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ON NONOSCILLATING INTEGRALS 
FOR COMPUTING INHOMOGENEOUS AIRY FUNCTIONS 

AMPARO GIL, JAVIER SEGURA, AND NICO M. TEMME 

ABSTRACT. Integral representations are considered of solutions of the inhomo
geneous Airy differential equation w" - zw = ±1/rr. The solutions of these 
equations are also known as Scorer functions. Certain functional relations for 
these functions are used to confine the discussion to one function and to a 
certain sector in the complex plane. By using steepest descent methods from 
asymptotics, the standard integral representations of the Scorer functions are 
modified in order to obtain nonoscillating integrals for complex values of z. In 
this way stable representations for numerical evaluations of the functions are 
obtained. The methods are illustrated with numerical results. 

1. INTRODUCTION 

Airy functions are solutions of the differential equation 

(1.1) 
d2 w 
dz2 -zw=O. 

Two linearly independent solutions that are real for real values of z are denoted 
by Ai(z) and Bi(z). They have the integral representations 

Ai(z) = ~ 100 
cos (zt + ~t3) dt, 

(1.2) 

Bi(z) = ~ 100 
sin ( zt + ~t3) dt + ~ 100 

ezt-it3 dt, 

where we assume that z is real. 
In this paper we concentrate on so-called Scorer functions ([7, 15]), which are 

particular solutions of the nonhomogeneous Airy differential equation. We have 

(1.3) 

w" - z w = -l/n:, with solution Gi(z) = ~ 100 
sin ( zt + ~t3) dt, z E JR, 

and 

(1.4) w" - zw = 1/rr, 1 100 t lt3 with solution Hi(z) = - ez - 3 dt, 
7r 0 

z EC. 
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Initial values are 

Gi(O) = ~ Hi(O) = ~ Bi(O) = ~ Ai(O) 
2 3 v3 

1 

(1.5) 

Gi'(O) = ~ Hi'(O) = ~ Bi'(O) = - ~ Ai'(O) = 3516~(~). 
From (1.2), (1.3) and (1.4) it follows that 

(1.6) Gi(z) + Hi(z) = Bi(z). 

In the next section we give contour integrals from which representations of 
Ai(z), Bi(z) and Gi(z) follow for complex values of z. Just like Ai(z) and Bi(z), the 
Scorer functions Gi(z) and Hi( z) are entire functions. 

A survey on computational aspects of special functions, including information 
on Airy functions, can be found in [8]; [10] has a public web site that includes an 
extensive treatment of Scorer functions. For complex values of z the Airy functions 
are available in the Bessel function algorithms of [2]; see also [3] and [14]. Computer 
algebra systems as Maple and Mathematica also have Airy functions available. The 
Scorer functions are considered in [9], where coefficients of Chebyshev expansions 
are given for real z. Asymptotic expansions for Hi(z) are given in [4] and [11]. The 
paper by Scorer ([15]) gives tables to 7 decimals ofHi(-z) and Gi(z) for 0 :S z :S 10. 

Efficient algorithms for computing the Scorer functions in restricted domains of 
the complex plane can be based on Maclaurin series and asymptotic series. These 
domains can be bridged by using the differential equations or the integral represen
tations. 

In [5] methods were presented based on the differential equations, which are set 
up as boundary-value methods, providing stable algorithms for all values of z. 

The purpose of this paper is to give stable integral representations for Gi(z) 
and Hi(z). We modify the integrals in (1.3) and (1.4) by using methods from 
asymptotics. As in [5], the resulting integrals can be used for any value of the 
complex parameter z. We also indicate how similar methods can be used for the 
Airy function itself. 

2. ASYMPTOTIC PROPERTIES OF THE AIRY AND SCORER FUNCTIONS 

We need a few properties of the Airy and Scorer functions. More information 
can be found in [l], [10], [11] and [17]. In particular [11], Chapter 11, discusses 
numerically satisfactory solutions of the differential equations for Gi(z) and Hi(z). 
The asymptotic properties of the Airy and Scorer functions are important in this 
discussion. 

We write, as in [11], 

(2.1) Aio(z) = Ai(z), Ai1(z) =Ai (e-2ni/3 z), Ai_ 1 (z) =Ai (e2ni/3 z). 

We have the representations 

(2.2) j = 0, ±1, 
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FIGURE 2.1. Three contours cj of integration for the Airy integrals 
in (2.2), and sectors Sj where the Aij(z) are recessive. 

where the contours CJ are given in Figure 2.1. Because J~'uUCiUCi r-zt+1t" dt = 0. 

we have the following linear combination of three solutions of ( 1.1): 

(2.3) 

The first integral in (1.2) follows from deforming the contour C0 in (2.2) into the 
imaginary axis. The function Bi(z) can be written as 

(2.4) 

and the second representation i11 (1.2) follows by deforming the contour C1 into 
the positive imaginary axis and ( -(X), OJ, aucl the contour C_ 1 into (-oc. OJ and the 
negative imaginary axis. 

The function Aij(:::) is recessive at infinity in the sector S1 , j = 0,±1. the 
function being exponentially small at infinity along any ray interior to this sector. 
On the other hand, Aij(:::) is dominant at infinity in the sectors S1 _ 1 and SH 1 (the 
suffixj is enumerated modulo 3). and is exponentially large at infinity along the rays 
interior to these sectors. Bi(:::) is dominant at infinity within all three sectors S'j. 
A pair of Airy functions comprises a numerically satisfactory pair at infinity within 
a sector if only one function is dominant. For example, the pair {Ai(z),Bi(z)} 
comprises such a pair only in Su (and on the negative real axis, where neither of 
the two is dominant, but where the phases in their oscillations differ by ~1T). 

If one of the functions Gi( z), Hi( z) is computed, we may use ( 1.6) to- compute 
the other one (we assume in this paper that Bi(z) and all other Airy functions nre 
available), but we need to know if (1.6) is numerically stable for that computation. 
For example, because Gi(z) is only of algebraic growth in So (as we will sec soon), 
we cannot compute Gi(z) from (1.G) in 50 . 

Fur the Scorer functions we have the following asymptotic expansions ( cf. [ 11], 
431--432): 

(2.5) Hi(z)rv-__!_[1+2-~(3s+ 2)!] z-+oo, lph(-z)IS.~.,1T-O, 
1TZ z3 L.., s!(3:::3 ) 8 ' , 

s=O 

(2.6) G.( l 1 [ i. I:= (:3s+2)·!l [7 rv- l+-
- 7r'" ,.:.J sl(3,.3)s ' 

- - s=O '·. -

z --f oo. 
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(j being an arbitrary positive constant. For (2.6) the domain for ph z is not given 
in [11], but it follows from the same method mentioned for Hi( z) in [11], p. 432. 
In other parts of the complex plane we cannot represent the Scorer functions by a 
single expansion with leading term 0(1/ z ). 

From the results in (2.5) and (2.6) and the dominant asymptotic behavior of 
Bi(z) in all sectors Sj, j = 0, ±1, we conclude (cf. (1.6)) that Bi(z) is a dominant 
term for Hi(z) in So and for Gi(z) in S1 US-1 . It follows that we need algorithms 
for the computation of Gi(z) for z E So and for Hi(z) for z E S1 U S-1 (where 
the asymptotic expansions (2.5) and (2.6) are valid). The relation in (1.6) can be 
used for computing the functions in the complements of these domains (where the 
functions have the dominant behaviour of Bi(z)). 

A further reduction of domains follows from the connection formula1 

(2. 7) Hi(z) = e±27ri/3 Hi ( ze±27ri/3 ) + 2e'f7ri/6 Ai ( ze=F27ri/3) . 

To prove this relation, observe that the first term in the right-hand side satisfies 
the differential equation for Hi(z), and that, hence, that term can be written as a 
linear combination of Hi(z) and solutions of the homogeneous equation; the initial 
values in (1.5) can be used to identify these solutions. 

For example, we can use (2.7) with the upper signs for z in the sector ~7!' < 
ph z < ~71'. Then, Hi( z) can be expressed in terms of Hi in the sector -71' < ph z < 
- ~7l' plus an Airy function in the sector -7l' /3 < ph z < 0. We see that both 
functions in the right-hand side of (2. 7) are not dominant in the respective sectors, 
and, hence, this representation is stable. 

A similar connection formula for Gi(z) reads 

Gi( z) = e±27ri/3 Gi ( ze±27ri/3) + e'f7ri/6 Ai ( ze=F27ri/3) . 

This formula is of no use in the sector So because both functions in the right-hand 
side are dominant, whereas Gi(z) is of algebraic growth at infinity within So. A 
better formula for z E So follows from combining (1.6), (2.4) and (2.7) (the latter 
twice, with upper and lower signs). This gives 

(2.8) Gi( z) = _ ~ [ e27ri/3 Hi ( ze27ri/3) + e-27ri/3 Hi ( ze-27ri/3)] . 

For z E So the arguments of the Hi -functions are in 8±1, where these functions 
have expansions that follow from (2.5). 

Because of the equalities 

(2.9) Hi(x - iy) = Hi(x + iy) and Gi(x - iy) = Gi(x + iy) 

we can concentrate on nonnegative values of the imaginary part y of the argument 
z = x + iy. 
Conclusion. The principal domain of interest for the Scorer functions is the sector 
~7l' :5 ph z :S 7l', where we concentrate on Hi(z). For z in other sectors, and for 
Gi(z), the relations (1.6), (2.7) and (2.8) are numerically stable for the particular 
cases. 

For a summary of the results of this section and algorithms we refer to Section 4. 

1 With thanks to the referee. 
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3. THE CONSTRUCTION OF NONOSCILLATING INTEGRALS 

We modify the integral in ( 1.4) such that stable algorithms can be based on the 
new integral for z in the sector ~ rr ::; ph z ::; rr. 

We write 

(3.1) 1 3 
1J(t) = -t - zt, t = u +it•, z = :r + iy. 

3 
Then the real and imaginary parts of ef>(t) = 1Jr(u. v) + i</>i(u, v) are given by 

1 
<Pr(u, v) = 3u3 - uv2 - a::u + yv. 

(3.2) 
ef>i(u,v) = u2 v - ~u3 - .rv -yu. 

We are interested in a path in the complex t-plane on which </>;(u, v) is a con
stant, and the path should start at the origin, as the integral in ( 1.4). Such a path 
is defined by the equation 

(3.3) 2 1 3 u v - -v - xv - yu = 0 3 . 

and we need real solutions of this equation. 
As summarized at the end of Section 2, we need to consider ;::-values satisfying 

27T /3 ::; ph z ::; rr. If z < 0 we can integrate along the positive t-axis. For other 
values of ph z in the present range the path of integration will be deformed into a 
curve C that is defined by (3.3) and that runs from the origin to +oo; see Figure 
3.1. 

v v 

5 u 5 

FIGURE 3.1. The contour C is defined by (3.4). The left figure is 
for z inside the sector 2rr / 3 ::; ph z ::; 7r, and the curve is defined 
by (3.4). If ph z = 2rr/3, the curve in the right figure is defined 
by (3.8). 

u 

We solve the cubic equation (3.3) for v. The solution that passes through the 
origin can be written in the form 

(3.4) 

where 

(3.5) 

In . 1 
v(u) = 2v li sm 3e, 

p 1 
e = arcsin JQ3 E [O, 2rrL 

with u;:::: 0,x < 0,3x2 > y2 . 

Q = u2 - J:', 

To show this, we introduce t = v/(2,/Q). Then (3.3) can be written in the form 

3 p 
4t -3t = ---. 

VQ3 
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It is not difficult to verify that, if u ~ 0, x < 0, 3x2 > y2 , then the modulus of 
the right-hand side is not larger than unity. Replacing the left-hand side with 
-sin(3arcsin(t)) gives the solution in (3.5). 

It follows that 

( 3.6) Hi(z) = - e-1',.(u,v(u))h(u) du, 1 ;·ex: 
7f 0 

where 6,.(u. v) is given in (3.2), v(u) in (3.4) and 

dt d[u + iv(u)] _ .dv(u) _ . 2uv - y 
( 3. 7) h ( u) = - = - 1 + l -d- - 1 + i 2 2 

du du u v - u + x 

If ph z = 2;r /3, then y = -;i:/3, x < 0, and equation (3.3) can be solved 
explicitly. The two solutions are 

(3.8) v = uJ3 and 
3:r: +v2 

'IL = - . 
v/3 

In this case the path of integration C runs from the origin to the point 

to = uo + ivo = J-x/2 + iJ-3x/2 

along the line v = u/3, and for ·u ~ u0 the path C follows the hyperbola defined 
by the second solution given in (3.8); see the right figure in Figure 3.1. The point 

t0 = u0 + iu0 = .jZ = Jx - ix/3,:r::; 0, is a saddle point of the function rfi(t) 
defined in ( 3.1). 

We can also solve (3.3) for ·u, which gives 

(3.9) y-R ( 1 ) u. = --. R = y2 + 4v2 x + -3 v2 , 
2v 

where the square root is nonnegative. This solution should be used for 0 '.S v ::; 
u1. 0 '.S u ::; u 1 , where 

v1 = v1(x,y) = J~ (-x· - )x2 -y2/3), 

the smallest positive v-value for which R = 0 and u1 = y / (2vi). For 0 ::; v ::; 
1'1. u ~ u1 , we use u = (y + R) /(2v); see Figure 3.1. 

When integrating with respect to v, the integral in (3.6) can be written as 

1 [ /"'' 10 ] (3.10) Hi(z) =;;: Jo e-<Pr(u-(v),v)h(v)dv+ Vt e-1',(u+(v),v)h(v)dv , 

where 9,.(11, u) is given in (3.2), u±(v) = (y ± R)/(2v) (cf. (3.9)) and 

dt d(u + iv) du v2 - u2 + x 
h(11)= - = = -+i= +i. 

cfo dv dv 2·uv - y 
(3.11) 

Remark 3.1. For the sector 0 ::; ph z ::; ~7f we can use a similar method, although 

we don't need to consider this sector. If y2 - 3x2 ~ 0 the quantity R of (3.9) is 
defined for all values of u, and the first equation in (3.9) defines a path [, going 
from the origin to ooexp(2;ri/3). Because there is a hill at ooexp(7ri/3), we can
not replace the integration path in ( 1.4) by 12. We need an extra integral from 
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u 

FIGURE 3.2. The two contours for the integrals described in Re
mark 3.1. 

oo exp(2Iri/3) to +oo, and that integral gives an Airy function; see Figure 3.2. In 
this way we obtain 

(3.12) 

with h(v) given in (3.11) and the relation between u and v given in (3.9). We see 
that the first term in the right-hand side of (2.7) with upper signs corresponds to 
the integral in (3.12). 

Remark 3.2. Comparing the representations ofHi(z) in (3.6) and (3.12), we observe 
that the Airy function in (3.12) disappears as z crosses the half-line ph z = 2Ir/3. 
On that line the argument of the Airy function Ai(ze- 271'i/ 3 ) becomes positive (see 

(3.9)). Thus the dominance of Hi(z) over Ai(ze- 271'i/ 3 ) is maximal at this line; 
this is therefore the place where the exponentially-small contribution is "switched 
on". This aspect is connected with the Stokes phenomenon in asyrnptotics, and the 
half-line ph z = 2Ir/3 is a Stokes line for Hi(z); see [12]. 

3.1. The Scorer function Gi(z). It is convenient to have a direct method for 
Gi( z) that is not based on results for the Hi -function, especially if z is positive. 
We give only a few details on this case. The method can be used for the sector 
0 s; ph z s; 2Jr /3. 

The first step is to replace the sine function by two exponentials. Then we obtain 

(3.13) Gi(z) = ~ [Gi+(z) - Gi-(z)], Gi±(z) = /
0
"
00 r-;±i1fi(t) dt, 

2m Jc 
where 'lj;(t) = zt + ~t3 = 1f-;r(u, v) + ·i1f-1i(u, v), with 

(3.14) 
·11J (u v) = ~v.:3 - uv2 + :x:u - yv 
~ r ' 3 , ' 

1 
·i/Ji(u, v) = u2 v - 3v3 +xv+ yu. 

The path of integration for Gi± (z) is found by solving the equation q;,,( u, 11) = 0. 

For Gi+(z) the path runs into the valley at ooexp(Iri/6). The result is 

(3.15) 
dv v. 2 - v 2 + :r 

g(u)=l+·i-=l+i . 
du 2uv + y 

For Gi-(z) the integral along [O,oo) can be replaced by a path along the half-line 
with ph t = -Jr /6. In this valley no real solution of 1/-!r (u, 1J) = 0 is available, and 
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we take a path that first runs i11to the valley at oo exp( -57Ti/6) and then returns 
to the valley at x exµ( -;ri/6). This introduces an Airy function, and we obtain 

(3.16) Gi-(z) = - Ix e-ti';(u.u) g(u) du+ 27T Ai(z), 

where g(u) is as in (3.15). Adding the results in (3.15) and (3.16), we obtain a 
simple nonoscillating integral plus an Airy function: 

Gi(.::) = ~ r= e-~.,(u,v) g(u) du+ i Ai(z), 
7Tdo 

\Vhere the relation between 11 and v is given by 

-y + Jy2 + 4u2 (.r + ~u2 ) 
l'= . 

2u 

If.:: is real and 1101111egative. (3.17) becomes real. The term with the Airy function 
is cauceled by the imaginary contribution of g(u) /i. The remaining integral in (3.17) 
should be modified in this case. The contour runs from the origin to the saddle 
point i..jx. and from this point into the valley at xexp(7ri/6). Integrating with 
respect to c. we obtain the real representation 

( 3.18) x::::: Q, 

4. NUl\IERICAL ILLUSTRATIONS 

\Ve give some numerical results which serve as demonstration of our method. 
In order to evaluate the Scorer functions in the whole complex plane, we need 

to select sofhvare for the evaluation of Airy functions of complex arguments and 
for the quadrature of real functions over an infinite integral. For the first purpose, 
we use the public domain subroutines ZAIRY and ZBIRY by D.E. Amos [2], and 
for the semi-infinite integral we use the automatic adaptative integrator DQAGIE 
b~· R. Pic>sse11s. All these codes can be retrieved from the SLATEC public domain 
library [13] (see also GAJVIS: guide to available mathematical software [6]). 

The connection formulae given in Section 2 together with the nonoscillating 
integrals derived in Section 3 can be used to evaluate Hi(z) and Gi(z) in the whole 
complex plane. By using the integral representations for Hi( z) in the domain 7r :::; 

ph z :':: 27T/3 the folluwing t>table algorithm can be considered: 

Algorithm 4.1 (via (3.6). 

• Wheneuer Im (z) < 0. use (2.9). 

• If z E Si2 l. obtain Hi( z) by quadrature. 

• If.:: E Si 1 ) LJSo. obtain Hi(.::) via (2.7). 
• Obtain Gi( z) everywhere in the complex plane by using (2.8). 

wher·e si1l is the sector 7T /3 :; ph z :::; 27T /3 and s;21 is the sector 27T /3 :::; ph z :; 7T. 

However, in the fourth i:ltep two integrals for Hi will be needed. Thus, the 
following stable scheme is expected to be more efficient when fast algorithms to 
compute the Airy functions Ai and Bi are available: 
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TABLE 4.1. The real and imaginary parts of Hi(z) in the sector 
rr :S ph z :S ~7f'. The result from the asymptotic expansion up to 
order 1/ z10 is shown inside brackets. The number of integration 
steps for each evaluation is shown within the braces. 

ph z = rr ph z = 5rr/6 ph z = 2rr/3 
JzJ = 1 Re (Hi) 0.22066961 0.22331566 0.23477589 

{195} {195} {345} 
Jzl = 1 Im (Hi) 0 6.2133021 10-:l 0.13605894 

{165} {465} 

JzJ = 10 Re (Hi) 3.1768535 10 ·'.l 2. 7597145 10 ·2 1.5948003 10-:.1 
{75} {75} {135} 
(3.1768528 10-2 ) (2.7597137 10-2 ) (1.5947998 10-2 ) 

Jzl = 10 Im (Hi) 0 1.5859789 10-'.J 2. 7622751 10-2 

{75} {225} 
( 1.5859786 10-2 ) (2.7622742 10-2 ) 

Jzl = 100 Re (Hi) 3.1830925 10-"""3 2.7566477 10-;j 1.5915526 10-;j 
{135} {165} {165} 
(3.1830925 10-3 ) (2.7566477 10-3 ) (1.5915526 10-3 ) 

lzl = 100 Im (Hi) 0 1.5915439 10-;j 2.7566500 10-J 
{165} {165} 
(1.5915439 10-3 ) (2.7566500 10-3 ) 

Algorithm 4.2 (via (3.6) and (3.17)). 

• Whenever Im(z) < 0, use (2.9). 
• If z E Bi2), obtain Hi(z) by quadrature. 

• If z E si1l U So, obtain Gi(z) by quadrature via (3.17) or (3.18). 
• For the remaining cases, apply (1.6). 

The second algorithm is preferred in most circumstances. However, we have 
experienced that the computation of Gi(z) when Re(z) > 0 and Im(z) --+ 0 is 
more efficient when the first algorithm is considered. Probably, the best numerical 
strategy is a combination of both algorithms, together with the use of asymptotic 
expansions for large J z J and series expansions for small J z J. The best strategy may 
also depend on the choice of the quadrature rule. This numerical study lies beyond 
the scope of the present paper. 

We end this section by showing numerical results. Of interest are the sectors 
where (2.5) and (2.6) are valid, namely, si2l for Hi(z) and si1l USo for Gi(z). Of 
particular interest are the regions So for Gi(z) and si2l for Hi(z), since in this case 
we compute the functions directly by quadrature, and the corresponding integrals 
can be compared with asymptotics if z is large. We are giving explicit results with 
an accuracy of 8 digits for Hi( z) which are compared with the asymptotic expantion 
(2.5) up to order 1/ z10 whenever this is possible. 

The results in Table 4.1 are obtained by means of a Fortran program coded 
in double precision arithmetic in which the integral (3.6) is evaluated. Together 
with the results, we show the number of integration steps needed to attain an 
accuracy of 8 digits. The results from asymptotics (shown inside parentheses) are 
seen to coincide with those from the integral (3.6) for lzl = 100, but for lzl = 10 we 
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0. 4 

0.9 0. 35 

0.8 lzl=l 0.3 lzl=l 

0. 7 
0. 25 

0. 2 
0.6 

N 0.15 

G 0.1 
-~ 0. 5 

"' 0.4 
0.05 

0.3 

0.2 -0. 05 

0.1 -0.1 

0 '------'-~--~-~---'------'--' -0 15 
0 0.5 1.5 

ph z 

2.5 0 0. 5 1. 5 

ph z 

2.5 

FIGURE -1.2. The real (solid) and imaginary (dashed) parts of 
Hi(z) (left) and Gi(z) (right) for lzl = 1 and 0 :S ph z :S 1r. 

observe discrepancies in the last digits which are due to the failure of the asymptotic 
expansion (z is not large enough). We also found agreement with the asymptotic 
expansion for Hi(z) for large z in the sector si2l. For real negative ;f our results 
coincide with those given by Scorer [15]. 

One sees that at the Stokes line ph z = 2n /3 the quadrature requires more 
steps, as can be expected given the appearance of a discontinuity in clv / d-u at the 
maximum u. On the other hand, the faster convergence takes place when we are 
far from the Stokes line. l\Ioreover, convergence tends to be slower as izl becomes 
smaller; as izl becomes larger the effect of the singularity in the derivative clv/du 
for ph z = ~7!' would appear at larger v., where the exponential in the integrand is 
smaller. 

Similarly, one can test the performance of the integral representation (plus an 
Airy function) for Gi(z) in the sector 0 :S ph z :S 2n/3, which should coincide with 
the results from the asymptotic expansion (2.6) for I ph zi < 7r /3 and large z. We 
also find agreement with the results tabulated by Scorer for real positive :r. One 
observes that the convergence of the integral representation (3.17) becomes slower 
as \Ve approach the real line ph z = 0. With the quadrature DQAGIE we obtain a 
better performance using Algorithm 4.1 in this case. 

As a further illustration, in Figure 4.2 we give two plots for lzl = 1 obtained by 
using Algorithm 4.2. The graphs show the real and imaginary parts of the Scorer 
functions. One observes the smooth connection between the different sectors in the 
complex plane. 

5. SU:MMARY AND CONCLUDING REMARKS 

As mentioned in the cited references (see [7] and [9]), the inhomogeneous Airy 
functions (Scorer functions) are used in several physical problems. We have used 
functional relations and derived integral representations of the Scorer functions 
that can be used for stable numerical computations for all complex values of the 
argument z. The integrals can be easily split up into real and imaginary parts. 

For the Scorer functions, Maclaurin and asymptotic expansions are available. 
To bridge the gap between the areas where convergent or asymptotic: series can be 

-· 
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used, one can use the representations in this paper, although they can be used for 
all values of the argument. The tool one needs is a suitable quadrature method 
for computing real integrals on unbounded real intervals that converge very fast at 
infinity. We have illustrated the method by giving a few numerical results based on 
selecting a quadrature rule; we have not investigated an optimal choice of quadra
ture rule for computing the Scorer functions. 

We have shown how to handle oscillating integrals for a certain set of special 
functions, and this is quite instructive for applying the method to other functions. 
A similar method can be used for the Airy functions, and another treatment can be 
found in [16] for modified Bessel functions of imaginary order. Still, many special 
functions need to be considered in order to get reliable software, in particular for 
complex and/or large values of the parameters. 
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