximum likelihood estimator of the intensity. We 

discuss and compare two methods: one based on a Monte Carlo approximation of the 

likelihood function, the other a stochastic version of the EM algorithm. 
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I. Introduction 

Many images found in microscopy, materials science and biology can be described by 
means of random sets. Perhaps the best known model is the Boolean model (Matheron (1975)) 
formalizing a configuration of independent, randomly placed particles. A Boolean model is 
formed by placing random closed sets at the points of a Poisson process and taking the union 
of these sets. The points of the Poisson process are sometimes called the genns, the associated 
random sets the grains or particles. In spite of the strong independence assumptions, inference 
for Boolean models is far from trivial (Molchanov (1997)). The difficulty is that as we observe 
the union of the grains, certain grains may be completely covered by the others. In this paper 
a method is presented to obtain samples from a Boolean model conditioned on certain events. 
In particular, such an event might be coverage of a given set. We apply our method to estimate 
the intensity of the Poisson process underlying a Boolean model of balls. 

Molchanov ( 1997) distinguishes between two types of parameters of a Boolean model: 
aggregate (or macroscopic) and individual (or microscopic). Typical examples of aggregate 
parameters are the area fraction and the set-covariance. They can easily be estimated by their 
empirical counterparts. The resulting estimators are unbiased and expressions for the variance 
can be obtained from Robbins' theorem (cf. Stoyan et al. (1995)). Under mild ergodicity 
assumptions they are strongly consistent (Molchanov (1997)) as the observation window ex­
pands to the entire plane. Aggregate functionals such as the contact distribution and pair 
correlation function are of interest when fitting the Boolean model to data. Usually, estimation 
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is hampered by edge effects, but minus sampling ideas (Ripley (1988), Stoyan et al. (1995)) are 
generally applicable as are Horvitz-Thompson style estimators including the Kaplan-Meier 
(Baddeley and Gill (1997)) and Hanisch estimators (Hanisch (1984)). Unbiasedness follows 
from the Campbell-Mecke theorem (Stoyan et al. (1995)) and asymptotic results are available 
(Molchanov (1997)). 

Individual parameters, including the intensity of the germ process, are much harder to 
estimate. Minimum contrast methods (Dupac ( 1980), Serra ( 1982)) for the intensity are based on 
minimizing the distance between an estimated aggregate parameter (e.g. the contact distribution) 
and an approximation expressed in terms of the intensity. Some asymptotic results are available, 
but the expressions for the asymptotic variance are too complicated to be useful in practice. An 
alternative is the method of moments based on coverage fraction, mean area, boundary length 
and Euler-Poincare characteristic. This method is computationally easy but leads to biased 
estimators (Weil (1988)). In the tangent point approach, the Euler-Poincare characteristic 
is replaced by the specific connectivity number resulting in easier asymptotics (Molchanov 
and Stoyan (1994)). Other methods are based on the fully exposed balls only (Ayala et al. 
( 1990) ). Further details and some other special methods such as Schmitt's (1991) can be found 
in Molchanov ( 1997) and the references therein. 

In this paper we shall take a likelihood based approach using Monte Carlo methods to perform 
the necessary computations. To do so, we need to sample from the conditional distribution of 
a Boolean model given an observation of the union of its particles. In the next section we show 
that this distribution is straightforward if the grains are balls with random radius (or indeed 
many other shapes, see Section 6). Unfortunately, due to an intractable normalizing constant, 
direct sampling usually is not possible. In Section 3 we use coupling from the past (CFfP) 
(Propp and Wilson (1996)) to obtain the desired samples and we discuss how our sampling 
method is related to the work of others, in particular Kendall and Mi.;ller (2000). 

Section 4 is devoted to two approaches to maximum likelihood estimation through simu­
lation. The first method is based on a Monte Carlo approximation of the likelihood function 
(Geyer (1999)). The other approach is a stochastic version of the expectation maximization 
(EM) algorithm (Dempster et al. (1977), Celeux and Diebolt (1985)). At each E-step the 
conditional expectation of the likelihood is replaced by a simulation average. This approximate 
expectation is optimized in the M-step to obtain a new parameter value. Under certain conditions 
an ergodic Markov chain on the parameter space is obtained. Coupling from the past can again 
be applied to obtain exact samples from the stationary distribution of the stochastic EM chain. 

In Section 5 we present the results of a modest simulation experiment which we conducted 
to compare the two methods. Section 6 briefly discusses some generalizations to random set 
models with stochastic primary grains as well as inter-particle interactions. 

2. A conditional Boolean model 

Suppose a realization of a Boolean model is observed and we want to estimate the intensity 
of the underlying point process of germs. Direct maximum likelihood estimation seems 
impossible because the conditional distribution of the germs given the observed union of 
particles involves an intractable normalizing constant depending on the intensity parameter of 
interest ( cf. Lemma l ). However, if it were possible to sample from this conditional distribution, 
Monte Carlo based maximum likelihood estimation would be an option. 

In this paper, we focus our attention on the case where the particles are (random) balls. 
Then the location of a germ is identified upon observation of any part of the boundary of its 
associated ball. The remaining, not directly identifiable germs tum out to be distributed as 



Exact sampling from conditional Boolean models SOSA• 341 

a Poisson process conditioned to satisfy a coverage condition. The remainder of this section 
makes this claim more precise. We start with a formal definition of the Boolean model of balls. 

Definition 1. Let X be a stationary Poisson process with intensity A. > o on ]Rd, and B = 
B(O, 1) the d-dimensional closed unit ball centred at the origin. Then, writing A E9 B = 
{a+ b: a EA, b E B} for the Minkowski addition of A and B, 

:B (X) = LJ (x E9 r B) 

xeX 

is a Boolean model of balls with radius r > O on ]Rd. 

For d = 2, the process of Definition 1 is sometimes referred to as the bombing model 
(Kolmogorov (1937), Matern (1960)). The underlying points X are called the germs, the set 
B is the primary grain. More general Boolean models are obtained by letting the genns be 
scattered according to a non-stationary Poisson process or by allowing the grains to be arbitrary 
random closed sets (Matheron (1975)). We will return to this briefly in Section 6. 

The goal of this paper is to estimate the intensity A. based on an observation of the intersection 
of 93(X) n W for some compact sampling window W. By the local knowledge principle 1Serra 
(1982)) and the symmetry of B, 

93(X n (WEB r B)) n w = :B(X) n w. 

In other words, the data Y = :B (X) n W depend on X only through X n ( W EB r B). 
Since the primary grains are balls, the position of a germ is identified whenever a part of its 

associated grain's boundary is exposed. Hence, the conditional distribution of X n (W E9 r B) 
can be decomposed into an 'exposed boundary' part xb and a stochastic 'interior' part xi of 
germs that cannot be uniquely identified. Of course, for given Y the conditional distribution of 
the exposed points is degenerate at a configuration x~. To derive the conditional distribution 
of the interior germs, set 

e = y \ :B(x~). 
iJ = {y E w E9 r B : (y EB r B) n w £ Y}. 

( l) 

(2) 

Clearly, e and 9) depend on Y, but we suppress this dependence on Y in our notation. 

Lemma 1. Let X be a stationary Poisson process on JRd with intensity A. > 0 and :B(X) 
be the associated Boolean model of balls with fixed radius r > 0 as in Definition l · Then, 
conditionally on Y = 93(X) n W for some compact window W £ IRd, the interior genn proce~s 
xi is distributed as a Poisson process on 9) with intensity A. conditional on the event that e IS 

covered by :B(Xi). 

We write n-.,.
1 
y for this conditional distribution of Xi given Y. 

b . 

Proof Any configuration y such ~at :B(y) n W = ~hast~ be o: the form Y = x. U X1 

with xi a subset of 9) such that :B (x1) 2 e. Moreover, its density (with respect to a umt rate 

Poisson process on W E9 r B) equals 

e(l-A.)IWE!lrBI A.n(xi) A.n(xbl. 

Hence, the conditional density of the interior points is proportional to 

A.n(xi)l{xi £;; 9J}l{:B(xi) 2 C:}. 
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Consequently. the interior genns constitute a Poisson process on 9J conditional on the event 
{93(Xi) 2 e). 

The probability of the event { 93 (Xi) 2 e} is not easy to compute. Hall ( 1988) gives a lower 
bound for the probability of coverage of the unit square by a two-dimensional Boolean model 
with intensity). of discs of radius r (A. :;:: 1, 0 < r ~ ! ): 

I - 3 min(l, (I + ;r r2 ).2 ) exp{-rrr2A.}). 

Since a Poisson process of intensity K > A. can be written as the independent superposition 
of Poisson processes with intensity ). and K - /.., it follows that the probability of a Boolean 
model with intensity). covering e is strictly increasing in/... Moreover, by Hall's inequality 
this probability actually increases to one. Hence, for /.. large enough, it is feasible to obtain 
samples from :rr-.ty by rejection sampling. For other values of/.. this approach will be too slow. 
In the next section, we suggest an alternative using coupling from the past (Propp and Wilson 
(1996)). 

3. Coupling from the past for the conditional Boolean model 

Recall that the distribution of a homogeneous Poisson point process on a compact set arises 
as the equilibrium of a spatial birth-and-death process (Feller (1968), Preston (1977)). Starting 
from any initial configuration, each point is deleted after an exponential lifetime of rate 1. 
New, uniformly distributed points are added at a rate that is equal to the intensity of the target 
Poisson process. Lantuejoul ( 1997) shows that a similar method can be used to obtain the law 
of a Poisson process conditioned on an event 8 of positive probability. Informally, if whenever 
a point is added or deleted according to the scheme described above we make sure never to 
enforce a transition violating 8. the stationary distribution of the resulting process corresponds 
to the conditional version of the Poisson process. 

Kendall and M111ller (2000) show how to apply coupling from the past to Lantuejoul 's chains 
to obtain exact samples from their stationary distribution. However, their method is restricted 
to events 8 such that if a configuration x satisfies 8 then x \ {x} also satisfies 8 for all x E x. 
Coverage of a set is not such an event. Kendall and ThOnnes ( 1999) do have another CFTP-based 
algorithm to tack.le the conditioning event that a finite set of points be covered. Unfortunately, 
this method does not seem to extend to our situation: coverage of a non-countable set. We 
present a CFTP-based method which is more general than the algorithm of Kendall and Thonnes 
and in a sense mirrors the algorithm of Kendall and M!?lller. It will work for events 8 such that, 
if a configuration x satisfies 8, then, for any x, x U {x} also satisfies 8. Many of the ideas 
of Kendall and M111ller (2000) and Kendall and ThOnnes (1999) play a role in our construction 
also. See Thonnes (2000) for a comparison between the above-mentioned methods. 

Exact simulation. as opposed to approximate sampling by running a Markov chain for a long 
time ( cf. Gilks et al. ( 1996)), was introduced by Propp and Wilson ( 1996). Let us denote by 
Xse[-r.01(x) a Markov chain Xs for sin the time-interval [-T, OJ, initiated at X-r = x. Now, 
to briefly explain the basic idea, imagine that coupled processes Xse[-T,OJ (x) are run in parallel, 
one for every possible initial state x. Now suppose that for some T > O the influence of the 
initial state wears off before time 0. That is, there is a time s E [ -T, O] such that X s O = x for 
some configuration i. Suppose also that the coupling ensures that all paths remain identical 
from this times up to time 0. Then the common path on [s, O] can be seen as the last part of a 
process started at time -T in an initial state selected according to the stationary distribution. 
Hence, X o is an exact sample from the stationary distribution. It is very convenient if the state 
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space admi~s a part~al ordering with minimal and maximal elements and if the sampling process 
respects this ordenng. In that case only two coupled processes need be considered: a lower 
process starting in the minimal state and an upper process starting in the maximal state. 
~ our context: upon observation of Y = 93(X) n W, the state space of interior points 

consists o~ all fimte subsets of /D. The natural partial ordering is the inclusion ordering. but 
then there 1s no maximal state because D itself is infinite. To overcome this problem. we shall 
construct a birth-and-death process on a state space consisting of all subsets of a finite (but 
random) 'maximal' set. Note that this set must meet the coverage condition. This process also 
converges to n) .. IY but is amenable to coupling from the past. We will use a stochastic. varying 
'minimal' process. 

As noted in Section 2, for large intensity parameters rejection sampling can be used to obtain 
a realization of 11) .. 1 y. Using this observation, the first step of our algorithm is to generate a 
sample, say D = {z1, z2, ... , ZnL from nKIY for some K > A.. The pattern D will serve as 
maximal state. All configurations obtained when running the birth-and-death processes will 
be subsets of D. The second step is to thin D by independently retaining each point with 
probability ).. / K. 

The key result is the following. 

Proposition 1. Let Y be a realization of a Boolean model of balls of radius r observed in 
a compact window W, and define e as in (1 ). Let D have distribution rr" I y (£f. Lemma /), 
and suppose E(O) is an independent thinning of D with retention probability J../K. Then the 
conditional distribution of E(O) given that 93(£(0)) covers the set C is n,_IY· 

Proof Let X 1 , X 2 , ... be independent Poisson point processes on :D with intensity K > J... 
and, independently for each i = 1, 2, ... , let Y; be an independent thinning of X; with retention 
probability A./ K. Then Yi is a Poisson process with intensity A.. Define Z to be the first Y; that 
covers e. Then, clearly, Z is distributed according to rr,_1 y. Suppose that only those X; that 
cover e are considered, which form a sequence of independent point processes distributed 
according to n K 

1 
y. If we had thinned these and waited for the first thinning to cover C?. \.\ e 

would have found exactly the same Z. This proves the claim. 

Whereas the (random) maximal state D remains fixed throughout the algorithm. the minimal 
state varies in time. Conditionally on D = {z 1, ... , znl we define the minimal process E(tl 
(t :::: 0) as follows. The state space of EO consists of all subsets of D. The process £(0) is an 
independent thinning of D with retention probability A./ K as in Lemma I. The dynamics of the 
process are such that points are removed from E ( ·) after an exponentially distri_buted _'h~lding · 
time of rate 1. Whenever a point is removed, it is added again after an exponentially d1stnbuted 
holding time of rate Aj(K - )..). All holding times are independent of each other an.d all other 
random variables involved. Points z; E E(O) are treated as if they were added at time 0. and 

points Zi i E(O) are treated as if they were removed at time 0. 

Lemma 2. Conditionally on D, the spatial birth-and-death process E(t), r_ :::. 0. is ~1~ i~re­
ducible, homogeneous, positive recurrent Markov process. Moreover. E(t) is in equ1/ibrmm 

and time-reversible. 

In particular E(t) is distributed as E(O) for all t ~ 0. 

d. · all D {- - - } it has onlv a Proof As the EO process is defined con 1t1on Yon = .. 1. ~2· · · · • ~n: . . 
· · · 1 th ·,.; ates do not change m time. hence 

fimte number of pomts at any time. Clear y, e trans1uon ~ . . . , . 
E(·) is homogeneous. Since the state space is finite, explosion is prevented, implymg that the 
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Markov process is well-defined by the given rates. Moreover, any state x s;; D can be reached 
from any other state x' (say) by successively deleting the points in x' followed by addition of 
the points in x, and any state is revisited almost surely. Therefore, the birth-and-death process 
possesses a unique invariant probability distribution (see e.g. Chapter 7 in Parzen (1962)). 

Let us call this (conditional) equilibrium distribution µv. To determine it, consider the 
detailed balance equations 

A 
--µv(x) = µv(x U {z;}), 
K-A 

where:::.; ~ x s;; D. Now, since E(O) is obtained from D by independent thinning with retention 
probability A/K, µv(x) = P(E(O) = x ID) satisfies these equations. Hence E(t), t 2: 0 is 
time-reversible and in equilibrium. 

When designing a coupling from the past algorithm, it is helpful to consider a forward version 
first. Therefore, we will start by defining a spatial birth-and-death process Z(t), t 2: 0, in the 
spirit of Lantuejoul (1997). The state space of Z(·) consists of the subsets of D. Given an 
initial state Z (0), the only transitions are births and deaths. Whenever a point is added, say 
z E D, it might be removed again after an exponential 'holding time' of rate 1. However, z is 
actually removed only if it does not cause part of e to become uncovered, that is if 

B(z, r) n e s;; .!B(Z(t-) \ {z}) n e. (3) 

If z cannot be deleted, it is granted an additional exponential lifetime of rate 1 after which its 
removal is re-evaluated. Following the terminology of Kendall and Thonnes (1999) such points 
will be called perpetuated. Whenever a point is removed it is added again after an exponential 
holding time with rate )..j(K -A). All holding times are independent of each other and all other 
random variables. Points in Z (0) are treated as if they were added at time 0, the points of D 
that were not in Z(O) are removed at time 0. 

Proposition 2. Let Y be a realization of a Boolean model of balls of radius r observed in 
a compact window W and define e as in (I). Let D have distribution n I( I y ( cf Lemma I). 
Conditionally on D, the spatial birth-and-death process Z(t), t 2: 0, is homogeneous and has 
a single positive recurrent class consisting of those subsets z of D for which .!B(z) covers C. 
Furthermore, Z(t) tends in distribution to 7TJ..IY as t -7 oo. 

Proc~f. We work conditionally on D = {z1, z2, ... , Zn}. First note that almost surely 
.!B(Z(t)) will coverC forsomet 2: 0. The transition mechanism then ensures that .!B(Z(s)) 2 e 
for alls '.:::: t. Moreover, the class C of configurations z s;; D whose associated Boolean model 
covers <'? is irreducible, since any state z can be reached from any other state z' (say) by 
successively adding all points of D \ z', then deleting those of D \ z. Thus Z (.) is well-defined, 
with a unique invariant distribution concentrated one (Parzen (1962)). Since the state space 
is finite. not all stationary probabilities can be zero, hence they are all positive, and the class C 
is positive recurrent. 

Next, restrict the process Z (-) to C. Clearly, the birth rate of z O is identical to that of 
E < · l. and the death rate for both perpetuated and non-perpetuated points is 1, as it is for E (.), 
provided the coverage condition is not violated. Thus, the detailed balance conditions for E (.) 
and Z ( · l coincide on C. Consequently, the limit distribution of z (t) is that of E (.) restricted 
to C. By Lemmas l and 2 the result follows. 

w_e s~~ll now.de~cri~e ho~ to a.pply ~oupl~ng from the past to obtain a sample from nAIY· 
the 1.:ond1t1onal d1stnbution of mtenor pomts given a realization Y of our Boolean model in the 
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samp!in~ window."'· Fix a time _-T < 0. Let D(t) = D for all -T s t::: O. By Lemma 2, 
E(·) is time-reversible and hence it can easily be extended backwards from £(0) until time -T 
to serve as a stochastically varying minimal process. Next, introduce an upper process U-r (.) 
initialized in the maximum U -T (-T) = D and a lower process L_ r (.) starting in the current 
minimum E ( -T). The dynamics of these upper and lower processes are similar to those of 
Z ( ·), except for the fact that in order to ensure that the inclusion 

(4) 

is preserved for all t E [-T, O] we have to apply the 'cross-over' trick (Kendall (1997), 
Haggstrom and Nelander (1998)). The appropriate condition for deletion of Zi from the lower 
process at time t is 

B(z;,r) n e £ 93CU-rU-) \ {zd) n e, 
while removal of Z; from U-r u-) is enforced only if 

B(z;,r)ne £ 93(L-r(t-)\{z;})ne. 

(5) 

(6) 

To make sure that (4) is always respected, the times of the births, deaths and deaths after 
perpetuation must be coordinated. The births and deaths of L ( ·) and U ( ·) are governed by those 
of E(·). To regulate the deaths after perpetuation, we associate with every point z; ED a unit 
rate Poisson process S; on {t: z; ~ E(t)}. 

Summarizing, we propose the following algorithm. 

Algorithm 1. Generate a random sample D from rrKIY for some K > >.and delete each point 
independently with probability 1 - (A./K) to obtain £(0). Set T = 1 and write LT /2j for the 
integer part of T /2. 

• Extend E(·) backwards on [-T, -LT /2j) with birth rate A./(K - A.) and death rate l. 

• Extend independent unit rate Poisson processes S; backwards on (-T s t < LT /2j : 

Zi ~ E(t)}. 

• SetL-r(-T) = E(-T) andU-r(-T) =D. 

• At a birth transition E(t+) = E(t) U {z;}, add z; to L-rU) and U_r(t). 

• At a death transition E(t+) = E(t) \ {Zi} or a jump of S;: 

(i) delete (if present) Zi from L_r(t) provided that does not cause the Boolean model 
associated with U-r (t) to uncover part of e, that is, z; may be deleted only if (5) 

holds; 
(ii) delete (if present) z; from U_r(t) provided that does not cause the Boolean n~~el 

associated with L-r (t) to uncover part of e, that is, z; may be deleted only if (6) 

holds. 

• If L-r(O) = U-r(O) exit; otherwise double T and repeat. 

Algorithm I is designed in such a way that several inclusion relations hold (Kendall and 

MliSller (2000)). 

Lemma 3. The processes E(t), L-rU). U-rU) (t s 0) and D satisfy the following relations: 

(i) ('sandwiching') E(t) £ L-r(t) £ U-r(t) £ D,forall-T s t SO; 

(ii) ('funnelling') L-r(t) £ L-s(t) s; U-sU) £ U-r(t),forall -SS -T St SO; 

(iii) ('coalescing') if, for some s, L-r(s) = U-r(s), then L-rU) = U-r(t).forall t ~ s. 
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Proof By definition, E(-T) = L-r(-T) f U-r(-T) = D, hence the sandwiching 
property holds fort= -T. Also D contains all other sets. Since births in E(·) are mimicked 
in L-r(·) and U-r(·), the inclusion relationship is preserved under birth transitions. Next, 
consider a death at some time t E [-T, 0], say E(t+) = E(t) \ {zd or a jump at time t of Si. 
Suppose that E(t) f L-rU) f U-rCt). Since Bi is restricted to the set {t S 0: Zi ff. E(t)}, 
E(t+) is a subset of L_r(t+) and U-r(t+). Furthermore, if Zi dies in the upper process, 

B(zi. r) n C f 93(L-r(t) \ {zd) n C 

f 93CU-r (t) \ {zi}) n c 

and consequently z; also dies in the lower process. 
Turning to the funnelling property, we have to show that L-r (t) f L-s (t) and that U -s (t) f 

U-r(t). Now, by definition E(-S) = L_s(-S). Since the dynamics of Algorithm 1 preserve 
inclusion, it follows that L_r(-T) = E(-T) f L-s(-T) and, more generally, L-r(t) f 
L_s(t)foranyt ~ -T. Regardingtheupperprocess, U-r(-T) = D 2 U_s(-T). Applying 
once more the fact that the algorithm preserves the inclusion ordering yields U-r (t) 2 U-s (t) 

for any t ~ - T. 
Finally, suppose that the upper and lower processes meet at some time s S 0. Then, as they 

are coupled by the same realizations of the £(-) and the Bi, they proceed as one. 

We are now ready to state the main result of this section. 

Theorem 1. Let Y be a realization of a Boolean model of balls of radius r with intensity A., 
obsen1ed in a compact window W f !Rd, and define C as in (I). Then Algorithm I almost surely 
tenninates infinite time. Its output is distributed according to n:'-IY, the conditional distribution 
of interior points given Y ( cf Lemma I). 

Proof. Note that P(E(O) =DID)= (A./K)n(D), where n(D) is the number of points in D. 
Hence 

P(E(O) = D) = E[ (~ y(Dl] > 0, 

so that the event {£(0) = D} has strictly positive probability. By Lemma 2, E(-T) = D will 
occur for some T almost surely. Hence, by Lemma 3, the algorithm terminates almost surely 
in finite time. 

To show that the output has the required distribution, consider a process Z-r ( ·) initialized 
at any A such that E ( -T) f A f D which evolves similar to the upper and lower processes, 
except that a death at time t is implemented only if it respects the coverage condition (3). 
Thus Z-r ( ·) has the same stochastic properties as the process Z (.) considered in the beginning 
of this section, and in particular has stationary distribution n:,_1y (cf. Lemma 2). Moreover, as 
Algorithm 1 preserves the inclusion ordering, L-r(t) f Z-r(t) f U-rU) forall-T s t s 0. 
The claim now follows from Kendall and M!llller (2000, Theorem 3.1 ). 

We conclude this section with a practical observation. Generally, Algorithm I will take a 
relatively long time to terminate when sampling from n:,_1y for small values of A.. We then expect 
that a K for which we can reasonably perform rejection sampling to obtain D will be much 
bigger than A.. In our experience, it is efficient to choose a Kt which is not too much smaller 
than K and sample from JCK1 JY. This sample can be used as a dominating pattern to sample from 
7rK2JY where we choose K2 not too much smaller than K1. In this manner we gradually descend 
until we reach A.. 
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A single re~ization y of a ~oolean model Y of balls with radius r > o (Definition I) has 
been ob~erved m a compact wmdow W s; Rd, and the aim is to estimate the intensity A. of the 
underlymg germ process ~. Let Po~ be the probability measure corresponding to the relevant 
part of the germ process, 1.e. the Poisson process of intensity ). on the set w = w E& r B. Let 
f>. = dPo),./dP01. We have 

JA.(x) = eO-J..llWIA.n(x)_ 

By Theorem 1 of van Lieshout ( 1997), the density of our Boolean model with intensity ,;. with 
respect to a Boolean model with intensity K (K :/= 0) is 

_ [()..)n(X) I ] PK(y; A.)= e<K-J.)IWIEK --; 33(X) n w = y 

- ().)n(x.~) f ().)n(x) = e(K-1.llWI _ _ d;rr ( ) 
K K KIY x . 

It can be proved that there exists a maximum likelihood estimator of)., but proof ofits uniqueness 
has eluded us. Assuming there is a unique MLE, computing it does not seem possible because 
the integral in the above expression includes an intractable normalizing constant. The idea 
behind Monte Carlo maximum likelihood (Thompson and Guo ( 1991 ), Geyer ( 1994 ). ( 1999)) 
is to approximate (7) by 

(8) 

where X1, ... , Xn is an independent sample from ;rrKl.v for some choice of K > 0. We can 
now use (8) to approximate the score function, the maximum likelihood estimator, the Fisher 
information and anything else we might be interested in. 

Let us denote the true MLE by 5.., its Monte Carlo approximation by 5.. 11 and the Monte 
Carlo approximation to the score function by s11 • Provided the likelihood (7) is concave-as it 
appears to be for the example in Section 5: cf. Figure 2-the Monte Carlo maximum likelihood 
estimator is consistent. Moreover, ,Jns11 (5..) converges in distribution to a normal distribution 
with mean zero and a certain variance, say, a 2 . By Geyer ( 1994, Theorem 7) it follows that 

where -+:DK denotes convergence in distribution with respect to the parameter 1<:. Now < 8 l is 
a good approximation to (7) only if A. is not too far from K. Algorithm l allows us to sample 
from rrKIY for any K we like. In practice, we are mostly interested in PK (y: ).) in the vicinity of 

5... Therefore, we will use a pilot estimate of). as our choice for K. 

4.2. Stochastic EM algorithm 
It is useful to think of our estimation problem as a missing data problem. The complete data 

is the germ process X on Wand the observed data is Y = Y (X) = 33(X) n W. Again, sup~ose 
that we observe a single realization Y = y. The EM algorithm (Dempster et al. ( 1977)) is an 
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iterative technique to approximately solve likelihood equations for missing data problems. In 
our case the iteration boils down to 

[
n(X) I J n(x~) + J n(x) dn),(k)[y(x) 

A.(k + 1) = Ew> --- .:B(X) n W = y = _ . 
IWI IWJ 

(9) 

Dempster et al. (1977, p. 7) show that at each step the likelihood under the parameter A.(k) of 
the observed image y increases. Hence, the EM algorithm converges to a (local) maximum of 
the likelihood function. 

Unfortunately, it does not seem possible to compute (9) explicitly. However, samples from 
the conditional distribution :lrJ.(kJ IY of interior points can be obtained by the method of Section 3. 
If at the kth iteration step m samples from 7l\(k)[y are available, their average cardinality can be 
used instead of J n(x) dn\(k)[y(x). This algorithm is known as the Monte Carlo EM (Tanner 
and Wei (1990)) or, if m = 1, the stochastic EM algorithm (StEM) (Celeux andDiebolt (1985)). 
Some large-sample results are available (e.g. Nielsen (2000)) but as we have only one image to 
work with, those asymptotics do not apply to our situation. 

From now on, we specialize to the case m = I. If at each iteration step we use a new sample 
which is independent of the previous samples, then the iterates of the StEM algorithm form 
a Markov chain on the parameter space. In principle, this chain must be run until it reaches 
equilibrium. Here, we propose a modification based on coupling from the past to obtain samples 
that are guaranteed to be from the equilibrium distribution in a finite number of steps. 

As we pointed out earlier, it is useful if the state space of the Markov chain is partly 
ordered with a minimal and a maximal element. Since our parameter space is the positive 
reals without such elements, we must restrict it. An appropriate minimal element is 2:. = 
(IC'l/(rrr2) + n(x~))/IWI because any realization from the conditional Boolean model needs 
at least IC'J/(rrr2) interior points to cover e. Unfortunately, we must choose a maximal element 
in an ad hoe way. We choose X so big that we are confident that the true parameter value is 
less. For technical reasons we choose it such that i I WI is an integer. From now on we consider 
[!:., i] to be our parameter space. Finally, we note that an update of the EM algorithm with the 
restricted state space is given by the minimum of (9) and X. This also holds for its stochastic 
version. 

The stochastic EM algorithm is a Markov chain on the finite state space S = {!:., 2:. + 1/1 WJ, 
... , I}. Now, if :lrJ.[y(n(X) = n) > 0 for some A., the same holds for any)... > 0. Hence, the 
StEM algorithm has a single positive recurrent, aperiodic class. 

Our coupling from the past scheme is as follows. Fix an integer T > 0. Using the sampling 
scheme described at the end of Section 3, with the K; separated by l/JWJ, we can obtain 
nested samples X,.(t) from Jl'J.[y for all A. in the state space S. Now set U-r(-T) = 5.:, 
L-r(-T) = 2:. and fort = -T + 1, -T + 2, ... , 0 set U_r(t) = MCU-r(t - 1), t) and 
L-rU) = M(Lr(t - 1), t), where M(-) is the modified maximizer 

n(x~) + n(X,.(t)) _ 
M(A., t) = _ /\A.. 

JWJ 

Since for fixed t the XJ... (!) are nested, M (-)is an increasing function of A.. Hence, the algorithm 
is monotone and it suffices to check if U-r(O) = L-r(O). If this is indeed so, then stop. If not, 
repeat the above procedure starting at time - 2T, re-using the previous realizations from time 
-T to 0. To see that the algorithm terminates almost surely, note that with positive probability 
Xt,_(-T + 1) = Xx(-T + 1), in which case U-rO and L-r(·) meet after just one step. 
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FIGURE I: Coverage function of a realization of a Poisson process with intensity 75.0 marked bv discs of 
radius 0.1 and clipped in the unit square. -

5. An example 

. We now il.lustrate the Monte Carlo maximum likelihood and stochastic EM approaches. 
Figure 1 depicts the coverage function of a realization of a Poisson process with intensity 
A. = 75.0 marked by discs of radius r = 0.1 and clipped within the unit square W = [O. If 
The complete data maximum likelihood estimator is ). = 70.14. 

From the picture, we can easily extract the 56 boundary points. For computational conve­
nience we shall use W = [ -r, 1 + r ]2 instead of W E9 r B. 

The Monte Carlo maximum likelihood approach needs a reference parameter K which is not 
too far from the maximum likelihood estimator we are trying to approximate. We performed 
ten steps of the stochastic EM algorithm initialized with !::, = 40.25 to obtain K = 68.06. To 
compute the Monte Carlo likelihood (8), I 00 independent samples from J1'6S.06!y were generated 
using the modified coupling from the past algorithm described at the end of Section 3 with step 
size 5 .0. To find the dominating pattern D, the first attempt was at intensity 100.0. Fifty rejection 
sampling steps were performed before increasing the intensity by 10/(1 + 2r)2• Usually. it was 
not necessary to increase the intensity more than once, if at all. The logarithm of the Monte 
Carlo likelihood we obtained is plotted in Figure 2 for J... E [50, 100]. Optimizing over A yields 
i100 = 68.70. The Monte Carlo variance is 0.23; cf. Section 4. For comparison, the estimated 

inverse Fisher information at X is 64.60. 
Turning to the perfect stochastic EM algorithm, Figure 3 depicts the upper and lower 

processes of one run. In this case, the two paths coalesce after taking T = 2, 4 and 8. As 
a crude indication of the variability, the sample path over a further 100 forward steps is shown 
as well. We repeated the process of Figure 3 twenty-five times. The sample mean and variance 
of the 25 independent samples at time 0 were 69.14 and 19.01, respectively. The variance can 
be reduced by averaging over a few further steps of the EM algorithm. If I 0 such steps are 
used, the sample mean and variance were 68.09 and 2.82. Using 25 steps after time 0 yielded 

68.11 and 1.40. 
Comparing the two approaches, Monte Carlo maximum likelihood estimation is overwhelm-

ingly more fast than the perfect stochastic EM algorithm. The latter is particularly slow, because 
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FIGURE 2: Estimated log likelihood with respect to the Boolean model with intensity K = 68.06 as a 
function of A for the data in Figure 1. 
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FIGURE 3: The upper and lower processes in the exact stochastic EM algorithm. 

each run requires one or more samples from 7!b_fy· The second major advantage of the Monte 
Carlo approach is that it produces an estimate of the full likelihood. This immediate! y translates 
to estimates of moments of functionals, probabilities of certain events, likelihood ratio statistics, 
the Fisher information as well as the standard error with respect to the true maximum likelihood 
estimator. 

6. Discussion and loose ends 

In the Boolean model of discs, no interaction is present between the underlying germs. This 
assumption can be relaxed. For instance, by Thonnes (1998, Theorem 3.5), the conditional 
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distributi~n of~he in~erior p~ of a standard area-interaction process (Baddeley and van Lieshout 
(199:>)) given its u~10n set is that of a Poisson process. Hence, the theory of the present paper 
apphes. The same is true for any germ grain process whose density with respect to a unit rate 
Poisson process is of the form 

a(>-.. 8)>-.n(x) geUB(x) n W). 

where 8 is a parameter vector. 

Another generalization is to allow grains that have the property that the location of their 
centre is identified by any part of their boundary. Examples of such grains are ellipses or 
discs with random radii. The assumption ensures that the distribution of the boundary points is 
degenerate. If this distribution is not degenerate (for instance when the grains are unit squares) 
it appears to be very complicated. 

Finally, recall that the stochastic EM algorithm did not compare favourably to the Monte 
Carlo approach (cf. end of Section 5). In a recent paper, Delyon et al. ( 1999) overcame these 
problems by combining the EM algorithm with stochastic approximation (Penttinen (1984). 
Younes (1988), Moyeed and Baddeley (1991 )). Suppose we have observed a single realization 
Y = y. If the current approximation to EA.(k) [log fA. (X) I y] is denoted by Qk(A.). Del yon et al. 
generate a sample Xk+J from 7TA.(klly and set 

where { Yk} k~ I is a sequence of positive step sizes. The function Q k+ 1 (A.) is optimized over 
A > 0 to yield A(k + 1). In contrast to the stochastic EM algorithm. all previous samples 
contribute to Qk+ 1 (A). This results in a more efficient use of the simulations at the expense of 
losing the Markov property. The method does allow estimation of some functionals of interest. 
such as the Fisher information I(.~.) at~. Moreover, by Del yon et al. ( 1999. Theorem 4 ), under 
conditions on the speed of the discount factors Yk. 

where Xn is the mean intensity over the first n iterations and () 2 is the asymptotic variance of 
the mean score. Hence, the computational load of the stochastic approximation EM algorithm 
is comparable to that of the Monte Carlo maximum likelihood approach. However, because 
the latter method does not involve careful tuning of discount factors, we have preferred it over 
the stochastic approximation EM algorithm. 
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