
Parallel Processing Letters, Vol. 10, No. 4 (2000) 383-393 
© World Scientific Publishing Company 

CELLULAR GRAVITY 

FREDERIC GRUAU 

Laboratoire d'lnforrnatique, de Robotique et de Microelectronique de Montpellier, 161 rue Ada, 

34392 Montpellier, Prance 
E-mail: gruau@lirmm.fr 

JOHN TROMP 

CW!, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 
E-mail: tromp@cwi.nl 

Received November 1999 
Revised December 2000 
Accepted by Y. Robert 

ABSTRACT 

We consider the problem of establishing gravity in cellular automata. In particular, when 

cellular automata states can be partitioned into empty, particle, and wall types, with 

the latter enclosing rectangular areas, we desire rules that will make the particles fall 

down and pile up on the bottom of each such area. We desire the rules to be both simple 

and time-efficient. We propose a block rule, and prove that it piles up particles on a grid 

of height h in time at most 3 * h. 

Keywords: Cellular automata, gravity, piling, algorithm, time complexity. 

1 Motivation 

Our overall direction is to perform general purpose computation on a fine grained, 

massively parallel computer. The interconnection topology is a 2D grid (so as to 

be highly scalable) and the behavior of each Processing Element is simple enough 

to be modeled as a cell of a 2D Cellular Automaton (CA). Each cell can be empty, 

contain a particle, or represent a wall. The wall cells serve to divide th.e CA space 

into rectangular regions. 
The most basic operation. in this model is region division.. When a region divides, 

its rectangle is divided in two sub-rectangles, generally of approximately equal area. 

Particles in the original rectangle may choose to migrate to either sub-rectangle, or 

duplicate, one copy migrating to each sub-rectangle. 
Because division is basic and happens all the time, it must be implemented as 

fast as possible. For implementation, we can consider only one sub-rectangle, say 

the lower one if the division is vertical, and consider only the particles migrating 

*see 2nd author for address 
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Fig. 1: piling up beyond the height of a rectangle 

to it. We are left to solve the problem of quickly migrating particles contained in a 
rectangle of size h x w towards a smaller sub-rectangle of size h' x w. If we label 
empty by 0 and full by 1, we can apply an algorithm that sorts the O's and l's 
on a 2D grid, in a snakelike order; once sorted, all the l's (and therefore all the 
particles) are at the bottom. Leighton [l], in his seminal book, describes such an 
algorithm that needs 3h+ O(h) steps (assuming h = w). However, the algorithm 
is quite complex: it involves 8 phases and needs to compute {!h. We want to find 
simple CA rules so as to minimize the silicon area needed in each cell to process 
migration. 

If the number n of particles is exactly equal to the area h' x w of the sub-rectangle, 
then indeed, solving the migration problem is equivalent to sorting. However, if 

1. h'?:. w/../2 

2. n:::; h' x w/2../2 
then piling up the particles is sufficient to make them fit in the lower sub

rectangle. Recall that a piled particle needs support from the cell below it and the 
left and right neighbours of the latter, meaning none of these three cells can be 
empty. Figure 1 illustrates the exact maximum number of particles that can be 
piled depending on whether w < h' or not. 

If w > h the number of particle needed to exceed the rectangle is ! ( h + 1) ( h + 2) 
(b) if w:::; hit is w(h+ 1)-~w(w- l) = w(h- ~+~)The first condition says that 
the rectangle cannot be too narrow. In our computing model it's desirable to keep 
the rectangles. as square-like as possible, and we choose to maintain the relation 
w x ../2?:. h?:. w /../2. 

The second condition says that the density of particles must not exceed 1/2./2. 
This we also assume to be enforced. Thus the problem of migration is reduced to 
that of piling. 

2 A simple piling up cellular automaton 

In this section, we present a simple CA that solves the piling-up problem. We use 
a partitioned cellular automaton as introduced by Toffoli and Margolus [2]. This 
is merely syntactic sugar to describe an automaton which uses part of its state to 
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Fig. 2: The 2 x 2 block of the Margolos neighborhood. Consecutive steps alternate between the 
even grid (thick lines) and the odd grid (thin lines). Depending on the grid in use, the cell marked 
in (a) will have as neighborhood either an even-aligned block (b) or an odd-aligned block (c) 

keep track of block structure, in a more convenient form, by abstracting away from 
that state. Expanding our block rules to explicit transition rules for the individual 
automata is a straightforward but tedious exercise, which we omit. 

• The array of cells is partitioned into disjoint blocks of size 2 x 2 
• A block rule is given, that locally updates each block. Our piling-up rule is listed 

in Table 1. 
• The partition alternates between the even grid and the odd grid as shown in 

Figure 2. 

2.1 The rule 

Cells can be in one of three possible states: a cell can be empty, (' '), contain a 
particle ('•') or represent a wall ('W'). The wall is rectangular. 

DEFINITION 1. The rule DIAG.DOWN is such that in every 2 x 2 block of the 
current partition, we try diagonally pushing down particles in the upper half along 
the diagonals, or, failing that, pushing them down vertically. 

More precisely, if the block is I : I ~I and push(x,y) pushes a particle from x 

to y if y is empty and x is not; then the DIAG.DOWN algorithm is (push(a,d) 
11 push(b,c)); (push(a,c) 11 push(b,d)). 

The block rule is given explicitly below, by listing for each possible state of a 
block the corresponding new state. The full table consists of 16 entries for particles 
moving inside the rectangle, plus 24 entries for particles touching the wall. 
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EB-+ EE ta-+ rn HB-+ 51E trj-+ titj tl3-+ 8f3 
titj-+ tiEj Efj-+ 5E tHj-+ ~ ~-+ ~ ~-+ tIE 
t@-+ tiEj rn-+ rn 5Rj-+ 51E BE-+~ ~-+ ~ 
tffij-+ tIBJ rn-+ rn HEJ-+ ~ rn-+ ~ ~-+ ~ 
rn-+rn ~-+tB ~-+~ ~-+~ ~-+~ 
~-+BI; tffij-+~ ~-+~ ~-+~ ~-+~ 

rn-+~ ~-+~ ~-+~ tE-+tE eB-+~ 
~-+~ ~-+~ ~-+~ ~-+~ BH-+BH 

TABLE 1. The 40 entry of the rule DIAG_then.DOWN. 

The present rule has both horizontal symmetry and vertical empty+.+particle swap
ping symmetry, which reflects the equivalent alternative view of "piling down " 
holes from the top. 

In this way several entries such as 

t=Ej-+ffi' ErJ-+5E' (ffi-+5Ej, t=Bj-+~ 
coincide up to one of the these symmetries transformation. 
Similarly, entries with an upper (resp. lower) wall are equivalent to correspond

ing entries with empty upper half (resp. particles in lower half). 
For example 

B!j-+ B!j is deduced from 5fj-+ 5fj 
Finally, the left and right walls can be inferred by temporarily replacing the wall 
by a copy of the cell on opposite side, applying the rule, and finally restoring the 
wall. This is called the "mirror effect". In this way, 

ffi-+ 1.1 :I is deduced from tfj-+ 5:@ . 
It turns out, that all the entries involving walls can be deduced from the other 
entries. 
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For clarity and brevity, it will be convenient to use a compressed form of table 
in which each equivalence class is represented by a single entry. Table 2 show the 
compressed form (7 entries) of the rule DIAG...DOWN. 

1 EE~EE2 eE~E@a 5fj~5fj4 ffi~ti@ 

TABLE 2. Summarized form of the rule DIAG then DOWN. We show one entry 
per equivalence class 

3 Analysis of the rule 

In this section we analyse the behavior of the rule, and show that for the proof 
coming in the next section, we can simplify the problem by ignoring the side walls. 

9.1 Block Support 

We actually cannot achieve full support for each particle, since a cell shares a block 
with only one of the two cells diagonally below it. Instead we'll aim to achieve 
'block support', where particles end up supported by the cell below and the unique 
cell diagonally below it that it shares a block with. 

9.2 Isolated particles 

Let us first look at an isolated particle, far away from the wall. For the first step 
choose the even grid (solid line Figure 2). Whatever its initial position in the block, 
the rule will force the particle to be in the lower half of the block. Recall that the 
block partitioning alternates in time between the even grid and the odd grid. So 
at the next step we use the odd grid. The particle will find itself in the upper half, 

say the upper left corner of a block and the rule will move it to the lower right 
corner. At the next step, we are back to the even grid. The particle will again 
find itself in the upper left corner of a block, and the rule will again shift it in a 
diagonal-downward motion. Continuing this, alternating the two partitions, each 
isolated particle will move down on a diagonal, at a uniform rate. Which of the two 
possible directions it will follow is determined by its initial position. A cell ( x, y) 

has direction +1 (resp. -1) if x -y = 0 (mod 2) (resp. 1 (mod 2)). We assume 
a block partition in which particles in + 1 directed cells move towards the lower 
right, while those in -1 directed cells move towards the lower left. 

9.3 Ignoring the vertical walls 

What happens when an isolated particle hits the left or the right wall? The rule 
cannot move it further along the diagonal, therefore it moves the particle down 
vertically. Subsequently, the particle will resume its diagonal downward movement, 
but with a direction perpendicular to the direction it had before meeting the wall. 
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Everything happens as if the particle was bouncing elastically on the wall. 
To simplify the analysis, we are going to use a trick which allows us to ignore 

the left and the right wall. Consider our rectangula.r grid g of bounded height h and 
width w, with an initial configuration Co of particles. We denote by C~ a copy of 
Co. Put Co and Cb back to back to form a cylinder. When we partition the cylinder 
in 2 x 2 blocks, the border blocks with cells containing elements of both Co and 
Cb, will have horizontal symmetry. Because the DIAG..DOWN rule has horizontal 
symmetry, the Co and Cb regions will remain identical, and the border block will 
retain horizontal symmetry. Because of the way the rule entry involving the left 
and right wall are defined ("the mirror effect"), it is straightforward to see that the 
particles in the cylinder move exactly like the particle in Co. Thus we can study g 
as if it had no walls. 

9.4 Traffic Jams; extent and support 

Consider our isolated particle going towards the lower right comer. Before the rule 
application, the particle is always in the upper left corner of a block. As long as 
the lower right comer is empty the particle will be able to go downwards. Such a. 
particle is "synchronizetf' with the alternative CA partitions. Traffic-jams start to 
occur when the lower half of a block is occupied. If, at the initial step, the lower 
halves of all the blocks are empty, all the particles will start moving downwards. 
The traffic-jam will appear only at the bottom of the grid, and will accumulate 
upwards. 

Definition 1 We start the evolution of our CA at time 0, and let iteration i happen 
between times i - 1 and i. A particle in row y at time t is said to be in sync if y = t 
(mod 2}, and out of sync othen.oise. 

Definition 2 A particle is jammed in iteration t if! it is in sync at time t - 1 and 
out of sync at time t. 

Note that a particle that moves in iteration t is necessarily in sync at time t - 1 
and remains so at time t because of the downward move. It follows that a particle 
that is out of sync at time t is necessarily in sync at times t - 1 and t + 1. It turns 
out a jam implies the occurance of particles at particular points in space-time. We 
next define the notion of an extent as a subset of space-time and show that it is 
induced by a jam. 

Definition 3 Let (x,y) be a cell with direction d. The extent of a jam at (x,y) in 
iteration t is the set of points 

{(x+di,y-i,t- l -i}ll $ i $ y} U {(x +di,y-i,t-i)ll $ i $ y}U 

{(x+di,y-i-1- 2j,t-i)ll Si S y,l S j < y/2}U 

{(x-di,y-i-1-2j,t+i)IO sis y,l $ j < y/2} 

The top set of points is called the border of the extent. The extent has direction d. 

Figure 3.4 shows the projection on space of an extent (6,4,t), where 'J' is the 
jam causing the extent. 
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Fig. 3: extent (6,4,t) 
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Lemma 1 A particle p jamnwl at (x,y) in iteration t ;?: y implies the extent 
(x,y,t). 

Proof. (By induction on height.) Let d be the direction of (x,y). Hy= 0 then 
the extent is empty and thus trivially implied. Suppose y > 0. Then by assumption 
of the lemma also t > 0. For p to be jammed in iteration t, its downward motion 
must be blocked by particles at both (x + d,y - 1) and (x,y - 1) at time t (the 'j' 
and 'p' on row 3 in Figure 3.4). The particle at (x+d, y-1) must have been present 
at time t - 1 as well, and was out-of-sync at that time, hence jammed in iteration 
t-1. By induction there is an extent (x+d,y-1,t-1) (whose projection on space 
is shown as the sub-triangle in Figure3.4). The particle at (x,y -1) is in sync at 
time t and, having the opposite direction of p, will either move to (x-d, y- 2) itself, 
or else be blocked by another particle. In either case, there must be a particle at 
(x - d, y - 2} at time t + 1. The exact same reasoning can be repeated to establish 
existence of particles at (x - id, y - 1 - i, t + i) (The capital 'P's in Figure3.4). The 
union of these with the particle (x + d, y- 1, t-1} and its established extent exactly 
constitute the extent claimed in the lemma. D 

The notion of extent helps us prove that particles stabilize in due time. At each 
step, a particle will either continue moving down, or get jammed, in which case we 
can show an accumulation of particles underneath it. In both cases, the particle 
gets closer to stabilization. 

9. 5 Extents sediment 

We need some more definitions to be able to work with the 2 x 2 blocks that partition 
the grid. 

Definition 4 A block is a child of either of the two blocks immediately and di
agonally abOfJe it, which are it's parents. Ancestors and descendants are defined 
accordingly. 

Definition 5 Two extents are said to be congruent if they hatJe the same direction 
and hatJe a non-empty intersection containing non-border particles. 

Definition 6 The support of a&~ block with lower-left cell (z,y) is the set of cells 

{(x + 1 +i,j)IO $ i $ y,0 $ j $ y - i}U 
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{(x-i,j)IO 5 i 5 y,O 5 j 5 y-i}, 

and has height y + 1. An extent is said to amve at a block B at time t if t is the 
earliest time at which either cell in the bottom half of B occurs in the non-border 
part of the extent. 

The following lemma shows that the layers will indeed "sediment". 

Lemma 2 If 2y incongroent extents arrive at block B before or at time t, where y 
is the height of the support of B, then at time t, the support has stabilized, i.e., is 
full of particles. 

Proof. By induction on y. The case y = 1 holds trivially because height 1 supports 
consist of only 2 cells and, by incongruence, one gets filled by each arriving extent. 
Suppose y > 1. Let E, E', E", with directions d, d', d", be the last 3 extents to 
arrive, at times t 2:: t' 2:: t". Let B-d' at height y - 1 be the child block of B in 
direction -tl. We will show that the support of B-d' has stabilized. at time t! - 1. 
Since at most 2 incongruent extents can arrive in a block at a time, and since all 
arrival times must have the same parity, there must be at least 2y-3 extents having 
arrived at B before time t' - 1, and these arrive at B-d' before or at time t' - 1. 
H t'' < t' then E" also arrives at B-d' before or at time t' -1. Otherwise t'' = t' 
so that <I' =F tl but then E", which goes 'back in time' in direction d" = -d', also 
arrives at B-d' at time t' -1. In both cases induction implies stabilization of B-d' 's 
support at time t' - L The non-border particle of E' that is in B's bottom half 
at time t' is necessarily at the intersection with B-a' and thus will remain blocked 
there. Let p be the non-border particle of E that is in B's bottom half at time t. 
The exact same reasoning applied to E instead of E' (using corresponding variables 
with one fewer ') shows that p remains blocked at the intersection with B-d· If 
d =F tl then B's support is stabilized at time t and we're done. Otherwise d = d'. 
Then, by incongruence, t > t'. 

There must be 2y - 1 extents having arrived at B before or at time t' 5 t - 2, 
and these arrive at Bd' before or at time t - 1. Induction implies stabilization of 
Bd•'s support at time t - 1. If p is adjacent to a jammed 'j' particle in E, then 
the latter will necessarily be at the intersection with Bd' at time t -1 and remain 
blocked there. If p is not adjacent to the border of E, then at time t - 1 there is 
a particle in E diagonally above p that tries to move toward p in iteration t. This 
implies occupation of the cell below it at time t, again showing stabilization of B's 
support at time t. D 

3. 6 Blocks stabilize over time 

Definition 7 At any given time, a top block is a block B such that 

• B has one or two particles in its top row 
• no ancestor of B has any particles in its top row 

A block trajectory is a mapping B from times to, t0 + 1, ... , to + m to top blocks, 
s'UCh that 
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• to exceeds the height of B ( t0 ). 

• for all to ~ t ~ to + m, B(t + 1) is a descendant of B(t). 

The instability of a block is twice its height minus the number of extents that have 
arrived there. 

Lemm.a 3 The instability of blocks in a block trajectory B(t) decreases with time. 

Proof. Suppose block B = B(t) is active in iteration t + 1. In the worst case, 
there are 2 particles in the top row, one of which moves down while the other jams. 
Then only one extent arrives, while B(t + 1) necessarily equals B(t). Since it is 
inactive in iteration t + 2, its instability may not decrease. We will see how it makes 
up for this. In iteration t + 3, B is active again. H the single particle in the top row 
still cannot move down, it is because of a double jam, which compensates for the 
next inactive iteration. When the single particle in the top row finally does move 
down in iteration t + 1+2k, we have B' = B(t + 1+2k) being a proper descendant 
of B, and all extents that arrived at B necessarily arrive at B' as well. Altogether 
the instability has dropped by 1 in iteration t + 1, and by (at least) 2 in iterations 
t + 3, t + 5, ... , t + 1 + 2k, for a total of 2k + 1. D 

Theorem 1 A rectangle of height h stabilizes within time 3h. 

Proof. By the previous lemma, it suffices to establish the existence of a block 
trajectory B(t) that starts before time hand ends with one of the last blocks to 
stabilize. This is because the instability of any block starts out as 2h, where h is 
its height, and therefore any trajectory from it yields a stabilized block within at 
most 2h steps. Indeed, if tn is the first time at which all is stabilized, then we can 
choose B(tn -1) to be any top block that is not yet stabilized. Given a trajectory 
from times t to tn, we can extend it backwards in time by mapping t - 1 to any 
ancestor of B that is a top block at time t - 1. Note that this necessarily exists 
(and might equal B). Repeating this until t < h proves the result. D 

4 Discussion of the result 

We implemented a computer simulation with grid sizes ranging from 10 x 20 to 
40 x 80 or 40 x 40. We observe that: 

(i) A random distribution of particles with density 1/2 has an average stabiliza
tion time of h/2 

(ii) In the extreme case where the left half of the grid is full, and the right half is 
empty, the piling time is < h if h > 2w 

Hence our upper bound of 3h does not meet the "experimental" upper bound of 
2h. Furthermore, in the average case, piling up seems to be "as quick as possible" 
taking the time h/2. 



392 F. Grv.av. & J. Tromp 

-.. rn .. 
• • • • • • • • 

(a) 

.. -~- .. ... ~ ... 
(b) 

.. ~ .. 
• • • • • • • • 

(c) 

+- ~ 
•re-1• •••• 
• L!...!.J ••••• 

(d) 

Fig. 4: With the rule DIAG.DOWN.SIDE, a hill going rightward can cross a valleys going leftwards 

without anhilation of the two. Thin lines represent blocks. 

5 Two open problems 

5.1 Remomng dirty rows 

Intuition suggests that modifying rule entry number 3 (see Table 2) of DIAG..DOWN 

to be 

5!j-+ffij 
could initiate a transfer of particles along the edge of the piles and "flatten down" 
all the piles to become horizontal in a time O(n) if n is the number of particles. 

We can call the modified rule "DIAG_DOWN...SIDE". This means: we try to 
move down. along the diagonals; if we can't, we try moving down vertically; and if 
that too fails we we try going sideways. 

Computer simulation shows that the piling time is the same as for DIAG .DOWN, 
and the piles are indeed :flattened after less than n more iterations of the same rule. 
At the end the number of dirty rows (with both full and empty cells) is at most 1 
for odd width and at most 2 for even width. 

Figure 4 shows how two dirty rows can remain dirty forever. Using a slightly 
refined rule to suppress this exceptional case, it is possible to limit the number of 
dirty rows to one. 

In th.e context of our cellular machine it is quite interesting to reduce the number 
of dirty rows. It can ensure that we use the minimal area possible, especially, when 
we need to fit a small number n of particles in a rectangle whose width is greater 
than n. With the rule DIAG..DOWN...SIDE, the height needed to always fit the 
particles is ..fii. With DIAG.DOWN...SIDE height 1 suffices. 

5.2 Filaments 

We believe that there is a critical storage capacity for each cell sufficient to store 
particles for any programs. Nevertheless, this remains to be proven. For reasons of 
efficiency it is desirable to be able to spread one particle among several processors. 
In this way we can have a minimal storage size of 1 kbit per cell, and use a group of 
cell to store unusually big particles. The simplest way we can think of for structuring 
the data is to represent a big particle as a chain (called filament) of small particles 
which fit on a cell. We need to store the :filament structure in the CA state and 
define a rule able to migrate filaments. Simulation can then suggest time bounds 
to be proven. 
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6 Conclusion 

In this work, we have defined a new class of problems for 2D Cellular Automata 
called "piling up". This operation is the core mechanism of a new model of massive
fine grain parallelism, briefly outlined. It is crucial to implement it with minimal 
hardware and optimal time. We have provided an extremely simple CA rule for 
piling up particles, and proved a near-optimal time upper bound. We have proposed 
another rule to :Batten piles (without proof) and suggested the more difficult open 
problem of piling up filaments. 
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